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Adiabatic formulation of heteronuclear hydrogen molecular ion
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We revisit the HD1 molecular ion by starting from a definition of the nonrelativistic adiabatic Hamiltonian
that recovers the isotopic splitting. The Hamiltonian is written in prolate spheroidal coordinates with the origin
at the nuclear center of mass. This prescription for the adiabatic Hamiltonian implicitly contains the symmetry-
breaking effects arising from the mass difference between the proton and the deuteron, and gives the correct
asymptotic atomic reduced masses. We calculate potential-energy curves, vibrational energies, transition dipole
moments, and coupling matrix elements for HD1. In our adiabatic approximation, the isotopic splitting is
recovered to nine significant digits at a value ofR5750a0. We investigate the dependence of the vibrational
energies on the number of coupled electronic states, and compare with other calculations.
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PACS number~s!: 31.10.1z, 34.20.2b, 33.15.Fm, 33.20.Ea
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I. BACKGROUND DISCUSSION

The Born-Oppenheimer~BO! Hamiltonian for the hydro-
gen molecular ion is one of the few Hamiltonians that se
rates in an orthogonal coordinate system. Due to this sep
bility, H2

1 and D2
1 have been favorite molecules fo

detailed molecular structure calculations for nearly seven
cades@1#. Nearly all structure properties of H2

1 and D2
1,

including electronic wave functions, rovibronic energies, h
perfine levels, electronic transition moments, and polariza
ities, can be calculated with spectroscopic precision.

Recent microwave measurements on H2 Rydberg elec-
trons in high angular momentum states have brought h
precision calculations of H2

1 and D2
1 into vogue @2,3#.

Since the first nonmonopole term in the perturbative exp
sion of the Rydberg electron interaction with the ionic core
a/2r 4, wherer is the electronic coordinate, precise calcu
tion of the core polarizabilitya is essential@2,4,5#. H2

1 and
D2

1 do not possess permanent electric dipole mome
Hence electric dipole vibrational or rotational transitions
the infrared do not exist in H2

1 and D2
1, and the spectros

copy is limited to the vacuum ultraviolet region.
Although HD1 is an isotope of H2

1, it differs from its
homonuclear brethren in several respects. While the
Hamiltonian for HD1 separates in prolate spheroidal coor
nates~PSC’s! just as for H2

1 and D2
1, its symmetry under

exchange of nuclei,geradeor ungerade, is broken owing to
the mass difference between the proton and the deute
The so-called symmetry-breaking term in the HD1 Hamil-
tonian couples the nuclear and electronic degrees of freed
and gives rise to the splitting of the adiabatic potenti
energy curves as the nuclei separate. An aspect of the mi
of the geradeand ungeradesymmetries in HD1 is that the
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adiabatic potential-energy curves now nearly cross wit
each molecular symmetry, thereby inducing nonadiab
transitions.~Potential curves of H2

1 and D2
1 exhibit real

crossings.! Precisely for this reason, the lowest two adiaba
electronic curves in HD1 couple, and, at energies slightl
larger than 29 cm21, charge transfer can occur. For energ
in the ‘‘mass gap,’’ the rovibronic levels in the 2ps excited
electronic curve are no longer true bound states, and f
ment into a proton and a deuterium atom.

Although the electron in the 1ss and 2ps molecular or-
bitals of HD1 tends to become localized on either the de
teron or the proton as the two nuclei separate, the ene
separation of these two states affects the vibrational and
tational dynamics largely for energies near the dissocia
limit. A far more profound influence on the physics of HD1

occurs because the geometric center and the nuclear cen
mass do not coincide. A permanent electric dipole is th
formed in the ground and excited electronic states, ther
giving HD1 a vibration-rotation spectrum.

Aside from fundamental interest, studies of the H11D
and D11H reactions are important in aeronomy and ast
physics. In planetary atmospheres, charge-exchange inte
tions between abundant isotopic hydrogen neutrals and
regulate the neutral distribution and escape from the at
sphere@6#. The chemistry of deuterium in the postrecomb
nation era of the early universe may depend on the cha
transfer processes H11D→H1D1 followed by H21D1

→HD1H1 @7#. The latter reaction is a major source of H
in diffuse interstellar clouds@8#. Determination of the D/H
ratio also sets stringent constraints on models of big-b
nucleosynthesis@9,10#.

Nearly all theoretical treatments of H2
1 and its isotopes

begin with a body-fixed coordinate system with the origin
the geometric center of the nuclei. Starting with the H2

1 BO
Hamiltonian in PSC’s, electronic wave functions and en
gies are obtained as a function of the internuclear dista
@11–13#. This definition of the BO Hamiltonian cannot, o
course, discriminate between the two dissociation lim
H11D and D11H. Themodus operandiis to consider the
symmetry-breaking term beyond the BO approximation. T

s,
s:
3604 ©1999 The American Physical Society
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PRA 60 3605ADIABATIC FORMULATION OF THE HETERONUCLEAR . . .
mixing of the gerade and ungeradesymmetries, within a
degenerate perturbation expansion on the H2

1 wave func-
tions, is subsequently achieved by diagonalizing
symmetry-breaking operator,2(1/2ma)¹ r•¹R , where 1/ma

5(1/mH)2(1/mD). In the variational-perturbation approac
@12#, the symmetry-breaking term is treated as a seco
order perturbation to the standard adiabatic approximat
and bound vibrational energies with an accuracy of ab
1023 cm21 are obtained. The variational approach
Bishop and Cheung@14# avoids the adiabatic approximatio
altogether, and instead obtains the eigenenergies of the
Hamiltonian by variational optimization of a trial wave fun
tion. A unitary transformation has also been used to@15–20#
move the symmetry-breaking term from the kinetic-ene
operator to the potential-energy operator as reduced-mas
pendent effective charges on the nuclei,z1;121/4ma and
z2;111/4ma .

An alternative approach was proposed by Macek and
jian @21#, who wrote the HD1 Hamiltonian in mass-scale
hyperspherical coordinates~HSC’s! and expanded the ful
wave function in the spirit of the BO approximation by trea
ing the hyperradius as an adiabatic parameter. The H
potential-energy curves that result for the two lowest sta
of HD1 give the isotopically split dissociation limits, even
the lowest order of approximation. The reason for this can
traced to the fact that, as in all HSC calculations, the ad
batic Hamiltonian commutes with the kinematic rotation o
erators, ensuring that the adiabatic Hamiltonian is invari
under orthogonal coordinate transformations. In the us
BO approximation, the electron kinetic-energy operat
however, does not commute with the kinematic rotatio
and thus gives incorrect limits for dissociation.

Tolstikhin et al. @22# introduced an alternative hype
spherical coordinate system, the hyperspherical elliptical
ordinates, for the general three-body Coulomb problem
is especially well suited for the molecular problem. In fa
in the limit of infinitely heavy nuclei, these coordinates r
duce to the usual prolate spheroidal coordinates. A somew
more general three-body Hamiltonian was developed
Solov’ev and Vinitsky@23# in terms of the internuclear co
ordinate R and the scaled electronic coordinater 85r /R.
They showed how to remove terms that couple electro
and nuclear motion by a transformation to a generali
adiabatic coordinate that depends explicitly onr 8. It is worth
noting that this slow coordinate is simply related to the h
perradius. Also, the Solov’ev-Vinitsky Hamiltonian yield
our Hamiltonian if the origin ofr 8 is placed at the center o
mass of the nuclei and it is written in terms of spheroid
coordinates.

Struenseeet al. @24# diagonalized the HD1 Hamiltonian
in the center of mass of the nuclei, in a basis of body-fix
wave functions of definite angular momentum along the
ternuclear axis. These wave functions were constructed f
a Slater orbital expansion to obtain adiabatic energy lev
transition energies, and dipole matrix elements.

In this work, we give an adiabatic formulation of HD1 in
PSC’s that preserves the essential physics of the symm
breaking. This physics is captured by including in the ad
batic Hamiltonian precisely the parts of the nuclear kine
energy needed to give the correct asymptotic atomic redu
masses. We demonstrate numerically that the adiabatic
e
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tential energies converge to the correct fragmentation thre
olds. We present accurate calculations of the HD1 potential-
energy curves, coupling matrix elements, transition dip
matrix elements, vibrational energies, and transition frequ
cies. The chief advantages of this method are that we~a!
recover the correct isotopic splitting in the adiabatic appro
mation,~b! calculate wave functions for nuclear motion th
can be systematically improved, and~c! investigate effects
beyond the adiabatic approximation for which we can cal
late accurate coupling matrix elements. Here we limit o
selves to the determination of the vibrational energies. T
scattering calculation using the potentials and couplin
found here is in progress. We also present the dependen
the vibrational energies on the number of adiabatic chann
The energies obtained for a given number of channels
variationally stringent upper bounds to vibrational energi
In particular, this is true even for a one-channel calculatio
the diagonal correction terms are included.

In an attempt to clarify possible ambiguities in termino
ogy, we will define our use of the terms ‘‘BO approxima
tion’’ and ‘‘adiabatic approximation.’’ By the BO approxi
mation, we refer to the approximation in which the electron
Hamiltonian includes the electronic kinetic energy and
Coulomb interactions. The nuclear masses can either
taken to be infinite as is usually the practice, or they can
taken to be finite through their effect on the electronic
duced mass. The term adiabatic approximation will be
served to label the more general approximation we deve
here, in which some nuclear rotation and radial kinetic e
ergy are included in the adiabatic Hamiltonian. Nonadiaba
effects can be taken into account in both approaches once
radial first and second derivatives are calculated.

II. THEORETICAL DISCUSSION

A. Adiabatic Hamiltonian construction

In this section, we present the adiabatic formulation fo
general one-electron diatomic ion. In particular, for nucleA
andB with massesmA andmB , and chargesZA andZB ~see
Fig. 1!, we consider the nonrelativistic Hamiltonian in th
center of mass:

H52
1

2mAB
¹R

22
1

2me
¹ r

21
ZAZB

R
2

ZA

r A
2

ZB

r B
. ~1!

This expression is written in atomic units~which will be
used throughout this work!, and the reduced masses a
given by

FIG. 1. The Jacobi set used in this work.
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1

mAB
5

1

mA
1

1

mB

1

me
5

1

mA1mB
11. ~2!

In considering theN-electron diatomic molecule, Pack an
Hirschfelder @25# labeled these coordinates the center-
mass nuclei system, since the origin of electronic coordina
is placed at the center-of-mass of the nuclei. But, for
one-electron case, this system of coordinates simply red
to the Jacobi coordinates for the three-body system. The
cobi coordinates, supplemented by the center-of-mass p
tion in lab coordinates, are related by an orthogonal trans
mation to the lab coordinates of the particles. This leads
the absence of a mass polarization term in Eq.~1!.

A main goal of the present development is to obtain
correct finite mass asymptotic thresholds in the zeroth o
of approximation. In the case of HD1, this means that the
1ss and 2ps potential curves will be split by 29 cm21. To
this end, our guiding principle in defining the adiaba
Hamiltonian will be to include as much of the full Hami
tonian@Eq. ~1!#, as possible, while retaining the internucle
distanceR as the adiabatic parameter, i.e., retaining the c
cept of potential curves. This was also the approach take
Pack and co-workers@24–26#, although our implementation
differs significantly from theirs. Our initial step, however,
identical to theirs. That is, we rewrite the nuclear orbi
angular momentumL in terms of the total orbital angula
momentumJ, and the electronic orbital angular momentu
l. Explicitly, with J5L1 l, we have

L25J222Jz
21 l22 l 2J12 l 1J2 . ~3!

The operatorsJ6 and l 6 are the usual angular momentu
ladder operators for the total and electronic orbital angu
momenta, respectively. Following the prescription of Pa
and Hirschfelder@27# ~save for theR25/2 factor!, we expand
the total internal wave functionC as

C~R,r !5(
nL

1

R5/2
Fn

L~R!D̃LM
(J) ~f,u,0!Fn

L~R;r !, ~4!

whereu andf are the lab-fixed spherical polar coordinat
of R, andn represents all of the quantum numbers neede
label the adiabatic channel functionsFn

L ~the purpose for
using theR25/2 factor will become clear shortly!. The tilde
indicates that the WignerD function is normalized over two
angles rather than three, i.e.,D̃LM

(J) 5A2J11/4pDLM
(J) @26#.

This expansion has the dual purpose of transforming
wave function to the body frame.~For comments on the
subtleties of using the ladder operators in the body frame,
Pack and Hirschfelder@27# and Pack@26#.!

We now reach the primary point of departure with t
HD1 development of Pack and co-workers@24,26#. Whereas
they solved the adiabatic equation via an expansion o
atomic orbitals, we write the electronic coordinates in ter
of PSC’s and solve the resulting two-dimensional~2D! equa-
tion usingB splines~the details of the numerical treatme
will be given in Sec. II B!. Historically, PSC’s have bee
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used for the homonuclear H2
1 and D2

1 systems becaus
they allow the separation of the BO equations. The soluti
are normally expanded in series and have been tabulate
the literature@28–30#. To the best of our knowledge, the
use for heteronuclear systems has been limited to the gen
tion of a BO basis which, in turn, is used to expand t
electronic wave functions.

In the center-of-mass system, the PSC are defined jus
in the geometric center of the nuclei~GCN! system:

j5
r A1r B

R
, 1<j,`,

h5
r A2r B

R
, 21<h,1,

plus the azimuthal anglex that ranges from 0 to 2p. The 6D
volume element for the relative coordinates is

dV5R5~j22h2!djdhdx sinudRdudf, ~5!

and the electronic Laplacian has the usual prolate sphero
definition

¹ r
25

4

R2~j22h2! F ]

]j
~j221!

]

]j
1

]

]h
~12h2!

]

]h

1
j22h2

~j221!~12h2!

]2

]x2G .
Because the spheroidal coordinates depend onR, the effect
on the nuclear radial derivatives of transforming to spher
dal coordinates must be considered. At this point, these
rivatives are evaluated holding the body-frame Cartesian
ordinates fixed. It is preferable, however, to evaluate th
holding the spheroidal coordinates fixed instead. The con
quence of working in the center-of-mass frame rather tha
the GCN frame now appears since the only difference
tween the two coordinate systems is a translation in the C
tesian coordinatez,

zCMN5zGCN1
aR

2
,

wherea is the mass asymmetry parameter defined as

a5
mA2mB

mA1mB
.

Thus, upon using the chain rule to rewrite the radial part
the nuclear Laplacian, we find

S ]2

]R2 1
2

R

]

]RD
xyz

5S ]2

]R2D
jhx

2S 2S Y1
3

2D
R

]

]R
D

jhx

1

S Y1
3

2D S Y1
5

2D
R2

, ~6!
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keeping in mind that the radial derivatives are acting on
wave function in Eq.~4! and are taken holdingjhx fixed.
The origin of the factorR25/2 in Eq. ~4! is now evident—it
prevents the first derivative on the left-hand side of Eq.~6!
from appearing on the right-hand side, and it accounts for
R5 in the volume element, Eq.~5!. The operatorY in Eq. ~6!
involves only electronic coordinates and is defined as

Y5
1

j22h2 F ~j1ah!~j221!
]

]j
1~h1aj!~12h2!

]

]h G .
For homonuclear systems, this definition corresponds
cisely to the standard definition ofY @31#, since the mass
asymmetry parametera is then zero.

To define the adiabatic Hamiltonian, we need only co
bine Eqs.~1!, ~3!, and~6!, while keepingR fixed. Care must
be taken, however, as the last term in Eq.~6! is not Hermit-
ian. Using the fact that

S Y1
3

2D †

52S Y1
3

2D , ~7!

this term can be readily decomposed into its Hermitian a
anti-Hermitian parts, and a Hermitian adiabatic Hamilton
constructed. Finally, we have the following definition for th
adiabatic Hamiltonian:

Had52
1

2me
¹ r

22
ZA

r A
2

ZB

r B
1

ZAZB

R
1

J~J11!22L21 l2

2mABR2

2

S Y1
3

2D 2

2mABR2 . ~8!

The full Hamiltonian in the CMN is thus given by

H52
1

2mAB

]2

]R2 1

Y1
3

2

mABR

]

]R
2

Y1
3

2

2mABR2 2
l 2J11 l 1J2

2mABR2

1Had.

In defining the adiabatic Hamiltonian we have chosen to
clude the term involving the angular momentum ladd
operators—the Coriolis coupling term—in the full Ham
tonian rather than in the adiabatic Hamiltonian. From
purely fundamental point of view, however, it would be pre
erable to include this term inHad for two reasons. Including
the Coriolis coupling term inHad would leave only radial
kinetic energy out of the adiabatic diagonalization. In ad
tion, the adiabatic potentials would themselves already sh
L doubling due to the electronic-rotation coupling. T
drawback to this approach, however, is that the adiab
Schrödinger equation becomes a system of 2J11 coupled
equations that would have to be resolved for each value
the total angular momentum,J. This is, in fact, the prescrip
tion Struenseeet al. followed in Ref.@24#. It yields accurate
zeroth-order solutions, but it also limits the utility of an adi
batic approximation. Our choice ofHad reduces the genera
tion of ~approximate! adiabatic potentials for arbitraryJ to
the simple addition of a centrifugal term to theJ50 curves.
If spectroscopic accuracy for higherJ’s is desired, the Cori-
e

e
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d
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w

ic

of

olis coupling can be included once the matrix elements of
electronic orbital angular momentum ladder operators
known in the adiabatic channel function basis. For m
other purposes, however, the simple addition of the centr
gal barrier suffices.

We note that the adiabatic Hamiltonian has the pro
asymptotic properties; it gives the correct isotopic splitti
and atR→`, it yields the Jacobi reduced masses on ea
center,mA

21511(1/mA) and mB
21511(1/mB). For com-

pleteness, we now give the expression for the electronic
bital angular momentum in spheroidal coordinates. The m
straightforward way to obtain this expression is to begin w
the spherical polar coordinate form:

l252
1

sinq

]

]q S sinq
]

]q D2
1

sin2q

]2

]x2
. ~9!

Next, noting that

sinq5A ~j221!~12h2!

~j221!~12h2!1~jh1a!2

and

]

]q
5

A~j221!~12h2!

j22h2 F ~h1aj!
]

]j
2~j1ah!

]

]hG ,
~10!

it is possible to evaluatel2.
Given the adiabatic Hamiltonian@Eq. ~8!#, the channel

functions and potentials are found by solving

HadFn
L~R;r !5Un

L~R!Fn
L~R;r !. ~11!

Finally, the equations satisfied by the radial wave functio
Fn

L(R) from Eq. ~4! are

F2
1

2mAB

d2

dR2 1Un
LGFn

L2
1

2mAB
(
l

F2Pnl
L

d

dR
1Qnl

L GFl
L

2
1

2mABR2 (
l

@AJ~J11!2L~L11!Cnl
L2Fl

L21

1AJ~J11!2L~L21!Cnl
L1Fl

L11#5EFn
L . ~12!

The coupling matricesP andQ in the above expression in
clude the nonadiabatic effects resulting from the action of
nuclear radial derivatives on the channel functions. Exp
itly,

Pnl
L 5K Fn

LU ]

]R
2

Y1
3

2

R
UFl

LL ~13!

and

Qnl
L 5K Fn

LU ]2

]R2 2

2S Y1
3

2D
R

]

]R
1

Y1
3

2

R2
UFl

LL ,

~14!
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3608 PRA 60B. D. ESRY AND H. R. SADEGHPOUR
and the Coriolis coupling matrix elements are

Cnl
L65^Fn

L61u l 6uFl
L&.

It is immediately evident from the above expressions that
first- and second-order radial couplingsPnl

L andQnl
L are not

the standard radial coupling matrix elements found in
literature. The added terms, which include theY operator,
ensure that Eq.~12! accounts for the full Hamiltonian. This
division of terms results in an adiabatic Hamiltonian th
correlates to hydrogenic thresholds with appropriate redu
masses, but introduces a term in the coupling matrix e
ments whose origin is the same as the so-called ‘‘tran
tional factor’’ problem@23#. The asymptotic form of the sec
ond term in the first-order coupling matrix element in E
~13!, (Y1 3

2 ), behaves asR. This means that whereas the fir
term,]/]R, reaches infinity as 1/R, the second term goes t
a constant asR approaches infinity; this constant is propo
tional to 1/(11mA) @32#.

For JÞ0, P andQ retain their definitions in Eqs.~13! and
~14! and still couple only those channels with the sameL.
The Coriolis coupling term, however, couplesL and L61
channels—S and P coupling in the case ofJ51, for in-
stance. Nonetheless, certain further approximations to
~12! are useful. For instance, neglectingP andQ altogether
decouples the adiabatic channels. The solution of the re
ing single-channel equation for each channel gives the a
batic vibrational energy levels. Including only the diagon
elements ofQ preserves the simple decoupled form, a
yields upper bounds to the exact vibrational energies for
lowest channel. And, of course, by the variational princip
a truncation in the number of electronic states included
Eq. ~12! also provides upper bounds to the exact vibratio
energies for the lowest channel.

Even though we use PSC’s, the adiabatic Hamiltonian
Eq. ~8! is nonseparable. The nuclear angular momentum
kinetic energy contributions~recall that the terms involving
Y arose from the radial nuclear kinetic energy! to Had are
nonseparable even in the homonuclear limita50. Despite
this nonseparability, the PSC’s are still well suited to th
problem. Furthermore, the present adiabatic formulation
be useful even for the homonuclear problem. The advan
over the standard approach is that the potentials still go to
correct, finite mass separated-atom limit.

B. Numerical analysis

To obtain the channel functions and potentials, the ad
batic equation~11! must be solved. Thex dependence of the
adiabatic wave function can be trivially separated, and a
dimensional equation in (j,h) remains. Thus, the simplifica
tion gained in having the best zeroth order adiabatic so
tions is partially offset by the increased numerical compli
tion of solving a two-dimensional partial differentia
equation. Such equations, however, can be handled rea
on an average workstation using a convenient finite repre
tation such as the discrete variable representation@33#, finite
elements@4,34#, or B splines@35#. As stated above, we hav
chosen to useB splines for the present work.

B splines~or basis splines! are piecewise polynomials de
fined to have a finite extent on a grid. For example, a sp
e

e
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d
-
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e

constructed fromkth-order polynomials in each grid interva
spansk12 grid points ork11 intervals, and is zero outsid
of this region. Since they are splines, the coefficients of
polynomials are chosen to ensure continuous derivatives
to thekth derivative across each boundary between interv
i.e., at the grid points. For the purposes of solving the ad
batic equation, theB splines can simply be regarded as a
of functions on which to expand the wave function. T
channel function is thus written as

Fn
L~R;r !5

eiLx

A2p
(
m,n

M ,N

cmn
(n)um~j!vn~h!. ~15!

The wave function is characterized by theM3N expansion
coefficientscmn

(n) describing its dependence on the sets oB
spline functions$um% and$vn%. If Nj andNh are the number
of mesh points in each direction, then the upper limits of
sum in this expansion are determined byM5Nj1k22 and
N5Nh1k21, where k55 in the present calculations
These limits take into account the boundary conditions t
F must be finite atj51 andh561, and thatF vanishes at
j5jmax.

SubstitutingFn
L(R;r ) from Eq. ~15! into the adiabatic

equation and projecting outum8(j)vn8(h) gives the matrix
equation

Hadc
(n)5Un

L~R!Sc„n…. ~16!

The Hamiltonian matrix in the adiabatic approximationHad
is defined as@using the mappingi 5(n21)M1m#

~Had! i 8 i5E djE dh~j22h2!

3um8~j!vn8~h!Hadum~j!vn~h!; ~17!

and the overlap matrixS as

Si 8 i5E djE dh~j22h2!um8~j!vn8~h!um~j!vn~h!.

~18!

Since these integrals must be evaluated numerically, i
advantageous to split the two-dimensional integrals i
products of one-dimensional integrals wherever possi
The electronic kinetic energy, Coulomb potential energy, a
overlap matrix elements all separate. For the terms aris
from the nuclear rotation and kinetic energy, this separat
is not possible, however, and two-dimensional integratio
must be performed. All integrals are evaluated using Gau
Legendre quadrature within each interval.

There is an additional manipulation that makes the
merical evaluation of these nonseparable integrals m
stable and accurate. For both the electronic orbital ang
momentuml2 and the (Y13/2)2 term, the direct evaluation
of the operator leads to problematic singularities at the
clei, (j,h)5(1,61). These singularities become le
troublesome if use is made of the adjoint of the operator
question within the integral. For thel2 term, we rewrite the
matrix element of theq portion of Eq.~9! for arbitrary func-
tions c andf as
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E
0

p

dq sinqc*
1

sinq

]

]q S sinq
]f

]q D
52E

0

p

dq sinq
]c*

]q

]f

]q
.

The electronic orbital angular momentum can now be rea
evaluated within the prolate spheroidalB-spline basis using
Eq. ~10!. For the (Y13/2)2 term, the approach is even sim
pler since the integral is initially written in PSC’s. Using E
~7!, we find

E
1

`E
21

1

djdh~j22h2!c* S Y1
3

2D 2

f

52E
1

`E
21

1

djdh~j22h2!F S Y1
3

2Dc* GF S Y1
3

2DfG .
The efficient numerical solution of Eq.~16! requires a

knowledge of the structure of the Hamiltonian and over
matrices. Because theB splines are strictly localized, th
matricesH and S are banded. Banded matrices offer t
benefit of reduced storage requirements compared to full
trices as well as more favorable scaling of the CPU time w
the matrix dimension. Since each spline only overlaps
nearestk splines, the number of nonzero subdiagonals~or
superdiagonals! is given for the present case byNjk1k
11. Note that this number would beNhk1k11 had the
mappingi 5(m21)N1n been used for Eqs.~17! and ~18!
instead.

The benefits of the banded structure of the matrices in
~16! can then be gained in the numerical solution of Eq.~16!
through the use of routines fromARPACK @36#. ARPACK is a
robust set of matrix eigenvalue routines based on a varian
the Lanczos algorithm@37# that are specifically designed fo
large sparse systems of equations.

The efficiency of the method is further improved if th
(j,h) grid is optimized. Recalling thatj5(r A1r B)/R, one
immediate improvement can be made by setting the m
mum value ofj as

jmax5
R1r 01r 0

R
511

2r 0

R
,

wherer 0 is chosen large enough that the wave function
the atomic state with the largest desired hydrogenic princ
quantum numbern fits within a distancer 0 from each center
(r 0550 a.u. in our calculations!. The remaining optimization
comes in choosing the grid point distribution. Even thou
the spheroidal coordinates largely handle the singularitie
each nuclei, the additional measure of packing grid po
near each center accounts for the fact that the wave funct
become localized near the nuclear centers. In these calc
tions, we have chosen thej distribution to bej i5@Dj( i
21)#211, i 51, . . . ,Nj , and theh distribution to beh i5
2cos@(i21)Dhp/2#, i 51, . . . ,Nh . Using jP@1,jmax# and
hP@21,1#, the grid spacing parametersDj and Dh can be
determined from the above expressions onceNj andNh have
been chosen. In the present calculations,Nj560 and Nh
5120.
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We also useB splines to solve the coupled radial equ
tions@Eq. ~12!#. The matrices are again banded, and the sa
numerical techniques can be used. The only specializa
needed is for the grid point distribution. Our choice
l(R)/8 for the radial grid spacing, withl(R) the local radial
wavelength 2p/AU1ss

0 (`)2U1ss
0 (R), gives accurate re-

sults. Additional points must be added near avoided cro
ings, where radial derivative coupling elements are large
represent rapid changes in the radial wave functions.

FIG. 2. The adiabatic potential-energy curves for theS symme-
try. Only those potential curves converging ton<4 hydrogenic
thresholds are shown. Note that the horizontal axis has been sc
to the square root of the internuclear separation and that the ver
axis is given as the effective quantum numbern(R)5„22Un

0

3(R)…21/2.

FIG. 3. ~a! The 1ss and 2ps electronic adiabatic potentia
curves dissociating to H11D(1s) and H(1s)1D1, respectively.
The inset shows that the adiabatic Hamiltonian correctly recov
the splitting of the dissociation limits, and~b! the potential curves
correlating to the first-excited states of hydrogen and deuterium
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III. RESULTS

In Fig. 2, we present our calculated adiabatic poten
energy curves for HD1 for the S (J50) symmetry. The
conversion factors used in this work are as follows@38#:

mD53670.483014 a.u.,

mH51836.152701 a.u.,

1 a.u.5219474.6305 cm21.

The horizontal axis has been scaled to the square-root o
internuclear distance, and the vertical axis gives an effec
quantum number,nl(R)5„22Ul

0(R)…21/2. The 20 lowest
HD1 potential curves are presented which correlate to
drogenic dissociation thresholds up ton54. In Fig. 3, we
give the adiabatic potential energy curves which separat
H(n<2) and D(n<2) atomic levels. The inset in Fig. 3~a!
shows the splitting of the electronic energies, due to the
equal masses of the proton and deuteron, as the molec
separate to two distinct dissociation limits. Because the s

FIG. 4. The threshold energies~in a.u.! for the two lowest elec-
tronic states in HD1, in different levels of approximation. The ca
culated energies are at an internuclear distance ofR5750 a.u.

FIG. 5. ~a! The radial coupling between the two lowestS elec-
tronic states of HD1. The profile is nearly Lorentzian near th
avoided crossing atR0512 a.u., and, at smallR, its behavior is
dictated by the second anti-Hermitian term in Eq.~13!. ~b! The
diagonal correction terms for the two lowest states.
l

he
e

-

to

n-
les
-

metry under the exchange of the two nuclei is broken,
adiabatic potential curves within each molecular symme
exhibit avoided crossings, whereas the BO curves wo
show real crossings. The electronic curves which dissoc
into H(n52)1D1 and D(n52)1H1 limits are given in
Fig. 3~b!. We note that these curves couple to each other
to other electronic potential energy curves.

In Fig. 4, the two lowest adiabatic potential energies
four different approximations are compared atR5750 a.u.
The first is the infinite mass BO result in which both th
D(1s) and H(1s) thresholds lie at20.5 a.u. The second
shows the effect of modifying the electron’s reduced mas
reflect the finiteness of the nuclear masses, Eq.~2!. This
small change alone recovers a substantial fraction of the
essary shift, but the two thresholds remain degenerate. O
the effect of the nuclear orbital angular momentum is tak
into account, indicated in the figure as BO1L2, the thresh-
olds are no longer degenerate, but still only about two-thi
of the full isotopic splitting is recovered. The final approx
mation is just Eq.~8! which goes beyond BO1L2 by includ-
ing a piece of the nuclear radial kinetic energy throughY
13/2)2. This approximation recovers the full isotopic spli
ting to nine significant digits already at this value ofR ~the

FIG. 6. The transition dipole moments between the 1ss and
2ps states in HD1. Only the electronic part of the dipole operato
is shown. Note that the intrastate transition dipoles increase line
with distance as the nuclei separate beyond the avoided cros
region atR0512 a.u. and the interstate transition dipole vanish
as expected.

FIG. 7. The overlaps of the adiabatic wave functions for HD1

and the BO wave functions for H2
1 for the two lowest electronic

states.
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diagonal corrections contribute only 5.44310210 and 5.42
310210 a.u., respectively!. If we examined the diagonal cor
rections in either of the BO approximations or even the B
1L2 approximation, they would tend toward constants
large separations to make up for the inadequacy of
zeroth-order potentials. Furthermore, the off-diagonalP ma-
trix elements would also reflect this inadequacy, tending
wards constants asymptotically for both the BO and B
1L2 approximations. While our formulation does not suff
from these same difficulties, it retains the small constant c
pling described above. For bound vibrational state calcu
tions, these ill-behaved coupling elements do not pose
nificant difficulties.

The radial coupling between the two lowest adiabatic
tential curves, 1ss and 2ps, is shown in Fig. 5~a!. This
coupling is localized aroundR512 a.u., and its shape ca
with good accuracy, be represented as

P1ss-2ps
0 ~R!52

1

2@~R2R0!21G2/4#
,

whereR0511.79 a.u. andG52.97 a.u. The smallR behavior
of P1ss-2ps

0 (R) is governed by the second anti-Hermitia
term in Eq. ~13! which contributes to the non-Lorentzia
profile. At very smallR, the 2ps curve has a narrow avoide
crossing with a higher-lying curve that leads to an abr
change of character in the coupling elements. In practice,
small-R behavior of the coupling matrix elements is of litt
consequence for spectroscopic and collision studies, h
ever, as this behavior occurs in the classically forbidden
gion, where the radial wave functions have vanishing am
tudes. At largeR, P1ss-2ps

0 falls off exponentially, reflecting
the decrease in overlap of the atomic wavefunctions on e
center.

In Fig. 5~b!, we present the diagonal correction term
Q1ss-1ss

0 (R) andQ2ps-2ps
0 (R) from Eq.~14!, as a function of

R. Note that the diagonal correction terms can become p
tive, as the usual negative definite second-order radial
rivative is augmented by the additional term,2@(Y
13/2)/R#(]/]R) ~the Y13/2 term cannot contribute to di
agonal elements ofQ). Asymptotically, both of these ele
ments depend onR as R22 to leading order. This result is
another confirmation that the adiabatic potentials do, in f
approach the exact atomic thresholds. If they did not, t
the diagonal correction would approach a constant value
ymptotically in order to produce the necessary shift in
potential to the correct threshold. This effect can be see
Fig. 5~b! in the oppositeR limit, the united-atom limit, in
which the diagonal corrections from the present formulat
are nonzero. This indicates that united atom limit is not c
rectly represented by the adiabatic channel functions ca
lated using Eq.~11!.

The transition dipole matrix elements are shown in Fig
The dipole matrix elements for parallel transitions are cal
lated as

dnl
L 52aR2^Fn

LuzCMNuFl
L&,

wherezCMN5(R/2)(jh1a) in spheroidal coordinates. Fig
ure 6 only shows the second term in the above equat
Near the united-atom limit, there is little dipole excitation
t
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the mass asymmetry is not evident to the electron. As
centers move away from each other, near the avoided cr
ing at R0512 a.u., the electric dipole begins to build up
the electron now ‘‘sees’’ two different centers. Once the n
clei have traversed the avoided crossing region, the dip
length increases fairly linearly with distance. The o
diagonal dipole matrix element that mediates transitions
tween the two electronic states vanishes at large separa
as expected. In fact, it vanishes exponentially due to the
duction in overlap between the wave functions on each c
ter.

The mass asymmetry manifests itself also in the overl
between the two lowest electronic adiabatic wave functio
F1ss

0 andF2ps
0 , and their BO counterparts. These overla

are plotted in Fig. 7 as a function of the internuclear distan
The interchannel and intrachannel overlaps begin, resp
tively, as 0 and 1, for appreciable distances between the
ters. When the nuclei travel through the avoided cross
region, the character of the electronic wave functions
HD1 change over a distance of about 3 a.u.; and forR.20
a.u., the overlaps approach each other and a near equal
ing of the BO wave functions results. This plot thus demo
strates the breakdown of the BO approximation: within t
avoided crossing region, the channel functions show th
molecular character and are well approximated by the
functions; outside the avoided crossing, the channel fu
tions become localized on one center or the other show
their atomic character.

The numerical values for the adiabatic 1ss and 2ps po-
tential energies and all dipole matrix elements for para
transitions among the two lowest electronic states are ta
lated in Table I as a function of the internuclear distance. T
calculations presented here are reported to a distanceR
5750 a.u. We emphasize that as a consequence of our
nition of the adiabatic Hamiltonian, the united-atom ener
limit is not reproduced in our calculation. In Table II, w
give the coupling matrix elements for the 1ss and 2ps elec-
tronic states of HD1 in the range, 0,R,30 a.u.

Table III gives the calculatedJ50 andL50 bound vi-
brational levels in cm21 for states with primarily 1ss char-
acter. We confirm that there are 23 bound vibrational lev
and give upper bounds to the vibrational energies in the s
ond column of Table III. The upper bounds are obtain
when the diagonal correction terms are included in the c
culation, and can be compared with the ‘‘improved ad
batic’’ results of Ref.@24# in column 7. The convergence o
the energy levels with the number of adiabatic channels
cluded in the coupled equations, Eq.~12!, is illustrated in
columns 3–6 of Table III. As expected, the dissociation e
ergies increase as the number of coupled states is increa
In the final level of approximation, 20 adiabatic channels
included, encompassing all the states up to and including
H(n54) and D(n54) dissociation thresholds. Figure
gives a graphical demonstration of the behavior of a f
selected vibrational energies as a function of the numbe
channels. The discrepancy with the results of the n
adiabatic calculation of Ref.@17#, which are the best avail
able calculations in the literature, is within a half wave nu
ber for the low vibrational levels and less than 0.1 cm21 for
the v521 level. The variational-perturbation results of Re
@12# are shown in column 8. For the last vibrational lev
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TABLE I. Adiabatic potential energies and transition dipole matrix elements for the two lowest elect
curves in HD1 as a function of the internuclear distance. Only the electronic part of the transition d
operator is included.

R U1ss(R) U2ps(R) d1ss-1ss(R) d1ss-2ps(R) d2ps-2ps(R)

0.05 18.117649862 19.731159034 20.00747 0.00120 0.00536
0.15 4.724966381 6.209944947 20.02463 0.01262 0.07502
0.25 2.106852470 3.516798775 20.04140 0.41370 0.02984
0.35 1.026217193 2.359702544 20.05810 0.43847 20.03736
0.45 0.456489700 1.715132871 20.07477 0.46864 20.06477
0.55 0.116721274 1.302177881 20.09144 0.50242 20.08574
0.65 20.101348576 1.013167842 20.10809 0.53875 20.10457
0.75 20.248161131 0.798033025 20.12475 0.57680 20.12246
0.85 20.350267064 0.630404685 20.14140 0.61589 20.13988
0.95 20.422884236 0.495147815 20.15804 0.65546 20.15704
1.05 20.475301074 0.383015970 20.17469 0.69504 20.17404
1.15 20.513467716 0.288085630 20.19133 0.73431 20.19094
1.25 20.541344724 0.206412582 20.20797 0.77308 20.20777
1.35 20.561651670 0.135279075 20.22461 0.81127 20.22456
1.45 20.576304690 0.072750146 20.24125 0.84888 20.24132
1.55 20.586683364 0.017402680 20.25788 0.88600 20.25806
1.65 20.593799405 20.031844039 20.27452 0.92272 20.27478
1.75 20.598406563 20.075836058 20.29115 0.95919 20.29150
1.80 20.599952928 20.096079395 20.29946 0.97736 20.29986
1.85 20.601074134 20.115254157 20.30777 0.99552 20.30821
1.90 20.601820753 20.133427031 20.31609 1.01367 20.31656
1.95 20.602237240 20.150659162 20.32440 1.03183 20.32492
2.00 20.602362768 20.167006838 20.33271 1.05002 20.33327
2.05 20.602231928 20.182522048 20.34102 1.06825 20.34162
2.10 20.601875328 20.197252966 20.34933 1.08652 20.34997
2.15 20.601320101 20.211244342 20.35764 1.10486 20.35833
2.20 20.600590347 20.224537843 20.36595 1.12326 20.36668
2.25 20.599707504 20.237172344 20.37425 1.14174 20.37503
2.30 20.598690671 20.249184173 20.38256 1.16031 20.38338
2.35 20.597556890 20.260607331 20.39086 1.17898 20.39174
2.40 20.596321387 20.271473683 20.39916 1.19774 20.40009
2.45 20.594997780 20.281813121 20.40747 1.21662 20.40845
2.50 20.593598267 20.291653719 20.41577 1.23560 20.41680
2.60 20.590614122 20.309942376 20.43236 1.27394 20.43352
2.70 20.587443648 20.326532589 20.44896 1.31279 20.45024
2.80 20.584147142 20.341595487 20.46554 1.35218 20.46697
2.90 20.580773383 20.355283193 20.48212 1.39213 20.48370
3.00 20.577361880 20.367731178 20.49869 1.43267 20.50044
3.20 20.570547581 20.389378478 20.53180 1.51552 20.53395
3.40 20.563893534 20.407358353 20.56487 1.60079 20.56750
3.60 20.557522032 20.422329400 20.59789 1.68847 20.60110
3.80 20.551509634 20.434822635 20.63084 1.77850 20.63477
4.00 20.545901169 20.445268253 20.66372 1.87079 20.66852
4.20 20.540719139 20.454016360 20.69650 1.96520 20.70236
4.40 20.535970151 20.461353122 20.72916 2.06157 20.73632
4.60 20.531649421 20.467513402 20.76167 2.15972 20.77043
4.80 20.527744004 20.472690701 20.79401 2.25943 20.80472
5.00 20.524235177 20.477045018 20.82613 2.36049 20.83922
5.20 20.521100238 20.480709087 20.85799 2.46269 20.87399
5.40 20.518313912 20.483793357 20.88952 2.56582 20.90909
5.60 20.515849465 20.486389989 20.92066 2.66967 20.94458
5.80 20.513679596 20.488576070 20.95132 2.77406 20.98055
6.00 20.511777147 20.490416218 20.98138 2.87881 21.01712
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TABLE I. ~Continued.!

R U1ss(R) U2ps(R) d1ss-1ss(R) d1ss-2ps(R) d2ps-2ps(R)

6.20 20.510115668 20.491964705 21.01072 2.98380 21.05441
6.40 20.508669847 20.493267184 21.03917 3.08888 21.09258
6.60 20.507415820 20.494362112 21.06655 3.19396 21.13184
6.80 20.506331384 20.495281920 21.09260 3.29895 21.17241
7.00 20.505396119 20.496053984 21.11705 3.40378 21.21459
7.20 20.504591438 20.496701423 21.13953 3.50838 21.25874
7.40 20.503900575 20.497243776 21.15960 3.61272 21.30530
7.60 20.503308534 20.497697557 21.17674 3.71672 21.35479
7.80 20.502801995 20.498076725 21.19030 3.82035 21.40786
8.00 20.502369205 20.498393079 21.19948 3.92352 21.46531
8.25 20.501916348 20.498715231 21.20332 4.05169 21.54475
8.50 20.501545420 20.498970842 21.19646 4.17871 21.63489
8.75 20.501241937 20.499172973 21.17591 4.30411 21.73872
9.00 20.500993836 20.499332176 21.13788 4.42714 21.86003
9.25 20.500791127 20.499456970 21.07762 4.54658 22.00358
9.75 20.500490424 20.499629432 20.86556 4.76589 22.38221
10.00 20.500380144 20.499687038 20.69821 4.85802 22.63284
10.25 20.500290231 20.499730571 20.47794 4.92980 22.93639
10.75 20.500157564 20.499786116 0.15553 4.96736 23.73641
11.00 20.500109423 20.499802164 0.57701 4.90179 24.24118
11.50 20.500039512 20.499818130 1.58497 4.51783 25.41570
12.00 20.499994884 20.499819721 2.62286 3.77622 26.62015
12.50 20.499966321 20.499813617 3.44540 2.85399 27.60926
13.00 20.499947250 20.499804511 3.98942 2.00484 28.31983
13.50 20.499933621 20.499795044 4.33920 1.35172 28.83617
14.00 20.499923243 20.499786342 4.58756 0.89307 29.25109
14.50 20.499914976 20.499778734 4.78964 0.58416 29.61972
15.00 20.499908201 20.499772210 4.97178 0.38003 29.96843
16.00 20.499897788 20.499761915 5.31577 0.15931 210.64553
17.00 20.499890272 20.499754399 5.65259 0.06619 211.31547
18.00 20.499884717 20.499748829 5.98796 0.02730 211.98395
19.00 20.499880536 20.499744635 6.32288 0.01119 212.65199
20.00 20.499877341 20.499741429 6.65755 0.00456 213.31978
22.00 20.499872924 20.499736996 7.32641 0.00075 214.65487
24.00 20.499870153 20.499734213 7.99480 0.00012 215.98948
26.00 20.499868345 20.499732397 8.66285 0.00002 217.32376
28.00 20.499867127 20.499731173 9.33066 0.00000 218.65779
30.00 20.499866283 20.499730325 9.99829 0.00000 219.99165
40.00 20.499864512 20.499728544 13.33492 0.00000 226.65942
100.00 20.499863808 20.499727832 33.34391 0.00000 266.65518
200.00 20.499863809 20.499727834 66.68861 0.00000 2133.31115
300.00 20.499863812 20.499727837 100.03304 0.00000 2199.96685
400.00 20.499863813 20.499727838 133.37743 0.00000 2266.62251
500.00 20.499863814 20.499727839 166.72181 0.00000 2333.27816
600.00 20.499863814 20.499727839 200.06618 0.00000 2399.93380
700.00 20.499863815 20.499727839 233.41054 0.00000 2466.58944
750.00 20.499863815 20.499727839 250.08273 0.00000 2499.91725
,

ou
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tic

gal
v522, for which Refs.@17# and@12# do not report a number
the perturbation-variational result of Ref.@13# is used for
comparison. Our calculation is more attractive by ab
0.001 cm21.

We also calculate transition frequencies between dip
allowed rovibronic energy levels in the 1ss potential curve.
t

-

Table IV contains our calculated frequencies, neglect
relativistic and radiative effects, and the available obser
transitions. Both the initial (J50) and final (J51) vibra-
tional energy levels were calculated by coupling adiaba
channels up to H(n54) and D(n54) limits. TheJ51 en-
ergies were approximated by retaining only the centrifu
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TABLE II. The nonadiabatic coupling and the diagonal corrections for the two lowest electronic curv
HD1 as a function of the internuclear distance.

R P1ss-2ps(R) Q1ss-1ss(R) Q1ss-2ps(R) Q2ps-1ss(R) Q2ps-2ps(R)

0.05 2.06368 244.31070 2218.45547 2186.24894 313.47917
0.15 20.00546 32.87653 260.88075 21.96632 82.92655
0.25 0.09223 12.19982 0.80822 20.31699 18.21074
0.35 0.09523 6.32887 0.33243 0.24049 9.64447
0.45 0.09697 3.87200 0.24653 0.20843 5.85344
0.55 0.09834 2.61226 0.19190 0.16582 3.88919
0.65 0.09938 1.88004 0.15019 0.13260 2.74777
0.75 0.10002 1.41659 0.11607 0.10744 2.03105
0.85 0.10021 1.10456 0.08704 0.08817 1.55637
0.95 0.09989 0.88441 0.06194 0.07323 1.22999
1.05 0.09908 0.72326 0.04027 0.06151 0.99921
1.15 0.09778 0.60174 0.02182 0.05225 0.83209
1.25 0.09605 0.50782 0.00645 0.04492 0.70819
1.35 0.09396 0.43372 20.00602 0.03909 0.61398
1.45 0.09156 0.37422 20.01585 0.03444 0.54037
1.55 0.08895 0.32570 20.02336 0.03074 0.48126
1.65 0.08617 0.28561 20.02890 0.02778 0.43255
1.75 0.08330 0.25209 20.03280 0.02541 0.39148
1.80 0.08184 0.23735 20.03423 0.02440 0.37321
1.85 0.08037 0.22376 20.03537 0.02350 0.35621
1.90 0.07889 0.21121 20.03626 0.02270 0.34034
1.95 0.07742 0.19960 20.03691 0.02197 0.32547
2.00 0.07595 0.18882 20.03736 0.02132 0.31152
2.05 0.07449 0.17881 20.03764 0.02073 0.29838
2.10 0.07303 0.16949 20.03776 0.02020 0.28600
2.15 0.07159 0.16079 20.03774 0.01973 0.27430
2.20 0.07016 0.15266 20.03762 0.01930 0.26324
2.25 0.06875 0.14505 20.03739 0.01891 0.25277
2.30 0.06735 0.13792 20.03708 0.01855 0.24284
2.35 0.06596 0.13122 20.03670 0.01824 0.23341
2.40 0.06460 0.12493 20.03626 0.01795 0.22446
2.45 0.06325 0.11900 20.03577 0.01768 0.21595
2.50 0.06193 0.11341 20.03524 0.01744 0.20785
2.55 0.06062 0.10813 20.03467 0.01722 0.20014
2.60 0.05933 0.10314 20.03407 0.01702 0.19280
2.70 0.05682 0.09395 20.03282 0.01666 0.17912
2.80 0.05438 0.08568 20.03152 0.01636 0.16667
2.90 0.05203 0.07822 20.03020 0.01610 0.15531
3.00 0.04975 0.07145 20.02888 0.01587 0.14492
3.20 0.04543 0.05970 20.02629 0.01547 0.12667
3.40 0.04140 0.04988 20.02383 0.01513 0.11126
3.60 0.03763 0.04162 20.02154 0.01480 0.09815
3.80 0.03412 0.03463 20.01944 0.01448 0.08694
4.00 0.03084 0.02872 20.01751 0.01414 0.07729
4.20 0.02778 0.02372 20.01577 0.01377 0.06895
4.40 0.02493 0.01951 20.01420 0.01338 0.06170
4.60 0.02226 0.01600 20.01280 0.01297 0.05536
4.80 0.01977 0.01311 20.01155 0.01253 0.04981
5.00 0.01744 0.01076 20.01046 0.01208 0.04493
5.20 0.01526 0.00889 20.00950 0.01164 0.04062
5.40 0.01321 0.00744 20.00869 0.01120 0.03680
5.60 0.01127 0.00634 20.00802 0.01080 0.03342
5.80 0.00944 0.00555 20.00749 0.01044 0.03040
6.00 0.00768 0.00500 20.00711 0.01015 0.02772
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TABLE II. ~Continued.!

R P1ss-2ps(R) Q1ss-1ss(R) Q1ss-2ps(R) Q2ps-1ss(R) Q2ps-2ps(R)

6.20 0.00598 0.00465 20.00686 0.00993 0.02532
6.40 0.00431 0.00446 20.00678 0.00983 0.02317
6.60 0.00265 0.00439 20.00686 0.00985 0.02124
6.80 0.00096 0.00440 20.00711 0.01003 0.01952
7.00 20.00080 0.00446 20.00757 0.01038 0.01796
7.20 20.00265 0.00455 20.00825 0.01095 0.01656
7.40 20.00465 0.00465 20.00918 0.01176 0.01529
7.60 20.00686 0.00475 20.01039 0.01285 0.01413
7.80 20.00933 0.00482 20.01194 0.01428 0.01308
8.00 20.01213 0.00487 20.01388 0.01610 0.01210
8.25 20.01624 0.00486 20.01694 0.01902 0.01096
8.50 20.02120 0.00476 20.02086 0.02281 0.00987
8.75 20.02725 0.00451 20.02583 0.02766 0.00878
9.00 20.03468 0.00408 20.03203 0.03375 0.00761
9.25 20.04382 0.00335 20.03966 0.04128 0.00626
9.75 20.06881 0.00047 20.05987 0.06131 0.00238
10.00 20.08548 20.00216 20.07221 0.07357 20.00065
10.25 20.10531 20.00602 20.08510 0.08638 20.00485
10.75 20.15354 20.01866 20.10367 0.10480 20.01806
11.00 20.17951 20.02740 20.10136 0.10242 20.02702
11.50 20.22071 20.04408 20.05218 0.05304 20.04407
12.00 20.22435 20.04591 0.03954 20.03888 20.04614
12.30 20.20563 20.03800 0.08257 20.08204 20.03832
12.35 20.20139 20.03630 0.08750 20.08698 20.03663
12.40 20.19691 20.03454 0.09201 20.09152 20.03488
12.45 20.19223 20.03275 0.09567 20.09520 20.03309
12.50 20.18739 20.03093 0.09867 20.09821 20.03129
12.55 20.18240 20.02911 0.10115 20.10072 20.02948
12.60 20.17731 20.02731 0.10287 20.10245 20.02768
12.65 20.17215 20.02553 0.10427 20.10387 20.02590
12.70 20.16693 20.02378 0.10500 20.10462 20.02416
12.75 20.16169 20.02209 0.10503 20.10466 20.02247
12.80 20.15644 20.02044 0.10502 20.10467 20.02083
12.90 20.14603 20.01735 0.10349 20.10317 20.01774
12.95 20.14090 20.01590 0.10218 20.10187 20.01629
13.00 20.13584 20.01452 0.10068 20.10038 20.01492
13.10 20.12599 20.01199 0.09681 20.09654 20.01239
13.20 20.11654 20.00975 0.09241 20.09217 20.01015
13.30 20.10755 20.00779 0.08744 20.08722 20.00818
13.50 20.09112 20.00462 0.07709 20.07691 20.00501
14.00 20.05892 20.00003 0.05261 20.05249 20.00039
14.50 20.03748 0.00182 0.03428 20.03421 0.00149
15.00 20.02367 0.00247 0.02189 20.02184 0.00217
16.00 20.00935 0.00259 0.00817 20.00815 0.00234
17.00 20.00367 0.00237 0.00321 20.00321 0.00217
18.00 20.00143 0.00214 0.00126 20.00126 0.00196
19.00 20.00056 0.00193 0.00050 20.00050 0.00178
20.00 20.00022 0.00175 0.00019 20.00019 0.00162
22.00 20.00003 0.00145 0.00003 20.00003 0.00136
24.00 20.00001 0.00123 0.00000 0.00000 0.00116
26.00 0.00000 0.00105 0.00000 0.00000 0.00099
28.00 0.00000 0.00091 0.00000 0.00000 0.00086
30.00 0.00000 0.00080 0.00000 0.00000 0.00076
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TABLE III. Dissociation energies of the vibrational levels in the 1ss electronic potential curve as
function of the number of channels. The energies are given in cm21, and compared with the best calculation
in the literature. In columns 3–6, our calculations include those electronic states leading up to each
genicn manifold. The numbers in boldface represent our best results in Fig. 8.

Dissociation energy~present!
n one-channel two-channel six-channel 12-channel 20-channel Ref.@24# Ref. @12# Ref. @17#

(n51) (n52) (n53) (n54)

0 21515.928 21515.938 21515.975 21515.98021515.981 21515.92 21516.071 21516.009
1 19602.804 19602.834 19602.942 19602.956 19602.960 19602.80 19603.0741 1960
2 17785.825 17785.872 17786.053 17786.076 17786.082 17785.82 17786.2133 1778
3 16062.129 16062.191 16062.439 16062.470 16062.479 16062.12 16062.6261 1606
4 14429.230 14429.304 14429.594 14429.635 14429.646 14429.22 14429.8263 1442
5 12885.006 12885.091 12885.450 12885.49912885.511 12885.00 12885.7018 12885.730
6 11427.695 11427.789 11428.196 11428.253 11428.268 11427.68 11428.4710 1142
7 10055.888 10055.989 10056.510 10056.574 10056.590 10055.88 10056.7373 1005
8 8768.539 8768.645 8769.305 8769.378 8769.395 8768.53 8769.4502 8769
9 7564.964 7565.073 7565.719 7565.799 7565.818 7564.96 7562.9269 7565
10 6444.858 6444.969 6445.545 6445.6226445.641 6444.85 6445.8606 6445.9306
11 5408.311 5408.421 5409.104 5409.186 5409.205 5408.30 5409.3399 5409
12 4455.830 4455.938 4456.551 4456.643 4456.665 4455.82 4456.8696 4456
13 3588.376 3588.479 3589.147 3589.250 3589.273 3588.36 3589.4114 3589
14 2807.398 2807.495 2808.155 2808.233 2808.251 2807.39 2808.4084 2808
15 2114.887 2114.975 2115.575 2115.658 2115.680 2114.87 2115.8512 2115
16 1513.433 1513.511 1514.089 1514.159 1514.180 1513.42 1514.3266 1514
17 1006.294 1006.360 1006.893 1006.959 1006.976 1006.28 1007.0888 1007
18 597.449 597.503 597.946 597.996 598.010 597.43 598.1152 598.1
19 291.566 291.622 291.950 291.986 291.997 291.55 292.0837 292.1
20 93.442 93.779 93.973 93.995 94.001 93.55 94.0551 94.07
21 9.033 10.159 10.201 10.210 10.215 8.76 10.2095 10.2140
22 0.323 0.425 0.429 0.430 0.431 0.32 0.430a

aThe dissociation energy is taken from a calculation in Ref.@13#.
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FIG. 8. The dissociation energies for selected vibrational lev
~shown in boldface in Table III! in the 1ss potential curve vs the
number of electronic states. The zeros are taken to be the respe
dissociation energies calculated in Refs.@18# and @14# for the last
vibrational level.
term. Strictly speaking, one must include the Coriolis co
pling terms in Eq.~12! to obtain an accurate measure of t
final state energies.

IV. SUMMARY

In this work, an adiabatic reformulation of the HD1

Hamiltonian that recovers the isotopic splitting of electron
states is presented in the prolate spheroidal coordinate
tem. The chief difference between our work and other f

ls

tive

TABLE IV. Comparison of transition frequencies in cm21 for
the ground state of HD1. The difference between the calculated a
observed transitions are given in column 4.

Transition Calculated Observed@1# Difference

~1,0!–~0,1! 1869.159 1869.134 2.025

~2,1!–~1,0! 1856.796 1856.778 2.018

~17,1!–~14,0! 1813.814 1813.852 0.038

~18,1!–~16,0! 926.451 926.490 0.038

~20,0!–~17,1! 900.436 900.488 0.052

~20,1!–~17,0! 918.050 918.102 0.052

~21,0!–~17,1! 984.223 984.331 0.108

~22,1!–~17,0! 1006.860 1006.966 0.106
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mulations of the HD1 Hamiltonian is that we place the or
gin at the nuclear center of mass. This approach allow
more straightforward treatment in which the adiaba
potential-energy curves converge to the correct nonrelati
tic fragmentation thresholds since they give the corr
atomic reduced masses. Within this framework, we h
evaluated the transition dipole matrix elements, radial c
plings, vibrational energies, and transition frequenci
thereby providing for a unified treatment of bound and sc
tering processes. The numerical integrations are han
s

ru

J

e,

o,

. A
a

s-
t
e
-
,

t-
ed

with basis splines and the convergence of the vibratio
energy levels with the number of electronic states is stud
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