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We presentb initio calculations of the complete gauge invariant set of the self-energy screening diagrams
for the 2p4/,-2s transition in Li-like ions. The calculation was performed for extended nuclei in the rAnge
=18-100. Various contributions to the transition energy are collected. The accuracy of theoretical predictions
is discussed.S1050-2947®9)00110-9

PACS numbsd(s): 31.30.Jv, 31.10:z

INTRODUCTION The paper is organized as follows. In the first section we
derive basic formulas using the method of the two-time
Recent precision measurements in highly charged ion&reen function and discuss the renormalization scheme. In
have initiated accurate calculations of energy levels in thesthe next section we demonstrate a technique of the evalua-
systems. Compared to other experimental studies, a measutin of angular integrals and write formulas in the form suit-
ment of the Lamb shift in higtz Li-like ions appears to be able for numerical calculation. In the third section we discuss
most promising for testing QED up to second ordewiThe  numerical details and present results of the calculation. In the
uncertainty of the best experimental results for the energy ofourth section we collect all contributions to thepg,-2s
2p1>-2s the transition in Li-like uraniuni1l] and the D5,  transition energy in Li-like ions available at the moment. The
—2s transition in Li-like bismut2] is by an order of mag- theoretical results are compared with experimental data and
nitude smaller than the second-order QED contribution to théhe accuracy of theoretical predictions is discussed.
transition energy. The existing theoretical predictions for Relativistic units are used in this articlé €c=m=1).
transition energies in Li-like ions were obtained using theWe use roman stylép) for four vectors, boldfacep) for
relativistic many-body perturbation theof$—5], the multi-  three vectors, and italic stylgp) for scalars. Four vectors
configuration Dirac-Fock methdd], and the configuration- have the form p-(po,p). The scalar product of two four
interaction method[7]. All these -calculations include vectors is (pk)=poko— (p-k). We also use the notations
second-order QED effects only either phenomenologicallyp=p, y*, p=p/|p|.
or partly. While these results are in good agreement with the
experiment, the full QED calculation to all orders &2 is
still needed. The important role of the second-order QED
effects was demonstrated for heliumlike ions in R¢&9], Our derivation of formulas is based on the method of the
where the two-electron part of the ground-state energy waswo-time Green function developed in R¢L5]. In the fol-
evaluated taking into account the complete gauge invariarlbwing we give only its brief outline needed for further
sets of the self-energy and vacuum-polarization screeningvaluation. For a detailed description of the method we refer
diagrams. to Refs.[16,17).
First steps towards the evaluation of the complete set of The standard definition of the Green function of an
the second-order two-electron diagrams fgu;2-2s and  N-electron system within QED is
2p3-2s transitions were recently performed in RELO],

|. DERIVATION OF BASIC FORMULAS

where the two-electron self-energy correction was calculated G(X] 1 Ry X0 o)
for the ground state, and in R¢f.1], where the two-electron - -
vacuum polarization was evaluated for low-lying states of = (0| Tp(X})" - (X} (X)) - th(X)|0), (1)

Li-like ions. Preliminary results for the two-electron self-

energy and vacugrr%ng-%%&rization corrections for tg/22S  \yhere y(x) is the operator of the electron-positron field in
transition energy | were published in Ref§12,13. o eisenberg representatiihe Furry picture is assumgd

In this paper we present a detailed description of the theoretl—_ . =t 0
. : . denotes the time-ordered product afd ' y°. The Green
ical and the numerical procedure for the evaluation of thefunction is constructed by perturbation theory using Wick’s

two-electron _ self-energy corrections for g)f2s and theorem after the transformation to the interaction picture.

(1s)22p,, states of Li-like ions. The method of the compu- . L .
o : . o find energy levels of the system, it is more convenient to
tation is based on the numerical procedure developed in Ref. > ;

use thetwo-time Green function

[14] for the first-order self-energy correction. We will, there-
fore, discuss here only new features of the calculation and o, .
refer to that paper for common details. Gty =ty= =t =t ty=t,=-=ty=t). (2
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Let us introduce the time-Fourier transform of the two-timewhere G(p;°,...,q°%p5.....K) is Green function(1) in the

Green function by mixed energy-coordinate representation,
1 1 (= N
g(E)S(E—E ):ﬁmj,mdtdt exp(iE’'t' —iEt) G(p°....8%p.... &)
XO|Top(t",xp) - h(t' ,xy) =(2w)—2Nf dx§- -+ dx dx} O -+ dxg
X T (t,xn) T (,%1)]0). (3
' ' X explipy X+ HipOXE =P = =Py

From the spectral representationgfe) one can deduce that , _
the two-time Green function has poles at points correspond- XG(Xgy o X3 X1 ) ®)

ing to the exact energy levels of the system. Therefore, al-

though the number of variables is considerably reduced ifFeynman rules for the Green function

the two-time Green function, it still contains the full infor- G(P2....q%pY,.... ) can be found in Ref.16].

mation on the energy levels of the system. , Let us consider now the two-electron self-energy correc-
Consider now how to extract the energy of a smgle levekions for the (8)22s and (1s)22p,, states of Li-like ions.

of anN-electron system frorg(E). We are interested in the The ynperturbed wave function of a Li-like ion with one

energy Sh|ﬁAEn: En_ Eﬁ.lo) caused by the interaction with e|ectr0n beyond the C|Osed$)12 She” is

the quantized electromagnetic field. HeEE) denotes the

unperturbed energy that is the sum of the one-electron Dirac 1

energies, E{”=e;+ey+-ey  with  (ap+Bm+Vo) g un=ﬁ2 (=115 (PL) Y15 (P2) 4, (P3),  (9)

= e . The energy shifAE, of an isolated level due to the 3LP

interaction with the quantized electromagnetic field is given

by [15] . whereP is the permutation operator anddenotes the va-
AE (2mi) "$rdEAE Agna(E) 4 lence electron. In this paper we are interested only in two-
"1+ (27i) M$rdEAQ,(E)’ 4 electron corrections. In this case the three-electron problem

can be easily decomposed into three two-electron problems.
where the contoul” surrounds only the unperturbed level The two electrons in the §)? shell are equivalent and we
E=E©® and is oriented anticlockwiseAE=E—E(?),  have only two different corrections for each statd: the
AGnn(E) = nn(E) — 9 O(E), gnn(E)=(unlg(E)|u,), u, is  SE13 correction representing the interaction between two
the unperturbed wave functiog®©)(E) denotes they,,(E)  electrons in the closed )2 shell and(ii) the SE{™ correc-
function in the zeroth approximation, angg,?(E)=(E tion representing the interaction between the valence electron

—E®)~1, By expanding both the numerator and the de-(V=252p1;) and the (B)? shell. _
nominator in Eq.(4) as a standard power series @ an Let us consider the derivation of basic formulas for a

expansion into energy corrections of different orders is obS€cond-order two-electron self-energy correctifi}, repre-

as general formulas can be easily adopted for the corrections

9(E)=9'%E)+g™(E)+g?(E)+---, 5 Pa Pb  Pa Pb Pa

Pb Pa Pb
where the superscript indicates the order dn For the
second-order correction we have
AE<2>:i dEAE Ag?(E)
n 2mi r Ynn a b a b a b a b

_ L fﬁ dEAEAg(l)(E)i 3€ dE'AgV(E")
2i T nn 27i r nn X (a)

(6)
For practical calculations it is convenient to express Pa Pb Pa Pb
Inn(E) as
Gnr(E)S(E~E) = i --dpf, dpidpi?
X S(E—pd—---—p%) a b a b

X OB’ —py’=- =

0 0.0
S CRICTOIRN: ] A 0
0 0 FIG. 1. Two-electron self-energy diagrams for tﬁEg correc-
X Y- ynlUn), (7 tion. P denotes the permutation operator.

(b)
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Pa Pb a b Pa Pb Pa Pb Pa Pb
En =€, en =€y
€n = €Pa
a b a b a b

a b a b
@ (b) FIG. 3. The reducible part of the two-electron self-energy dia-
grams. The index corresponds to intermediate states.
FIG. 2. First-order diagrams contributing g} in Eq. (6) for o . '
the SE® correction. To simplify further the evaluation, we introduce the op-
erator
H . 1 1 1s) _ 1
considered here:dE13, SE;; (SESI=3, SE}), and
SEp(SESY =3, SE3, mis is the magnetic quantum
number of an electron in aslstate. In our case, it is suffi- wherea*=(1,@) are the Dirac matrixes, arid ,,(w) is the
cient to assume the unperturbed wave function to be reprgghoton propagator. In this paper we work in the Feynman

sented by the one-determinant two-electron wave function gauge; thus, the photon propagator can be written as

exfivo’—u?+idx]

4r|Xq]

l(w)=€?a*a'D, (), (12)

1 P
un=‘72§ (—1)PPpa(X1) Ypp(X). (10) D, (®,X12)=0,,, . (13

The derivation for the general case of states with definitq,\,herexlzz X,—X,, the branch of the square root is fixed by

angular momentum can be performed in the same way.  {he condition Im(/w?— x2+i0)>0, 8 is small and positive,
The energy shift of an isolated Igzvel in second ordexin  5nq 4, is the photon mass that is introduced to handle the

is given by expressio(6). For thesE, correction considered jnfrared singularities on intermediate stages of the calcula-

here E”=¢,+¢,, diagrams contributing toAg{?) are  tion. We introduce also the self-energy operaioe),

shown in Fig. 1, and those contributing Aqy(}) are shown _

in Fig. 2. We divide thecSEfj1 correction into three parts. The (a3 (e)|b)= ! Jm dwz <an|l(w)|np>

contribution of the diagrams presented in Fifh)dis referred 27 ) = e~ w—€n(1-i0)’

to asvertexterm (AE,). The contribution of the diagrams

in Fig. 1(a) is divided intoreducibleandirreducible terms  where the summation is carried out over the whole spectrum

(AE,gandAE; , respectively. The reducible part is defined of the Dirac equation.

by Fig. 3 and the irreducible part is the remainder. The sec-

ond term in Eq(6) is calculated together with the reducible A. Irreducible contribution

part. Thus, we have

(14)

) According to Eqs(6) and(7), and the Feynman rules for
OEa=AEj+AE e+ AE eq. (11) G(pio,péo;pg,pg), we have

1 i 2 )
AEy=5— deEAE<Z) ; (—1)Pf7mdpgdpio

1 1
P epat 10)(E—p0— epp+i0) (PI— eati0)(E—pl—epti0)

s <PaPul<|oi°—p‘i)|nlo><n|2<|o‘£>|a>+2 (PaPbll(p;°—p)an)(n|=(E—p))|b)

€nF€q pg_en(l_io) €nF €p E_pg_én(l_iO)
> (PalX(pi)In)(nPbl (pi°—pi)[ab) 3 (PBI(E—p;")In)(Panll (p;°~ p))|ab) 5
€n7 €pa pio_en(l_io) €nF €pp E_pio_fn(l_iO)
Using the identity
1 1 1 1
(16)

(P— €1 10)(E—pP— €y +10) AE|p—e, 710  E—pP—ep+i0)’

we obtain
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1
— + -
p'— €pati0  E—p;®—epp+i0

i\? o
L ] o]

AE ! %dEl
~2m $9ERE

(PaPbl1(p;°—p)[nb)(n[=(p})|a)
eFe, pl— €,(1—i0)

1 1
x| =5 — + 5 .
pi—€ati0 E—p;—€,+10

(PaPyI(p;’—pd)an)y(n|S(E—p))|b) (Pa|S(pY)|n)(nPblI (pi°—p)|ab)
+ E _ A0 i + 2 70_ —
€n7 €p E Py €n(1 i0) €7 €pa Py €n(l i0)

10
n 2 (Pb|=(E Epl )|n_><Pan!(p 1)|ab>
€n# €pp pl € ( IO)

} . (17)

The expression in the curly braces is analyticatimside of

I', if the photon mass is chosen to keep all the cuts outside + 2 (PalX(epa) |n>
this contour(see Refs[16,17 for detail§. Calculating the €n* €Pa

first-order residual aE=E{”) and using the identity

—(nPbjI(4)[ab)

1
+ 2 (PblX(epy)ln) ———(Panli(a)[ab),

€n7 €pp
= 5(%), (18 (19

whereA = ep,— €,. For the numerical evaluation it is more
we obtain the final expression for the irreducible contributionconvenient to write Eq(19) as a sum of nondiagonal matrix
elements of the self-energy operator,

1
X110 T —x+i0

i
27

AE-S (1) AE=2{(alS(ea) £+ (DS ()& (20
P where
fE (PaPBI(4)inb) === (nlx(ea)la) = 2 6” 3 (~1%(PaPHI(A)lnb), (21
€n? €a en* €, €a
+ 2 (PaPBlI(A)lan) ——(n[X(ey)|b) &)= €|n)€ > (~17(PaPHI(4)[an). (22
€n7 €b €nF €p b~ €n

B. Vertex contribution

The Feynman rules yield for the vertex contribution,

3
ABye=5— fﬁdEAE( )Z (—1)

*> [ apapy?

ninp J =

1 1
X— - - - - -
(P €pati0)(E—p’— eppti0) (PI—€,+i0)(E—pi—e,+i0)

<] g
<Pan1|l(p"’—p‘f)|anz><anzll<w>|n1b>
[E-pi"— o~ €y (1-i0)][E-pi—w—en,(1-i0)]|

(n1Pbl1(pi°=pd)[nzb)(Pan,|l (w)|nya)
| [p’— 0= €0, (1-10) [ pI— w— €y (1-10)]

(23

Calculating the integrals ovét, p‘f, and qo in the same way as for the irreducible contribution, we obtain
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(n1Pb[1(A)[nb)(Pany|l (w)[n;a)
[€pa—w— Enl(l_io)][ea_w_ Enz(l_io)]

i 0
AEverzzp: (_1)P2 Ej do

nin, —o

(PanyI(A)|an,)(Pbmy|l (w)|n;b) } (24)

[eoo— 0 €n,(1-10) I~ en,(1-10)]

C. Reducible contribution

As mentioned earlier, the reducible part of the diagrams in Ha@.i& calculated together with the second term in ).

AE.=AE . %dEAEAg(l)(E)i de’Agm(E’) (25
red red 27Ti T nn 27Ti T nn .

The AE,q contribution is defined by Fig. 3. The Feynman rules yield

(PaPhI(p;°—p))|ab)
(p0— €pa+i0)(E—p;’— epp+i0)(pi— €, +i0)(E—pi— €y +i0)

- 1 i \? o
AEei=5— fﬁrdEAE(E) 2 (—1>Pf_mdp‘£dp1°

(al=(pdla)  (b|Z(E-p)|b) (PalS(p;")|Pa) (Pb[X(E—p;’)|Pb)
Pi—e,+i0  E—pl—e,+i0  piP—ep,ti0 E—p;°— epp+i0 |

(26)

For brevity, we demonstrate the integration oEenpg, and qo only for the first term in the square brackege refer to it as
AER). Using Eq.(16) and the identity

1 1 1 1 1 1
(p0—5a+i0)2(E—p°—eb+i0):(AE)Z(pO—ea+iO+E—p0—6b+i0 T AE (P e,110)2" @7
we write the expression fakE(}) as
=1 1 I ? P - 0 10 10 0 0
AEredzﬁ FdE o ; (=1 _xdpldpl (PaPl(p;°—py)|ab)(al(p;)|a)
E: 1 . 1 1
AE | pP—€pati0  E—p°— €pp+i0) (pl— e, +i0)2
+ ! ! + ! ! + ! 28
(AE)? | pi°—€pati0  E—p;°—epp+i0) | pd—€,+i0  E—pi—e,+i0) | 28)

Integrating ovelE and utilizing Eq.(18), we obtain

<PaPH|(piO— Ea)lab><a|2(€a)|a>
(€pa—pi0+i0)?

~ i o0
AErled:; (— 1)Pz[ - fﬁmdpio

+ [ apPaPHl e Blab)alS (MIa) | oo o 29
ot e Pl (P eati0)? (pi-ea—i0)?]]”
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Taking into account that

1 1 27 d

(x+i0)2 (x_io)zz—i—&ﬁ(X) (30

and integrating by parts, we obtain

SBT3 17 - 5 [ onp

<P3PH|(D1 —€a)|ab)(alZ(e,)[a)
(€pa— Py +i0)°

+(PaPHl(A)|ab)(alX'(ea)|a)

—<Pan||’(A)Iab><a|2(6a)|a>], @31

where 2’(ea)=d2(e)/de|5=éa and 1'(A)=dl(w)/
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2(PaPbll(A)[ab)[(alX'(ez)[a)

A’Ered: ; (— 1)P

H(bl3"(e)lb)] 5| dw(PaPB(w)]ab)

!
| o—2-102 (0rA_i0)2

><[<a|z<ea>|a>+<b|z<eb>|b>]}

+(ball’(A)|ab)[{(a|%(ea)|a)—(b|=(ep)|0)].
(35
Let us consider the evaluation of the second term in Eg.
(25). We denote the contributions tag(}) from the dia-
grams in Figs. @) and 2b) by Ag{y), and Ag§2, respec-
tively. A simple calculation yields
1
— fﬁdEAEAgg“h:E (—1)P(PaPHI(A)|ab),
277i T p P
(36)

dwl,—, . The contributions of the other terms in the square

brackets of Eq(26) can be evaluated in the same way:

SEG-T 17 - [ onp

<Panl(p1 —€,)|ab)(b[Z(ey)|b)
(€pa—pi+i0)?

+<PaPH|(A)|ab><b|2’(6b)|b>], (32

i oo
B3 -1 - 5 [ o

<F’anl(6pa p)lab)(PalS(ep,)|Pa)
(ea—py+i0)?
+(PaPhl(A)|ab)(Pa|X’(epy)|Pa)

+<PanI’(A)|ab)<Pa|E(epa)|Pa)J, (33

i oo
B3 17 - 5 o

<Papd|(fpa p1)|ab><Pb|2(EPb)|Pb>
(ea p1+|0)

+(PaPHI(A)|ab>(Pb|2’(epb)|Pb)J. (39

Using Eq.(30), we obtain for the sum of Eq$31)—(34),

— j; dEAEAg{L=(a|3(e,)|a)+(b|=(ey)|b),
(37

i o0
(1) — —1\P—
3§ AL ;( 1) wa_mdw(Panll(wHab)

1 1 )
“o—a-i02 (wra—i02

(39
— § dEAGE=al3 (cu)la) + (b1 (e)]b).
(39

2mi

Combining Eq.(35) and Eqgs(36)—(39), we obtain the final
expression for the reducible contribution. For further evalu-
ation it is convenient to separate this contribution into two
parts,

AE=A Ered~l— A Ered, (40

Erea=(ball’(4)]ab)[(a[X(e&z)|a) — (b (ep)[b)],
(41)

AER=AE f(alS (en)]a)+ (b2 (ep)|b)], (42

whereAE; ;=% p(—1)P(PaPhI(A)|ab) is the one-photon
exchange correction.

D. Removing divergences

The formulas presented so far are only formal expressions
and require renormalization. According to E80), the irre-
ducible contribution can be written as a sum of nondiagonal
matrix elements of the self-energy operator. Thus, the renor-
malization scheme developed for the first-order self-energy
correction can be used in this case. Our procedure for the
evaluation of the first-order self-energy is described in Ref.
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[14]. Only a slight generalization of those formulas for the now the corrections representing the interaction of the va-
case of a nondiagonal matrix element is needed. lence electron with the closed-shell core, naméls-> and

The AEf correction consists of two first-order self- sE{'9 corrections. To obtain expressions for these correc-
energy corrections multiplied by a simple factor. Its calcula-tions, the summation over magnetic quantum numbers of
tion causes no problems and was performed in the same wagere electrons should be carried out in the formulas pre-

Let us consider the renormalization of thd ., and the  sented so far. In this section our technique of angular inte-
AErBed term. To cancel ultraviolet divergences explicitly, we gration is described and expressions in a form suitable for
separate contributions of the free-electron propagatees numerical evaluation are obtained. We denote valence and
refer to them adree terms and to the remainder asany-  core electrons with indicesv” and “ ¢,” respectively.
potentialterms: As indicated in the previous section, tA&” correction
can be expressed as a sum of four components,

AE o+ AEB = AE® + AETY, (43
ere AE©=AEQ + AETY+ AE;, + AER,. (50)
In the following we consider each of these components sepa-
AEY = AERQ+AERY, (44 rately.
many__ many B,many
AE,=AEye tAEEg (45 A. AEYY correction

Only the free contributions contain ultraviolet divergences. The AE!? correction is given by the sum of the free
To separate divergent terms explicitly, we evaluate theseontributions of the vertex and the reducible term, as it is
contributions in momentum space using dimensional regularstated by Eq(44). The free reducible term is the contribution

ization. We will show below that of the free-electron propagators in Eg2). After transfor-
mation into momentum space, we have
o
AEGI=AEpm—A+AEQ R, (46)
T AERY =2 | X (= D(PePv[i(a)|ov)
Hc
o
AES=—AEypp A +AERS,  47) dp (- 30p)
™ ’ X
f (277)3 { lﬂc(p) ﬁpO 20— ¢c(p)
whereA . is the ultraviolet divergent constankg,y, is the ¢
one-photon exchange correction, and contributions with the —  2Op
subscript ‘R’ are free from ultraviolet divergences. The ul- +y(p) T H(p) (52)
traviolet divergent terms cancel each other in the sum. Thus, PO=e,

EqQ. (44) can be replaced b . .
a. (44 P y where . is the magnetic quantum number of the core elec-

AEQ=AEQ +AEBO) . (48) tron and=(%(p) denotes the free self-energy operator. Its
’ ’ derivative with respect to the energy reads
As a result, we have for théE?l correction(11), 750)(p) "
5Eg:AE\(,9)+AEC:any+AEiH‘AEﬁed- (49) T oe E[ YoA e+ Wal(l))"' ’}’OaZ(P)"'a:%(P)] )

Note that theA E%44 contribution vanishes for théE}S cor- (52
rection. 2e

We note that botlAEM"™ and AEE ™ are infrared di- au(p)=- (1-p)? ( 3=p+ 1—p In p) : (53
vergent. The singularities cancel each other in the sum and
the AEJ®" correction is free from any divergences. How- p 2—p
ever, for the numerical evaluation one should separate and Q(p)=2+ 3 |1+ In P), (54)
cancel infrared divergences explicitly. A nonintegrable sin-
gularity arises in vertex contributiof24) when both poles Se
appear aw=0 simultaneously. The expression for reducible as(p)= mi=p) 1+ 1, Inp|, (55

contribution (42) contains the derivative of the self-energy

operator with respect to the energy. It yields a squared engpere p=(e,p) and p=1—p*m?. For details we refer to

ergy denominator, which causes an infrared singularity Whelﬁl4]_ Integration over the angular variables yields
the pole appears ab=0. The divergent terms can be easily

separated and calculated together to obtain a finite result. s = p2dp

red v Jo W{al(pn)

Bo_ %
AERQ'=— 4 AEi 20+

IIl. ANGULAR INTEGRATIONS -
~2 2 F o= ~2 2
In the previous section we obtained general formulas for X[ €n(Gn+ 1) +2pfGn]+a2(pn) (Gn+ 1)
the two-electron self-energy correctidEfj1 representing the _
interaction of electrons in the statasndb. Let us consider + a3(pn)(§§— fﬁ)}) . (56)
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Here AE pi=2, [EP( 1)P(PcPv|I(A)|cv)] is the cor- termin Eq.(62) is cancelled by the corresponding term from

rection due to the one-photon exchange of the valence eleétee reducible contributioK56).
tron with the closed-shell cor@=|p|, andd,=G,(p) and Let us consider the evaluation of the integrals over angu-

0
=7, (p) are the components of the momentum-space wavi" variables iNAE() . It is convenient to divide this cor-

function. We use the Dirac wave functions written in the '€Ction into two contributionsdirect part (P¢,Pv=c,v) and
exchangepart (Pc,Pv=v,c):

form
9200 X (X) AEQ) p=AER "+ AER) &, (63
a(X) =1 . R (57 ) -
Ifa(X)Xfxama(X) 1. Direct part of the free vertex contribution
where x..(%) is the spin-angular spinorf18]. The The evaluation of theAE{Q:%" correction is relatively
K .
momentum-space wave functions are defined by easy. Angular integration fok,=(Ag,A) leads to
T B 8w
Ya(p) = f dxe” Pyy(x) =i ~a SelPhXem (P ) 2 A=z R, 69
2 2 fa(p)Xfxama(p)
(58)

> A%(q)=0, (65)
Ha

Here k denotes the Dirac angular-momentum gquantum num-
ber,|=|«k+3|—3

The free vertex correction EQ) can be obtained from Where q=|q| and the radial integralR\*"(q) are deter-
expression(24) for AE,, by substituting the free Dirac states mined by
for the bound-state solutions. As is well known, for a sepa- .
ration of ultraviolet divergences, it is more convenient to Rﬂ‘ab(q)=J dz 2j(42){0a(2)9p(2) + f (2) T (2)}.
work in momentum space. For further evaluation we trans- 0
form the expression for the free-vertex contribution partly (66)

into the momentum-space representation: , ) , L
jL(2) denotes the spherical Bessel function. Taking into ac-

count Eq.(A3), we obtain
AEO = j
ver 2JV+1WV (2m (277 W2
_ AEQ-dIr= J dpJ dpJ dg
< {Wec AL (TP, welP')
P=cre X{R“V q)[fi°P|C<§>+fz°Prc(§>]
+va(p>AZ°°<q>r”<p,p'>|p,0:EVz/fv<p'>}, (59) +REC(QFLP(6)+ FSP(O]}, (67)
pOZEPv
wherep=|p[, p'=[p’[, £=p-p’, andP|(¢) is a Legendre
where polynomial, | =2j—1.
4 . I
ab; o\ _ t —igz 2. Exchange part of the free-vertex contribution
A,u (q) qZ_AZ _|0 f dZ wa(z)a,ulr//b(z)e . (60) ) ] (0) exch ]
Let us consider the evaluation &fE,;""". Using the
HereT“(p,p) is the free-vertex operator defined in Appen- Symmetry conditiod™*(p,p’)=I"*(p’,p), one can show that
dix A, A,p=ea—€,, q=p—p’, and ,(p) and ¢, (z) are  Doth terms in the expression for thee(%)ex°" correction

the wave functions in momentum-space and coordinateProvide the same contribution. Thus, we can write
space representation, respectively. Note, that in(&¢). we

average over magnetic substates of the valence electron. AE(Q).exche _ J
The free-vertex operator in Eg59) contains ultraviolet ver 2]v+1MC,MV (2m)? (27'f)3
divergence, which can be separated expliditlge Appendix _
A): X (PTR(PPI] Pe(p" )AL (). (68)
TH(p.p)= 7= A+ TE(PP). (6 R |
A7 € R Angular integration forA,, = (Ag,A) yields

According to this, we write the free vertex correction as ab 1672

A (= Z— 27—

q Aab i0

AE(g= AElphz—A +AEQR- (62)
Loba A lab
X 2 17t Yim(8)CLlky k) REZ(Q),
The second term of this expression is finite and the first term tM
has a simple structure. Obviously, the ultraviolet divergent (69
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() 16m°
(q)_qZ_Agb_iO
XJLMil‘Ls?aMYJLM(Q)Rif‘b(q>, (70

whereY (§) denotes a spherical harmoni¢; y(§) is the
vector spherical harmonic defined by H&5), the coeffi-
cients s3f, are defined by Eq(B2), and the coefficients
C.(k1,x>) are given by Eq(C10). The radial integral®?{"
are determined by

R32(q) = f:dz Zj(42){9a(2) fp(2)SyL(Ka, — Kp)
_fa(z)gb(Z)SJL(_Kava)}a (71

where the coefficientS;, («1,«») are defined by Eq$C7)-
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N

1
]2 Y1,(P)

N~

X 2 (= DMCLR L Yim( @Y, (BB (76)

Here Y}l is the bipolar spherical harmonic defined by Eq.
(B7), I,=|k,+3|—3, and{---} denotes a p symbol. After
expandingY | ,(§) into a series of bipolar spherical harmon-
ics according to Eq(B12), expanding a product of bipolar
spherical harmonics into the Clebsch-Gordon series accord-
ing to Eq.(B10) and using the orthogonality condition for
Clebsch-Gordon coefficients, we obtain

lelgl
LlpLalqlo1

I, 1, 1
J=<—1>“LJ§(§ : ;]ECQ,)EB

2 Ialb ICld

(Cg) T A l-o/a A’
For further evaluation ofAE{Q)®*" we substitute Egs. XE;‘ (=D 1o(P)Yig, (PP)- (77
(A3), (A4), (69), and(70) into Eq.(68) and integrate over the
angular variables. In this case the angular integration is muctihe last sum can be evaluated to yield
more tedious than for the direct part. For brevity, we dem-
onstrate the angular integration for the special aasds, R
v=2py, and only for the part oA E{)**"that results from > (- D7Y1,(P)Yiy, (P.P")
the third term in Eq(A4). This example shows all the es- 7
sential features of the evaluation of the other terms. We refer 3V2l.+1 10 |
to this part as\Esy: = WC%MO(— 1)P (). (78)

2 ’
AEs,=i Rl > dp 3 f d_p3 Using this and the explicit form of the coefficients, and
47T;L2 H1s (2m) (2m) I41,L e
P B,/ .. from Appendix B, we obtain
12712

X (R p+ R p)

X T A A\ A ls2p ] ~ . ~ .
Xlﬂzp(p)Xfl,Lls(p JASP(q) (72) ) %: ) Sfﬁﬂls(P'Ylw(Q))XIﬂzp(p)Xflﬂls(p )
1sM2p
In this case expressiofT0) is reduced to L1
2 =—s——, (79
ALP(g) = 87 v2
qz_AZpls_iO
xS S ity L (REEP(q). M% ST Y om (@)X, (PIX 1,0, (P7)
L=02 M sTep
7 1 1
(73 =- W§5, (80)
To perform the angular integration, we have to evaluate an
expression
. T 2 S0 Ya2u( @)X, (P X1, (P
— plsin. PS A Al H1sH2
J—WEW STR(P- Y 1 ()X ey () Xy (B ; ) _
(74 N PR Sl (61
16727 P 7 )
in a way to eliminate a dependence upon all angles except
E=p-p’. Summing over magnetic substates, we obtain Dot n ot A
2 ST Yo (@)X, (D)X -1, (P)
1 [ | 1 Histop
J=— \/—_[ ll f l] _ g2
w2 2 2 — — !

X, (=M@Y m@)YEMp,p’ 75
% (=D7P-Yum(@) 112 (PP (79 Now the angular integration in E472) is straightforward:
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a? [ o 1 p2p’? _ . j I
AE.,=—— 4 [ | b = -1 Jama+JmJ+meb( a C)
%= 1g5 fodpJOdp Jldng—Aépls—IO ;s(abcd) %( ) “m, m, m,
1 Jb J g

><[5Ri&szf’(q>[pR§p“+gp'Ripls] | —my —m, md)’ (86)

1 1- &2 . .
+ =RE52P(q)| pREPYS| 2—3p’ 23— and(---) denotes a Bsymbol. The expression for the radial

2 q integralR;(w,abcd) is listed in Appendix C. Performing the

1-¢2 summation over magnetic substates, we obtain

+p'R§p“(2§—3pp' 7 ) ] (83)

ia? o
Finally, we present the resulting formula for the exchange AEVGFZZMEM ﬂcd“’
part of the free-vertex contribution for thiE(zlps) correction:

) > )2 Si(w,nyny)
A p°p’ Ne—w—e (1-10)][e,—o—e (1-10)]
AE\(I?E?’YEXCh:167T5J» dpf dp,f dqu AZ i0 v M v N2
0 0 -1 T RA2pisT
n Sy(w,n1ny)
X[RiJSZp(q)[]_—iplsgp P ]_—gplsgp_p } [ec—w— €, (1-i0)][ec— w—€,(1-10)]
q q
o Sz(@,Nn1Ny)
+ REEER(q)[ ¢RI BRI+ PRI teemem a0 e e e LTI0])
V2 (87)
+ geripls_'_ nggpls+ p/Répls]
1 2,1s2p 2pls 1 >2pls 2pls where
+§Rlé ()| (=2RT"°+p R+ pPR5™)
1-¢° Si(w,nny)=46 le71/2R(0n ch,C)
x| 2¢-3pp —qz—) N T TORE § R
2pls 21_52 > (-1t
+pR3p 2_3pl _qz_ X - ( 1) RL(a),Vnzan), (88)
1 1>2pls 21_§2
+p R6 2_3p q2 1 (84) (_1)]1—1/2
S)(w,nNy) =96, ,.————=Ry(0,vnivn,)
| e e B NP Tr TP D R
where expressions for the functiods "= F°(p,p’,£) and
ab_ pab ’ s R ;
R =R{"(p,p’,€) are indicated in Appendix A. xS (= 1) R (@,cn,nyc), 89)
L

B. AEJ™™ correction

TheAE\rIr:any. cor'rection is given by the sum of many- (—1)itia 11
potential contributions of the vertex and the reducible term, g (¢ n;n,)= ———— [ 2 2 1]
as stated by Eq45). The many-potential part of the vertex 2 O lin J2 L2
term can be obtained by subtracting the contributions of the
free-electron propagators from E@4). For simplicity, we
perform the angular integration and the summation over (90)
magnetic substates first and subtract the contribution of the
free propagators in the final expression. The angular integra-
tion was evaluated by introducing the functiBp(w,abcd) and the summation in Eq87) is performed over Dirac
in the following way[19]: angular-momentum quantum numbers and principal quantum
. numbers of intermediate states. To evaluate the double sum
over the complete spectrum of the Dirac equation, we write
4m(ab auavDW(“’”Cd):;O I3(@abcdRy(w,abced), Eq. (87) in terms of the Green function. To obtain the many-
(85) potential part, we subtract the contribution of free propaga-
tors. The resulting expression has a rather complicated struc-
where the function j;(abcd) contains the whole dependence ture. Thus we present the final expression only fordB ps)
on magnetic quantum numbers, correction:

X RLl(AVC ,annzc) RLZ(w,ann]_V),
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—1+e2| 2p— €15 Cp

1+€2p

FIG. 4. The contoulCg of the w integration in Eq.(91). The
poles and the branch cuts shown are defined by the analytic prop-

erties of the Green functions and the photon propagator.

P2
AEmany:AEinfr+ la 2
2

ver ver
K1

do [ “dy, ay, dz viy2z?
ce Jo

|
X [ P(]j'lsls(Z)[Dlel( €2p ’Ezp)]Zjb2p+ Pé,2P2p(Z)
XDy €15 €19 ]k1s~ 2 VBC (1, rc7)
K2

. L1
CqJHja+lR] 2 2
*g O (1 j J]

1 2

X[Rxlxz(SISiSZp)]lsZpJ ) (91

where the contou€r is indicated in Fig. 4 and
[y, (€ar€a)]aa=2]k1|01(@){Dyc o, (€21 €a) }ia
-2 (23+1g (o)
X{DKlKl(Galea)}lkliif,JL’ (92)
[Ry,,( €151 €20) J1s2p= 1, (— 1117122 k1[G (@)
X{Rxlxz(elslGZp)}llsZp
-2 (23 Dgi(w)
X{RKI,KZ(Glsvfzp)}uiiZ,gL: (93
{A}op=ga(Y1)A11(Y1,2.Y2)Gb(Y>2)
T 9a(Y1)A1AY1,2,Y2) fp(Y2)

+fa(Y1)A21(Y1,2,Y2)9b(Y2)
+fa(YD)A2Y1,2,Y2) fu(Ya), (94
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{A}lel'is,JL: fa(y1)A11(Y1,2,Y2) fo(Y2) Sy (— ka k1)
X Sy (—kp,k2) = FalY1) A1aY1,2,Y2)9b(Y2)
X Sy1(— Ka k1) SyL(Kp, — K2)
~Ga(Y1)A21(Y1,2,Y2) fo(Y2) Syi(ka, — k1)

XSy — Kp 1 k2) +9a(Y1)A2AY1,2,Y2) Ob(Y2)
XSy (Kar— K1) Sy (= Kp,K2)- (95

Dk, and Ry x, are 2x 2 matrices defined as follows:

Ry i, €a:€0) = P1P(2)Dy o ((€a s €D)

B L=EO ) Pf'ba(Z)Qtlxz(fa €p), (96)

DKlKZ( €a,€p;Y1 ,Z,y2)
=G, (2= ,Y1,2)G, (ep— ,Z,Y5)

- GE<C)1)( €a— w!yl vZ)GEcC;)( €p— w!z!yZ)
1 T T
- ?@a(yl)(Pa(z)(Pb(z)‘Pb(yz)! (97)

thxz( €a:€p Y1 ,Z,yz)

=G, (€a=,Y1,2)A} , Gy (€r—0,2,5)

~GJ(ea— w,y1,2A; .G\ (6p— ,2,Y>)

Kikp ~ K3

1
~ 5 0y R DAL L, en(D o5 (Y2). (98)

K1K2
HereG,(w,Xq,X5) is the radial Green function of the Dirac
equation(see Ref[14] for details. G{9(w,x;,x,) is the free

Dirac Green functiong,(x) denotes the radial wave func-
tion

In(X)
eon(X)= f:(X) ) (99
and the matriceAth2 are given by
o (0 1 01
AK1K2_ -1 0 +(K2_Kl) 1 0 (100)

, 0 1
AK1K2:_2 -1 0 +(K2_Kl)

0 1
1 o)' (101

In Egs.(97) and(98) we subtract the free-electron contribu-
tion and the singular infrared term from the contribution of
the bound-electron propagators. The contribution of the in-
frared term is readded in EP1) where it is denotech EM" .

The other notations arg,=2j,—|,,, C1(x1,k,) andg, ()

are defined by Eq€C10 and(C6), and the radial integrals
PI'@"(2) are defined as
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Lab o 5 generated, i.e., the finite nuclear-size effect should be taken
PL™(x2) = JO dxy X791 (Aap X<, X=) into account in actual calculations.
X[ga(X1)Gp(X1) + Fa(x1)fp(x1)], (102 C. AE; and AE} corrections
" Summing Eqgs(20)—(22) over magnetic substates of core
pg'ab(xz):J dx, Xigo(AabaX< X< electrons and performing the angular integration, we obtain
0 the expression for the irreducible contribution:
X[39a(x2) fo(x) + fa(x1)gp(x1)], (103 AE;=2{(c[Z(e)[&) H(VI=(e)[€)} (109
* n
Pg’ab(xz): L dxy X§02(Aap X< ,X=)50a(X1) Fp(Xy). lE)=a > . | >6 [RO(O,cvnv)
en*tec €c €n
1o (-1
Note that in Eq(91) only the summation ovex; is infinite. —; 5 Ru(Aye -VCﬂV)}: (110
In all other sums only a few nonvanishing terms remain after
taking into account the triangular selection rules of the In)
Clebsch-Gordon coefficients. Ey=a 2 [ Ro(Ocven)
The many-potential part of the reducible term can be entey €vT €n
evaluated in the same way: (—1)-
- 5 RL(AVC,vccn)}. (111)
L

P2
i -
ABrg™=AEggt 5 -2 | do fo dy, dy, dzy’y57?

toE A simple calculation for theé\E/, correction yields

X

1 ) T
= 5| AE1pH[Dic,ic, (€2p, €2p) 151 -1t

2q) PR TR R N 5 LRl (Ao veow)
| L

+[Di,x (513.515)]111 I (109
v e X[{c|2(e)|c) = (v[Z(e) V)], (112

Here we refer to the singular infrared part of the expression ,
as AEM" . The two infrared terms from the vertex and the WhereR((A,¢) = (d/dw)Ry (@)[,-a,-
reducible part should be calculated together to obtain a finite

result. A Straightforward calculation y|6|d3 1Il. NUMERICAL DETAILS AND RESULTS
infr e For the calculation of the irreducible contribution we use
ABreg+ AByer= 7 —Ri(Azp15,2p1sls2p) the numerical procedure developed for the first-order self-
energy correction and described in detail in Ré#4]. We
mention here only a few new features of the evaluation com-
pared to[14]. The effective wave functiof¢) contains the
sum over the whole spectrum of the Dirac equation except
the initial state. The summation was performed using the
method of theB-spline basis set for the Dirac equati®0].
The |& function was stored on the radial grid and then ob-
tained at an arbitrary point by interpolation. We note that,
due to a presence of a nonzero imaginary part in |the
function for the SESLY and thesES} correction, the imagi-
where radial integral®, (abcd) are defined analogously to nary part of the self-energy operator yields a nonzero contri-
R (w,abcd (see Appendix ¢ with the function bution to the real part of the irreducible contribution. An-
0i(w,X1,X5) substituted byg,(xy,X5,): other new feature compared [@4] is that the calculation
was performed for the shell model of the nuclear charge
~ distribution. The Green function for the extended nucleus
9i(X1,%2) = 2| +2 [2Q(2)=Qi-1(2)] for 1#0, was evaluated in a way similar to the one used in R&f].
(1079  Our computation of the Whittaker functions and their deriva-
tives is discussed in detail in R¢fl4]. For the calculation of
Ti(X1,%)=3[Qq(2)+ In|x§—x§|] for =0, (108 the zero- and the one-potential contribution one has to evalu-
ate numerically the Fourier transform of wave functions. We
wherez= (x3+x3)/(2x1X,) andQ,(2) is the Legendre poly- start from the numerical coordinate-space wave function and
nomial of second kind. The functic@(xy,x,) is the radial  evaluate the Fourier transform by a direct point-by-point nu-
part of the partial-wave expansion of [xf,|). Note that in  merical integration. For small values of momentum the
the separation and in the evaluation of the infrared contribuGauss-Legendre integration was used, and the generalized
tions we assume thes2and 2,,, Dirac levels to be nonde- Clenshaw-Curtis algorithm was used otherwise. The wave

x| 2Rg(1s2p1s2p)+ 2Ry (1s2pls2p)

- > (—-1)R.(1slslsls)
L=0,1

+’F“eL<2p2p2p2p>]] , (106)
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energy correction in Ref.14]. We divide the integral into
two parts that correspond to integrations over two péits

@) Cu and Cy of the new contour and refer to them as togv-
energyand thehigh-energyterms, respectively. As a test of
our code, we use also an alternative approach to the numeri-
cal evaluation of the many-potential contributions. In that
approach, we rotate the integration cont@g to the imagi-

. £o

nary axis. All the pole contributions and singular terms were

CL\\//” separated and calculated using the method ofBtspline
basis sef20]. The comparison of these two approaches was
Cn used also to estimate the numerical uncertainty of the calcu-

lation. The numerical evaluation of the many-potential con-
tributions is numerically the most intensive part of the com-
putation. To reduce the computing time, a storage and a
subsequent interpolation of different functions was widely

FIG. 5. The deformed contour of theintegration in the many- used. So, we store for eadk| and » all Whittaker and
potential vertex term. The contour is divided into two pa@is,and  Bessel functions required for the computation of Green’s
Cy , which correspond to the low- and the high-energy part, respecfunctions. The radial integralZ";'L’ab in Eq.(91) and the wave
tively. functions of the initial states were stored as well. The sum-

mation over the absolute value gf in Eq. (92) and in Eq.

functions in momentum representation were stored on a grig105 was performed after all the integrations were com-
and interpolated afterwards to obtain the value at an arbitrargleted. The sum was terminated|at|=20 and the remain-
point. der was estimated using a polynomial fitting ifx/.

The computation of the free contributions is similar to the  The results of the calculation of the two-electron self-
evaluation of the one-potential term for the first-order self-gnergy correctionsESEY due to the interaction of the elec-

. . . . 2
energy correction described in R¢l4]. A new feature in {51 in the D, State F:':md the (92 shell are given in Table

the present case is that the photon propagator in momentupy ajues of the rms radii used in the calculati@8—26 are
representation in Eq(60) contains a singularity whenq listed in the second column of the table. In the next columns

_ 2 _ . . . . .
=A% In the caseA =0, the singularity is integrable while ¢ 1apje | the various contributions to thEELS) correction

. ; 2p
for nonzero values oA the singularity should be treated g jigteq. The results are presented in terms of the function

according to the Feynman rules for bypassing of poles of th?:(aZ) defined by
photon propagator. We have

1 SE=a?(aZ)®F(aZ)mc. (118

1 :
AZ=g?+i0 P(Az—qz) Timdata). (13

The total 5E(2})S) correction is listed in the last two columns
_ . of Table I.

Wr?erﬁj E derllotes_r:]hat the 5r|nC|pa_I Va“i% of thgblntegral The calculation of the two-electron self-energy correction
S ?ut the taken. The setcofnth term lnt!iiq ) gontrl butes it SESY due to the interaction of the electron in the &tate
only o the Imaginary part ot the correction and can be omit , "y, (%)? shell was performed in Ref10]. Here we

ted._The prmmpal value of the |r_1tegral was evalua}ed NUecalculate this correction using the numerical scheme pre-
merically using the transformation of variabldpp’¢}

. {xyql, where sented in this article, which differs slightly from the proce-
yar. dure used in Ref[10]. Various contribution to theSES-®

X=p+p’, (114)  correction are given in Table II.
The calculation of the two-electron self-energy correction
y=p—-p’, (115  SEIS due to the interaction of electrons in thes} shell
was performed in Ref$8,9,22. In Table Il we present the
q=+\p3+p'?—2pp'¢. (116  various contributions to this correctiofiThe correction for

_ _ o ~ thorium, given in[8], was recalculated with the new rms
The integral over in a vicinity of the pole can be schemati- radius 5.802 fn{26].) These results perfectly agree with the

cally represented to be ones from Ref[22].
e F(q) Tge total two-elgctron self-ene(gy c_ontributior}s to the
Pf dg——, (117) (1s)°2s and the (k)“2p4, state of Li-like ions are given by
a-a A—q the sumsSES,Y + SE ;3 and SES) + SE1Z, respectively.

whereF(q) remains regular aj=A. We evaluate the func-
tion F(q) in several points within the intervdlA—a,A
+a] and interpolate it by a polynomial. The principal value In Table IV we summarize all the contributions calculated
of the integral is then obtained analytically. up to now for the energy of thed - 2s transition in Li-like

For the calculation of the many-potential contributions weions. In the second column of the table the one-electron
deform the contouC¢ of the w integration in a way shown Dirac energy contributions are listed. The correction due to
in Fig. 5 in analogy to the evaluation of the first-order self-the one-photon exchange is given in the third column. These

IV.2py»-2s TRANSITION ENERGY IN Li-LIKE IONS
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TABLE I. Various contributions to théE(zlps) correction due to the interaction of the electron in thg,2
state and the (§)? shell. The functiorF(aZ) is defined by Eq(118).

Z ()M (fm) Fi Fie R Freg FS JEL) (eV)
18 3.427 —0.1003  1.7456 —1.7685 0.0010 -—0.122115  —0.007539)
20 3.478 —0.0951 1.4089 -—1.4311 0.0011 -0.116212) —0.0098310)
30 3.928 —0.0803 0.6167 —0.6375 0.0019 —0.09924) —0.028 3310)
32 4.072 —0.0790 0.5406 —0.5614 0.0021 —0.097712) —0.033847)
40 4.270 —0.0776  0.3424 —0.3634 0.0028 —0.09592) —0.064 9013
50 4.655 —0.0824 0.2151 -0.2378 0.0036 —0.10152) —0.13413)
54 4.787 —0.0860 0.1824 —0.2062 0.0040 —0.10592) —0.176 33)
60 4914 —0.0934 0.1444 -0.1703 0.0045 —0.11492) —0.262 35)
66 5.224 —0.1032 0.1153 —0.1440 0.0050 —0.127G2) —0.386 27)
70 5.317 —0.1114  0.0993 -0.1303 0.0053 —0.13722) —0.497 18)
74 5.373 —0.1212  0.0853 —0.1190 0.0056 —0.14932) —0.63979)
80 5.467 —0.1393 0.0668 —0.1055 0.0061 —0.17192) —0.930511)
83 5.533 —0.1504  0.0585 —0.1000 0.0063 —0.18552) —1.121812)
90 5.802 —0.1830 0.0402 —0.0899 0.0067 —0.226@2) —1.742 @15
92 5.860 —0.1946 0.0353 -—0.0877 0.0069 —0.24022) —1.977 417)
100 5.886 —0.2553  0.0148 -0.0812 0.0072 —0.31452) —3.325221)

corrections are calculated using the Fermi model of théThe uncertainty given in the first two columns 8K 83 is
nuclear charge distribution obtained by the one percent variation of the rms radius. For
bismuth, thorium, and uranium the rms radius is known more
N precisely. In the casg=90 [(r?)1?=5.802(4) fm[26] ] and
p(r)= T+ exg(r—o)/a] (119  z=92 [(r?)¥2=5.860(2) fm[28]] the uncertainty is esti-
mated by taking the difference between results obtained us-
ing the Fermi model and the homogeneously charged sphere
model with the same rms radius. For 83, the uncertainty
sults from a variation of the rms radius by 0.020 fin
orresponds to a discrepancy between two measured values

with the rms radii listed in Table I. The parameteis fixed

to be a=2.3/(4In3)fm. The parameters and N can be
expressed with a good precision in terms of the rms radius b
(see, e.g., Ref27])

[23)).
cz=§(r2>—1a2772 (120 _The one-electron s_elf-energy correction and the
s s ’ Wichman-Kroll contribution to the one-electron vacuum-
5 211 polarization correction are taken from recent tabulations
N 1+ ma (121) [29,30. The one-electron Uehling contribution is calculated
3 2 . . . . .
4mc c using the Fermi model of the nuclear charge distribution.

TABLE II. Various contributions to thedESL correction due to the interaction of the electron in tise 2
state and the (§)? shell. The functiorF («Z) is defined by Eq(118).

z Fi Fice FRY Fred F& SES (eV)
18 —0.5168 1.9751 —2.0341 0.0003 —0.57546) —0.035494)
20 —0.4895 1.5838 —1.6411 0.0003 —0.546%4) —0.046 244)
30 —0.3970 0.6699 —0.7226 0.0006 —0.44912) —0.128 216)
32 —0.3843 0.5831 —0.6353 0.0006 —0.436@2) —0.151 0%7)
40 —0.3461 0.3591 —0.4107 0.0009 —0.39672) —0.268 4914)
50 —0.3179 0.2189 —0.2714 0.0012 —0.36922) —0.488 0326)
54 —0.3112 0.1838 —0.2373 0.0014 —0.36332) —0.604 8834)
60 —0.3050 0.1438 —0.1994 0.0017 —0.35892) —0.8198146)
66 —0.3033 0.1143 —0.1725 0.0019 —0.35962) —1.09326)
70 —0.3044 0.0985 —0.1591 0.0022 —0.36282) —-1.31587)
74 —0.3075 0.0850 —0.1483 0.0024 —0.36842) -1.578 39)
80 —0.3158 0.0682 —0.1362 0.0028 —0.38132) —2.062711)
83 —-0.3218 0.0608 —0.1317 0.0030 —0.38962) —2.355312)
90 —0.3409 0.0457 —0.1244 0.0037 —0.41592) —3.205915)
92 —0.3479 0.0418 —0.1230 0.0039 —0.42532) —3.501716)

100 —0.3848 0.0270 —0.1209 0.0050 —0.47372) —5.008 621)
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TABLE llI. Various contributions to theSEIS correction due to the interaction of the electrons in the
(1s)? shell for Li-like ions. The functiorF (aZ) is defined by Eq(118).

z Fi Fire FOY Fis SE3S (eV)
18 —1.4367 2.8137 —3.1864 —1.80943) —0.111592)
20 —1.3579 2.2064 —2.5621 —1.7135%3) —0.144 9%3)
30 —1.0907 0.8186 —1.1167 —1.38872) —0.396 496)
32 —1.0543 0.6909 —0.9812 —1.34442) —0.46589%7)
40 —0.9435 0.3675 —0.6352 —1.21122) —0.8196914)
50 —0.8605 0.1711 —0.4240 —1.11342) —1.47173)
54 —0.8398 0.1227 —0.3728 —1.08992) —1.81473)
60 —0.8193 0.0678 —0.3164 -1.06792) —2.439125)
66 —0.8103 0.0267 —0.2767 —-1.06032) —3.22356)
70 —0.8103 0.0043 —0.2568 —-1.06282) —3.85487)
74 —0.8151 —0.0152 —0.2410 —-1.07122) —4.590 19)
80 —0.8313 —0.0408 —0.2230 —1.09512) —5.928 911)
83 —0.8437 —0.0525 —0.2162 —1.11242) —6.725612)
90 —0.8848 —0.0782 —0.2046 —1.16762) —9.000 915)
92 —0.9002 —0.0853 —0.2023 —1.18782) —9.780Q17)
100 —0.9819 —0.1143 —0.1967 —-1.29292) —-13.671 721

There is not yet any QED calculation of the two-photonthere is no well-defined way to estimate a QED contribution
exchange diagrams for the transition considered here. Thus the two-photon exchange, which is omitted in many-body
we employ results of many-body calculatidi®s-7] to obtain  calculations. The second-order Breit-interaction contribution,
an approximation to the correction due to exchange by twavhich arises in many-body calculations, cannot be used for a
or more photons. This correction is listed in Table IV in the meaningful error estimation since it contributes only in the
sixth column. We found that results of different many-bodyorder a?(aZ)* while the leading order of QED correction is
calculations are in a good agreement with each other; thugnown to bea?(aZ)3. The uncertainty given in the table
we use mainly the extensive tabulation of Kehal. [3]. should be considered to give only an order of magnitude of

The error estimates assigned to the results of many-bodhe QED correction.
calculations originate predominantly from their incomplete The two-electron self-energy correction is calculated in
treatment of the two-photon exchange correction. Only forthis paper and the two-electron vacuum-polarization contri-
small Z we include into the uncertainty also a discrepancybution is taken from Ref.11]. The nuclear recoil correction
between different calculations. We would like to stress thatvas calculated by Artemyest al.[31], the nuclear polariza-

TABLE IV. Various contributions to the @,,,-2s transition energy in Li-like iongin eV).

One-electron Two-electron
Extended One-photon Vacuum =Two-photon Vacuum  Nuclear  Nuclear
4 nucleus exchange Self-energy polarization exchange Self-energy polarization recoil polarization Total

18 —0.001 35.570 -0.168 0.011 —3.5643) 0.028 —~0.002 —0.009 31.86E3)
20 —0.002 39.769 —0.242 0.016 —3.6043) 0.036 -0.002 —0.012 35.96(B)
28 —0.010 57.455 —0.779 0.062 —3.8415) 0.084 -0.006 —0.015 52.95(b)
30 -0.014 62.147 —0.989 0.082 —3.9196) 0.100 —-0.008 —0.016 57.388)
32 —0.021 66.967 —1.237 0.107 —4.0048) 0.117 -0.010 —0.016 61.9068)
40 —0.07 87.76 -2.68 0.27 —4.422) 0.20 -0.02 -0.02 81.0%2)
47 —0.18 108.43 —4.69 0.52 —4.903) 0.30 -0.03  -0.02 99.483)
50 —0.27 118.17 -5.83 0.68 ~5.1503) 0.35 -0.04  —0.03 107.9(8)
54 —0.441) 13211 ~7.64 0.95 —5.51(4) 0.43 -0.05  —0.03 119.824)
60 -0.892) 155.44 ~11.11 1.52 —6.156) 0.56 -0.07  —0.03 139.266)
66 —1.873) 182.31 ~15.68 2.36 —6.9410) 0.71 -011  -0.03 160.7510)
70 —2.925  202.61 -19.45 3.12 ~7.5613) 0.82 -013  —0.04 176.4614)
74 —4.498) 22521 ~23.92 4.09 —8.2720) 0.94 -0.16  —0.04 193.3822)
80 —8.5914) 264.301) —32.16 6.07 —9.5520) 1.13 -021  —0.05 220.9824)
83 —11.947) 286.68 —37.08 7.36 —10.3030) 1.23 -025 —0.05 235.6831)
90 —26.635  348.29 —51.11 1143  —12.4440) 1.46 -0.33  -0.07 0.02  270.6410)

92 -33.356) 368.83 —55.87 12.94 —13.2040) 1.52 —0.36 —0.07 0.03 280.4@0)
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TABLE V. Comparision between various theoretical calculations and experimental results fgoh&& transition energy in Li-like
ions (in eV).

Blundell Chenet al. Perssoret al.

Z This paper (Ref.[4]) (Ref.[7]) (Ref.[36]) Expt. Reference

18 31.86%3) 31.8681) 31.86&1) Edlen, Ref.[37]

20 35.9603) 35.9641) 35.963 35.96Q2) Sugar and Corliss, Ref38]

28 52.9505) 52.95@2) Hinnov and Denne, Ref39]
52.95@1) Sugaret al, Ref.[40]
52.9474) Staudeet al, Ref.[41]

30 57.3836) 57.3892) 57.3843) Staudeet al, Ref.[41]

32 61.9048) 61.9112) 61.907 61.90&) Hinnov and Denne, Ref39]
61.9012) Knize, Ref.[42]

40 81.032) 81.04

47 99.433) 99.4387) Bosselmanret al, Ref.[43]

50 107.903) 107.921)

54 119.824) 119.841) 119.82 119.970) Martin et al, Ref.[44]
119.82@8) Bosselmann, Ref45]

60 139.266) 139.291)

70 176.4614) 176.562)

80 220.9%24) 220.993)

90 270.6440) 270.725) 270.80

92 280.4940) 280.8310) 280.74 280.5@5) 280.599) Schweppeet al, Ref.[1]

tion correction for thorium and uranium was calculated by18350 and by the program “Russian Universities Basis Re-

Plunien and Soff32] and by Nefiodowt al. [33]. search”(Project No. 3930 G.S. and G.P. acknowledge sup-
The second-order one-electron QED corrections are ngtort by the BMBF, GSI, and DFG. T.B. is grateful for

yet completely calculated and, therefore, they are not insupport by the EU-TMR program under Contract No. ERB

cluded in the table. The present status of these calculatiofSMRX CT 97-0144.

can be found in Ref[34]. The calculation of the two-loop

self-energy correction, which may yield a dominaritone- APPENDIX A: FREE-VERTEX OPERATOR

electron contribution, is still in progre$85]. We expect the

whole second-order one-electron QED contribution to yield a The free-electron vertex operator in the Feynman gauge

few tenths of eV for uranium. reads
In Table V the comparison of the present calculations d*k 1
with previous theoretical and experimental results is given. '“(pp)=—4na (ZT)“ 2o
One can see that the experimental accuracy obtained for Li-
like ions in a wide range of is high enough to test QED p—k+m p'—K+m
contributions beyond the lowest-order Lamb shift. To X(p—k)z—mz 7“(p/_k)2_mz y7. (AL)

achieve the level of the experimental accuracy in theoretical

predictions for very higtZ, rigorous calculations of the two- We separate the ultraviolet divergencelif(p,p’) using di-
photon exchange diagrams and the two-loop one-electromhensional regularization witDh =4—2e:

self-energy are needed. The first correction is likely to be
calculated in the near futuret6]. After calculations of all
QED corrections of ordet? are finished, the accuracy of the
theoretical predictions will be limited mainly by the uncer-
tainty of the effect of the extended nuclear charge distributVhereA .= 1/e— yg+In4m—Innv. _

tion. In the case of uranium, this uncertainty is slightly less When considering the free-vertex correction, one has to
than the exp_erimental error, if the currently_accepted value ogvaluate the expressiqﬁ(p)rg(p,p’) |p°:5 Yu(p’). To per-

the rms radiug (r2)1/2=5.860(2) fm[28]] is used. How- o+

.. K P =€y
ever, a one percent deviation of the rms radius alters the totg}, 1, the angular integration, it is convenient to write this

Lamb shift value by 0.5 eV. eXpI’eSSiOI’l in the forrﬁl—‘/.RL:(ro,FR)]:

(¢4
[#(p.p)= 7 Acy*+TR(p.P), (A2)

o 0 / !
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Pa(PTR(P.P ) ¥p(p")

a A A’
= 71 RY X (B) OX (B

+REXL (B O (P)
+(RSP+RE DXL 1 (B) X cpun(P)
+(REPH+REDP XL (DX (P}, (AD)

where

F2o(p,p’, €)= AT.Gp+ (Breat Boey) (€0a+ PTa)T,
+ (C1€a+ szb)ga( 5b§6+ p,?é)
+D(e50a+ Pla)(€Tp+p Th)

+(Hy€eat Ho€,)T40p (A5)

F2p,p’ €)= AT+ (Biea+ Boep) (€af ot pUa) T
+(Cqeat+ Czeb)~fa( eb’f{)—i- p"(j{))
+ D(Ea’fa'*_ pAga)(eb?t’)_*— prgk,))

—(HyeatHoep)Taf), (AB)

Ri‘buo,p’,§>=A@Jg—D(ea@a+|o’i,1><eb?;,+p'tn;)E )
A7

R3°(p,p’,&)=AT Gy —D(€afat PUa) (€xGp+P Th),
(A8)

R3°(p,p’,€)=B1(€Ga+ Pla)Tp+Ci8a(exp+p'T1)
+H19.90, (A9)

RE(p,p’,&)=Ba(€8a+ Pla)Tp+ Colal esGn+p Th)
+H,5.0,, (A10)

Rgb(p' p',&)=By( eahfa"' p'ga)kf‘kl)'ip Cl?a( Eb‘?l,)—'— pIG{J)
—H f.fp, (A11)

R2(p,p’,€)=Ba(€afat pUa) Tp+ Cof alenlp+p'Tp)
—H,f.fp, (A12)

where p=(ea.p), P'=(ep.p'), p=[pl, p'=[p’|, ¢
=p-p’, 1,=|xn+3|-%, andg andf denote the components
of the wave function in momentum representatign
=0n(p), Fa=14(P), Gn=Tn(p"), T, ="T4(p’). The functions
A, Bji,, Cip, D, andH , are defined in Appendix B of Ref.
[14]. [We note that in Ref[14] the free-vertex operator is
defined in the formI'*(p’,p). Thus p andp’ have to be
interchanged in the expressions thergin.

APPENDIX B: VECTOR AND BIPOLAR
SPHERICAL HARMONICS

In this section we collect some basic formulas for the
evaluation of angular integrals in coordinate and momentum
space.

The evaluation of corrections with the scalar part of the
photon propagator leads to the basic angular integrals that
can be easily calculated to be

[ 42 00 Y2 D= S CL ),
®1)

where

1/2

2L+1 :
(=1

41

jb L ja
—pp M pg

ba _
Sim=

) . (B2

The coefficientC, («,«p) are defined by Eq.C10).
When considering corrections with the vector part of the
photon propagator, one encounters the expression

XD OX e (2). (B3)

aMa

To perform the angular integration, we expand this expres-
sion in terms of vector spherical harmon{d$9]:

X D OX e (2) :J% SSuSiL(kp .2 YaLm(2),
(B4)

where the coefficientS;, («p,kp) are defined by Eq$C7)—
(C9). Vector spherical harmonics;, y(2) are defined in the
following way:

YJLM@):% CilmigYim(2)ey, (B5)

where g, are the spherical coordinates of the unit vector.
Vector spherical harmonics obey the orthogonality condition

J sz;LM(z)Y‘]rerr(i):5JJ!5|_|_!5MM!. (BG)

For the evaluation of the exchange part of the free-vertex
correction, we use bipolar spherical harmonics defined by
[47]
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Moe ™ . ) where é=2,-2,. Bipolar spherical harmonics obey the or-
Y|1|2(21,Zz)=m§r:n Ciymy 1om, Y1ym (20 Yi,m,(22). thogonality condition
112
(B7)

s ga wIMT &2 4 IM" o s
For the important special cask=0 a bipolar harmonic is J dz, dz, Ylllz(zl’ZZ)Ylilé (21122)_5JJ’5MM’5'1'15'2'§'
reduced to

(B9)
YO0 (2, 2)=8 | (=1)h V2l +1 P (&) (B8) A useful expansion of a product of two bipolar spherical
11122 712277 Plyly A 0SSP harmonics readp7]
L'm’ I415L A =
Yinr (21,25) Y}, e (2.2)= 2 Cili L"M"; Bl im Yig(21.22), (B10)
where
’ ! " " ’ " I/ |” |
izt (1254 1)(217+1)(215+1)(2L' +1)(2L"+1) Y2 0 oo : ¥ l; ®1D
B PARNEIA R (4)° 170707150150 oL
|
and{: -} denotgs a psyr_nbol. Tr_]e sphericaliharmonics can Xap(X) =0a(X) Fo(X)Sy.(— kp , Ka)
be expanded into a series of bipolar spherical harmonics as
[47] —fa(X)G(X) Sy (K, — Ka), (C3
whereg,,f, are the upper and the lower radial components
) L of the Dirac wave function, respectivelx. =max,X,),
Yim(2)= 2 » chi,Yiin(21,22), (B12) =min(x;,%). The functiong,(w,x- ,x-) is the radial part
| 1+| —L of the partial wave expansion of the photon propagator,

wherez=2z,—2z, and

eiw|X12‘
g~ 2 (@AFDe(exx)P(e),  (C4
L[ ameLenr ez
‘LTl F DL ) E (B139
1 x'<
00X X)= g T (c5)
APPENDIX C: RADIAL INTEGRAL R;(w,abcd)
The evaluation of the radial integrRl;(w,abcd) defined
by Eq. (85) can be found in[19]. For our purposes it is o
convenient to write it in the form 9i(@,x<x=) =i o (X )hiP(wX.), (C6)
R,(w,abcd) where P(z) is the Legendre polynomial anid(z),h{*(2)
are the spherical Bessel functioss X;-X,.

_ ) 2 The angular coefficientS;, («,,«p) differ from zero only
(2J+1)j0 Xz dxp X3 dxy for L=J, J=1 and can be written fod#0 as
X{(_1)JCJ(Ka1Kc)CJ(Kb!Kd) . : ( J+1 1/2( Ka Kp ci(- y

03+ 1\ Ka s Kp) = | 5771 Kp,K
X Gy(0,X< X ) Wagl X)) Wog(Xp) R R <

—; (1) gL(@,X< X=) Xae(X1) Xpa(X2) {,  (CD)

Ka— Kp

m Ci(kp,ka), (C8

Syl Ka 1K) =
Wias(X) = Ga(X)Gy(X) + Fa(X) Fo ), (€2 27 fa
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12 Kat Kp

J )CJ(_KbiKa)-
(C9

—1+

J
SJJl(Kava):(m

In the case]=0 there is only one nonvanishing coefficient

Sox(ka, k) = Co(— Kb, Ka)-
The coefficient<C;(«y,«,) are given by
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Cylkp k) =(— 1) Y2(2] 4+ 1)(2)p+1)

X(ja J
;0
where the symboll(l,,l,,J) is unity if [,+1,+J is even,
and zero otherwise.

Jb
_1
2

)H(Ia,lb,J), (C10
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