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Two-electron self-energy corrections to the 2p1/2-2s transition energy in Li-like ions
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We presentab initio calculations of the complete gauge invariant set of the self-energy screening diagrams
for the 2p1/2-2s transition in Li-like ions. The calculation was performed for extended nuclei in the rangeZ
518– 100. Various contributions to the transition energy are collected. The accuracy of theoretical predictions
is discussed.@S1050-2947~99!00110-9#

PACS number~s!: 31.30.Jv, 31.10.1z
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INTRODUCTION

Recent precision measurements in highly charged i
have initiated accurate calculations of energy levels in th
systems. Compared to other experimental studies, a mea
ment of the Lamb shift in high-Z Li-like ions appears to be
most promising for testing QED up to second order ina. The
uncertainty of the best experimental results for the energ
2p1/2-2s the transition in Li-like uranium@1# and the 2p3/2
22s transition in Li-like bismuth@2# is by an order of mag-
nitude smaller than the second-order QED contribution to
transition energy. The existing theoretical predictions
transition energies in Li-like ions were obtained using t
relativistic many-body perturbation theory@3–5#, the multi-
configuration Dirac-Fock method@6#, and the configuration-
interaction method @7#. All these calculations include
second-order QED effects only either phenomenologica
or partly. While these results are in good agreement with
experiment, the full QED calculation to all orders inaZ is
still needed. The important role of the second-order Q
effects was demonstrated for heliumlike ions in Refs.@8,9#,
where the two-electron part of the ground-state energy
evaluated taking into account the complete gauge invar
sets of the self-energy and vacuum-polarization screen
diagrams.

First steps towards the evaluation of the complete se
the second-order two-electron diagrams for 2p1/2-2s and
2p3/2-2s transitions were recently performed in Ref.@10#,
where the two-electron self-energy correction was calcula
for the ground state, and in Ref.@11#, where the two-electron
vacuum polarization was evaluated for low-lying states
Li-like ions. Preliminary results for the two-electron se
energy and vacuum-polarization corrections for the 2p1/2-2s
transition energy in238U891 were published in Refs.@12,13#.
In this paper we present a detailed description of the theo
ical and the numerical procedure for the evaluation of
two-electron self-energy corrections for (1s)22s and
(1s)22p1/2 states of Li-like ions. The method of the comp
tation is based on the numerical procedure developed in
@14# for the first-order self-energy correction. We will, ther
fore, discuss here only new features of the calculation
refer to that paper for common details.
PRA 601050-2947/99/60~5!/3522~19!/$15.00
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The paper is organized as follows. In the first section
derive basic formulas using the method of the two-tim
Green function and discuss the renormalization scheme
the next section we demonstrate a technique of the eva
tion of angular integrals and write formulas in the form su
able for numerical calculation. In the third section we discu
numerical details and present results of the calculation. In
fourth section we collect all contributions to the 2p1/2-2s
transition energy in Li-like ions available at the moment. T
theoretical results are compared with experimental data
the accuracy of theoretical predictions is discussed.

Relativistic units are used in this article (\5c5m51).
We use roman style~p! for four vectors, boldface~p! for
three vectors, and italic style~p! for scalars. Four vectors
have the form p5(p0,p). The scalar product of two fou
vectors is (p•k)5p0k02(p•k). We also use the notation
p”5pmgm, p̂5p/upu.

I. DERIVATION OF BASIC FORMULAS

Our derivation of formulas is based on the method of
two-time Green function developed in Ref.@15#. In the fol-
lowing we give only its brief outline needed for furthe
evaluation. For a detailed description of the method we re
to Refs.@16,17#.

The standard definition of the Green function of
N-electron system within QED is

G~x18 ,...,xN8 ;x1,...,xN!

5^0uTc~x18!¯c~xN8 !c̄~xN!¯c̄~x1!u0&, ~1!

wherec~x! is the operator of the electron-positron field
the Heisenberg representation~the Furry picture is assumed!,
T denotes the time-ordered product andc̄5c†g0. The Green
function is constructed by perturbation theory using Wick
theorem after the transformation to the interaction pictu
To find energy levels of the system, it is more convenien
use thetwo-timeGreen function

G~ t185t285¯5tN8 [t8;t15t25¯5tN[t !. ~2!
3522 ©1999 The American Physical Society
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Let us introduce the time-Fourier transform of the two-tim
Green function by

g~E!d~E2E8!5
1

2p i

1

N! E2`

`

dt dt8 exp~ iE8t82 iEt !

3^0uTc~ t8,x18!¯c~ t8,xN8 !

3c†~ t,xN!¯c†~ t,x1!u0&. ~3!

From the spectral representation ofg(E) one can deduce tha
the two-time Green function has poles at points correspo
ing to the exact energy levels of the system. Therefore,
though the number of variables is considerably reduced
the two-time Green function, it still contains the full info
mation on the energy levels of the system.

Consider now how to extract the energy of a single le
of anN-electron system fromg(E). We are interested in the
energy shiftDEn5En2En

(0) caused by the interaction wit
the quantized electromagnetic field. HereEn

(0) denotes the
unperturbed energy that is the sum of the one-electron D
energies, En

(0)5e11e21¯eN with (ap1bm1Vc)ck

5ekck . The energy shiftDEn of an isolated level due to th
interaction with the quantized electromagnetic field is giv
by @15#

DEn5
~2p i !21rGdE DE Dgnn~E!

11~2p i !21rGdE Dgnn~E!
, ~4!

where the contourG surrounds only the unperturbed lev
E5En

(0) and is oriented anticlockwise,DE5E2En
(0) ,

Dgnn(E)5gnn(E)2gnn
(0)(E), gnn(E)5^unug(E)uun&, un is

the unperturbed wave function,gnn
(0)(E) denotes thegnn(E)

function in the zeroth approximation, andgnn
(0)(E)5(E

2En
(0))21. By expanding both the numerator and the d

nominator in Eq.~4! as a standard power series ina, an
expansion into energy corrections of different orders is
tained. We write thea expansion of the Green functiong(E)
as

g~E!5g~0!~E!1g~1!~E!1g~2!~E!1¯ , ~5!

where the superscript indicates the order ina. For the
second-order correction we have

DEn
~2!5

1

2p i R
G
dE DE Dgnn

~2!~E!

2
1

2p i R
G
dE DE Dgnn

~1!~E!
1

2p i R
G
dE8Dgnn

~1!~E8!.
~6!

For practical calculations it is convenient to expre
gnn(E) as

gnn~E!d~E2E8!5
2p

i

1

N! E2`

`

dp1
0
¯dpN

0 dp18
0
¯dpN8

0

3d~E2p1
02¯2pN

0 !

3d~E82p18
02¯2pN8

0!

3^unuG~p18
0,...,pN8

0;p1
0,...,pN

0 !

3g1
0,...,gN

0 uun&, ~7!
d-
l-
in

l

c

n

-

-

s

whereG(p18
0,...,pN8

0;p1
0,...,pN

0 ) is Green function~1! in the
mixed energy-coordinate representation,

G~p18
0,...,pN8

0;p1
0,...,pN

0 !

5~2p!22NE
2`

`

dx1
0
¯ dxN

0 dx18
0
¯ dxN8

0

3exp~ ip18
0x18

01¯1 ipN8
0xN8

02 ip1
0x1

02¯2 ipN
0 xN

0 !

3G~x18,...,xN8 ;x1,...,xN!. ~8!

Feynman rules for the Green functio
G(p18

0,...,pN8
0;p1

0,...,pN
0 ) can be found in Ref.@16#.

Let us consider now the two-electron self-energy corr
tions for the (1s)22s and (1s)22p1/2 states of Li-like ions.
The unperturbed wave function of a Li-like ion with on
electron beyond the closed (1s)2 shell is

un5
1

A3!
(
P

~21!Pc1s↑~P1!c1s↓~P2!cv~P3!, ~9!

whereP is the permutation operator andv denotes the va-
lence electron. In this paper we are interested only in tw
electron corrections. In this case the three-electron prob
can be easily decomposed into three two-electron proble
The two electrons in the (1s)2 shell are equivalent and w
have only two different corrections for each state:~i! the
dE1s

1s correction representing the interaction between t
electrons in the closed (1s)2 shell and~ii ! thedEv

(1s) correc-
tion representing the interaction between the valence elec
(v52s,2p1/2) and the (1s)2 shell.

Let us consider the derivation of basic formulas for
second-order two-electron self-energy correctiondEa

b repre-
senting the interaction of electrons in the statesa andb. The
general formulas can be easily adopted for the correcti

FIG. 1. Two-electron self-energy diagrams for thedEa
b correc-

tion. P denotes the permutation operator.
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considered here:dE1s
1s , dE2s

1s (dE2s
(1s)5Sm1s

dE2s
1s), and

dE2p
1s(dE2p

(1s)5Sm1s
dE2p

1s , m1s is the magnetic quantum

number of an electron in a 1s state!. In our case, it is suffi-
cient to assume the unperturbed wave function to be re
sented by the one-determinant two-electron wave functio

un5
1

&
(
P

~21!PcPa~x1!cPb~x2!. ~10!

The derivation for the general case of states with defin
angular momentum can be performed in the same way.

The energy shift of an isolated level in second order ina
is given by expression~6!. For thedEa

b correction considered
here En

(0)5ea1eb , diagrams contributing toDgnn
(2) are

shown in Fig. 1, and those contributing toDgnn
(1) are shown

in Fig. 2. We divide thedEa
b correction into three parts. Th

contribution of the diagrams presented in Fig. 1~b! is referred
to asvertexterm (DEver). The contribution of the diagram
in Fig. 1~a! is divided into reducibleand irreducible terms
~DEred andDEir , respectively!. The reducible part is define
by Fig. 3 and the irreducible part is the remainder. The s
ond term in Eq.~6! is calculated together with the reducib
part. Thus, we have

dEa
b5DEir1DEver1DEred. ~11!

FIG. 2. First-order diagrams contributing toDgnn
(1) in Eq. ~6! for

the dEa
b correction.
e-

e

c-

To simplify further the evaluation, we introduce the o
erator

I ~v!5e2amanDmn~v!, ~12!

wheream5(1,a) are the Dirac matrixes, andDmn(v) is the
photon propagator. In this paper we work in the Feynm
gauge; thus, the photon propagator can be written as

Dmn~v,x12!5gmn

exp@ iAv22m21 idux12u#
4pux12u

, ~13!

wherex125x12x2 , the branch of the square root is fixed b
the condition Im(Av22m21 id).0, d is small and positive,
and m is the photon mass that is introduced to handle
infrared singularities on intermediate stages of the calcu
tion. We introduce also the self-energy operatorS~e!,

^auS~e!ub&5
i

2p E
2`

`

dv(
n

^anuI ~v!unb&
e2v2en~12 i0!

, ~14!

where the summation is carried out over the whole spect
of the Dirac equation.

A. Irreducible contribution

According to Eqs.~6! and~7!, and the Feynman rules fo
G(p18

0,p28
0;p1

0,p2
0), we have

FIG. 3. The reducible part of the two-electron self-energy d
grams. The indexn corresponds to intermediate states.
DEir 5
1

2p i R
G
dE DES i

2p D 2

(
P

~21!PE
2`

`

dp1
0 dp18

0

3
1

~p18
02ePa1 i0!~E2p18

02ePb1 i0!

1

~p1
02ea1 i0!~E2p1

02eb1 i0!

3F (
enÞea

^PaPbuI ~p18
02p1

0!unb&^nuS~p1
0!ua&

p1
02en~12 i0!

1 (
enÞeb

^PaPbuI ~p18
02p1

0!uan&^nuS~E2p1
0!ub&

E2p1
02en~12 i0!

1 (
enÞePa

^PauS~p18
0!un&^nPbuI ~p18

02p1
0!uab&

p18
02en~12 i0!

1 (
enÞePb

^PbuS~E2p18
0!un&^PanuI ~p18

02p1
0!uab&

E2p18
02en~12 i0! G . ~15!

Using the identity

1

~p02ea1 i0!~E2p02eb1 i0!
5

1

DE S 1

p02ea1 i0
1

1

E2p02eb1 i0D , ~16!

we obtain
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DEir5
1

2p i R
G
dE

1

DE H S i

2p D 2

(
P

~21!PE
2`

`

dp1
0 dp18

0S 1

p18
02ePa1 i0

1
1

E2p18
02ePb1 i0D

3S 1

p1
02ea1 i0

1
1

E2p1
02eb1 i0D F (

enÞea

^PaPbuI ~p18
02p1

0!unb&^nuS~p1
0!ua&

p1
02en~12 i0!

1 (
enÞeb

^PaPbuI ~p18
02p1

0!uan&^nuS~E2p1
0!ub&

E2p1
02en~12 i0!

1 (
enÞePa

^PauS~p18
0!un&^nPbuI ~p18

02p1
0!uab&

p18
02en~12 i0!

1 (
enÞePb

^PbuS~E2p18
0!un&^PanuI ~p18

02p1
0!uab&

E2p18
02en~12 i0! G J . ~17!
id

ion
e
x

The expression in the curly braces is analytical inE inside of
G, if the photon mass is chosen to keep all the cuts outs
this contour~see Refs.@16,17# for details!. Calculating the
first-order residual atE5En

(0) and using the identity

i

2p S 1

x1 i0
1

1

2x1 i0D5d~x!, ~18!

we obtain the final expression for the irreducible contribut

DEir5(
P

~21!P

3H (
enÞea

^PaPbuI ~D!unb&
1

ea2en
^nuS~ea!ua&

1 (
enÞeb

^PaPbuI ~D!uan&
1

eb2en
^nuS~eb!ub&
e 1 (
enÞePa

^PauS~ePa!un&
1

ePa2en
^nPbuI ~D!uab&

1 (
enÞePb

^PbuS~ePb!un&
1

ePb2en
^PanuI ~D!uab&J ,

~19!

whereD5ePa2ea . For the numerical evaluation it is mor
convenient to write Eq.~19! as a sum of nondiagonal matri
elements of the self-energy operator,

DEir52$^auS~ea!uja&1^buS~eb!ujb&%, ~20!

where

uja&5 (
enÞea

un&
ea2en

(
P

~21!P^PaPbuI ~D!unb&, ~21!

ujb&5 (
enÞeb

un&
eb2en

(
P

~21!P^PaPbuI ~D!uan&. ~22!
B. Vertex contribution

The Feynman rules yield for the vertex contribution,

DEver5
1

2p i R
G
dE DES i

2p D 3

(
P

~21!P (
n1n2

E
2`

`

dp1
0 dp18

0

3
1

~p18
02ePa1 i0!~E2p18

02ePb1 i0!

1

~p1
02ea1 i0!~E2p1

02eb1 i0!

3E
2`

`

dvF ^n1PbuI ~p18
02p1

0!un2b&^Pan2uI ~v!un1a&

@p18
02v2en1

~12 i0!#@p1
02v2en2

~12 i0!#

1
^Pan1uI ~p18

02p1
0!uan2&^Pbn2uI ~v!un1b&

@E2p18
02v2en1

~12 i0!#@E2p1
02v2en2

~12 i0!#G . ~23!

Calculating the integrals overE, p1
0, and p18

0 in the same way as for the irreducible contribution, we obtain
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DEver5(
P

~21!P (
n1n2

i

2p E
2`

`

dvF ^n1PbuI ~D!un2b&^Pan2uI ~v!un1a&
@ePa2v2en1

~12 i0!#@ea2v2en2
~12 i0!#

1
^Pan1uI ~D!uan2&^Pbn2uI ~v!un1b&

@ePb2v2en1
~12 i0!#@eb2v2en2

~12 i0!#G . ~24!

C. Reducible contribution

As mentioned earlier, the reducible part of the diagrams in Fig. 1~a! is calculated together with the second term in Eq.~6!:

DEred5DẼred2
1

2p i R
G
dE DE Dgnn

~1!~E!
1

2p i R
G
dE8Dgnn

~1!~E8!. ~25!

The DẼred contribution is defined by Fig. 3. The Feynman rules yield

DẼred5
1

2p i R
G
dE DES i

2p D 2

(
P

~21!PE
2`

`

dp1
0 dp18

0 ^PaPbuI ~p18
02p1

0!uab&

~p18
02ePa1 i0!~E2p18

02ePb1 i0!~p1
02ea1 i0!~E2p1

02eb1 i0!

3F ^auS~p1
0!ua&

p1
02ea1 i0

1
^buS~E2p1

0!ub&

E2p1
02eb1 i0

1
^PauS~p18

0!uPa&

p18
02ePa1 i0

1
^PbuS~E2p18

0!uPb&

E2p18
02ePb1 i0 G . ~26!

For brevity, we demonstrate the integration overE, p1
0, and p18

0 only for the first term in the square brackets~we refer to it as

DẼred
(1)!. Using Eq.~16! and the identity

1

~p02ea1 i0!2~E2p02eb1 i0!
5

1

~DE!2 S 1

p02ea1 i0
1

1

E2p02eb1 i0D1
1

DE

1

~p02ea1 i0!2 , ~27!

we write the expression forDẼred
(1) as

DẼred
1 5

1

2p i R
G
dES i

2p D 2

(
P

~21!PE
2`

`

dp1
0 dp18

0^PaPbuI ~p18
02p1

0!uab&^auS~p1
0!ua&

3H 1

DE S 1

p18
02ePa1 i0

1
1

E2p18
02ePb1 i0D 1

~p1
02ea1 i0!2

1
1

~DE!2 S 1

p18
02ePa1 i0

1
1

E2p18
02ePb1 i0D S 1

p1
02ea1 i0

1
1

E2p1
02eb1 i0D J . ~28!

Integrating overE and utilizing Eq.~18!, we obtain

DẼred
1 5(

P
~21!P

i

2p H 2E
2`

`

dp18
0 ^PaPbuI ~p18

02ea!uab&^auS~ea!ua&

~ePa2p18
01 i0!2

1E
2`

`

dp1
0^PaPbuI ~ePa2p1

0!uab&^auS~p1
0!ua& F 1

~p1
02ea1 i0!22

1

~p1
02ea2 i0!2G J . ~29!
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Taking into account that

1

~x1 i0!22
1

~x2 i0!2 52
2p

i

d

dx
d~x! ~30!

and integrating by parts, we obtain

DẼred
~1!5(

P
~21!PH 2

i

2p E
2`

`

dp18
0

3
^PaPbuI ~p18

02ea!uab&^auS~ea!ua&

~ePa2p18
01 i0!2

1^PaPbuI ~D!uab&^auS8~ea!ua&

2^PaPbuI 8~D!uab&^auS~ea!ua&J , ~31!

where S8(ea)5dS(e)/deue5ea
and I 8(D)5dI(v)/

dvuv5D . The contributions of the other terms in the squa
brackets of Eq.~26! can be evaluated in the same way:

DẼred
~2!5(

P
~21!PH 2

i

2p E
2`

`

dp18
0

3
^PaPbuI ~p18

02ea!uab&^buS~eb!ub&

~ePa2p18
01 i0!2

1^PaPbuI ~D!uab&^buS8~eb!ub&J , ~32!

DẼred
~3!5(

P
~21!PH 2

i

2p E
2`

`

dp1
0

3
^PaPbuI ~ePa2p1

0!uab&^PauS~ePa!uPa&

~ea2p1
01 i0!2

1^PaPbuI ~D!uab&^PauS8~ePa!uPa&

1^PaPbuI 8~D!uab&^PauS~ePa!uPa&J , ~33!

DẼred
~4!5(

P
~21!PH 2

i

2p E
2`

`

dp1
0

3
^PaPbuI ~ePa2p1

0!uab&^PbuS~ePb!uPb&

~ea2p1
01 i0!2

1^PaPbuI ~D!uab&^PbuS8~ePb!uPb&J . ~34!

Using Eq.~30!, we obtain for the sum of Eqs.~31!–~34!,
e

DẼred5(
P

~21!PH 2^PaPbuI ~D!uab&@^auS8~ea!ua&

1^buS8~eb!ub&#2
i

2pE2`

`

dw^PaPbuI ~v!uab&

3S 1

~v2D2 i0!21
1

~v1D2 i0!2D
3@^auS~ea!ua&1^buS~eb!ub&#J
1^bauI 8~D!uab&@^auS~ea!ua&2^buS~eb!ub&#.

~35!

Let us consider the evaluation of the second term in
~25!. We denote the contributions toDgnn

(1) from the dia-
grams in Figs. 2~a! and 2~b! by Dg1ph

(1) and DgSE
(1) , respec-

tively. A simple calculation yields

1

2p i R
G
dEDEDg1ph

~1! 5(
P

~21!P^PaPbuI ~D!uab&,

~36!

1

2p i RG
dE DEDgSE

~1!5^auS~ea!ua&1^buS~eb!ub&,

~37!

1

2p i R
G
dE Dg1ph

~1! 5(
P

~21!P
i

2pE2`

`

dw^PaPbuI ~v!uab&

3S 1

~v2D2 i0!21
1

~v1D2 i0!2D ,

~38!
1

2p i R
G
dE DgSE

~1!5^auS8~ea!ua&1^buS8~eb!ub&.

~39!

Combining Eq.~35! and Eqs.~36!–~39!, we obtain the final
expression for the reducible contribution. For further eva
ation it is convenient to separate this contribution into tw
parts,

DEred5DEred
A 1DEred

B , ~40!

DEred
A 5^bauI 8~D!uab&@^auS~ea!ua&2^buS~eb!ub&#,

~41!

DEred
B 5DE1ph@^auS8~ea!ua&1^buS8~eb!ub&#, ~42!

whereDE1ph5SP(21)P^PaPbuI (D)uab& is the one-photon
exchange correction.

D. Removing divergences

The formulas presented so far are only formal expressi
and require renormalization. According to Eq.~20!, the irre-
ducible contribution can be written as a sum of nondiago
matrix elements of the self-energy operator. Thus, the ren
malization scheme developed for the first-order self-ene
correction can be used in this case. Our procedure for
evaluation of the first-order self-energy is described in R
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@14#. Only a slight generalization of those formulas for t
case of a nondiagonal matrix element is needed.

The DEred
A correction consists of two first-order sel

energy corrections multiplied by a simple factor. Its calcu
tion causes no problems and was performed in the same

Let us consider the renormalization of theDEver and the
DEred

B term. To cancel ultraviolet divergences explicitly, w
separate contributions of the free-electron propagators~we
refer to them asfree terms and to the remainder asmany-
potential terms!:

DEver1DEred
B 5DEvr

~0!1DEvr
many, ~43!

where

DEvr
~0!5DEver

~0!1DEred
B~0! , ~44!

DEvr
many5DEver

many1DEred
B,many. ~45!

Only the free contributions contain ultraviolet divergenc
To separate divergent terms explicitly, we evaluate th
contributions in momentum space using dimensional regu
ization. We will show below that

DEver
~0!5DE1ph

a

2p
De1DEver,R

~0! , ~46!

DEred
B~0!52DE1ph

a

2p
De1DEred,R

B~0! , ~47!

whereDe is the ultraviolet divergent constant,DE1ph is the
one-photon exchange correction, and contributions with
subscript ‘‘R’’ are free from ultraviolet divergences. The u
traviolet divergent terms cancel each other in the sum. Th
Eq. ~44! can be replaced by

DEvr
~0!5DEver,R

~0! 1DEred,R
B~0! . ~48!

As a result, we have for thedEa
b correction~11!,

dEa
b5DEvr

~0!1DEvr
many1DEir1DEred

A . ~49!

Note that theDEred
A contribution vanishes for thedE1s

1s cor-
rection.

We note that bothDEver
many and DEred

B,many are infrared di-
vergent. The singularities cancel each other in the sum
the DEvr

many correction is free from any divergences. How
ever, for the numerical evaluation one should separate
cancel infrared divergences explicitly. A nonintegrable s
gularity arises in vertex contribution~24! when both poles
appear atv50 simultaneously. The expression for reducib
contribution ~42! contains the derivative of the self-energ
operator with respect to the energy. It yields a squared
ergy denominator, which causes an infrared singularity w
the pole appears atv50. The divergent terms can be eas
separated and calculated together to obtain a finite resu

II. ANGULAR INTEGRATIONS

In the previous section we obtained general formulas
the two-electron self-energy correctiondEa

b representing the
interaction of electrons in the statesa andb. Let us consider
-
ay.

.
e
r-

e

s,

nd

nd
-

n-
n

r

now the corrections representing the interaction of the
lence electron with the closed-shell core, namely,dE2s

(1s) and
dE2p

(1s) corrections. To obtain expressions for these cor
tions, the summation over magnetic quantum number
core electrons should be carried out in the formulas p
sented so far. In this section our technique of angular i
gration is described and expressions in a form suitable
numerical evaluation are obtained. We denote valence
core electrons with indices ‘‘v ’’ and ‘‘ c,’’ respectively.

As indicated in the previous section, thedEv
(c) correction

can be expressed as a sum of four components,

DEv
~c!5DEvr

~0!1DEvr
many1DEir1DEred

A . ~50!

In the following we consider each of these components s
rately.

A. DEvr
„0… correction

The DEvr
(0) correction is given by the sum of the fre

contributions of the vertex and the reducible term, as i
stated by Eq.~44!. The free reducible term is the contributio
of the free-electron propagators in Eq.~42!. After transfor-
mation into momentum space, we have

DEred
B~0!5(

mc
F(

P
~21!P^PcPvuI ~D!ucv&G

3E dp

~2p!3 H c̄c~p!
]S~0!~p!

]p0 U
p05ec

cc~p!

1c̄v~p!
]S~0!~p!

]p0 U
p05ev

cv~p!J , ~51!

wheremc is the magnetic quantum number of the core el
tron andS (0)~p! denotes the free self-energy operator.
derivative with respect to the energy reads

]S~0!~p!

]e
52

a

4p H g0De1
p”

m2 a1~r!1g0a2~r!1a3~r!J ,

~52!

a1~r!52
2e

~12r!2 S 32r1
2

12r
ln r D , ~53!

a2~r!521
r

12r S 11
22r

12r
ln r D , ~54!

a3~r!5
8e

m~12r! S 11
1

12r
ln r D , ~55!

where p5(e,p) and r512p2/m2. For details we refer to
@14#. Integration over the angular variables yields

DEred
B~0!52

a

4p
DE1phS 2De1 (

n5c,v
E

0

` p2 dp

~2p!3 $a1~rn!

3@en~ g̃n
21 f̃ n

2!12p f̃ng̃n#1a2~rn!~ g̃n
21 f̃ n

2!

1a3~rn!~ g̃n
22 f̃ n

2!% D . ~56!
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Here DE1ph5Smc
@SP(21)P^PcPvuI (D)ucv&# is the cor-

rection due to the one-photon exchange of the valence e
tron with the closed-shell core,p5upu, and g̃n5g̃n(p) and
f̃ n5 f̃ n(p) are the components of the momentum-space w
function. We use the Dirac wave functions written in t
form

ca~x!5S ga~x!xkama
~ x̂!

i f a~x!x2kama
~ x̂!

D , ~57!

where xkm( x̂) is the spin-angular spinor@18#. The
momentum-space wave functions are defined by

ca~p!5E dxe2 ipxca~x!5 i 2 l aS g̃a~p!xkama
~ p̂!

f̃ a~p!x2kama
~ p̂!D .

~58!

Herek denotes the Dirac angular-momentum quantum nu
ber, l 5uk1 1

2 u2 1
2 .

The free vertex correctionDEver
(0) can be obtained from

expression~24! for DEver by substituting the free Dirac state
for the bound-state solutions. As is well known, for a se
ration of ultraviolet divergences, it is more convenient
work in momentum space. For further evaluation we tra
form the expression for the free-vertex contribution par
into the momentum-space representation:

DEver
~0!5a(

P

~21!P

2 j v11 (
mcmv

E dp

~2p!3 E dp8

~2p!3

3$c̄Pc~p!Am
Pvv~q!Gm~p,p8!u

p05ePc

p805ec

cc~p8!

1c̄Pv~p!Am
Pcc~q!Gm~p,p8!u

p05ePv

p805ev

cv~p8!%, ~59!

where

Am
ab~q!5

4p

q22Dab
2 2 i0

E dzca
†~z!amcb~z!e2 iqz. ~60!

HereGm(p,p8) is the free-vertex operator defined in Appe
dix A, Dab5ea2eb , q5p2p8, and cn(p) and cn(z) are
the wave functions in momentum-space and coordin
space representation, respectively. Note, that in Eq.~59! we
average over magnetic substates of the valence electron

The free-vertex operator in Eq.~59! contains ultraviolet
divergence, which can be separated explicitly~see Appendix
A!:

Gm~p,p8!5
a

4p
Deg

m1GR
m~p,p8!. ~61!

According to this, we write the free vertex correction as

DEver
~0!5DE1ph

a

2p
De1DEver,R

~0! . ~62!

The second term of this expression is finite and the first te
has a simple structure. Obviously, the ultraviolet diverg
c-

e

-

-

-

e-

m
t

term in Eq.~62! is cancelled by the corresponding term fro
free reducible contribution~56!.

Let us consider the evaluation of the integrals over an
lar variables inDEver,R

(0) . It is convenient to divide this cor-
rection into two contributions:direct part (Pc,Pv5c,v) and
exchangepart (Pc,Pv5v,c):

DEver,R
~0! 5DEver

~0!,dir1DEver
~0!,exch. ~63!

1. Direct part of the free vertex contribution

The evaluation of theDEver
(0),dir correction is relatively

easy. Angular integration forAm5(A0 ,A) leads to

(
ma

A0
aa~q!5

8p

q2 R0
1,aa~q!, ~64!

(
ma

Aaa~q!50, ~65!

where q5uqu and the radial integralsRL
1,ab(q) are deter-

mined by

RL
1,ab~q!5E

0

`

dz z2 j L~qz!$ga~z!gb~z!1 f a~z! f b~z!%.

~66!

j L(z) denotes the spherical Bessel function. Taking into
count Eq.~A3!, we obtain

DEver
~0!,dir5

a2

16p5 E
0

`

dpE
0

`

dp8E
21

1

dj
p2p82

q2

3$R0
1,vv~q!@F1

ccPl c
~j!1F2

ccPl̄ c
~j!#

1R0
1,cc~q!@F 1

vvPl v
~j!1F 2

vvPl̄ v
~j!#%, ~67!

wherep5upu, p85up8u, j5p̂•p̂8, andPl(j) is a Legendre
polynomial, l̄ 52 j 2 l .

2. Exchange part of the free-vertex contribution

Let us consider the evaluation ofDEver
(0),exch. Using the

symmetry conditionGm(p,p8)5Gm(p8,p), one can show tha
both terms in the expression for theDEver

(0),exch correction
provide the same contribution. Thus, we can write

DEver
~0!,exch52

2a

2 j v11 (
mcmv

E dp

~2p!3 E dp8

~2p!3

3c̄v~p!GR
m~p,p8!u

p05ev

p805ec

cc~p8!Am
cv~q!. ~68!

Angular integration forAm5(A0 ,A) yields

A0
ab~q!5

16p2

q22Dab
2 2 i0

3(
LM

i 2LsLM
ba YLM~ q̂!CL~kb ,ka!RL

1,ab~q!,

~69!
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Aab~q!5
16p2

q22Dab
2 2 i0

3 (
JLM

i 12LsJM
ba YJLM~ q̂!RJL

2,ab~q!, ~70!

whereYLM(q̂) denotes a spherical harmonic,YJLM(q̂) is the
vector spherical harmonic defined by Eq.~B5!, the coeffi-
cients sJM

ab are defined by Eq.~B2!, and the coefficients
CL(k1 ,k2) are given by Eq.~C10!. The radial integralsRJL

2,ab

are determined by

RJL
2,ab~q!5E

0

`

dz z2 j L~qz!$ga~z! f b~z!SJL~ka ,2kb!

2 f a~z!gb~z!SJL~2ka ,kb!%, ~71!

where the coefficientsSJL(k1 ,k2) are defined by Eqs.~C7!–
~C9!.

For further evaluation ofDEver
(0),exch, we substitute Eqs

~A3!, ~A4!, ~69!, and~70! into Eq.~68! and integrate over the
angular variables. In this case the angular integration is m
more tedious than for the direct part. For brevity, we de
onstrate the angular integration for the special casec51s,
v52p1/2 and only for the part ofDEver

(0),exch that results from
the third term in Eq.~A4!. This example shows all the es
sential features of the evaluation of the other terms. We r
to this part asDE34:

DE345 i
a2

4p (
m2pm1s

E dp

~2p!3 E dp8

~2p!3

3~R3
2p1sp1R4

2p1sp8!

3x1m2p

† ~ p̂!x21m1s
~ p̂8!A1s2p~q!. ~72!

In this case expression~70! is reduced to

A1s2p~q!5
16p2

q22D2p1s
2 2 i0

3 (
L50,2

(
M

i 12Ls1M
2p1sY1LM~ q̂!R1L

2,1s2p~q!.

~73!

To perform the angular integration, we have to evaluate
expression

J[ (
m1sm2pM

s1M
2p1s

„p̂•Y1LM~ q̂!…xk1m2p

† ~ p̂!xk2m1s
~ p̂8!

~74!

in a way to eliminate a dependence upon all angles ex
j5p̂•p̂8. Summing over magnetic substates, we obtain

J52
1

Ap
H l 1

1
2

l 2
1
2

1
1
2
J

3(
M

~21!M
„p̂•Y1LM~ q̂!…Yl 1l 2

12M~ p̂,p̂8! ~75!
ch
-

er

n

pt

52A 4
3 H l 1

1
2

l 2
1
2

1
1
2
J (

s
Y1s~ p̂!

3(
Mm

~21!MCLm,1s
1M YLm~ q̂!Yl 1l 2

12M~ p̂,p̂8!. ~76!

Here Yl 1l 2
JM is the bipolar spherical harmonic defined by E

~B7!, l n5ukn1 1
2 u2 1

2 , and $¯% denotes a 6j symbol. After
expandingYLm(q̂) into a series of bipolar spherical harmo
ics according to Eq.~B12!, expanding a product of bipola
spherical harmonics into the Clebsch-Gordon series acc
ing to Eq. ~B10! and using the orthogonality condition fo
Clebsch-Gordon coefficients, we obtain

J5~21!11LA4
3 H l 1

1
2

l 2
1
2

1
1
2
J (

l al b
cl al b

L (
l cl d

Bl al bL,l 1l 21
l cl d1

3(
s

~21!sY1s~ p̂!Yl cl d
12s~ p̂,p̂8!. ~77!

The last sum can be evaluated to yield

(
s

~21!sY1s~ p̂!Yl cl d
12s~ p̂,p̂8!

5
3A2l c11

~4p!3/2 Cl c0,10
l d0

~21! l cPl d
~j!. ~78!

Using this and the explicit form of the coefficientscl 1l 2
L and

B
l
18 l

28L8,l
19 l

29L9

l 1l 2L
from Appendix B, we obtain

(
m1sm2pM

s1M
2p1s

„p̂•Y10M~ q̂!…x1m2p

† ~ p̂!x21m1s
~ p̂8!

52
1

8p2

1

&
, ~79!

(
m1sm2pM

s1M
2p1s

„p̂8•Y10M~ q̂!…x1m2p

† ~ p̂!x21m1s
~ p̂8!

52
1

8p2 j
1

&
, ~80!

(
m1sm2pM

s1M
2p1s

„p̂•Y12M~ q̂!…x1m2p

† ~ p̂!x21m1s
~ p̂8!

5
1

16p2 F223p82
12j2

q2 G , ~81!

(
m1sm2pM

s1M
2p1s

„p̂8•Y12M~ q̂!…x1m2p

† ~ p̂!x21m1s
~ p̂8!

5
1

16p2 F2j23pp8
12j2

q2 G . ~82!

Now the angular integration in Eq.~72! is straightforward:
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DE345
a2

16p5 E
0

`

dpE
0

`

dp8E
21

1

dj
p2p82

q22D2p1s
2 2 i0

3H 1

&
R10

2,1s2p~q!@pR3
2p1s1jp8R4

2p1s#

1
1

2
R12

2,1s2p~q!FpR3
2p1sS 223p82

12j2

q2 D
1p8R4

2p1sS 2j23pp8
12j2

q2 D G J . ~83!

Finally, we present the resulting formula for the exchan
part of the free-vertex contribution for thedE2p

(1s) correction:

DEver
~0!,exch5

a2

16p5 E
0

`

dpE
0

`

dp8E
21

1

dj
p2p82

q22D2p1s
2 2 i0

3H R1
1,1s2p~q!FF 1

2p1s jp82p

q
2F 2

2p1s jp2p8

q G
1

1

&
R10

2,1s2p~q!@jR1
2p1s23R2

2p1s1pR3
2p1s

1jp8R4
2p1s1jpR5

2p1s1p8R6
2p1s#

1
1

2
R12

2,1s2p~q!F ~22R1
2p1s1p8R4

2p1s1pR5
2p1s!

3S 2j23pp8
12j2

q2 D
1pR3

2p1sS 223p82
12j2

q2 D
1p8R6

2p1sS 223p2
12j2

q2 D G J , ~84!

where expressions for the functionsFi
ab5Fi

ab(p,p8,j) and
Ri

ab5Ri
ab(p,p8,j) are indicated in Appendix A.

B. DEvr
many correction

The DEvr
many correction is given by the sum of many

potential contributions of the vertex and the reducible te
as stated by Eq.~45!. The many-potential part of the verte
term can be obtained by subtracting the contributions of
free-electron propagators from Eq.~24!. For simplicity, we
perform the angular integration and the summation o
magnetic substates first and subtract the contribution of
free propagators in the final expression. The angular inte
tion was evaluated by introducing the functionRL(v,abcd)
in the following way@19#:

4p^abuamanDmn~v!ucd&5 (
J50

`

I J~abcd!RJ~v,abcd!,

~85!

where the functionI J(abcd) contains the whole dependenc
on magnetic quantum numbers,
e

,

e

r
e

a-

I J~abcd!5(
mJ

~21! j a2ma1J2mJ1 j b2mbS j a

2ma

J
mJ

j c

mc
D

3S j b

2mb

J
2mJ

j d

md
D , ~86!

and ~¯! denotes a 3j symbol. The expression for the radia
integralRJ(v,abcd) is listed in Appendix C. Performing the
summation over magnetic substates, we obtain

DEver5
ia2

2p (
n1n2

E
2`

`

dv

3H S1~v,n1n2!

@ev2v2en1
~12 i0!#@ev2v2en2

~12 i0!#

1
S2~v,n1n2!

@ec2v2en1
~12 i0!#@ec2v2en2

~12 i0!#

22
S3~v,n1n2!

@ec2v2en1
~12 i0!#@ev2v2en2

~12 i0!#J ,

~87!

where

S1~v,n1n2!5dk1k2

~21! j 121/2

A2~2 j 111!
R0~0,n1cn2c!

3(
L

~21!LRL~v,vn2n1v !, ~88!

S2~v,n1n2!5dk1k2

~21! j 121/2

A2~2 j 111!
R0~0,vn1vn2!

3(
L

~21!LRL~v,cn2n1c!, ~89!

S3~v,n1n2!5
~21! j 11 j 2

2 (
L1L2

H 1
2

j 1

1
2

j 2

L1

L2
J

3RL1
~Dvc ,n1vn2c!RL2

~v,cn2n1v !,

~90!

and the summation in Eq.~87! is performed over Dirac
angular-momentum quantum numbers and principal quan
numbers of intermediate states. To evaluate the double
over the complete spectrum of the Dirac equation, we w
Eq. ~87! in terms of the Green function. To obtain the man
potential part, we subtract the contribution of free propa
tors. The resulting expression has a rather complicated st
ture. Thus we present the final expression only for thedE2p

(1s)

correction:
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DEver
many5DEver

infr1
ia2

2p (
k1

E
CF

dvE
0

`

dy1 dy2 dz y1
2y2

2z2

3H P0
1,1s1s~z!@Dk1k1

~e2p ,e2p!#2p2p
l̄ 1 1P0

1,2p2p~z!

3@Dk1k1
~e1s ,e1s!#1s1s

l 1 2(
k2

A6C1~k1 ,k2!

3(
J

~21!J1 j 211/2H 1
2

j 1

1
2

j 2

1
JJ

3@Rk1k2
~«1s ,«2p!#1s2pJ , ~91!

where the contourCF is indicated in Fig. 4 and

@Dk1k1
~ea ,ea!#aa

l 52uk1ugl~v!$Dk1k1
~ea ,ea!%aa

I

2(
JL

~2J11!gL~v!

3$Dk1k1
~ea ,ea!%k1k1 ,JL

II ,aa , ~92!

@Rk1k2
~e1s ,e2p!#1s2p5dJl1

~21! j 12 j 22Auk1k2ugl 1
~v!

3$Rk1k2
~e1s ,e2p!%1s2p

I

2(
L

~2J11!gL~v!

3$Rk1 ,k2
~e1s ,e2p!%k1k2 ,JL

II ,1s2p , ~93!

$A%ab
I 5ga~y1!A11~y1 ,z,y2!gb~y2!

1ga~y1!A12~y1 ,z,y2! f b~y2!

1 f a~y1!A21~y1 ,z,y2!gb~y2!

1 f a~y1!A22~y1 ,z,y2! f b~y2!, ~94!

FIG. 4. The contourCF of the v integration in Eq.~91!. The
poles and the branch cuts shown are defined by the analytic p
erties of the Green functions and the photon propagator.
$A%k1k2 ,JL
II ,ab 5 f a~y1!A11~y1 ,z,y2! f b~y2!SJL~2ka ,k1!

3SJL~2kb ,k2!2 f a~y1!A12~y1 ,z,y2!gb~y2!

3SJL~2ka ,k1!SJL~kb ,2k2!

2ga~y1!A21~y1 ,z,y2! f b~y2!SJl~ka ,2k1!

3SJL~2kb ,k2!1ga~y1!A22~y1 ,z,y2!gb~y2!

3SJL~ka ,2k1!SJL~2kb ,k2!. ~95!

Dk1k2
andRk1k2

are 232 matrices defined as follows:

Rk1k2
~ea ,eb!5P1

1,ba~z!Dk1k2
~ea ,eb!

2 (
L50,2

PL
2,ba~z!Qk1k2

L ~ea ,eb!, ~96!

Dk1k2
~ea ,eb ;y1 ,z,y2!

5Gk1
~ea2v,y1 ,z!Gk2

~eb2v,z,y2!

2Gk1

~0!~ea2v,y1 ,z!Gk2

~0!~eb2v,z,y2!

2
1

v2 wa~y1!wa
T~z!wb~z!wb

T~y2!, ~97!

Qk1k2

L ~ea ,eb ;y1 ,z,y2!

5Gk1
~ea2v,y1 ,z!Ak1k2

L Gk2
~eb2v,z,y2!

2Gk1

~0!~ea2v,y1 ,z!Ak1k2

L Gk2

~0!~eb2v,z,y2!

2
1

v2 wa~y1!wa
T~z!Ak1k2

L wb~z!wb
T~y2!. ~98!

HereGk(v,x1 ,x2) is the radial Green function of the Dira
equation~see Ref.@14# for details!. Gk

(0)(v,x1 ,x2) is the free
Dirac Green function,wn(x) denotes the radial wave func
tion

wn~x!5S gn~x!

f n~x! D , ~99!

and the matricesAk1k2

L are given by

Ak1k2

0 5S 0
21

1
0D1~k22k1!S 0

1
1
0D , ~100!

Ak1k2

2 522S 0
21

1
0D1~k22k1!S 0

1
1
0D . ~101!

In Eqs.~97! and~98! we subtract the free-electron contribu
tion and the singular infrared term from the contribution
the bound-electron propagators. The contribution of the
frared term is readded in Eq.~91! where it is denotedDEver

infr .

The other notations arel̄ n52 j n2 l n , C1(k1 ,k2) andgL(v)
are defined by Eqs.~C10! and ~C6!, and the radial integrals
PL

i ,ab(z) are defined as

p-
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PL
1,ab~x2!5E

0

`

dx1 x1
2gL~Dab ,x, ,x.!

3@ga~x1!gb~x1!1 f a~x1! f b~x1!#, ~102!

P0
2,ab~x2!5E

0

`

dx1 x1
2g0~Dab ,x, ,x.!

3@ 1
3 ga~x1! f b~x1!1 f a~x1!gb~x1!#, ~103!

P2
2,ab~x2!5E

0

`

dx1 x1
2g2~Dab ,x, ,x.! 2

3 ga~x1! f b~x1!.

~104!

Note that in Eq.~91! only the summation overk1 is infinite.
In all other sums only a few nonvanishing terms remain a
taking into account the triangular selection rules of t
Clebsch-Gordon coefficients.

The many-potential part of the reducible term can
evaluated in the same way:

DEred
B,many5DEred

infr1
ia2

2p (
k1

E
CF

dvE
0

`

dy1 dy2 dzy1
2 y2

2z2

3S 2
1

2a DDE1ph$@Dk1k1
~e2p ,e2p!#2p2p

l̄ 1

1@Dk1k1
~e1s ,e1s!#1s1s

l 1 %. ~105!

Here we refer to the singular infrared part of the express
as DEred

infr . The two infrared terms from the vertex and th
reducible part should be calculated together to obtain a fi
result. A straightforward calculation yields

DEred
infr1DEver

infr5
a2

4p
R1~D2p1s,2p1s1s2p!

3H 2R̃0~1s2p1s2p!1 2
3 R̃1~1s2p1s2p!

2 (
L50,1

~21!L@R̃L~1s1s1s1s!

1R̃L~2p2p2p2p!#J , ~106!

where radial integralsR̃L(abcd) are defined analogously t
RL(v,abcd) ~see Appendix C!, with the function
gl(v,x1 ,x2) substituted byg̃l(x1 ,x2):

g̃l~x1 ,x2!5
1

2l 12
@zQl~z!2Ql 21~z!# for lÞ0,

~107!

g̃l~x1 ,x2!5 1
2 @Q1~z!1 lnux1

22x2
2u# for l 50, ~108!

wherez5(x1
21x2

2)/(2x1x2) andQk(z) is the Legendre poly-
nomial of second kind. The functiong̃l(x1 ,x2) is the radial
part of the partial-wave expansion of ln(ux12 u). Note that in
the separation and in the evaluation of the infrared contri
tions we assume the 2s and 2p1/2 Dirac levels to be nonde
r

e

n

te

-

generated, i.e., the finite nuclear-size effect should be ta
into account in actual calculations.

C. DE ir and DE red
A corrections

Summing Eqs.~20!–~22! over magnetic substates of co
electrons and performing the angular integration, we obt
the expression for the irreducible contribution:

DEir52$^cu(~ec!ujc&1^vu(~ev!ujv&%, ~109!

ujc&5a (
enÞec

un&
ec2en

H R0~0,cvnv !

2(
L

~21!L

2
RL~Dvc ,vcnv !J , ~110!

ujv&5a (
enÞev

un&
ev2en

H R0~0,cvcn!

2(
L

~21!L

2
RL~Dvc ,vccn!J . ~111!

A simple calculation for theDEred
A correction yields

DEred
A 5a(

L

~21!L

2
RL8~Dvc ,vccv !

3@^cuS~ec!uc&2^vuS~ev!uv&#, ~112!

whereRL8(Dvc)5(d/dv)RL(v)uv5Dvc
.

III. NUMERICAL DETAILS AND RESULTS

For the calculation of the irreducible contribution we u
the numerical procedure developed for the first-order s
energy correction and described in detail in Ref.@14#. We
mention here only a few new features of the evaluation co
pared to@14#. The effective wave functionuj& contains the
sum over the whole spectrum of the Dirac equation exc
the initial state. The summation was performed using
method of theB-spline basis set for the Dirac equation@20#.
The uj& function was stored on the radial grid and then o
tained at an arbitrary point by interpolation. We note th
due to a presence of a nonzero imaginary part in theuj&
function for thedE2s

(1s) and thedE2p
(1s) correction, the imagi-

nary part of the self-energy operator yields a nonzero con
bution to the real part of the irreducible contribution. A
other new feature compared to@14# is that the calculation
was performed for the shell model of the nuclear cha
distribution. The Green function for the extended nucle
was evaluated in a way similar to the one used in Ref.@21#.
Our computation of the Whittaker functions and their deriv
tives is discussed in detail in Ref.@14#. For the calculation of
the zero- and the one-potential contribution one has to ev
ate numerically the Fourier transform of wave functions. W
start from the numerical coordinate-space wave function
evaluate the Fourier transform by a direct point-by-point n
merical integration. For small values of momentum t
Gauss-Legendre integration was used, and the genera
Clenshaw-Curtis algorithm was used otherwise. The w
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functions in momentum representation were stored on a
and interpolated afterwards to obtain the value at an arbit
point.

The computation of the free contributions is similar to t
evaluation of the one-potential term for the first-order se
energy correction described in Ref.@14#. A new feature in
the present case is that the photon propagator in momen
representation in Eq.~60! contains a singularity whenq2

5D2. In the caseD50, the singularity is integrable while
for nonzero values ofD the singularity should be treate
according to the Feynman rules for bypassing of poles of
photon propagator. We have

1

D22q21 i0
5PS 1

D22q2D2 ipd~D22q2!, ~113!

where P denotes that the principal value of the integ
should be taken. The second term in Eq.~113! contributes
only to the imaginary part of the correction and can be om
ted. The principal value of the integral was evaluated
merically using the transformation of variables$pp8j%
→$xyq%, where

x5p1p8, ~114!

y5p2p8, ~115!

q5Ap21p8222pp8j. ~116!

The integral overq in a vicinity of the pole can be schemat
cally represented to be

PE
D2a

D1a

dq
F~q!

D2q
, ~117!

whereF(q) remains regular atq5D. We evaluate the func
tion F(q) in several points within the interval@D2a,D
1a# and interpolate it by a polynomial. The principal valu
of the integral is then obtained analytically.

For the calculation of the many-potential contributions
deform the contourCF of the v integration in a way shown
in Fig. 5 in analogy to the evaluation of the first-order se

FIG. 5. The deformed contour of thev integration in the many-
potential vertex term. The contour is divided into two parts,CL and
CH , which correspond to the low- and the high-energy part, resp
tively.
id
ry

-

m

e

l

-
-

-

energy correction in Ref.@14#. We divide the integral into
two parts that correspond to integrations over two partsCL
and CH of the new contour and refer to them as thelow-
energyand thehigh-energyterms, respectively. As a test o
our code, we use also an alternative approach to the num
cal evaluation of the many-potential contributions. In th
approach, we rotate the integration contourCF to the imagi-
nary axis. All the pole contributions and singular terms we
separated and calculated using the method of theB-spline
basis set@20#. The comparison of these two approaches w
used also to estimate the numerical uncertainty of the ca
lation. The numerical evaluation of the many-potential co
tributions is numerically the most intensive part of the co
putation. To reduce the computing time, a storage an
subsequent interpolation of different functions was wide
used. So, we store for eachuku and v all Whittaker and
Bessel functions required for the computation of Gree
functions. The radial integralsPL

i ,ab in Eq. ~91! and the wave
functions of the initial states were stored as well. The su
mation over the absolute value ofk1 in Eq. ~91! and in Eq.
~105! was performed after all the integrations were co
pleted. The sum was terminated atuk1u520 and the remain-
der was estimated using a polynomial fitting in 1/uk1u.

The results of the calculation of the two-electron se
energy correctiondE2p

(1s) due to the interaction of the elec
tron in the 2p1/2 state and the (1s)2 shell are given in Table
I. Values of the rms radii used in the calculation@23–26# are
listed in the second column of the table. In the next colum
of Table I the various contributions to thedE2p

(1s) correction
are listed. The results are presented in terms of the func
F(aZ) defined by

dE5a2~aZ!3F~aZ!mc2. ~118!

The totaldE2p
(1s) correction is listed in the last two column

of Table I.
The calculation of the two-electron self-energy correcti

dE2s
(1s) due to the interaction of the electron in the 2s state

and the (1s)2 shell was performed in Ref.@10#. Here we
recalculate this correction using the numerical scheme
sented in this article, which differs slightly from the proc
dure used in Ref.@10#. Various contribution to thedE2s

(1s)

correction are given in Table II.
The calculation of the two-electron self-energy correcti

dE1s
1s due to the interaction of electrons in the (1s)2 shell

was performed in Refs.@8,9,22#. In Table III we present the
various contributions to this correction.~The correction for
thorium, given in @8#, was recalculated with the new rm
radius 5.802 fm@26#.! These results perfectly agree with th
ones from Ref.@22#.

The total two-electron self-energy contributions to t
(1s)22s and the (1s)22p1/2 state of Li-like ions are given by
the sumsdE2s

(1s)1dE1s
1s anddE2p

(1s)1dE1s
1s , respectively.

IV. 2 p1/2-2s TRANSITION ENERGY IN Li-LIKE IONS

In Table IV we summarize all the contributions calculat
up to now for the energy of the 2p1/2-2s transition in Li-like
ions. In the second column of the table the one-elect
Dirac energy contributions are listed. The correction due
the one-photon exchange is given in the third column. Th

c-
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TABLE I. Various contributions to thedE2p
(1s) correction due to the interaction of the electron in the 2p1/2

state and the (1s)2 shell. The functionF(aZ) is defined by Eq.~118!.

Z ^r 2&1/2 (fm) F ir Fvr
free Fvr

many F red
A F2p

(1s) dE2p
(1s) (eV)

18 3.427 20.1003 1.7456 21.7685 0.0010 20.1221~15! 20.007 53~9!

20 3.478 20.0951 1.4089 21.4311 0.0011 20.1162~12! 20.009 83~10!

30 3.928 20.0803 0.6167 20.6375 0.0019 20.0992~4! 20.028 33~10!

32 4.072 20.0790 0.5406 20.5614 0.0021 20.0977~2! 20.033 84~7!

40 4.270 20.0776 0.3424 20.3634 0.0028 20.0959~2! 20.064 90~13!

50 4.655 20.0824 0.2151 20.2378 0.0036 20.1015~2! 20.134 1~3!

54 4.787 20.0860 0.1824 20.2062 0.0040 20.1059~2! 20.176 3~3!

60 4.914 20.0934 0.1444 20.1703 0.0045 20.1149~2! 20.262 3~5!

66 5.224 20.1032 0.1153 20.1440 0.0050 20.1270~2! 20.386 2~7!

70 5.317 20.1114 0.0993 20.1303 0.0053 20.1372~2! 20.497 7~8!

74 5.373 20.1212 0.0853 20.1190 0.0056 20.1493~2! 20.639 7~9!

80 5.467 20.1393 0.0668 20.1055 0.0061 20.1719~2! 20.930 5~11!

83 5.533 20.1504 0.0585 20.1000 0.0063 20.1855~2! 21.121 8~12!

90 5.802 20.1830 0.0402 20.0899 0.0067 20.2260~2! 21.742 0~15!

92 5.860 20.1946 0.0353 20.0877 0.0069 20.2402~2! 21.977 4~17!

100 5.886 20.2553 0.0148 20.0812 0.0072 20.3145~2! 23.325 2~21!
th

b

For
ore

us-
here
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he
-
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corrections are calculated using the Fermi model of
nuclear charge distribution

r~r !5
N

11exp@~r 2c!/a#
~119!

with the rms radii listed in Table I. The parametera is fixed
to be a52.3/(4 ln 3) fm. The parametersc and N can be
expressed with a good precision in terms of the rms radius
~see, e.g., Ref.@27#!

c25 5
3 ^r 2&2 7

3 a2p2, ~120!

N5
3

4pc3 S 11
p2a2

c2 D 21

. ~121!
e

y

The uncertainty given in the first two columns forZ,83 is
obtained by the one percent variation of the rms radius.
bismuth, thorium, and uranium the rms radius is known m
precisely. In the caseZ590 @^r 2&1/255.802(4) fm@26# # and
Z592 @^r 2&1/255.860(2) fm @28# # the uncertainty is esti-
mated by taking the difference between results obtained
ing the Fermi model and the homogeneously charged sp
model with the same rms radius. ForZ583, the uncertainty
results from a variation of the rms radius by 0.020 fm~it
corresponds to a discrepancy between two measured va
@23#!.

The one-electron self-energy correction and t
Wichman-Kroll contribution to the one-electron vacuum
polarization correction are taken from recent tabulatio
@29,30#. The one-electron Uehling contribution is calculat
using the Fermi model of the nuclear charge distribution.
2
TABLE II. Various contributions to thedE2s
(1s) correction due to the interaction of the electron in thes

state and the (1s)2 shell. The functionF(aZ) is defined by Eq.~118!.

Z Fir Fvr
free Fvr

many F red
A F2s

(1s) dE2s
(1s) (eV)

18 20.5168 1.9751 22.0341 0.0003 20.5754~6! 20.035 49~4!

20 20.4895 1.5838 21.6411 0.0003 20.5465~4! 20.046 24~4!

30 20.3970 0.6699 20.7226 0.0006 20.4491~2! 20.128 21~6!

32 20.3843 0.5831 20.6353 0.0006 20.4360~2! 20.151 05~7!

40 20.3461 0.3591 20.4107 0.0009 20.3967~2! 20.268 49~14!

50 20.3179 0.2189 20.2714 0.0012 20.3692~2! 20.488 03~26!

54 20.3112 0.1838 20.2373 0.0014 20.3633~2! 20.604 88~34!

60 20.3050 0.1438 20.1994 0.0017 20.3589~2! 20.819 81~46!

66 20.3033 0.1143 20.1725 0.0019 20.3596~2! 21.093 2~6!

70 20.3044 0.0985 20.1591 0.0022 20.3628~2! 21.315 8~7!

74 20.3075 0.0850 20.1483 0.0024 20.3684~2! 21.578 3~9!

80 20.3158 0.0682 20.1362 0.0028 20.3810~2! 22.062 7~11!

83 20.3218 0.0608 20.1317 0.0030 20.3896~2! 22.355 3~12!

90 20.3409 0.0457 20.1244 0.0037 20.4159~2! 23.205 9~15!

92 20.3479 0.0418 20.1230 0.0039 20.4253~2! 23.501 7~16!

100 20.3848 0.0270 20.1209 0.0050 20.4737~2! 25.008 6~21!
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TABLE III. Various contributions to thedE1s
1s correction due to the interaction of the electrons in t

(1s)2 shell for Li-like ions. The functionF(aZ) is defined by Eq.~118!.

Z Fir Fvr
free Fvr

many F1s
1s dE1s

1s (eV)

18 21.4367 2.8137 23.1864 21.8094~3! 20.111 59~2!

20 21.3579 2.2064 22.5621 21.7135~3! 20.144 95~3!

30 21.0907 0.8186 21.1167 21.3887~2! 20.396 49~6!

32 21.0543 0.6909 20.9812 21.3446~2! 20.465 89~7!

40 20.9435 0.3675 20.6352 21.2112~2! 20.819 69~14!

50 20.8605 0.1711 20.4240 21.1134~2! 21.471 7~3!

54 20.8398 0.1227 20.3728 21.0899~2! 21.814 7~3!

60 20.8193 0.0678 20.3164 21.0679~2! 22.439 2~5!

66 20.8103 0.0267 20.2767 21.0603~2! 23.223 5~6!

70 20.8103 0.0043 20.2568 21.0628~2! 23.854 8~7!

74 20.8151 20.0152 20.2410 21.0712~2! 24.590 1~9!

80 20.8313 20.0408 20.2230 21.0951~2! 25.928 9~11!

83 20.8437 20.0525 20.2162 21.1124~2! 26.725 6~12!

90 20.8848 20.0782 20.2046 21.1676~2! 29.000 9~15!

92 20.9002 20.0853 20.2023 21.1878~2! 29.780 0~17!

100 20.9819 20.1143 20.1967 21.2929~2! 213.671 7~21!
on
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There is not yet any QED calculation of the two-phot
exchange diagrams for the transition considered here. T
we employ results of many-body calculations@3–7# to obtain
an approximation to the correction due to exchange by
or more photons. This correction is listed in Table IV in t
sixth column. We found that results of different many-bo
calculations are in a good agreement with each other; t
we use mainly the extensive tabulation of Kimet al. @3#.

The error estimates assigned to the results of many-b
calculations originate predominantly from their incomple
treatment of the two-photon exchange correction. Only
small Z we include into the uncertainty also a discrepan
between different calculations. We would like to stress t
us

o

s,

dy

r
y
t

there is no well-defined way to estimate a QED contribut
to the two-photon exchange, which is omitted in many-bo
calculations. The second-order Breit-interaction contributi
which arises in many-body calculations, cannot be used f
meaningful error estimation since it contributes only in t
ordera2(aZ)4 while the leading order of QED correction i
known to bea2(aZ)3. The uncertainty given in the tabl
should be considered to give only an order of magnitude
the QED correction.

The two-electron self-energy correction is calculated
this paper and the two-electron vacuum-polarization con
bution is taken from Ref.@11#. The nuclear recoil correction
was calculated by Artemyevet al. @31#, the nuclear polariza-
al
TABLE IV. Various contributions to the 2p1/2-2s transition energy in Li-like ions~in eV!.

One-electron Two-electron
Extended One-photon Vacuum >Two-photon Vacuum Nuclear Nuclear

Z nucleus exchange Self-energy polarization exchange Self-energy polarization recoil polarization Tot

18 20.001 35.570 20.168 0.011 23.564~3! 0.028 20.002 20.009 31.865~3!

20 20.002 39.769 20.242 0.016 23.604~3! 0.036 20.002 20.012 35.960~3!

28 20.010 57.455 20.779 0.062 23.841~5! 0.084 20.006 20.015 52.950~5!

30 20.014 62.147 20.989 0.082 23.919~6! 0.100 20.008 20.016 57.383~6!

32 20.021 66.967 21.237 0.107 24.004~8! 0.117 20.010 20.016 61.904~8!

40 20.07 87.76 22.68 0.27 24.42~2! 0.20 20.02 20.02 81.03~2!

47 20.18 108.43 24.69 0.52 24.90~3! 0.30 20.03 20.02 99.43~3!

50 20.27 118.17 25.83 0.68 25.15~3! 0.35 20.04 20.03 107.90~3!

54 20.44~1! 132.11 27.64 0.95 25.51~4! 0.43 20.05 20.03 119.82~4!

60 20.89~2! 155.44 211.11 1.52 26.15~6! 0.56 20.07 20.03 139.26~6!

66 21.87~3! 182.31 215.68 2.36 26.94~10! 0.71 20.11 20.03 160.75~10!

70 22.92~5! 202.61 219.45 3.12 27.56~13! 0.82 20.13 20.04 176.46~14!

74 24.49~8! 225.21 223.92 4.09 28.27~20! 0.94 20.16 20.04 193.35~22!

80 28.59~14! 264.30~1! 232.16 6.07 29.55~20! 1.13 20.21 20.05 220.95~24!

83 211.94~7! 286.68 237.08 7.36 210.30~30! 1.23 20.25 20.05 235.65~31!

90 226.63~5! 348.29 251.11 11.43 212.44~40! 1.46 20.33 20.07 0.02 270.64~40!

92 233.35~6! 368.83 255.87 12.94 213.20~40! 1.52 20.36 20.07 0.03 280.49~40!
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TABLE V. Comparision between various theoretical calculations and experimental results for the 2p1/2-2s transition energy in Li-like
ions ~in eV!.

Z This paper
Blundell
~Ref. @4#!

Chenet al.
~Ref. @7#!

Perssonet al.
~Ref. @36#! Expt. Reference

18 31.865~3! 31.868~1! 31.866~1! Edlén, Ref. @37#

20 35.960~3! 35.964~1! 35.963 35.962~2! Sugar and Corliss, Ref.@38#

28 52.950~5! 52.950~2! Hinnov and Denne, Ref.@39#

52.950~1! Sugaret al., Ref. @40#

52.947~4! Staudeet al., Ref. @41#

30 57.383~6! 57.389~2! 57.384~3! Staudeet al., Ref. @41#

32 61.904~8! 61.911~2! 61.907 61.902~4! Hinnov and Denne, Ref.@39#

61.901~2! Knize, Ref.@42#

40 81.03~2! 81.04
47 99.43~3! 99.438~7! Bosselmannet al., Ref. @43#

50 107.90~3! 107.92~1!

54 119.82~4! 119.84~1! 119.82 119.97~10! Martin et al., Ref. @44#

119.820~8! Bosselmann, Ref.@45#

60 139.26~6! 139.29~1!

70 176.46~14! 176.56~2!

80 220.95~24! 220.99~3!

90 270.64~40! 270.72~5! 270.80
92 280.49~40! 280.83~10! 280.74 280.59~15! 280.59~9! Schweppeet al., Ref. @1#
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tion correction for thorium and uranium was calculated
Plunien and Soff@32# and by Nefiodovet al. @33#.

The second-order one-electron QED corrections are
yet completely calculated and, therefore, they are not
cluded in the table. The present status of these calculat
can be found in Ref.@34#. The calculation of the two-loop
self-energy correction, which may yield a dominanta2 one-
electron contribution, is still in progress@35#. We expect the
whole second-order one-electron QED contribution to yiel
few tenths of eV for uranium.

In Table V the comparison of the present calculatio
with previous theoretical and experimental results is giv
One can see that the experimental accuracy obtained fo
like ions in a wide range ofZ is high enough to test QED
contributions beyond the lowest-order Lamb shift. T
achieve the level of the experimental accuracy in theoret
predictions for very highZ, rigorous calculations of the two
photon exchange diagrams and the two-loop one-elec
self-energy are needed. The first correction is likely to
calculated in the near future@46#. After calculations of all
QED corrections of ordera2 are finished, the accuracy of th
theoretical predictions will be limited mainly by the unce
tainty of the effect of the extended nuclear charge distri
tion. In the case of uranium, this uncertainty is slightly le
than the experimental error, if the currently accepted valu
the rms radius@^r 2&1/255.860(2) fm@28## is used. How-
ever, a one percent deviation of the rms radius alters the
Lamb shift value by 0.5 eV.
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APPENDIX A: FREE-VERTEX OPERATOR

The free-electron vertex operator in the Feynman ga
reads

Gm~p,p8!524p iaE d4k

~2p!4

1

k2 gs

3
p”2k”1m

~p2k!22m2 gm
p”82k”1m

~p82k!22m2 gs. ~A1!

We separate the ultraviolet divergence inGm~p,p8! using di-
mensional regularization withD5422e:

Gm~p,p8!5
a

4p
Deg

m1GR
m~p,p8!, ~A2!

whereDe51/e2gE1 ln 4p2ln m2.
When considering the free-vertex correction, one has

evaluate the expressionc̄a(p)GR
m(p,p8)u

p805eb

p05ea
cb(p8). To per-

form the angular integration, it is convenient to write th
expression in the form@GR

m5(GR
0,GR)#:

c̄a~p!GR
0~p,p8!cb~p8!

5
a

4p
i l a2 l b$F1

abxkama

† ~ p̂!xkbmb
~ p̂8!

1F2
abx2kama

† ~ p̂!x2kbmb
~ p̂8!%, ~A3!
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c̄a~p!GR~p,p8!cb~p8!

5
a

4p
i l a2 l b$R1

abxkama

† ~ p̂!sx2kbmb
~ p̂8!

1R2
abx2kama

† ~ p̂!sxkbmb
~ p̂8!

1~R3
abp1R4

abp8!xkama

† ~ p̂!xkbmb
~ p̂8!

1~R5
abp1R6

abp8!x2kama

† ~ p̂!x2kbmb
~ p̂8!%, ~A4!

where

F1
ab~p,p8,j!5Ag̃ag̃b81~B1ea1B2eb!~eag̃a1p f̃a!g̃b8

1~C1ea1C2eb!g̃a~ebg̃b81p8 f̃ b8!

1D~eag̃a1p f̃a!~ebg̃b81p8 f̃ b8!

1~H1ea1H2eb!g̃ag̃b8 , ~A5!

F2
ab~p,p8,j!5A f̃af̃ b81~B1ea1B2eb!~eaf̃ a1pg̃a! f̃ b8

1~C1ea1C2eb! f̃ a~ebf̃ b81p8g̃b8!

1D~eaf̃ a1pg̃a!~ebf̃ b81p8g̃b8!

2~H1ea1H2eb! f̃ a f̃ b8 , ~A6!

R1
ab~p,p8,j!5Ag̃af̃ b82D~eag̃a1p f̃a!~ebf̃ b81p8g̃b8!,

~A7!

R2
ab~p,p8,j!5A f̃ag̃b82D~eaf̃ a1pg̃a!~ebg̃b81p8 f̃ b8!,

~A8!

R3
ab~p,p8,j!5B1~eag̃a1p f̃a!g̃b81C1g̃a~ebg̃b81p8 f̃ b8!

1H1g̃ag̃b8 , ~A9!

R4
ab~p,p8,j!5B2~eag̃a1p f̃a!g̃b81C2g̃a~ebg̃b81p8 f̃ b8!

1H2g̃ag̃b8 , ~A10!

R5
ab~p,p8,j!5B1~eaf̃ a1pg̃a! f̃ b81C1 f̃ a~ebf̃ b81p8g̃b8!

2H1 f̃ a f̃ b8 , ~A11!

R6
ab~p,p8,j!5B2~eaf̃ a1pg̃a! f̃ b81C2 f̃ a~ebf̃ b81p8g̃b8!

2H2 f̃ a f̃ b8 , ~A12!
where p5(ea ,p), p85(eb ,p8), p5upu, p85up8u, j

5p̂•p̂8, l n5ukn1 1
2 u2 1

2 , andg̃ and f̃ denote the component
of the wave function in momentum representationg̃n

5g̃n(p), f̃ n5 f̃ n(p), g̃n85g̃n(p8), f̃ n85 f̃ n(p8). The functions
A, B1,2, C1,2, D, andH1,2 are defined in Appendix B of Ref
@14#. @We note that in Ref.@14# the free-vertex operator is
defined in the formGm~p8,p!. Thus p andp8 have to be
interchanged in the expressions therein.#

APPENDIX B: VECTOR AND BIPOLAR
SPHERICAL HARMONICS

In this section we collect some basic formulas for t
evaluation of angular integrals in coordinate and moment
space.

The evaluation of corrections with the scalar part of t
photon propagator leads to the basic angular integrals
can be easily calculated to be

E dẑ xkbmb

† ~ ẑ!YLM~ ẑ!xkama
~ ẑ!5sLM

ba CL~kb ,ka!,

~B1!

where

sLM
ba 5S 2L11

4p D 1/2

~21! j b2mbS j b

2mb

L
M

j a

ma
D . ~B2!

The coefficientsCL(kb ,kb) are defined by Eq.~C10!.
When considering corrections with the vector part of t

photon propagator, one encounters the expression

xkbmb

† ~ ẑ!sxkama
~ ẑ!. ~B3!

To perform the angular integration, we expand this expr
sion in terms of vector spherical harmonics@19#:

xkbmb

† ~ ẑ!sxkama
~ ẑ!5 (

JLM
sJM

ab SJL~kb ,ka!YJLM~ ẑ!,

~B4!

where the coefficientsSJL(kb ,kb) are defined by Eqs.~C7!–
~C9!. Vector spherical harmonicsYJLM( ẑ) are defined in the
following way:

YJLM~ ẑ!5(
mq

CLm,1q
JM YLm~ ẑ!eq , ~B5!

where eq are the spherical coordinates of the unit vect
Vector spherical harmonics obey the orthogonality condit

E dẑYJLM
† ~ ẑ!YJ8L8M8~ ẑ!5dJJ8dLL8dMM8 . ~B6!

For the evaluation of the exchange part of the free-ver
correction, we use bipolar spherical harmonics defined
@47#
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Yl 1l 2
JM ~ ẑ1 ,ẑ2!5 (

m1m2

Cl 1m1 ,l 2m2

JM Yl 1m1
~ ẑ1!Yl 2m2

~ ẑ2!.

~B7!

For the important special caseJ50 a bipolar harmonic is
reduced to

Yl 1l 2
00 ~ ẑ1 ,ẑ2!5d l 1l 2

~21! l 1
A2l 111

4p
Pl 1

~j!, ~B8!
n
s

where j5 ẑ1• ẑ2 . Bipolar spherical harmonics obey the o
thogonality condition

E dẑ1 dẑ2 Yl 1l 2
JM†

~ ẑ1 ,ẑ2!Yl
18 l

28
J8M8~ ẑ1 ,ẑ2!5dJJ8dMM8d l 1l

18
d l 2l

28
.

~B9!

A useful expansion of a product of two bipolar spheric
harmonics reads@47#
Yl
18 l

28
L8M8~ ẑ1 ,ẑ2!Yl

19 l
29

L9M9~ ẑ1 ,ẑ2!5(
LM

CL8M8,L9M9
LM (

l 1l 2
B

l
18 l

28L8,l
19 l

29L9

l 1l 2L
Yl 1l 2

LM ~ ẑ1 ,ẑ2!, ~B10!

where

B
l
18 l

28L8,l
19 l

29L9

l 1l 2L
5S ~2l 1811!~2l 2811!~2l 1911!~2l 2911!~2L811!~2L911!

~4p!2 D 1/2

C
l
180,l

190

l 10
C

l
280,l

290

l 20 H l 18

l 28

L8

l 19

l 29

L9

l 1

l 2

L
J ~B11!
nts
and $¯% denotes a 9j symbol. The spherical harmonics ca
be expanded into a series of bipolar spherical harmonic
@47#

YLM~ ẑ!5 (
l 1 ,l 250
l 11 l 25L

L

cl 1l 2
L Yl 1l 2

LM ~ ẑ1 ,ẑ2!, ~B12!

wherez5z12z2 and

cl 1l 2
L 5S 4p~2L11!!

~2l 111!! ~2l 211!! D
1/2z1

l 1z2
l 2

zL . ~B13!

APPENDIX C: RADIAL INTEGRAL RJ„v,abcd…

The evaluation of the radial integralRJ(v,abcd) defined
by Eq. ~85! can be found in@19#. For our purposes it is
convenient to write it in the form

RJ~v,abcd!

5~2J11!E
0

`

x2
2 dx2 x1

2 dx1

3H ~21!JCJ~ka ,kc!CJ~kb ,kd!

3gJ~v,x, ,x.!Wac~x1!Wbd~x2!

2(
L

~21!LgL~v,x, ,x.!Xac~x1!Xbd~x2!J , ~C1!

Wab~x!5ga~x!gb~x!1 f a~x! f b~x!, ~C2!
as
Xab~x!5ga~x! f b~x!SJL~2kb ,ka!

2 f a~x!gb~x!SJL~kb ,2ka!, ~C3!

wheregn , f n are the upper and the lower radial compone
of the Dirac wave function, respectively,x.5max(x1,x2),
x,5min(x1,x2). The functiongl(v,x, ,x.) is the radial part
of the partial wave expansion of the photon propagator,

eivux12u

ux12u
5(

l
~2l 11!gl~v,x,x.!Pl~j!, ~C4!

gl~0,x,x.!5
1

2l 11

x,
l

x.
l 11 , ~C5!

gl~v,x,x.!5 iv j l~vx,!hl
~1!~vx.!, ~C6!

where Pl(z) is the Legendre polynomial andj l(z),hl
(1)(z)

are the spherical Bessel functions,j5 x̂1• x̂2 .
The angular coefficientsSJL(ka ,kb) differ from zero only

for L5J, J61 and can be written forJÞ0 as

SJJ11~ka ,kb!5S J11

2J11D 1/2S 11
ka1kb

J11 DCj~2kb ,ka!,

~C7!

SJJ~ka ,kb!5
ka2kb

AJ~J11!
CJ~kb ,ka!, ~C8!
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SJJ21~ka ,kb!5S J

2J11D 1/2S 211
ka1kb

J D CJ~2kb ,ka!.

~C9!

In the caseJ50 there is only one nonvanishing coefficie
S01(ka ,kb)5C0(2kb ,ka).

The coefficientsCJ(kb ,ka) are given by
B.
R.

ez

s

S

in

s.

re

,

ff,

,

n

.

.

-

l-
a

cl
CJ~kb ,ka!5~21! j b11/2A~2 j a11!~2 j b11!

3S j a
1
2

J
0

j b

2 1
2
DP~ l a ,l b ,J!, ~C10!

where the symbolP( l a ,l b ,J) is unity if l a1 l b1J is even,
and zero otherwise.
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