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Adiabatic formulation of heteronuclear hydrogen molecular ion
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We revisit the HD' molecular ion by starting from a definition of the nonrelativistic adiabatic Hamiltonian
that recovers the isotopic splitting. The Hamiltonian is written in prolate spheroidal coordinates with the origin
at the nuclear center of mass. This prescription for the adiabatic Hamiltonian implicitly contains the symmetry-
breaking effects arising from the mass difference between the proton and the deuteron, and gives the correct
asymptotic atomic reduced masses. We calculate potential-energy curves, vibrational energies, transition dipole
moments, and coupling matrix elements for HDIn our adiabatic approximation, the isotopic splitting is
recovered to nine significant digits at a valueR# 7508,. We investigate the dependence of the vibrational
energies on the number of coupled electronic states, and compare with other calculations.
[S1050-294{@9)07311-4

PACS numbg(s): 31.10:+z, 34.20—b, 33.15.Fm, 33.20.Ea

I. BACKGROUND DISCUSSION adiabatic potential-energy curves now nearly cross within
each molecular symmetry, thereby inducing nonadiabatic
The Born-Oppenheim&iBO) Hamiltonian for the hydro-  transitions.(Potential curves of b and D,* exhibit real
gen molecular ion is one of the few Hamiltonians that sepacrossings. Precisely for this reason, the lowest two adiabatic
rates in an orthogonal coordinate system. Due to this separ&lectronic curves in HD couple, and, at energies slightly
bility, H,™ and D,* have been favorite molecules for larger than 29 cm?, charge transfer can occur. For energies
detailed molecular structure calculations for nearly seven dell' the “mass gap,” the rovibronic levels in thep- excited
cades[1]. Nearly all structure properties of 1 and D,* electronic curve are no longer true bound states, and frag-
including electronic wave functions, rovibronic energies, hy-Ment into a proton and a deuterium atom.

perfine levels, electronic transition moments, and polarizabil- _Although the electron in theslr and 2o molecular or-
ities, can be calculated with spectroscopic precision. bitals of HD" tends to become localized on either the deu-

Recent microwave measurements op Rydberg elec-  &197 0 e Boio0 8 108 0 (0! SEPeie e (he 21enoy
trons in high angular momentum states have brought high'fatiponal dynamics largely for energies near the dissociation
precision calculations of 5 and D,* into vogue[2,3]. y gely g

Si the first e t i th turbat limit. A far more profound influence on the physics of HD
ince the first honmonopale term In the perturbative expang .., s hecause the geometric center and the nuclear center of

sion of the Rydberg electron interaction with the ionic core ISmass do not coincide. A permanent electric dipole is thus

0_‘/2r4’ wherer is the electronic coordinate, precise calcula-formed in the ground and excited electronic states, thereby
tion of the core polarizabilityr is essential2,4,5. H,* and giving HD" a vibration-rotation spectrum.
D," do not possess permanent electric dipole moments. aside from fundamental interest, studies of thé -HD
Hence electric dipole vibrational or rotational transitions ingnd D"+ H reactions are important in aeronomy and astro-
the infrared do not exist in 5 and D", and the spectros- physics. In planetary atmospheres, charge-exchange interac-
copy is limited to the vacuum ultraviolet region. tions between abundant isotopic hydrogen neutrals and ions
Although HD" is an isotope of K", it differs from its  regulate the neutral distribution and escape from the atmo-
homonuclear brethren in several respects. While the BQphere[6]. The chemistry of deuterium in the postrecombi-
Hamiltonian for HD" separates in prolate spheroidal coordi- nation era of the early universe may depend on the charge
nates(PSC'9 just as for H* and D,*, its symmetry under transfer processes ‘H-D—H+D™" followed by H,+D*
exchange of nuclegeradeor ungeradeis broken owing to —HD+H™ [7]. The latter reaction is a major source of HD
the mass difference between the proton and the deuteromm diffuse interstellar cloud$8]. Determination of the D/H
The so-called symmetry-breaking term in the HBlamil-  ratio also sets stringent constraints on models of big-bang
tonian couples the nuclear and electronic degrees of freedomucleosynthesif9,10].
and gives rise to the splitting of the adiabatic potential- Nearly all theoretical treatments of,H and its isotopes
energy curves as the nuclei separate. An aspect of the mixingegin with a body-fixed coordinate system with the origin at
of the geradeand ungeradesymmetries in HD is that the  the geometric center of the nuclei. Starting with the" HBO
Hamiltonian in PSC's, electronic wave functions and ener-
gies are obtained as a function of the internuclear distance
*Present address: J. R. Macdonald Laboratory, Dept. of Physic§11—13. This definition of the BO Hamiltonian cannot, of
Kansas State University, Manhattan, KS 66504. Electronic addressourse, discriminate between the two dissociation limits,
esry@phys.ksu.edu H*+D and D' +H. Themodus operandis to consider the
"Electronic address: hsadeghpour@cfa.harvard.edu symmetry-breaking term beyond the BO approximation. The
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mixing of the gerade and ungeradesymmetries, within a Z s e
degenerate perturbation expansion on th¢ kvave func-
tions, is subsequently achieved by diagonalizing the
symmetry-breaking operatot; (1/2u,)V,- Vg, where 1/, R r
=(1/my) —(1/mp). In the variational-perturbation approach y

[12], the symmetry-breaking term is treated as a second-

order perturbation to the standard adiabatic approximation,

and bound vibrational energies with an accuracy of about XA

1072 cm ! are obtained. The variational approach of

Bishop and Cheunfl4] avoids the adiabatic approximation FIG. 1. The Jacobi set used in this work.
altogether, and instead obtains the eigenenergies of the full

Hamiltonian by variational optimization of a trial wave func- tential energies converge to the correct fragmentation thresh-
tion. A unitary transformation has also been usefllfo-2Q olds. We present accurate calculations of the'Hidtential-

move the symmetry-breaking term from the kinetic-energy

operator to the potential-energy operator as reduced-mass dghergy curves, co_uplmg matrix e_lements, transition dipole
. . matrix elements, vibrational energies, and transition frequen-
pendent effective charges on the nuclgi;-1—1/4u, and

Zy~1+1/y, . cies. The chief advantages of this method are that(aye

An alternative approach was proposed by Macek and Jefecover the correct isotopic splitting in the adiabatic approxi-

jian [21], who wrote the HD Hamiltonian in mass-scaled mation, (b) calculate wave functions for nuclear motion that

: : . can be systematically improved, ac) investigate effects
Cv)g?/ir?l?rr:;:gr?linct()r?erimizriitteg:tshce: % Oar;d ?gg%gﬁgntge tIZ!\t- beyond the adiabatic approximation for which we can calcu-
. ne sp i app y te accurate coupling matrix elements. Here we limit our-
ing the hyperradius as an adiabatic parameter. The HS

. elves to the determination of the vibrational energies. The
potential-energy curves that result for the two lowest State%cattering calculation using the potentials and couplings

found here is in progress. We also present the dependence of

the lowest order of approximation. The reason for this can b L . . .
traced to the fact that, as in all HSC calculations, the adia?he vibrational energies on the number of adiabatic channels.

batic Hamiltonian commutes with the kinematic rotation o _The energies obtained for a given number of channels are
) . : T P ariationally stringent upper bounds to vibrational energies.
erators, ensuring that the adiabatic Hamiltonian is invarian

under orthoaonal coordinate transformations. In the usu particular, this is true even for a one-channel calculation if
YJON: o ' %he diagonal correction terms are included.
BO approximation, the electron kinetic-energy operator,

however, does not commute with the kinematic rotations In an attempt to clarify possible ambiguities in terminol-
' . I . o ogy, we will define our use of the terms “BO approxima-
and thus gives incorrect limits for dissociation.

Tolstikhin et al. [22] introduced an alternative hyper- tion” and "adiabatic approximation.” By the BO approxi-

, . . 2 mation, we refer to the approximation in which the electronic
spherical coordinate system, the hyperspherical elliptical €O amiltonian includes the electronic kinetic energy and the

ordinates, for the general three-body Coulomb problem tha&oulomb interactions. The nuclear masses can either be

:f] ?ﬁgﬁi%?tmc/)fmilﬁ]l‘:nSitueITEdh;grvthﬁurglzlieiﬁgepggzlr%%altg;ari taken to be infinite as is usually the practice, or they can be
y y ’ taken to be finite through their effect on the electronic re-

duce to the usual prolate spheroidal coordinates.Asomewh% ced mass. The term adiabatic approximation will be re-

more ,general Fh_ree—body. Hamilioman was developed b)éerved to label the more general approximation we develop
Soloviev and Vinitsky[23] in terms of the internuclear co- here, in which some nuclear rotation and radial kinetic en-

ordinate R and the scaled electronic coordinate=r/R. .ergy are included in the adiabatic Hamiltonian. Nonadiabatic

lgsynir;?;?dmho?;ntob regqot\r/aen;?(r)r:]n?aiiho"ﬁ fgugleeigfgz;)zrg ffects can be taken into account in both approaches once the
y 9 adial first and second derivatives are calculated.

adiabatic coordinate that depends explicitlyrénlt is worth
noting that this slow coordinate is simply related to the hy-

perradius. Also, the Solov’ev-Vinitsky Hamiltonian yields Il. THEORETICAL DISCUSSION

our Hamiltonian if the origin of ' is placed at the center of o - _

mass of the nuclei and it is written in terms of spheroidal A. Adiabatic Hamiltonian construction

coordinates. In this section, we present the adiabatic formulation for a

~ Struenseeet al. [24] diagonalized the HD Hamiltonian  general one-electron diatomic ion. In particular, for nuéei
in the center of mass of the nuclei, in a basis of body-flxedgndB with massesn, andmg, and charge&, andZg (see

wave functions of definite angular momentum along the inrjg 1) we consider the nonrelativistic Hamiltonian in the
ternuclear axis. These wave functions were constructed froffanter of mass:

a Slater orbital expansion to obtain adiabatic energy levels,

transition energies, and dipole matrix elements. 1, 1,
In this work, we give an adiabatic formulation of HOn H=- TVR_ ﬂ P R rr Ia’ @

PSC'’s that preserves the essential physics of the symmetry A8 ¢

breaking. This physics is captured by including in the adia-

batic Hamiltonian precisely the parts of the nuclear kineticThis expression is written in atomic unitsvhich will be

energy needed to give the correct asymptotic atomic reducaased throughout this woyk and the reduced masses are

masses. We demonstrate numerically that the adiabatic pgiven by
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1 1 1 used for the homonuclear,H and D,* systems because
M_ T e they allow the separation of the BO equations. The solutions
AB A B . . .
are normally expanded in series and have been tabulated in
1 1 the literature[28—30. To the best of our knowledge, their
T T +1. (2 use for heteronuclear systems has been limited to the genera-
He AT B tion of a BO basis which, in turn, is used to expand the

In considering theN-electron diatomic molecule, Pack and electronic wave functions. . .
Hirschfelder [25] labeled these coordinates the center-of-. In the center-of—mass system, the PSC are de.fmed Just as
mass nuclei system, since the origin of electronic coordinate?’ the geometric center of the nuck&CN) system:

is placed at the center-of-mass of the nuclei. But, for the

one-electron case, this system of coordinates simply reduces = . ls¢<o,
to the Jacobi coordinates for the three-body system. The Ja- R

cobi coordinates, supplemented by the center-of-mass posi-

tion in lab coordinates, are related by an orthogonal transfor- f'aA—re

mation to the lab coordinates of the particles. This leads to TR —1ls#<1,

the absence of a mass polarization term in Eg;.
A main goal of the present development is to obtain thepjus the azimuthal anglg that ranges from 0 to2. The 6D
correct finite mass asymptotic thresholds in the zeroth ordejolume element for the relative coordinates is
of approximation. In the case of HD this means that the
1so and 2o potential curves will be split by 29 cnt. To dV=R>3(&?— »?)déd ndy sinddRdod ¢, (5)
this end, our guiding principle in defining the adiabatic
Hamiltonian will be to include as much of the full Hamil- and the electronic Laplacian has the usual prolate spheroidal
tonian[Eq. (1)], as possible, while retaining the internuclear definition
distanceRr as the adiabatic parameter, i.e., retaining the con-

cept of potential curves. This was also the approach taken by ) 4 a ., d d 5 9

Pack and co-worker®24—26, although our implementation \k “RE— ) yg(§ —1)(9—§+ %(1— 7 )5;

differs significantly from theirs. Our initial step, however, is

identical to theirs. That is, we rewrite the nuclear orbital E2—p? 9?

angular momentunk. in terms of the total orbital angular + (E-1)(1— 79 2|

momentumJ, and the electronic orbital angular momentum

| Explicitly, with J=L +1, we have Because the spheroidal coordinates dependRothe effect

_— 2 o on the nuclear radial derivatives of transforming to spheroi-

Lo=J"=2J;+1" =13, -1 J_. (3 dal coordinates must be considered. At this point, these de-

rivatives are evaluated holding the body-frame Cartesian co-
The operators).. andl.. are the usual angular momentum o ginates fixed. It is preferable, however, to evaluate them
ladder operators for the total and electronic orbital angulag|ging the spheroidal coordinates fixed instead. The conse-
momenta, respectively. FOIIOW'”Q}QZG prescription of Packyence of working in the center-of-mass frame rather than in
and Hirschfelde{27] (save for theR™>* facton, we expand  the GCN frame now appears since the only difference be-
the total internal wave functioW as tween the two coordinate systems is a translation in the Car-

tesian coordinate,
1

~1f<R,r>=EA R—5,2F£<R>5<AJKA(¢,0,0><I>£<R;r>, (4)

aR
Zcun=Zeent o
where § and ¢ are the lab-fixed spherical polar coordinates
of R, andw represents all of the quantum numbers needed tovhere « is the mass asymmetry parameter defined as
label the adiabatic channel functiodsﬁ (the purpose for
using theR~%? factor will become clear shortly The tilde my— Mg
indicates that the WigndD function is normalized over two T matmg
angles rather than three, i.®§},=2J+1/47D§}, [26].
This expansion has the dual purpose of transforming th&hus, upon using the chain rule to rewrite the radial part of
wave function to the body framgFor comments on the the nuclear Laplacian, we find
subtleties of using the ladder operators in the body frame, see

Pack and Hirschfeldd27] and PacK26].) 3

We now reach the primary point of departure with the 2 2 9 92 2| Y+ 2] 5
HD* development qf Pagk and cq—workéﬁm,ZGI. Whe.reas (ﬁ + R ﬁ) = ( W) - R R
they solved the adiabatic equation via an expansion over xyz Enx énx
atomic orbitals, we write the electronic coordinates in terms 3 5
of PSC’s and solve the resulting two-dimensiof2D) equa- Y+ > Y+ >

tion usingB splines(the details of the numerical treatment +
will be given in Sec. IIB. Historically, PSC’s have been R?

: 6
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keeping in mind that the radial derivatives are acting on theolis coupling can be included once the matrix elements of the

wave function in Eq.4) and are taken holdingny fixed.  electronic orbital angular momentum ladder operators are

The origin of the factoR™>? in Eq. (4) is now evident—it  known in the adiabatic channel function basis. For most

prevents the first derivative on the left-hand side of B).  other purposes, however, the simple addition of the centrifu-

from appearing on the right-hand side, and it accounts for thgal barrier suffices.

R® in the volume element, E@5). The operatol in Eq. (6) We note that the adiabatic Hamiltonian has the proper

involves only electronic coordinates and is defined as asymptotic properties; it gives the correct isotopic splitting
and atR— oo, it yields the Jacobi reduced masses on each

- i+(77+a§)(1—772)i _ center,,u;1=1+(1/m'A) and MB‘1=1'+(1/mB). For com-

& —n o0& an pleteness, we now give the expression for the electronic or-

bital angular momentum in spheroidal coordinates. The most

For homonuclear systems, this definition corresponds presirajghtforward way to obtain this expression is to begin with
cisely to the standard definition of [31], since the mass he spherical polar coordinate form:

asymmetry parameter is then zero.

Y (é+an)(£2-1)

To define the adiabatic Hamiltonian, we need only com- , 1 9 9 1
bine Eqgs.(1), (3), and(6), while keepingR fixed. Care must [¢= — —— —(sinﬂ—) - . 9
be taken, however, as the last term in E).is not Hermit- sind g IV| - sint o ax?
ian. Using the fact that Next, noting that
3\" 3 . .
Y435 ==|Y+3]. Y . \/ (£-1)(1-77)
siny=
. . o y (E-1)(1-7)+(énta)?
this term can be readily decomposed into its Hermitian and
anti-Hermitian parts, and a Hermitian adiabatic Hamiltonianand
constructed. Finally, we have the following definition for the
adiabatic Hamiltonian: d \/(5?— 1)(1- 777) d d
i 22 (7]+a§)(9_§_(§+a77)(9_’
b Y o 7 Zs, 27 J(J+1)—2A%+12 n n 10
A 2ue " ra g R 2uppR?

it is possible to evaluat.

Y+§ ? Given the adiabatic HamiltoniafEq. (8)], the channel
2 ® functions and potentials are found by solving
© 2upsR?
Hne HadP ) (RiN) = U (R)DH(Rir). (1)
The full Hamiltonian in the CMN is thus given by . ) o ) .
Finally, the equations satisfied by the radial wave functions
3 3 FA(R) from Eq.(4) are
> Y+= Y+ <
1 9 N 2 9 2 1.3, +1,3_ 1@ 1 q
T 2ung 0RZ ROR 2upsR2  2uasR? T LUMEA- A9 oA [pA
“AaB MAB MAB JN:! D ing AR U, F, ZMAB; ZPV"dR Qi [Fa
+H g
In defining the adiabatic Hamiltonian we have chosen to in- - 5 2 WO+ —AA+DCH R
clude the term involving the angular momentum ladder 2upgR”
operators—the Coriolis coupling term—in the full Hamil- +\/J(J+1)—A(A—1)C§>\+FQ”]=EF;‘. (12)

tonian rather than in the adiabatic Hamiltonian. From a

purely fun_damental _point of_view, however, it would be pref- The coupling matrice® andQ in the above expression in-
erable to include this term iRl ,q for two reasons. Including  ¢jyde the nonadiabatic effects resulting from the action of the

the Coriolis coupling term irH,q would leave only radial nyclear radial derivatives on the channel functions. Explic-
kinetic energy out of the adiabatic diagonalization. In addi-jgy,

tion, the adiabatic potentials would themselves already show

A doubling due to the electronic-rotation coupling. The 3
drawback to this approach, however, is that the adiabatic P Y+ 2
Schralinger equation becomes a system df+2L coupled PQ)\= Q)| —5——F5—1| Dy (13
equations that would have to be resolved for each value of

the total angular momentund, This is, in fact, the prescrip- and

tion Struenseet al. followed in Ref.[24]. It yields accurate
zeroth-order solutions, but it also limits the utility of an adia-

batic approximation. Our choice &f 4 reduces the genera-

tion of (approximatg adiabatic potentials for arbitrary to Qrl=\ @ S E L
the simple addition of a centrifugal term to tde=0 curves. ™ "l IR R /R R?
If spectroscopic accuracy for highéis is desired, the Cori- (14




3608 B. D. ESRY AND H. R. SADEGHPOUR PRA 60

and the Coriolis coupling matrix elements are constructed fronkth-order polynomials in each grid interval
spansk+2 grid points ork+ 1 intervals, and is zero outside
CAE=(DA=1 1, | D). of this region. Since they are splines, the coefficients of the

polynomials are chosen to ensure continuous derivatives up

It is immediately evident from the above expressions that théo thekth derivative across each boundary between intervals,
first- and second-order radial Coup|inB$}\ anin}}\ are not i.e., at the grld pOintS. For the purposes of SOlVing the adia-
the standard radial coupling matrix elements found in thedatic equation, th& splines can simply be regarded as a set
literature. The added terms, which include tiieoperator, ©f functions on which to expand the wave function. The
ensure that Eq(12) accounts for the full Hamiltonian. This channel function is thus written as
division of terms results in an adiabatic Hamiltonian that gidx MN
correlates to hydrogenic thresholds with appropriate reduced Apery— (v)
masses, but introduces a term in the coupling matrix ele- P, (Rin= 2 % CranUm(E)Vn( 7). (15
ments whose origin is the same as the so-called “transla-
tional factor” problem[23]. The asymptotic form of the sec- The wave function is characterized by thex N expansion
ond term in the first-order coupling matrix element in Eq. coefficientsc ) describing its dependence on the setsBof
(13), (Y+3), behaves aB. This means that whereas the first spjine functionguy,} and{v,}. If N, andN,, are the number
term, d/9R, reaches infinity as R, the second term goes to of mesh points in each direction, then the upper limits of the
a constant aR approaches infinity; this constant is propor- sym in this expansion are determinedMy=N,+k—2 and
tionalto 1/(1+my) [32). N=N,+k—1, where k=5 in the present calculations.

ForJ#0, P andQ retain their definitions in Eq$13) and  These limits take into account the boundary conditions that
(14) and still couple only those channels with the safie ¢ must be finite at=1 andy= =1, and thatb vanishes at
The Coriolis coupling term, h_owever, couplasand A =1 = &
channels— andII coupling in the case of=1, for in- Substituting®(R;r) from Eq. (15) into the adiabatic

stance. Nonetheless, certain further approximations to EGquation and projecting out, (£)v,(7) gives the matrix
(12) are useful. For instance, neglectiRgand Q altogether equation

decouples the adiabatic channels. The solution of the result-

ing single-channel equation for each channel gives the adia- HaW=UA(R)SE™. (16)
batic vibrational energy levels. Including only the diagonal ’

elements ofQ preserves the simple decoupled form, andtne Hamiltonian matrix in the adiabatic approximatiel,

yields upper bounds to the exact vibrational energies for thes gefined agusing the mapping=(n—1)M+m]
lowest channel. And, of course, by the variational principle,

a truncation in the number of electronic states included in

Eq. (12 also provides upper bounds to the exact vibrational (Had)i'i:f ng' dn(&—7°)
energies for the lowest channel.
Even though we use PSC's, the adiabatic Hamiltonian in XU (EWVnr (7 Hadm(E)Va(7); (17)

Eq. (8) is nonseparable. The nuclear angular momentum and

kinetic energy contributiongrecall that the terms involving and the overlap matri$ as

Y arose from the radial nuclear kinetic enerdyg H,q are

nonseparable even in the homonuclear limit 0. Despite _

this nonseparability, the PSC’s are still well suited o this  Sii= | dé f d (&= 7°) Uy (E)Vn (MU E)Va( 7).
problem. Furthermore, the present adiabatic formulation can (19
be useful even for the homonuclear problem. The advantage

over the standard approach is that the potentials still go to theince these integrals must be evaluated numerically, it is
correct, finite mass separated-atom limit. advantageous to split the two-dimensional integrals into

products of one-dimensional integrals wherever possible.
The electronic kinetic energy, Coulomb potential energy, and
overlap matrix elements all separate. For the terms arising

To obtain the channel functions and potentials, the adiafrom the nuclear rotation and kinetic energy, this separation
batic equation(11) must be solved. Thg dependence of the is not possible, however, and two-dimensional integrations
adiabatic wave function can be trivially separated, and a twanust be performed. All integrals are evaluated using Gauss-
dimensional equation in& ) remains. Thus, the simplifica- Legendre quadrature within each interval.
tion gained in having the best zeroth order adiabatic solu- There is an additional manipulation that makes the nu-
tions is partially offset by the increased numerical complica-merical evaluation of these nonseparable integrals more
tion of solving a two-dimensional partial differential stable and accurate. For both the electronic orbital angular
equation. Such equations, however, can be handled readimomentuml? and the ¥ +3/2)? term, the direct evaluation
on an average workstation using a convenient finite represeof the operator leads to problematic singularities at the nu-
tation such as the discrete variable representdi@h finite  clei, (¢,7)=(1,=1). These singularities become less
elementd4,34], or B splines[35]. As stated above, we have troublesome if use is made of the adjoint of the operator in
chosen to us® splines for the present work. question within the integral. For tHé term, we rewrite the

B splines(or basis splingsare piecewise polynomials de- matrix element of the} portion of Eq.(9) for arbitrary func-
fined to have a finite extent on a grid. For example, a splingions ¢ and ¢ as

B. Numerical analysis
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The electronic orbital angular momentum can now be readily = i
evaluated within the prolate spheroidadspline basis using &
Eq. (10). For the (Y +3/2)? term, the approach is even sim- >
pler since the integral is initially written in PSC’s. Using Eq. 2r
(7), we find k
® (1 3\2 1 L
|7 deane— | v+3) 0
1J-1
e 22(3* 3 O T4 s 12 16 2
=— — + = + =]
fl fﬁldfdﬂ(f 77) Y 2 df Y 2 ¢ Rlﬂ(a'u.)

The efficient numerical solution of Eq16) requires a FIG. 2. The adiabatic potential-energy curves for theymme-
try. Only those potential curves converging me<4 hydrogenic

knowledge of the structure of the Hamiltonian and overlapthresholds are shown. Note that the horizontal axis has been scaled

matrices. Because thB splines are strictly localized, the . . ;
matri H and S are banded. Banded matri ffer th to the square root of the internuclear separation and that the vertical
atrieesr a are banded. bande atrices ofte €axis is given as the effective quantum numbﬁ(nR)z(—ZU?

benefit of reduced storage requirements compared to full May (gy)-172,
trices as well as more favorable scaling of the CPU time with
the matrix dimension. Since each spline only overlaps the
nearestk splines, the number of nonzero subdiagonals
superdiagonajsis given for the present case byk+k
+1. Note that this number would bié,k+k+1 had the

We also useB splines to solve the coupled radial equa-
tions[Eq.(12)]. The matrices are again banded, and the same
numerical techniques can be used. The only specialization
mappingi =(m—1)N+n been used for Eq€17) and(18)  needed is for the grid point distribution. Our choice of
instead. N (R)/8 for the radial grid spacing, with(R) the local radial

The benefits of the banded structure of the matrices in Eqwavelength 2r/ U3, (*)— U, (R), gives accurate re-
(16) can then be gained in the numerical solution of 8)  sults. Additional points must be added near avoided cross-
through the use of routines fromrPACK [36]. ARPACK is & jngs, where radial derivative coupling elements are large, to

robust set of matrix eigenvalue routines based on a variant Ggpresent rapid changes in the radial wave functions.
the Lanczos algorithi37] that are specifically designed for

large sparse systems of equations.

The efficiency of the method is further improved if the 0.00
(&é,7m) grid is optimized. Recalling thag=(ro+rg)/R, one
immediate improvement can be made by setting the maxi-
mum value of¢ as &
~ 010 r
=
R+rg+rg 2rg
max 1

R R ®)
wherer is chosen large enough that the wave function for o2
the atomic state with the largest desired hydrogenic principal 0% 04998
guantum numben fits within a distance from each center
(ro=50 a.u. in our calculationsThe remaining optimization 000 ey b
comes in choosing the grid point distribution. Even though > 04999 | o4
the spheroidal coordinates largely handle the singularities at e sy U I
each nuclei, the additional measure of packing grid points S
near each center accounts for the fact that the wave functions 00r
become localized near the nuclear centers. In these calcula- @
tions, we have chosen the distribution to beé=[A i 0By
—1)]?+1,i=1,... N;, and they distribution to bez;= R @u)

—cog(i—1)A,m/2], i=1,... N,. Using é€[1,¢mad and
ne[—1,1], the grid spacing parametefs. andA, can be
determined from the above expressions oNgandN, have
been chosen. In the present calculatioNg=60 andN,,
=120.

FIG. 3. (&8 The 1soc and 2o electronic adiabatic potential
curves dissociating to FHD(1s) and H(1s)+D™, respectively.
The inset shows that the adiabatic Hamiltonian correctly recovers
the splitting of the dissociation limits, arih) the potential curves
correlating to the first-excited states of hydrogen and deuterium.
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FIG. 4. The threshold energi¢m a.u) for the two lowest elec- =
. . . . . . -15 . 1 L L
tronic states in HD, in different levels of approximation. The cal- 0 4 8 12 16 20
culated energies are at an internuclear distande-e750 a.u. R(au)
. RESULTS FIG. 6. The transition dipole moments between ttsr land

2po states in HD'. Only the electronic part of the dipole operator
shown. Note that the intrastate transition dipoles increase linearly
ith distance as the nuclei separate beyond the avoided crossing
region atRy=12 a.u. and the interstate transition dipole vanishes,
as expected.

In Fig. 2, we present our calculated adiabatic potentia(f/
energy curves for HD for the 3 (J=0) symmetry. The
conversion factors used in this work are as folld\88]:

mp=3670.483014 au., metry under the exchange of the two nuclei is broken, the

adiabatic potential curves within each molecular symmetry
exhibit avoided crossings, whereas the BO curves would
show real crossings. The electronic curves which dissociate
into HN=2)+D" and D=2)+H" limits are given in

. . Fig. 3(b). We note that these curves couple to each other and
The horizontal axis has been scaled to the square-root of thg niher electronic potential energy curves.

internuclear distance, and the vertical axis gives an effective | Fig. 4, the two lowest adiabatic potential energies for

quantum nu_mberp}\(R)=(—2U2(R)) 1/2-_ The 20 lowest oy different approximations are comparedRat 750 a.u.
HD™ potential curves are presented which correlate to hyThe first is the infinite mass BO result in which both the
drogenic dissociation thresholds upie=4. In Fig. 3, we D(1s) and H(ls) thresholds lie at-0.5 a.u. The second
give the adiabatic potential energy curves which separate tnows the effect of modifying the electron’s reduced mass to
H(n<2) and Dp=<2) atomic levels. The inset in Fig(® reflect the finiteness of the nuclear masses, @j. This
shows the splitting of the electronic energies, due to the Ungmga| change alone recovers a substantial fraction of the nec-
equal masses of the proton and deuteron, as the moleculggsary shift, but the two thresholds remain degenerate. Once
separate to two distinct dissociation limits. Because the syme effect of the nuclear orbital angular momentum is taken

into account, indicated in the figure as B@?, the thresh-

my=1836.152701 a.u.,

1 a.u=219474.6305 cm'.

0.050 | olds are no longer degenerate, but still only about two-thirds
of the full isotopic splitting is recovered. The final approxi-

MR mation is just Eq(8) which goes beyond B®L? by includ-
S o000 | ing a piece of the nuclear radial kinetic energy througyh (
§ +3/2)?. This approximation recovers the full isotopic split-

~0.035 | ting to nine significant digits already at this value Rf(the

—0.050

L L L L 1.00 T T T
0.20 : . . - |<®; (BO )P, >I'=
0.10 0.75 - |<@;, (BO D, >
& 000 =
1% -0.10 TE 0501 o

H = ) © /
a, /

-0.20 /

025 // <@, (BO I, >I'= .
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FIG. 5. (a) The radial coupling between the two lowestelec- ° ? IOR (aw) 8 2 ®
tronic states of HD. The profile is nearly Lorentzian near the
avoided crossing aRy=12 a.u., and, at smaR, its behavior is FIG. 7. The overlaps of the adiabatic wave functions for'HD

dictated by the second anti-Hermitian term in Ef3). (b) The and the BO wave functions for H for the two lowest electronic
diagonal correction terms for the two lowest states. states.
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diagonal corrections contribute only 5440 1% and 5.42 the mass asymmetry is not evident to the electron. As the
X 107 1% a.u., respectively If we examined the diagonal cor- centers move away from each other, near the avoided cross-
rections in either of the BO approximations or even the BOing at R,=12 a.u., the electric dipole begins to build up as
+L2 approximation, they would tend toward constants atthe electron now “sees” two different centers. Once the nu-
large separations to make up for the inadequacy of thelei have traversed the avoided crossing region, the dipole
zeroth-order potentials. Furthermore, the off-diagddaha-  length increases fairly linearly with distance. The off-
trix elements would also reflect this inadequacy, tending todiagonal dipole matrix element that mediates transitions be-
wards constants asymptotically for both the BO and BOtween the two electronic states vanishes at large separations
+L? approximations. While our formulation does not suffer as expected. In fact, it vanishes exponentially due to the re-
from these same difficulties, it retains the small constant couguction in overlap between the wave functions on each cen-
pling described above. For bound vibrational state calculater.

tions, these ill-behaved coupling elements do not pose sig- The mass asymmetry manifests itself also in the overlaps

nificant difficulties. between the two lowest electronic adiabatic wave functions
The radial coupling between the two lowest adiabatic poquw and q)gpg, and their BO counterparts. These overlaps

tential curves, &0 and 2o, is shown in Fig. &). This  are plotted in Fig. 7 as a function of the internuclear distance.
coupling is localized aroun®&=12 a.u., and its shape can, The interchannel and intrachannel overlaps begin, respec-

with good accuracy, be represented as tively, as 0 and 1, for appreciable distances between the cen-
ters. When the nuclei travel through the avoided crossing
po (R)=— 1 region, the character of the electronic wave functions in
1so-2po 2[(R—Ry)2+T2/4]’ HD* change over a distance of about 3 a.u.; andRor20

a.u., the overlaps approach each other and a near equal mix-
whereRy,=11.79 a.u. and"=2.97 a.u. The smaR behavior  ing of the BO wave functions results. This plot thus demon-
of PESU_ZPU(R) is governed by the second anti-Hermitian strates the breakdown of the BO approximation: within the
term in Eq. (13 which contributes to the non-Lorentzian avoided crossing region, the channel functions show their
profile. At very smallR, the 2pa curve has a narrow avoided molecular character and are well approximated by the BO
crossing with a higher-lying curve that leads to an abrupfunctions; outside the avoided crossing, the channel func-
change of character in the coupling elements. In practice, théons become localized on one center or the other showing
small-R behavior of the coupling matrix elements is of little their atomic character.
consequence for spectroscopic and collision studies, how- The numerical values for the adiabatisd and 2po po-
ever, as this behavior occurs in the classically forbidden retential energies and all dipole matrix elements for parallel
gion, where the radial wave functions have vanishing amplifransitions among the two lowest electronic states are tabu-

tudes. At largeR, PY, 2o falls off exponentially, reflecting lated in Table | as a function of the internuclear distance. The
d ag-2po ! . H

the decrease in overlap of the atomic wavefunctions on eacf@lculations presented here are reported to a distanée of

center. =750 a.u. We emphasize that as a consequence of our defi-

In Fig. 5(b), we present the diagonal correction terms,Nition of the adiabatic Hamiltonian, the united-atom energy
Q% 1c.(R) anngp 2po(R) from Eq.(14), as a function of limit is not reproduced in our calculation. In Table Il, we
R. Note that the diagonal correction terms can become posfive the coupling matrix elements for thed and 2o elec-
tive, as the usual negative definite second-order radial ddIonic states of HD in the range, &2R<30 a.u. _
rivative is augmented by the additional terms;[(Y Table Il gives th(ilcalculated=Q andA =0 bound vi-
+3/2)/R](9/4R) (the Y+ 3/2 term cannot contribute to di- Prational levels in cm™ for states with primarily $o- char-
agonal elements o). Asymptotically, both of these ele- acter. We confirm that there are 23 bound vibrational levels
ments depend oR asR2 to leading order. This result is and give upper bounds to the vibrational energies in the sec-
another confirmation that the adiabatic potentials do, in factoNd column of Table Ill. The upper bounds are obtained
approach the exact atomic thresholds. If they did not, thefVN€n the diagonal correction terms are included in the cal-
the diagonal correction would approach a constant value agulation, and can be compared with the “improved adia-
ymptotically in order to produce the necessary shift in thePatic” results of Ref[24] in column 7. The convergence of
potential to the correct threshold. This effect can be seen i€ €nergy levels with the number of adiabatic channels in-
Fig. 5(b) in the oppositeR limit, the united-atom limit, in  ¢luded in the coupled equations, EQ2), is illustrated in
which the diagonal corrections from the present formulatiorf/Umns 3—6 of Table Ill. As expected, the dissociation en-
are nonzero. This indicates that united atom limit is not cor-erdies increase as the number of coupled states is increased.

rectly represented by the adiabatic channel functions calcd? the final level of approximation, 20 adiabatic channels are
lated using Eq(11). included, encompassing all the states up to and including the

The transition dipole matrix elements are shown in Fig. 6H(n=4) and Df=4) dissociation thresholds. Figure 8
The dipole matrix elements for parallel transitions are calcu9iVeS @ graphical demonstration of the behavior of a few

lated as selected vibrational energies as a function of the number of
channels. The discrepancy with the results of the non-
di = —aR—<¢ﬁ|ZCMN|‘DQ>, adiabatic calculation of Ref17], which are the best avail-

able calculations in the literature, is within a half wave num-
wherezeyn=(R/2)(£7+ ) in spheroidal coordinates. Fig- ber for the low vibrational levels and less than 0.1 ¢nfior
ure 6 only shows the second term in the above equatiorthe v=21 level. The variational-perturbation results of Ref.
Near the united-atom limit, there is little dipole excitation as[12] are shown in column 8. For the last vibrational level,
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TABLE I. Adiabatic potential energies and transition dipole matrix elements for the two lowest electronic
curves in HD' as a function of the internuclear distance. Only the electronic part of the transition dipole
operator is included.

R UlSU‘( R) U2p¢r( R) dlsa'-lsa( R) dlSU-Zpa’( R) d2po’-2p(r( R)
0.05 18.117649862 19.731159034 —0.00747 0.00120 0.00536
0.15 4.724966381 6.209944947 —0.02463 0.01262 0.07502
0.25 2.106852470 3.516798775 —0.04140 0.41370 0.02984
0.35 1.026217193 2.359702544 —0.05810 0.43847 —0.03736
0.45 0.456489700 1.715132871 —0.07477 0.46864 —0.06477
0.55 0.116721274 1.302177881 —0.09144 0.50242 —0.08574
0.65 —0.101348576 1.013167842 —0.10809 0.53875 —0.10457
0.75 —0.248161131 0.798033025 —0.12475 0.57680 —0.12246
0.85 —0.350267064 0.630404685 —0.14140 0.61589 —0.13988
0.95 —0.422884236 0.495147815 —0.15804 0.65546 —0.15704
1.05 —0.475301074 0.383015970 —0.17469 0.69504 —0.17404
1.15 —0.513467716 0.288085630 —0.19133 0.73431 —0.19094
1.25 —0.541344724 0.206412582 —0.20797 0.77308 —0.20777
1.35 —0.561651670 0.135279075 —0.22461 0.81127 —0.22456
1.45 —0.576304690 0.072750146 —0.24125 0.84888 —0.24132
1.55 —0.586683364 0.017402680 —0.25788 0.88600 —0.25806
1.65 —0.593799405 —0.031844039 —0.27452 0.92272 —0.27478
1.75 —0.598406563 —0.075836058 —0.29115 0.95919 —0.29150
1.80 —0.599952928 —0.096079395 —0.29946 0.97736 —0.29986
1.85 —0.601074134 —0.115254157 —0.30777 0.99552 —0.30821
1.90 —0.601820753 —0.133427031 —0.31609 1.01367 —0.31656
1.95 —0.602237240 —0.150659162 —0.32440 1.03183 —0.32492
2.00 —0.602362768 —0.167006838 —0.33271 1.05002 —0.33327
2.05 —0.602231928 —0.182522048 —0.34102 1.06825 —0.34162
2.10 —0.601875328 —0.197252966 —0.34933 1.08652 —0.34997
2.15 —0.601320101 —0.211244342 —0.35764 1.10486 —0.35833
2.20 —0.600590347 —0.224537843 —0.36595 1.12326 —0.36668
2.25 —0.599707504 —0.237172344 —0.37425 1.14174 —0.37503
2.30 —0.598690671 —0.249184173 —0.38256 1.16031 —0.38338
2.35 —0.597556890 —0.260607331 —0.39086 1.17898 —0.39174
2.40 —0.596321387 —0.271473683 —0.39916 1.19774 —0.40009
2.45 —0.594997780 —0.281813121 —0.40747 1.21662 —0.40845
2.50 —0.593598267 —0.291653719 —0.41577 1.23560 —0.41680
2.60 —0.590614122 —0.309942376 —0.43236 1.27394 —0.43352
2.70 —0.587443648 —0.326532589 —0.44896 1.31279 —0.45024
2.80 —0.584147142 —0.341595487 —0.46554 1.35218 —0.46697
2.90 —0.580773383 —0.355283193 —0.48212 1.39213 —0.48370
3.00 —0.577361880 —0.367731178 —0.49869 1.43267 —0.50044
3.20 —0.570547581 —0.389378478 —0.53180 1.51552 —0.53395
3.40 —0.563893534 —0.407358353 —0.56487 1.60079 —0.56750
3.60 —0.557522032 —0.422329400 —0.59789 1.68847 —0.60110
3.80 —0.551509634 —0.434822635 —0.63084 1.77850 —0.63477
4.00 —0.545901169 —0.445268253 —0.66372 1.87079 —0.66852
4.20 —0.540719139 —0.454016360 —0.69650 1.96520 —0.70236
4.40 —0.535970151 —0.461353122 —0.72916 2.06157 —0.73632
4.60 —0.531649421 —0.467513402 —0.76167 2.15972 —0.77043
4.80 —0.527744004 —0.472690701 —0.79401 2.25943 —0.80472
5.00 —0.524235177 —0.477045018 —0.82613 2.36049 —0.83922
5.20 —0.521100238 —0.480709087 —0.85799 2.46269 —0.87399
5.40 —0.518313912 —0.483793357 —0.88952 2.56582 —0.90909
5.60 —0.515849465 —0.486389989 —0.92066 2.66967 —0.94458
5.80 —0.513679596 —0.488576070 —0.95132 2.77406 —0.98055
6.00 —0.511777147 —0.490416218 —0.98138 2.87881 —1.01712
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TABLE I. (Continued).

R Uls(r( R) UZp{T( R) dlSn’-lS(r( R) dlSrT-an'( R) de(r-szT( R)
6.20 —0.510115668 —0.491964705 —1.01072 2.98380 —1.05441
6.40 —0.508669847 —0.493267184 —1.03917 3.08888 —1.09258
6.60 —0.507415820 —0.494362112 —1.06655 3.19396 —1.13184
6.80 —0.506331384 —0.495281920 —1.09260 3.29895 —1.17241
7.00 —0.505396119 —0.496053984 —1.11705 3.40378 —1.21459
7.20 —0.504591438 —0.496701423 —1.13953 3.50838 —1.25874
7.40 —0.503900575 —0.497243776 —1.15960 3.61272 —1.30530
7.60 —0.503308534 —0.497697557 —1.17674 3.71672 —1.35479
7.80 —0.502801995 —0.498076725 —1.19030 3.82035 —1.40786
8.00 —0.502369205 —0.498393079 —1.19948 3.92352 —1.46531
8.25 —0.501916348 —0.498715231 —1.20332 4.05169 —1.54475
8.50 —0.501545420 —0.498970842 —1.19646 417871 —1.63489
8.75 —0.501241937 —0.499172973 —1.17591 4.30411 —1.73872
9.00 —0.500993836 —0.499332176 —1.13788 442714 —1.86003
9.25 —0.500791127 —0.499456970 —1.07762 4.54658 —2.00358
9.75 —0.500490424 —0.499629432 —0.86556 4.76589 —2.38221
10.00 —0.500380144 —0.499687038 —0.69821 4.85802 —2.63284
10.25 —0.500290231 —0.499730571 —0.47794 4.92980 —2.93639
10.75 —0.500157564 —0.499786116 0.15553 4.96736 —3.73641
11.00 —0.500109423 —0.499802164 0.57701 4.90179 —4.24118
11.50 —0.500039512 —0.499818130 1.58497 451783 —5.41570
12.00 —0.499994884 —0.499819721 2.62286 3.77622 —6.62015
12.50 —0.499966321 —0.499813617 3.44540 2.85399 —7.60926
13.00 —0.499947250 —0.499804511 3.98942 2.00484 —8.31983
13.50 —0.499933621 —0.499795044 4.33920 1.35172 —8.83617
14.00 —0.499923243 —0.499786342 4.58756 0.89307 —9.25109
14.50 —0.499914976 —0.499778734 4.78964 0.58416 —9.61972
15.00 —0.499908201 —0.499772210 497178 0.38003 —9.96843
16.00 —0.499897788 —0.499761915 5.31577 0.15931 —10.64553
17.00 —0.499890272 —0.499754399 5.65259 0.06619 —11.31547
18.00 —0.499884717 —0.499748829 5.98796 0.02730 —11.98395
19.00 —0.499880536 —0.499744635 6.32288 0.01119 —12.65199
20.00 —0.499877341 —0.499741429 6.65755 0.00456 —13.31978
22.00 —0.499872924 —0.499736996 7.32641 0.00075 —14.65487
24.00 —0.499870153 —0.499734213 7.99480 0.00012 —15.98948
26.00 —0.499868345 —0.499732397 8.66285 0.00002 —17.32376
28.00 —0.499867127 —0.499731173 9.33066 0.00000 —18.65779
30.00 —0.499866283 —0.499730325 9.99829 0.00000 —19.99165
40.00 —0.499864512 —0.499728544 13.33492 0.00000 —26.65942
100.00 —0.499863808 —0.499727832 33.34391 0.00000 —66.65518
200.00 —0.499863809 —0.499727834 66.68861 0.00000 —133.31115
300.00 —0.499863812 —0.499727837 100.03304 0.00000 —199.96685
400.00 —0.499863813 —0.499727838 133.37743 0.00000 —266.62251
500.00 —0.499863814 —0.499727839 166.72181 0.00000 —333.27816
600.00 —0.499863814 —0.499727839 200.06618 0.00000 —399.93380
700.00 —0.499863815 —0.499727839 233.41054 0.00000 —466.58944
750.00 —0.499863815 —0.499727839 250.08273 0.00000 —499.91725

v =22, for which Refs[17] and[12] do not report a number, Table IV contains our calculated frequencies, neglecting
the perturbation-variational result of RdflL3] is used for relativistic and radiative effects, and the available observed
comparison. Our calculation is more attractive by aboutransitions. Both the initial J=0) and final =1) vibra-
0.001 cm L. tional energy levels were calculated by coupling adiabatic
We also calculate transition frequencies between dipoleehannels up to H{=4) and Df=4) limits. TheJ=1 en-
allowed rovibronic energy levels in thes& potential curve. ergies were approximated by retaining only the centrifugal
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TABLE Il. The nonadiabatic coupling and the diagonal corrections for the two lowest electronic curves in

HD™ as a function of the internuclear distance.

R Plsv-Zpu'( R) QlScr-lSa'( R) QlSU-Zpo'( R) QZpa-lSU( R) QZp(r-Zp(r( R)
0.05 2.06368 24431070 —218.45547 —186.24894 313.47917
0.15 —0.00546 32.87653 —60.88075 —1.96632 82.92655
0.25 0.09223 12.19982 0.80822 —0.31699 18.21074
0.35 0.09523 6.32887 0.33243 0.24049 9.64447
0.45 0.09697 3.87200 0.24653 0.20843 5.85344
0.55 0.09834 2.61226 0.19190 0.16582 3.88919
0.65 0.09938 1.88004 0.15019 0.13260 274777
0.75 0.10002 1.41659 0.11607 0.10744 2.03105
0.85 0.10021 1.10456 0.08704 0.08817 1.55637
0.95 0.09989 0.88441 0.06194 0.07323 1.22999
1.05 0.09908 0.72326 0.04027 0.06151 0.99921
1.15 0.09778 0.60174 0.02182 0.05225 0.83209
1.25 0.09605 0.50782 0.00645 0.04492 0.70819
1.35 0.09396 0.43372 —0.00602 0.03909 0.61398
1.45 0.09156 0.37422 —0.01585 0.03444 0.54037
1.55 0.08895 0.32570 —0.02336 0.03074 0.48126
1.65 0.08617 0.28561 —0.02890 0.02778 0.43255
1.75 0.08330 0.25209 —0.03280 0.02541 0.39148
1.80 0.08184 0.23735 —0.03423 0.02440 0.37321
1.85 0.08037 0.22376 —0.03537 0.02350 0.35621
1.90 0.07889 0.21121 —0.03626 0.02270 0.34034
1.95 0.07742 0.19960 —0.03691 0.02197 0.32547
2.00 0.07595 0.18882 —0.03736 0.02132 0.31152
2.05 0.07449 0.17881 —0.03764 0.02073 0.29838
2.10 0.07303 0.16949 —0.03776 0.02020 0.28600
2.15 0.07159 0.16079 —0.03774 0.01973 0.27430
2.20 0.07016 0.15266 —0.03762 0.01930 0.26324
2.25 0.06875 0.14505 —0.03739 0.01891 0.25277
2.30 0.06735 0.13792 —0.03708 0.01855 0.24284
2.35 0.06596 0.13122 —0.03670 0.01824 0.23341
2.40 0.06460 0.12493 —0.03626 0.01795 0.22446
2.45 0.06325 0.11900 —0.03577 0.01768 0.21595
2.50 0.06193 0.11341 —0.03524 0.01744 0.20785
2.55 0.06062 0.10813 —0.03467 0.01722 0.20014
2.60 0.05933 0.10314 —0.03407 0.01702 0.19280
2.70 0.05682 0.09395 —0.03282 0.01666 0.17912
2.80 0.05438 0.08568 —0.03152 0.01636 0.16667
2.90 0.05203 0.07822 —0.03020 0.01610 0.15531
3.00 0.04975 0.07145 —0.02888 0.01587 0.14492
3.20 0.04543 0.05970 —0.02629 0.01547 0.12667
3.40 0.04140 0.04988 —0.02383 0.01513 0.11126
3.60 0.03763 0.04162 —0.02154 0.01480 0.09815
3.80 0.03412 0.03463 —0.01944 0.01448 0.08694
4.00 0.03084 0.02872 —0.01751 0.01414 0.07729
4.20 0.02778 0.02372 —0.01577 0.01377 0.06895
4.40 0.02493 0.01951 —0.01420 0.01338 0.06170
4.60 0.02226 0.01600 —0.01280 0.01297 0.05536
4.80 0.01977 0.01311 —0.01155 0.01253 0.04981
5.00 0.01744 0.01076 —0.01046 0.01208 0.04493
5.20 0.01526 0.00889 —0.00950 0.01164 0.04062
5.40 0.01321 0.00744 —0.00869 0.01120 0.03680
5.60 0.01127 0.00634 —0.00802 0.01080 0.03342
5.80 0.00944 0.00555 —0.00749 0.01044 0.03040
6.00 0.00768 0.00500 —0.00711 0.01015 0.02772
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TABLE Il. (Continued).

R PlSrr-Zpa'( R) lezr»lsrr( R) QlS(T-ZprT( R) Q2pa’—lSn’( R) QZpa’—Zpa‘( R)
6.20 0.00598 0.00465 —0.00686 0.00993 0.02532
6.40 0.00431 0.00446 —0.00678 0.00983 0.02317
6.60 0.00265 0.00439 —0.00686 0.00985 0.02124
6.80 0.00096 0.00440 —0.00711 0.01003 0.01952
7.00 —0.00080 0.00446 —0.00757 0.01038 0.01796
7.20 —0.00265 0.00455 —0.00825 0.01095 0.01656
7.40 —0.00465 0.00465 —0.00918 0.01176 0.01529
7.60 —0.00686 0.00475 —0.01039 0.01285 0.01413
7.80 —0.00933 0.00482 —0.01194 0.01428 0.01308
8.00 —0.01213 0.00487 —0.01388 0.01610 0.01210
8.25 —0.01624 0.00486 —0.01694 0.01902 0.01096
8.50 —0.02120 0.00476 —0.02086 0.02281 0.00987
8.75 —0.02725 0.00451 —0.02583 0.02766 0.00878
9.00 —0.03468 0.00408 —0.03203 0.03375 0.00761
9.25 —0.04382 0.00335 —0.03966 0.04128 0.00626
9.75 —0.06881 0.00047 —0.05987 0.06131 0.00238
10.00 —0.08548 —0.00216 —0.07221 0.07357 —0.00065
10.25 —0.10531 —0.00602 —0.08510 0.08638 —0.00485
10.75 —0.15354 —0.01866 —0.10367 0.10480 —0.01806
11.00 —0.17951 —0.02740 —0.10136 0.10242 —0.02702
11.50 —0.22071 —0.04408 —0.05218 0.05304 —0.04407
12.00 —0.22435 —0.04591 0.03954 —0.03888 —0.04614
12.30 —0.20563 —0.03800 0.08257 —0.08204 —0.03832
12.35 —0.20139 —0.03630 0.08750 —0.08698 —0.03663
12.40 —0.19691 —0.03454 0.09201 —0.09152 —0.03488
12.45 —0.19223 —0.03275 0.09567 —0.09520 —0.03309
12.50 —0.18739 —0.03093 0.09867 —0.09821 —0.03129
12.55 —0.18240 —0.02911 0.10115 —0.10072 —0.02948
12.60 —0.17731 —0.02731 0.10287 —0.10245 —0.02768
12.65 —0.17215 —0.02553 0.10427 —0.10387 —0.02590
12.70 —0.16693 —0.02378 0.10500 —0.10462 —0.02416
12.75 —0.16169 —0.02209 0.10503 —0.10466 —0.02247
12.80 —0.15644 —0.02044 0.10502 —0.10467 —0.02083
12.90 —0.14603 —0.01735 0.10349 —0.10317 —0.01774
12.95 —0.14090 —0.01590 0.10218 —0.10187 —0.01629
13.00 —0.13584 —0.01452 0.10068 —0.10038 —0.01492
13.10 —0.12599 —0.01199 0.09681 —0.09654 —0.01239
13.20 —0.11654 —0.00975 0.09241 —0.09217 —0.01015
13.30 —0.10755 —0.00779 0.08744 —0.08722 —0.00818
13.50 —0.09112 —0.00462 0.07709 —0.07691 —0.00501
14.00 —0.05892 —0.00003 0.05261 —0.05249 —0.00039
14.50 —0.03748 0.00182 0.03428 —0.03421 0.00149
15.00 —0.02367 0.00247 0.02189 —0.02184 0.00217
16.00 —0.00935 0.00259 0.00817 —0.00815 0.00234
17.00 —0.00367 0.00237 0.00321 —0.00321 0.00217
18.00 —0.00143 0.00214 0.00126 —0.00126 0.00196
19.00 —0.00056 0.00193 0.00050 —0.00050 0.00178
20.00 —0.00022 0.00175 0.00019 —0.00019 0.00162
22.00 —0.00003 0.00145 0.00003 —0.00003 0.00136
24.00 —0.00001 0.00123 0.00000 0.00000 0.00116
26.00 0.00000 0.00105 0.00000 0.00000 0.00099
28.00 0.00000 0.00091 0.00000 0.00000 0.00086

30.00 0.00000 0.00080 0.00000 0.00000 0.00076
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TABLE lll. Dissociation energies of the vibrational levels in theol electronic potential curve as a
function of the number of channels. The energies are given intciand compared with the best calculations
in the literature. In columns 3—6, our calculations include those electronic states leading up to each hydro-
genicn manifold. The numbers in boldface represent our best results in Fig. 8.

Dissociation energypresent
v one-channel two-channel six-channel 12-channel 20-channel [R@f. Ref.[12] Ref.[17]
(n=1) (n=2) (n=3) (n=4)

0 21515.928 21515.938 21515.975 21515.980515.981 21515.92 21516.071 21516.0096

1 19602.804 19602.834 19602.942 19602.956 19602.960 19602.80 19603.0741 19603.0382
2 17785.825 17785.872 17786.053 17786.076 17786.082 17785.82 17786.2133 17786.1989
3 16062.129 16062.191 16062.439 16062.470 16062.479 16062.12 16062.6261 16062.6309
4 14429.230 14429.304 14429.594 14429.635 14429.646 14429.22 14429.8263 14429.8484
5 12885.006 12885.091 12885.450 12885.492885.511 12885.00 12885.7018 12885.7300

6 11427.695 11427.789 11428.196 11428.253 11428.268 11427.68 11428.4710 11428.5124
7 10055.888 10055.989 10056.510 10056.574 10056.590 10055.88 10056.7373 10056.7886
8 8768.539 8768.645 8769.305 8769.378 8769.395 8768.53 8769.4502 8769.5098
9 7564.964 7565.073  7565.719 7565.799 7565.818 7564.96 7562.9269 7565.9926
10 6444.858 6444969  6445.545 6445.625445.641 6444.85 6445.8606 6445.9306

11  5408.311 5408.421  5409.104 5409.186 5409.205 5408.30 5409.3399 5409.4124
12 4455.830 4455.938  4456.551 4456.643 4456.665 4455.82 4456.8696 4456.9446
13  3588.376 3588.479  3589.147 3589.250 3589.273 3588.36 3589.4114 3589.4847
14  2807.398 2807.495  2808.155 2808.233 2808.251 2807.39 2808.4084 2808.4802
15  2114.887 2114975 2115575 2115.658 2115.680 2114.87 2115.8512 2115.9191
16  1513.433 1513.511 1514.089 1514.159 1514.180 1513.42 1514.3266 1514.3886
17  1006.294 1006.360  1006.893 1006.959 1006.976 1006.28 1007.0888 1007.1436
18 597.449 597.503 597.946 597.996 598.010 597.43  598.1152  598.1587
19 291.566 291.622 291.950 291.986 291.997 291.55  292.0837  292.1173
20 93.442 93.779 93.973 93.995 94.001 93.55 94.0551 94.0754

21 9.033 10.159 10.201 10.210 10.215 8.76 10.2095 10.2140

22 0.323 0.425 0.429 0.430 0431 0.32 0.43C¢"

#The dissociation energy is taken from a calculation in RES).

005 , ‘ , ‘ term. Strictly speaking, one must include the Coriolis cou-
_00‘5’ Eooe . . * pling terms in Eq(12) to obtain an accurate measure of the
010 o v=22 ] final state energies.
—0.15 - B
-02 ! ‘ .
‘ ’ t o ' IV. SUMMARY
0.5 - B
al . v=21 - In this work, an adiabatic reformulation of the HD
S Ls s w s Hamiltonian that recovers the isotopic splitting of electronic
‘; 0 T, ‘ R ' I states is presented in the prolate spheroidal coordinate sys-
g Mr 0 ] tem. The chief difference between our work and other for-
g '[° V= 1
‘§ ] : : : TABLE IV. Comparison of transition frequencies in cfor
B _o2s | . . 3 the ground state of HD. The difference between the calculated and
-0sF v=5 ] observed transitions are given in column 4.
075 ® 4
K ‘ Transition Calculated ~ Observédl]  Difference
B ve0 I (1,0-(0,1 1869.159 1869.134 -.025
o0 I (2,)-(1,0 1856.796 1856.778 ~.018
Rt s 10 5 20 (17.9-(140 1813.814 1813.852 0.038
number of coupled channels (18,1—(16,0 926.451 926.490 0.038
FIG. 8. The dissociation energies for selected vibrational Ievelézo’q_(lm) 900.436 900.488 0.052
(shown in boldface in Table lilin the 1so potential curve vs the (20,0-(17,0 918.050 918.102 0.052
number of electronic states. The zeros are taken to be the respecti{@1,0—(17,1) 984.223 984.331 0.108
dissociation energies calculated in Rdfs8] and[14] for the last  (22,1)—(17,0 1006.860 1006.966 0.106

vibrational level.
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mulations of the HD Hamiltonian is that we place the ori- Wwith basis splines and the convergence of the vibrational
gin at the nuclear center of mass. This approach allows ghergy levels with the number of electronic states is studied.
more straightforward treatment in which the adiabatic
potential-energy curves converge to the correct nonrelativis-

tic fragmentation thresholds since they give the correct This work was supported by a National Science Founda-
atomic reduced masses. Within this framework, we havejon grant to the Institute for Theoretical Atomic and Mo-

evaluated the transition dipole matrix elements, radial coutecular Physics at the Harvard-Smithsonian Center for Astro-
plings, vibrational energies, and transition frequenciesphysics. B.D.E. acknowledges many fruitful discussions with
thereby providing for a unified treatment of bound and scati. Ben-Itzhak. We are grateful to M. Cavagnero for a critical

tering processes. The numerical integrations are handlecading of the manuscript.
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