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The problem of how many entangled or, respectively, separable states there are in the set of all quantum
states is investigated. We study to what extent the choice of a measure in the space of density gnatrices
describingN-dimensional quantum systems affects the results obtained. We demonstrate that the link between
the purity of the mixed states and the probability of entanglement is not sensitive to the measure chosen. Since
the criterion of partial transposition is not sufficient to distinguish all separable statis=f8r we develop an
efficient algorithm to calculate numerically the entanglement of formation of a given mixed quantum state,
which allows us to compute the volume of separable stateNl fo8 and to estimate the volume of the bound
entangled states in this ca$81050-294®9)05110-0

PACS numbd(s): 03.67—a, 42.50.Dv, 89.76:c

[. INTRODUCTION unitary matricesU(N). Based on the partial transposition
criterion[2,3], we found that under this measure the volume
Entangled statefiave been known almost from the very of the set of separable states is positive and decreases with
beginning of quantum mechanics and their somewhat unthe system siz&l [1]. Some more general analytical bounds
usual features have been investigated for many years. Howvere also provided by Vidal and Tarragd]. Recently,
ever, recent developments in the theory of quantum informaSlater suggested estimating the same quantity using some
tion and quantum computing have caused a rapid increase fther measures in the space of the density matiibed].
the interest in the study of their properties and possible apOne may thus expect that the volume of the separable states
plications. To illustrate this trend let us quote some data fronflepends on the measure chosen. We show that this is indeed
the Los Alamos quantum physics archives. In 1994 only ondhe case. In this work we investigate which statistical prop-

paper posted in these archives contained the key word worfrties describing the set of the entangled states may be uni-
tangled” (or entanglementin the title, while two such pa- versal; e.g., which do not depend on the measure used. In

pers were posted in 1995. Since then the number of Suc;aarticular, we demonstrate that the relation between the pu-

papers has increased dramatically, and was equal to 8, 3% U2 MIEZT SES B 08 BEACUN 24 CRRCAEID O
and 70 in the consecutive years 1996, 1997, and 1998, y '

. "Eal results we conjecture that the volume of the separable
spectively.

We d dare fi f . h d states decreases exponentially with the systemNize
e do not dare fit some fast growing curves to these data g, N—4 andN=6 a density matrix is separable if and

nor speculate when such an increase will eventually saturatgnly if its partial transpose is positii@]. For N>6, how-
On the other hand, since so many authors have dealt wityer there exist states that are not separable and that do
entangled states, it is legitimate to ask whether such stategyisfy this criterior{7]. These states cannot be distilled into
are “typical” in quantum theory or if they are rather rare and the singlet form and are calleound entangled states
unusual. Vaguely speaking, we shall be interested in the relag—11]. Since there are no explicit conditions allowing one
tive likelihood of encountering an entangled stité One  to distinguish between separable and bound entangled states,
may also ask a complementary question concerning the set @ Ref. [1] only the upper bound for the volume of separable
separablestates, that can be represented as a sum of produstates has been considered§br 6. In this paper we present
states. an efficient numerical method of computing tkatangle-
Consider a quantum system described by the density manent of formation E12] for any density matrix. This method
trix p that represents a mixture of the pure states of theillows us to estimate the volume of bound entangled states,
N-dimensional Hilbert space. Let us assume that the systemy taking a reasonably small cutoff entanglemént and
consists of two subsystems, of dimensignandng, where  counting these states, satisfying the partial transposition cri-
N=nang. To formulate the basic question,\What is the terion for whichE>E.. Our numerical results are to a large
probability of finding an entangled state of size,N@ne  extent independent of the exact valueEy.

needs to: The paper is organized as follows. In Sec. Il we review
(i) Define the probability measure, according to which  the necessary definitions and study how the upper bound of
the random density matricgsare drawn. the volume of the separable states depends on the system
(i) Find an efficient technique, which would allow one to size and the measure used. The subsequent section is devoted
judge whether a given mixed stapeis entangled. to an analysis of the simplest cade=4, for which the

Representing any density matrix in the diagonal fgsm bound entangled states do not exist. In this case the analyti-
=UdU" we proposed1] to use a product measuge=A;  cal formula for the entanglement of formation is known
X v, whereA ; describes the uniform measure on the simplex 13,14 and we study how this quantity changes with the
>N .d;=1 andv stands for the Haar measure in the space opurity of the mixed states. In Sec. IV we study the chse
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=8 and estimate the volume of the free entangled statesyhereA>0 is a free parameter art@, stands for a normal-
bound entangled states, and separable states. The papelizagtion constant. The last component is determined by the
concluded by Sec. V, containing a list of open questions. Irtrace conditiondy=1—d;—---—dy_4. The uniform mea-
Appendix A we prove the rotational invariance of the two sure A; corresponds to.=1. Slater distinguishes also the
distinguished measures\, and A,, defined on the case\=1/2, which is related to the Fisher information met-
(N—1)-dimensional simplex, and demonstrate the link to theric [15], the Mahalonobis distandé 6], and Jeffreys’ prior
ensembles of random matrices. The algorithm of computinglistancg 17], and was used for many years in different con-
the entanglement of formation for a given density matrix istexts[18—20. Since this measure is induced by squared el-
presented in Appendix B. ements of a columifa row) of a randomorthogonalmatrix
(see Appendix A we shall refer to

II. VOLUME OF STATES WITH POSITIVE PARTIAL
TRANSPOSITION Woi=Aq X vy (5)

A. Product measures in the space of mixed density matrices as to the orthogonal product measure in the space of the

To discuss the probability of a mixed quantum state posmixed quantum states. Therefore, both measures may be di-
sessing a given property, one needs to define a probabilitsectly linked to the well-known Gaussian unitafgrthogo-
measureu in the space of density matricebl K N positive  nal) ensembles of random matricgil], referred to as GUE
Hermitian matrices with trace equal to unitfgach density (GOE). The measureu, is determined by squared compo-
matrix can be diagonalized by a unitary rotation. Bebe a  nents of an eigenvector of a GUE matrix, while the measure

diagonal unitary matrix. Since Mo May be defined by components of an eigenvector of GOE
matriceg22]. Some properties of the orthogonal measuge
p=UdU'=UBdBU" 1) have recently been studied [23]. Let us stress that the

name of the product measuferthogonal or unitaryis re-

the rotation matrixJ is determined up tdN arbitrary phases latéd to the distributiod on the simplexd, while the ran-
enteringB. The total number of independent variables useddom rotationsU are always assumed to be distributed ac-
to parametrize in this way any density matyixis equal to ~ cording to the Haar measusg in U(N). _
N2—1. Since the literature seemed not to distinguish any It is interesting to consider the limiting cases of the dis-

natural measure in this space, we approached the problem fPution (4). For A—0 one obtains a singular distribution
defining a product measufa] concentrated on the pure states ofy, while in the oppo-

site limit A—oo, the distribution peaks on the maximally

mixed statep, described by the vectat={1/N, ... IN}.
Hu=A1X vy (2)  Changing the continuous parameterone can thus control
the average purity of the generated mixed states.
The measurer is defined in the space of unitary matrices
U(N), while A is defined in the {l—1)-dimensional sim- B. Separable states
plex determined by the trace conditi®]’ ,d;=1. In Ref.

N hile th . : . ; . .
[1] we took for v the Haar measure ob/(N), while the density matrix p in the N-dimensional Hilbert spacé{

uniform measured; was used on the simplex. Our choice — : : :
was motivated by the fact that both component measures ar_eHdA®tHB' Thftﬂlmg_nsmn _Of the fsgs:ﬁm 'i’) eql:al to tlrf]?h
rotationally invariant. For this follows directly from the producinang of the dimensions of both subsystems. €

definition of the Haar measure, while in Appendix A we Statep ™ can be expressed gs=pa®pg, With pacH,

prove that the uniform measung corresponds to taking, for and pge ?"B’ It is _called thep_roduct state (or factorizable
the vectord; , the squared moduli of complex elements of aStat9. This occurs if and only ip= Trgp® Trap, where Tk

column or a row(say, the first columnof an auxiliary ran- and Tg denote the operations _of_partial tracing. In_ other
dom unitary matrixV/ drawn with respect tory words, for such states the description of the composite state

is equivalent to the description in both subsystems.
A given quantum state is calledseparableif it can be
di=|Vii|% (3)  represented by a sum of product std24]

Consider a composite quantum system described by the

Hereafter we will thus refer to the measure defined by(Bq. k B

as the unitary product measuts, . Q=E PiCAI® OB, (6)
As correctly pointed out by Slatdi5,6], our choice of =1

measure is by far not the only possible one. He discussed

several possible measures, and proposed picking the meas

on the N—1)D simplex from a certain family of Dirichlet

distributions,

Qere 0, and gg; are the states ofi{g and Hg, respec-
ively. The smallest numbét of product states used in the
above decomposition is called tloardinality of the sepa-
rable statep [25].
In general, no explicit necessary and sufficient conditions
_ A1 A1 are known for a mixed state to be separable. However, Peres
A)\(dl7 . =del) C)\dl . 'del e .
found a necessary condition showing that each separable
X(1—d;—---—dy_p) Y, (4 state has the positive partial transpp8¢ Later Horodeccy
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0 TABLE I. Probability P of finding a mixed state of sizd with
ln(PT? ; \Q positive partial transpose and the mean negatiitifyfor two prod-
uct measures orthogonal, and unitaryu,. For N=4 andN=6
2 ‘\z\ one hasP=Pg.
: % Nomone (P, (Da, (PO, (D,
* ‘°\‘ 4 2 2 0.632 0.057 0.352 0.142
-5 RN 6 2 3 0.384  0.076 0.122 0.182
6 it 8 2 4 0.229 0.082 0.042 0.204
4 8 12 18 20 2y 9 3 3 0.166  0.094 0022  0.238
. - . . . 10 2 5 0.134 0.097 0.013 0.217
FIG. 1. Probablllt_yPT of f|nd|_ng a ;tate with positive partial 12 2 6 0.079 0.098 00043  0.226
transpose as a function of the dimension of the probifor the
12 3 4 0.071 0.098 0.0039 0.266

unitary product measuréopen symbols and for the orthogonal
product measuréfull symbolg. For N<86, it is equal to the prob-
ability Pg of finding a separable state, while fbi>6 it gives an
upper bound for this quantity. Different symbols distinguish differ- bound for the volume of separable states. In fé&t=Ps

ent sizes of one subsystem;=2 (¢ ), 3 (A), and 4 (). +Pg, where the volumePy of the entangled states with

positive partial transpose is studied in Sec. IV.

demonstrated that fdd=4 andN=6 this is also a sufficient ~ The symbols are labeled according to the size of the first
condition[3]. To represent any stafeit is convenient to use Subsystenm, . For both measures the symbols seem to lie on
an arbitrary orthonormal product basifej)@le)), j  one curve, which would imply thaPr(na,ng)=P(ns

=1,...1n4, I=1,... ng; and to define the matrig; ;| Xng). However, this relation is only approximate, since
=(ej|®(elple/)@|e/). The operation opartial transposi- ~ P1(2X6)#P1(3x4), as pointed out by Smolif26] . Nu-
tion is then defined2] as merical results forPt and(t) for N<12 are collected in
Table I. The difference betwed?(2X6) andP(3X4) is
T, not large, and was smaller than the statistical error of the
G i =eimin. (7 results reported ifl]. Therefore it is reasonable to neglect

for a while these subtle effects, depending on the way the
Even though the matriy'2 depends on the particular base N-dimensional system is composed, and to ask, how, in a
used, its eigenvaluggl;=d;=, ... ,=d|} do not. The ma- first approximationP changes with\.
trix p'2 is positive if and only if all eigenvalued; are not Figure 1, produced in a semilogarithmical scale, shows
negative. The practical application of the partial transposéhat for both measures the probabilRy decreases exponen-
criterion is thus straightforward: for a given state one tially with the system sizé\l. Obtained numerical results al-
computesp "2, diagonalizes it, and checks the signs of alllow us to conjecture that ligy.,..Pt(N)=0 for any(nonsin-
eigenvalues. To characterize quantitatively the violation ofgulan probability measure used. We observe different slopes
positivity we introduced1] the negativity of both lines received for different probability measures. The
best fit givesPr,~1.8e”%2® for the unitary product mea-
N sure u, and Pr,~3.0e” %5 for the orthogonal product
t==2 d/|—1, ®) measureu,. The erendence of the probabiliB; on the o
=3 chosen measure is due to the fact that each measure distin-

guishes states of a different purity. This issue is discussed in
which is equal to zero for all of the states with positive detail in the following sections.
partial transpose.

Il. 2 x2 CASE: POSITIVE PARTIAL TRANSPOSE
C. Relative volume in the space of the density matrices ASSURES SEPARABILITY

In Ref.[1] we presented several analytical lower and up- A. Purity versus separability
per bounds for the volume of separable states. They were For theN=4 th tial t iterion i ffi-
obtained assuming the unitary product measure, but the same or the case e partial ranspose crterion Is sul
reasoning can be repeated for other measures. The key res jent to assure the separabilfg], soPp=0 ar_ld Ps=Pr.
an analytical proof that the volume of separable states i et us investigate hpw the_proba_blhty of drawing aseparable
positive and less than 1 is obviously valid for any nonsingu-State changes with its purity, which may be characterized by
lar measure. the von Neumann entr'opyll'(g)z - Tr(o In ). Another

To analyze the influence of the measure chosen for thguantiy, called the participation ratio
volume of separable statd3; we picked several random
density matricegca. 16) distributed according to the or-
thogonal and unitary product measures, and verified that R(e)= P
their partial transpos€7) was positive. The results are dis- Tr(e?)
played in Fig. 1 as a function of the system skteNote that
for N>6 we obtained in this way the voluntfe; of states is often more convenient for calculations. It varies from

with positive partial transposition, which gives an upperunity (for pure statesto N (for the totally mixed state,

: 9
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s FIG. 3. Sketch of the set of mixed quantum statesNfer4. The
.,5" gray color represents the separable states.
0.0 baseass®®” ;
1 2 3R 4 . :
mixed states are separable. This fact has already been proved

FIG. 2. Purity and separability inN(=4)-dimensional Hilbert in [1], but see als¢28] for complementary, constructive re-

space. Open symbols represent averaging over the orthogonal pro'ﬁmts- ] )
uct measurex, , while closed symbols are obtained with the unitary ~ The above considerations allow us to sketch the set of

measureu,; () probability distributionsP(R); (b) conditional ~ €ntangled states in the calke=4. In analogy to the Bloch
probability of finding a separable state as a function of the particisphere, corresponding =2, we take the liberty to depict
pation ratioR. All states beyond the dashed vertical line placed atthe set of all quantum states by a ball. Since it is hardly
R=N-1=3 are separable. possible to draw a picture precisely representing the complex
structure of the 15-dimensional space of the density matrices,
proportional to the identity matrik) and may be interpreted Fig. 3 should be treated cautiously. In particular, the struc-
as an effective number of states in the mixture. This quantityure of the set of density matrices is not as simple, and there
gives a lower bound for the rankof the matrixp, namely,  exist several points inside the ball that do not correspond to
r=R. Moreover, it is related to the von Neumann—Renyidensity matrices. Furthermore, the six-dimensional space of
entropy of order 2H,(¢)= InR(g). The latter, also called the pure states possesses the structure of the complex projec-
the purity of the state; together with other quantum Renyitive spaceCP?, which is much more complicated than a
entropies, hypersphere. In the sense of the Hilbert—Schmidt metric
(Ans(p1.p2) =T (p1— p2)?]) the set of pure states forms
1 IS\ . . .
Hq(@)=——=In[Tr 9] (10 a S|x—d|men3|onal subset of the 14—d|men§|onal_hypers_phere
1-q of a radius\/3/2 centered ap, =1/4. Keeping this fact in
mind, we represent this manifold by a circle in our oversim-
is used, forg# 1, as a measure of how much a given state iglified two-dimensional sketch.

mixed (see, e.g.[27]). Subspaces of a constaRtbelong to The set of separable states is visualized in Fig. 3 as the
hypersheres centered @ of the radiusy1/R—1/N. “needle of a compass:” it is convex, has a positive measure,

Figure 2 presents the probability distributioR¢R) for  and includes the vicinity of the maximally mixed statg.
N=4 density matrices generated according to both produdvoreover, it touches the manifold of pure statpare sepa-
measures. As discussed before, the orthogonal measlisee  rable states do existbut the measure of this common set is
concentrated at the less mixed statewver values oR) than  equal to zero. The more mixed the stétcalized closer to
the unitary measurg,,. For example, the mean value aver- the center of the “ball’), the larger the probability of en-
aged over the orthogonal product meas(iRy,~2.184 is  countering a separable state. All states Witk 3 are sepa-
much smaller than the corresponding mean with respect teble; this hypershers** of the radius 1/2/3 is represented
the unitary measuréR),~2.653. Observe a nonsmooth be- by a smaller circle.
havior of both distributions aR=3 (R=2), for which the
manifolds of a constarR start to touch the face@dge$ of
the three-dimensiondBD) simplex formed byd,, d,, and B. Entanglement of formation

ds. o ) . After discussing the problem of how the probability of

Although the distributionsP(R) differ considerably for  encountering a separable state changes with the degree of
both measures, the conditional probability of encounterlngﬂixing R, we may discuss a related issue: how the average
the separable stafg(R) is almost measure independent, asihe entanglement depends BnFor this purpose we need a
shown in Fig. 20). This is the main result of this section: the 4 antitative measure of the entanglement of a given mixed
different results obtained for the probabil®g of using vari-  state. Several such quantities have recently been proposed
ous product measures, are due to the different weights ang analyzed12,29-39, and none of them can be consid-
attributed to the mixed states. Since the average mixturgreq as the unique, canonical measure. However, the quantity
(R), grows monotonically with the parameter(from 1 for  cajled entanglement of formatiofil2] plays an important
A—0 to 4 forA—), the probabilityPg also increases with role, due to a simple interpretation: it gives the minimal
this parameter from zero to unity. Note that for both curvesamount of entanglement necessary to create a given density
the probability P achieves unity aR=3: all sufficiently = matrix.
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For a pure statéy), one defines the von Neuman entropy 5

of the reduced state, P(E) n 2)
3 I
E(#)=—Trpalnpa=—Trpglnpg, (11 ||
. . 2 Ill Wﬁmm**wﬂw
wherep, is the partial trace ofiy){ /| over the subsyster, 1 I||||| ",
while pg has the analogous meaning. This quantity vanishes Il||II|||||||........ ............

for a product state. The entanglement of formation of the
mixed statep is then defined12] as

’ <EO b
E(p)=min21 piE(Y), (12) 0415 |
1= o :
o . . iy <> R i
and the minimum is taken over all possible decompositions 0.2 ‘0.0‘0 y |
of the mixed statg into pure states ”w.o,%"ﬂ..; 5
g 1

0'01 ; 3 4
R

k k
= (TP, i=1. 13
P |:21 p.| " '| 21 Pi (13 FIG. 4. The 2<2 system.(a) The distributionsP(E) of the

entanglement of formation obtained for the density matrices gener-
The decomposition g into the smallest possible number of ated according te, (white histogram, open symboland u,, (gray
k pure states, for which this minimum is achieved, will be histogram, closed symbd|sand the rotationally uniform distribu-
called optimal decompositignwhile the numberk will be  tion in the set of pure statgg); (b) average entanglemef(R)
called thecardinality of an entangled state. This definition (squaresand average negativityR) (diamonds for both measures
may be considered as an extension of the concept of the-
cardinality of separable states introduced 25|, since for

any separable stajg; one hasE(pg) =0. is the Shannon entropy of the two-element partitionl
In Appendix B we present an algorithm allowing one to —X}.
perform the minimization crucial to the definitiof12). It Note that in the definition of entropil1) the natural loga-

gives an upper estimate of the entanglement of formation fofithm was usedin contrast to the binary logarithm present in
an arbitrary density matrix of siZé. The algorithm proposed [13]), so the entanglemeri €[0,In2]. Two histograms in
works fine forN of the order of 10 or smaller. In the case of Fig. 4 present the probability distributidd(E) obtained for
two quantum bitgqubits, discussed in this section, an ana- N=4 random density matrices distributed according to both
lytical solution was found by Hill and Woottef483,14), who  product measureg, and u,. The singular peak aE=0,
introduced the concept @oncurrence corresponding to the separable states, is omitted. Large en-
For any 4x4 density matrixp one defines the flipped tanglements of formation are rather unlikely. The mean val-
statep=0p* O, wherep* denotes the complex conjuga- Ues are not large(E),~0.055 and(E),~0.018, since the
tion, and the orthogonal flipping matr@ contains only four ~averages are influenced by a considerable fraction of sepa-
nonzero elements a|0ng the antidiagor@_l;‘: 041: 1 and rable states wittE=0. The probablllty of Obtalnlng a given

0,3=04,= — 1. The concurrenc€(p) is then defined13] value ofE is larger for the orthogonal measure, which favors
purer and more likely entangled states.

Both histograms may be compared with the probability
C(p):=max0,a;—ar— az—as}, (149 distribution P(E) obtained for the ensemble of pure states,

, ) ) ) represented by stars in Fig(aj. This distribution is less
where «;'s are the eigenvalues, in decreasing order, of th&,eaked: vaguely speaking, different degrees of entanglement
Hermitian matrix,/\/pp\/p. Note that this matrix determines are almost equally likely among the pure states. The mini-
mum of probability can be observed for maximally entangled
states E= In2), while the mearE)p,¢~0.328 is close to
E\(In 2)/2. Since the singular distribution concentrated exclu-

the Bures distanc@40] betweenp and p. In other words,
a;'s are the non-negative square roots of the moduli of th

complex eigenvalues of the non-Hermitian maisix. sively on pure states corresponds to the case0 in the
The concurrenc€ of a given statep determines its en-  gistribution (4), we observe that the mean entanglem@t
tanglement of formatiofh13,14, decreases with the increase of the parameters the distri-

butionsA, increasingly favor more mixed states.
1 Although the mean entanglemeiit) strongly depends on
E(p)=h §[1+ V1—C?(p)]), (15 the measure used, the conditional mean entangleEgRri,
averaged over all states of the same degree of miRng
not sensitive to the choice of measure, as demonstrated in
Fig. 4(b). This allows us to formulate a general quantitative
conclusion, valid for nonsingular measures in the space of
h(x):=—xIn(x) = (1—x)In(1-x) (16 density matricesthe larger the average degree of mixing R

where
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t(p)<C(p). (17)

A similar observation was already reported 85], where a
modulus of the negative eigenvalkg of the partially trans-
posed matrix "2 was used. Since fad=4 no more than one
eigenvaluel, is negativg 25], both quantities are equivalent
andt=2Ey. Note that due to the conjectuf&@?) we can
attribute a more specific meaning to negativity. By means of
Eqg. (15 and the fact thah(x) decreases fox>1/2, nega-
tivity t allows us to obtain a lower bound for the entangle-
1 ment of formationE.
Numerical investigations show that the differer@e t is

largest for mixed states witR~2, while it vanishes folR
0.25 =3 andR=1 [see Fig. ®)]. In the former case all states are
separable an€=t=0. The latter case corresponds to pure
states for whicha,= a3=a,=0 [14] and C=a,=—2d,
=t. Thus the inequalityf17) becomes sharp for separable
states or pure states.

D. Mixed states with the same partition ratio R

As demonstrated in Fig.(B), the conditional probability
Ps(R) of encountering a separable state is similar for states
with the same participatio, averaged over both product
measureg., andu, . This does not mean, however, that the

FIG. 5. Ten thousand random density matrices of d$ize4  probability Ps is constant for each family of states

distributed according to the orthogonal product measi@eplot in =UdUT defined by a given vectat with fixed participation
the plane negativity—concurrencés) plot of the differenceC—t ratio R. To illustrate this issue we discuss the c&se2.
versus the participatioR. Consider a vector of eigenvalueswith r nonzero ele-

ments. This natural number €[ 1,4]) is just the rank of the
matrix p. Any statep=UdU" can be expressed by the sum
of r terms,piJ-:E,’:ld,U”Uﬁ. Moreover, the number of
nonzero eigenvalueg; entering the definition of concur-
rence(14) equalsr [14].

Take any vector with =2 nonzero elements. In this case
the formula(14) reduces toC= a;— a,. Since, per defini-

In Ref.[1] we proposed a simple quantitylefined by EQ.  tion, a;>a,, the concurrence is positive unleas=a, .
(8), which characterized, quantitatively, to what extent theSuch degenerate cases occur with probabi”ty Zerg_’ for
positivity of the partial transpose is violated. As shown in diagonal rotation matrice§)), so one arrives at a simple
Fig. 4(b) the conditional averagg(R) does not depend on conclusion: For any setof eigenvalues with<2, the prob-
the measure applied and decreases monotonically Rith ability P5 that a random statgddU" is separable is equal to
This dependence resembles the functie(R), which sug-  zero.
gests a possible link between both quantities. For concreteness consider three vectors of eigenvalues

To analyze such a relation between these measures eharacterized by=2, 3, and 4. We puﬁa={1/2,1/2,0,(}),
entanglement, following the strategy of Eisert and Plenioab:{2/3,1/6,1/6’(}, and aC:{Xl,XZ’XZ,XZ}’ where x, = (1
[35], we generated fOorandom density matrices, comput- . J3)/4 andx,=(1—x,)/3. Each such vector generates an
ing their concurrenc€, entanglemenE=E(C), and nega- ensemble of density matrices=UdU", whereU stands for

]E'V'ty L AS elxpected, Iihe pomt?hatttgetr[])lﬁtver?ltj_st do ntot | a random unitary rotation matrix of the sike=4. Although
orm a singie curve. It means that both quantiies, entangléy hyee ensembles are characterized by the same participa-
ment of formation and negativity, deot generate the same

Y . _ tion ratio R=2, the probabilities of generating a separable
ordering in the space of 44 density matrices. However, ! ! P . g g P

large correlation coefficientsapproximately 0.978 for the state are d|ffer_ent. The casi IS characterized by=2, so
orthogonal measure and 0.967 for the unitary measue Ps=0. Numerical results obtained of a sample Of Tan-
veal a statistical connection between these measures. ~ dom unitary matrices giv®s~0.105 and 0.200 fod, and

It is particularly useful to look at the plane concurrenced., respectively. Thus the probabilitPs grows with the
versus negativity. The data presented in Figp) fare ob- numberr of pure states necessary to construct given mixed
tained with the measure,. We observed, independently of statep, or with the von Neuman entrop;.
the measure used, that all points are localized at or above the On the other hand, the average quantities characterizing
diagonal. This allows us to conjecture that for any densityentanglementnegativity, concurrence, or entanglement of
matrix p the following inequality holds: formation decrease withr, provided the participatiofRr is

the smaller the mean entanglement of formatibnFor R
>3 one ha€(R)=0 [1].

C. Negativity and concurrence
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P(R) 2 B. Entanglement of formation
04 ﬁf‘xﬁ Since forN>4 there exist no analytical methods to com-
S N pute the entanglement of formation of an arbitrary mixed
0.2 e :“ A%% statep, we have relied on numerical computations. To per-
cf ‘%%\‘ form the minimization present in the definitiofl2) we
0.0 > B worked out an algorithm based on a random walk in the
"1 2 3 4 5 6 T8 space of unitary matriced (M) with M=N. It is described
10 in detail in Appendix B. Each run ends with an approximate
4 by | Pr optimal decompositionf the statep and provides ampper
< % 5 estimation of the entanglemeht To verify the accuracy of
kY } this technique we started with the cade=4, in which the
05| * Y ) . .
*‘g% explicit formula (15) is known. Computing numerically en-
“ay f tanglement for 1000 randomly chosBir=4 mixed states we
00 ‘:‘!ﬁ‘ obtained a mean error of the order of TQwhile the maxi-

mal error was smaller than 10.

At the beginning of each computation one has to choose

FIG. 6. Same in Fig. 2 for the:24 system N=8). The circles  the numberM determining the number of pure states in the
in (b) represent the conditional probability of finding a state with decomposition. Since fdd=4 it is known that the cardinal-
positive partial transposé>+(R). Diamonds represent the average ity of any state is not larger than[44,25, it is sufficient to
negativityt(R) obtained with the measurgg, (open symbolsand  look  for the optimal decomposition in the
.y (full symbols. (M=N=k=4)-dimensional space. For larger systems the
problem of finding the maximal possible cardinality is open.
For each randomly generated mixed statin the discussed
2X 4 case, we started to look for the optimal decomposition
with M=N=8, recorded the minimal entanglemdsy,_g,
and repeated computations with=9,10 ... M. It is
known [42,7] that the maximal number of pure states does
not exceed\?, but in practice we analyzel e [N,2N].

The number of degrees of freedom growsM$, so the
process of searching for the optimal decomposition becomes
less efficient with an increase in the numb&rHowever, for
. . _— certain states we found better estimations for entanglement;
For any system size the probability of finding the statese E (p)<E (p). In these rare cases, improvements
with positive partial transpose depends on the measure use 9-.Eum-9lp)=Lwm-slp)- + IMpro
as shown in Fig. 1 and Table I. On the other hand, forldny 0 ‘h? estimations oE Were."eQ’ small, and repeating sev-
the relations between purity and entanglement depend on ral times our procedure W.'ml =8 the same upper bounds
weakly on the kind of product measure used. Figufe) 6 r entanglement of formation were reproduced.

presents the condional proabity B (%) an the mean {005 U €54t 0 o connadict an appeaing corectre
negativityt as a function of the degree of mixirig for the Y y y g

2X4 system. For both quantities the results obtained Witﬁ[hanNZS' Further work is still needed to verify whether this

. o ..conjecture is true.
orthogonal and unitary product measures are difficult to dis Note that the numerical algorithm for searching for the

tinguish. Thus the dependence of the total probabiifyon Pptimal decomposition and the entropy of formation may

the measure used is strongly influenced by the likelihood 94lso be used to look for the generalized entropy of formation
generating highly mixed states, described by the dlstr|but|ortq’ in the analogy to Eq€10) and(12), see[37]. We found

P(R). it interesting to study the quantiy,, which has an interpre-

These distributions foN=8 are shown in Fig. &@. The ) o L ) )
. . : : tation similar to the participation ratig and equals unity for
histogram for the unitary measune, is shifted to larger
the separable states.

values ofR, with respect to the data obtained with the or-
thogonal measure. Quantitatively, the mean values read
(Ry,~4.74>(R),~3.66. It is known thatPt=1 for N>R
—1 [1]. The right histogram, corresponding to the unitary It is known[8] that for N=8 there exist bound entangled
measure, has a larger overlap with this region, which causestates, which cannot be brought into the singlet form. All
(P1)u>(P1)o- entangled states satisfying the partial transposition criterion
This observation is valid for an arbitrary matrix size, sinceare bound entangled ong8,8,10. It was shown in1] that
for large N one has(R(N)),~N/2, while (R(N)),~N/3  they occupy a positive volumég. Therefore, Ps=P+
[41]. For N large enough, the distributionB(R) tend to  — Py is smaller than the volumB+ of the states with posi-
Gaussians. They are centered at mean values, which depetige partial transpose. Strictly speaking, the volufg of
on the measure, while the variana@ is of the order oN/5  entangled states with positive partial transpose should be
for both measures under consideration. Hence, the overlagpnsidered as a lower bound of the volume of bound en-
with the intervall N—1,N] is larger for the measure, char-  tangled states, since it is not proven yet that all states with
acterized by a larger mean val(g),, . negative partial transpose are free entangled.

fixed. For example, the mean entanglemért) equals

0.063, 0.057, and 0.042 for the ensemhdgs dy,, andd,,
respectively. Interestingly, in the latter caga any other
ensemble withd,=d;=d,), one hasw;=a, andC=t.

IV. 2 x4 CASE: POSITIVE PARTIAL TRANSPOSE
DOES NOT ASSURE SEPARABILITY

A. Purity and positive partial transpose

C. Volume of the bound entangled states
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1.0 porasaae oY 7o e compass,” which represents the separable states.
Pr Bound by ¢ N=s Ps It is worth noting that the entanglement of formation for
Buangled Separadle B/ bound entangled states is rather small in comparison to the
‘ Mg mean entanglement of formation for the free entangled
0.5 o states, which violates the partial transposition criterion. The
Free Entangled ',-'-4 average taken over all free entangled state&Eig-~0.05;
o the average taken over all bound entangled statd&jg
~0.0033(which is much larger than the cutoff valde,).
0.0 8-8-8-8-8-8-F s The maximal entanglement found for a bound state was only
1 2 3 4 5 6 7.8 _
R Ey=0.0746.
FIG. 7. Conditional probabilities of finding the separable states V. CLOSING REMARKS
(O), free entangled stateg\(), and bound entangled statds) as
a function of the participation ratiB. Results are obtained with 10 In this work we attempt to characterize the statistical

random density matrices of the sikk=8 distributed according to  properties of the set of separable mixed quantum states. A
the measures, . The lines are drawn to guide the eye. The insetcertain level of caution is always recommended for interpre-
shows the pie chart of the total probability of encountering sepatation of any results of probabilistic calculations, especially
rable states, bound entangled staiesver bound, and free en- jf the space of the outcomes is infinite. Let us mention here
tangled stategupper boungi the famous Bertrand paradox: What is the probability that a
) ) ~randomly chosen chord of a circle is longer than the side of
To estimatePg , we generated fOrandqm density matri-  he equilateral triangle inscribed within the circle? The an-
ces of sizeN=8. We worked with the unitary product mea- qer depends on the construction of the randomly chosen
surep,, since, as shown in Table |, thel states chosen .o 4 \which determines the measure in infinite space of the
according to the orthogonal measyrg very seldom satisfy possible outcomes.
the partial transposition criterion. To save computing time, Asking a question on the probability that a randomly cho-

we estimated 'ghe entg_nglement of formatidronly n the sen mixed state is separable, one should also expect that the
2223 cases with positive partial transpose. Setting an en-

tanglement cutofE, = 0.0003(see Appendix B we found answer will depend on the measure used. This is indeed the

that 473 states enjoyed the entanglenntE, . This gives case, as demonstrated in this work for _two products mea-
a fraction ofPg~4.7% of all states, oPg/Pr=21.3% of sures, and also shown by Slafé for a different measure

the states with positive partial transpose. Although thesé?lated to thengnotone{netrlcs[43]. We rg_ach, therefore, a
numbers are influenced by systematic errébsund en- simple conclusion, which is rather intuitive for an experi-
tangled states witlE<E, are regarded as separable, while mental physicist: the probability of finding an entanglled state
separable states with numerically obtained upper estimatiorfi€Pends on the way the states are prepared, which deter-
of the entanglement larger tha, are considered as en- MINes the measure in space of mixed quantum states.
tangled, the dependence of the results obtained on the cutoff On the other hand, in this paper we provide arguments
valueE, is weak. Moreover, these results do not depend orsupporting the conjecture that some statistical properties of
the exact values of the parameters characterizing the randoﬁgtangled states are universal and to a large extent do not

walk (see Appendix & Consequently, we obtained an esti- 9€Pend(or depend rather weakiyon the measure used. Let
mate of the volume of separable states for this cage, US mention only the exponential decay of the volume of the
=P;—Pg~17.5%, as shown in the inset of Fig. 7 " set of separable states with sikeof the problem or the

important relation between the purity of mixed quantum
states and the probability of finding a separable state.

Studying the simplest cas¢=4, we have shown that for

It is interesting to ask whether a certain degree of mixingan ensemble of pure states the distribution of entanglement
favors the probability of finding the bound entangled statesof formation is rather flat if0,In 2]. The more mixed states,
Grouping all 18 analyzed states in 30 bins according to thethe larger the peak at small values of entanglement and the
participation ratioR, we computed the conditional probabili- larger the probability of finding a separable state. We have
ties of entanglement. These results are shown in Fig. 7. Prolshown that the negativitly a naive measure of entanglement,
ability Pg increases monotonically witR, while the prob-  provides a lower bound for the entanglement of formation.
ability of finding a free entangled state-=1— P+ decays Analyzing a more sophisticated problév+ 8, we devel-
with the participation. On the other hand, the conditionaloped an efficient numerical algorithm to estimate the en-
probability Pg(R) of finding a bound entangled state exhibits tanglement of formation of any mixed state. In this way we
a clear maximum aR~5.5. If the mean purity is concerned, could differentiate between separable states and the bound
the bound entangled states are thus sandwiched between fregtangled states. About 79% bf=8 states satisfying the
entangled state@enerally of high purity and the separable positive transposition criterion are separable. This result is

D. Bound entanglement and purity

states are characterized by a high degree of mixing. obtained for random states generated according to the unitary
The above results suggest that for the bound entangleproduct measure in the spaceldf8 density matrices, but
states there exists a minimal participation rd®i@r a mini-  we expect to get comparable results for other, nonsingular

mal rankr. Preparing a sketch analogous to Fig. 3 for measures. The mean entanglement of formation for the
=8, one should put the bound entangled states close to tHeund entangled states is much smaller than for the free en-
center of the figure, but outside the symbolic “needle of thetangled states. The relative probability of finding a bound
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entangled state for theX24 systems is largest for moderately to establish whether in this case the answer to queskion
mixed systems, characterized by the participation ratio close positive.
to R=5.5. Note added in proofAfter this work was completed Vidal
Even though this paper follows the previous wftk, the ~ proved that the negativity of a mixed state does not grow
list of unresolved problems in this field is still very long. Let Under any local operatiori§2]. Therefore, negativity might
us collect here some of those related to this work, mentionPe considered as a measure of entanglement.
ing also those already discussed in the literature.
(& N=4, (2x 2 systems (i) Check whether the depen- ACKNOWLEDGMENTS
dence of the_ conditional probability on the participation ratio | am very grateful to P. Horodecki and P. Slater for mo-
Ps(R), obtained for two product measurgsee Fig. B)]  yating correspondence, fruitful interaction, and constant in-
holds also for the measures based on the monotonic metriggyest in this work. It is also a pleasure to thank J. Smolin and
[6] or for the product Bures measulré4,43. (ii) Prove the  \y sjomczyski for useful comments, and M. Lewenstein
relation between the concurrence and the negati@t:t.  and A. Sanpera for several valuable remarks and collabora-
(iif) Find maxC—t) as a function of the participation rat®  tjon at the early stages of this project. This work has been
[see Fig. 4b)]. (iv) Check whether the following conjecture supported by Grant No. PO3B 060 013 financed by the Ko-
is true: If R(d;)=R(d,) and H,(d;)=H,(d,), then mitet BadanNaukowych in Warsaw.
P<s(p1)=Pg(p,). The von Neuman entropiyl; and the par-
ticipation ratioR measure the degree of mixing of a given APPENDIX A: ROTATIONALLY INVARIANT PRODUCT

vector d, while Ps denotes the probability that a random MEASURES

state p;=Ud,U" is separable(v) Find isoprobability sur- In this appendix we show that a vector of an

faces in the simplexd;,d,,ds}, such thatPs(d) = const. N-dimensional random orthogon@initary) matrix generates
(b) N=6 (2X3 or 3X2 systems (vi) Find a lower the Dirichlet measurg4) with A\=1/2 (\=1) in the (N

bound for the entanglement of formati@h (in analogy to  —1)D simplex. Although these results seem not to be new,

negativity t, which gives a lower bound fo€ andE in the = we have not found them in the literature in this form, and
caseN=4). (vii) Find an explicit formula foiE in this case. prove them here for the convenience of the reader, starting

(c) N=8 (2x4 or 4x2 systems (viii) Find necessary With the simplest castl=2.
and sufficient conditions for a bound entanglest sepa- ~ Lemma 1Let O be anNXN random orthogonal matrix
rable state (ix) Find the maximal entanglement of formation distributed according to the Haar measure @(N). Then
E of a bound entangled state) Check whether the rank of the vectord;=]0;y[%i=1, ... N is distributed according to
bound entangled states is bounded from below). Check thg _statlstlcal measure on thé&l{ 1)-dimensional simplex
that the cardinality of any state is not larger than 8. (Dirichlet measure with =1/2).

(d) General questiongxii) Check whether all states vio- Proof. Due to the rotauonal invariance of the Haar mea-
lating the partial transpose criterion are free entangted) ~ Sure OMO(N) the vectorO;, is distributed uniformly on the
Can we verify that the opti » . (N—1)-dimensional spherg8"~*. Thus=N ,d;=1.

ptimal decomposition of a given o =1
mixed state into a sum of pure states leading to the entangle- For N=2 the vect.od0i1| IS d!strlbuted uniformly along
ment of formation,E=E;, also gives the minimum of the the quarter of the circle of radius 1. Thereforxes cosg,
generalized entanglement of formati@Q? (xiv) For what where $e[0m/2) and P(¢$)=2/m. Hence P(X)2
N, X Ng composed systems is the cardinaktpf any mixed = P ($)d¢/dx=2/(my1—x%). Another substitutioné=x
state in theN-dimensional Hilbert space less than or equal to9'ves ~_the  required  result:  P(&§)=P(x)dx/d¢
N=NuNg? (xv) Can we determine whether the entanglement™ NmvE(L—¢)]. _ ) o
of formation is additive? To discuss the gener&l-dimensional case, it is conve-

Not all of the above problems are of the same importancer.‘ie”t to introduce the polar angles and to represent any point
We regard the questior(®), (viii), and the last two general belonging to the N—l)DN Slpgere asxy= COSfy—2, p
questions as the most relevant. The preliminary results of Sin 62, wherep?=1—3x?. Uniform distribution of
Slater[46] suggest that the relatioRs(R) for monotonic ~ the points on the sphere is described by the volume element
metrics is similar to that obtained here for the product metricdQ =sin""? 6y_,déy_,- - -sin 6;d6;d¢. Changing the polar
at least forN=4. Concerning problentviii): for separable Vvariables into Cartesian, we obtaif(p)~1/cosby-,
states withN=8, some necessary conditions, stronger tharm1/\1—p2 The last change of variableg:=x? for i
the positive partial transpose, are knojM7,48|, but condi- =1,... N allows us to receive P(&;,....En—1)~
tions sufficient for assuring separability are still most wel-[£1&, ... én-1(1—&1—é— - - —én_1)17 Y2 which gives
come. The problem of the additivity of the entanglement ofthe statistical measur&,,, defined in Eq.(4). [ |
formation is present in the literatursee, e.g.[14]). Per- Geometric interpretation of this result is particularly con-
forming numerical estimations of the entanglement of forma~vincing for N=3. Then the vectoO;, covers uniformly the
tion E for several states of 2Ng systems, we have not sphereS?, while |O;,| is distributed uniformly in the first
found any cases that violate questidmsi) and (xv) [49].  octant. The pointdd,,d,,ds}={&;,&,,&5} lie at the plane
Recent results of Lewenstein, Cirac, and Karf# suggest z=1-—x—y. Their projection into thex-y plane gives the
that the answer to questidriv) is negative for the systems statistical measure on the 2D simplex; i.e., the triangle
3XNg with Ng>3, but they do not contradict that statement{(0,0),(1,0),(0,1).
for the 2x Ng composed systems. Further effort is required Lemma 2Let U be anNX N random unitary matrix dis-
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tributed according to the Haar measure @(N). Then the ¢, = arcsin&(3*2) | where &, are the auxiliary indepen-

vectord;=|U;,|%i=1, ... N is distributed according to the dent random numbers distributed uniformly [i0,1] (see

uniform measure on theN(—1)-dimensional simplexXDi- Ref.[23]).

richlet measure withh=1). In the simplest cas&\=2, the vectord reads|U;,|?
Proof. We will use the Hurwitz parametrization &f(N) :{cosz%l,sinf%l}:{gl,l— &} and the variabled; = ¢; is

[22], based on the anglegy, [0,7/2] with O0<k<I<N distributed uniformly in the intervdl0,1] (one-dimensional
—1. Their distribution can be determined by the relationsimplex. For N=3 one obtains

a:{CO§€012,Sinz<P1200§¢01,Sinzsolzsinz%l}:{l_5%/21 %/2(1_&), %/251}-
which is distributed uniformly in the simple(0,0),(1,0),(0,1).
In the generaN-dimensional case we get

d:{C052§DN72,N711 SirF‘PNszflCOS?(PNf&Nfl! SmZQDNfZ,Nfl Sin2§0N73,N71
XCOSZ‘PN74,N711 ce Sir?(PNfz,Nfl' - Sin2<P1,N7100§<P0,N71, Sinz‘PNszfl' - Sinz‘Pl,Nfl 5in2<P0,N71}-

Using uniformly distributed random variables this vector may be written as

{1— 0D N D (1— gi0y2)) N Dall02)(q — N30y gD 21— ), 600 Y- %),

This  vector is uniformly distributed in the Note that the pure statd¥;) are not normalized to unity,
(N—1)-dimensional simplex, as explicitly shown in Appen- but their norms are given by the eigenvalugs Expansion

dix A of Ref. [1]. B coefficients of each of these states are given by the elements
The above lemmas allow one to generate random pointgs the random rotation matrix,  |¥;)
distributed in the simplex according to the both measures,_ ’_d-{Ul- Uy, !
| 1 I b J-

using vectors of random orthogoninitary) matrices. They —  There exist many other possible decompositions of the
may be constructed according to the algorithms presented in ) _ I ~
Ref.[23]. Alternatively, one may take a random matrix of a Stat€p into a mixture ofM pure states, witi =N. LetV be
Gaussian orthogondlnitary) ensemble, diagonalize it, and @ random unitary matrix of siz®l distributed according to

use one of its eigenvectors, as in Eg). Random matrices the Haar measure dd(M). LetV denote a rectangular ma-
pertaining to GOEGUE) are obtained as symmetritler-  trix constructed from theN first columns ofV. Any such
mitian) matrices with all elements given by independent ran-M X N matrix allows one to write a legitimate decomposition
dom Gaussian variables. Several ensembles interpolating bp of the same statg,

tween GOE and GUE are knowp2l]. Statistics of

eigenvectors during such a transition were studied, e.g., in M

[50], while the transitions between circular ensembles of uni- ;o

tary matrices were analyzed j61]. P _Zl |l (B2)

APPENDIX B: ENTANGLEMENT

OF FORMATION —A NUMERICAL ALGORITHM where

1. Generating the random density matrix

In order to generate aN XN random density matrix we N
write p=UdU" and use the product measuyie=A, X vy, |pi)= 2 Vinl V), 1=1,...M. (B3)
The vector of eigenvaluas taken according to the Dirichlet m=t
measurg4), can be obtained from unitary random matrices,
as shown in Appendix A. The unitary random rotation matrix o . L~
U distributed according to the Haar measurgis generated The unitarity of the rﬁtanon matri®/ assures the correct
by the algorithm presented [22]. The random state, gen-  hormalization Tp' =32 (|4} =1.
erated according to a given product measure, may be decom- Assume that the composifé-dimensional quantum sys-

posed into a mixture oN pure states determined by its tem consists of two subsystems of skig andNg, such that
eigenvectors, N=N,Ng. Itis then convenient to represent any vedipy)

(of @ nonzero nornp;=(¢;| ¢;)) by a complexN,X Ng ma-
N trix A, which contains allN elements of this vector. To
_ N/ describe the reduction of the stdig) into the second sub-
P izl Wil (B1) system, we define aNgX Ng Hermitian matrix,
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BM:;=[AMITAD, (B4) To perform small movements in the space of unitary ma-
' trices we will useM X M Hermitian random matriceld per-
Diagonalizing it numerically we find its eigenvalué§’ | taining to the Gaussian unitary ensemb®UE). They can

=1Ng. Rescaling them by the norm of the statewe get  be constructed by independent Gaussian variables with zero
bM=o{/p;, satisfying 2|N81b|(i):1- We compute the en- mean and the variancerf2)?=(1+ 6,,)/M for the real

tropy of this partition, part and (f'mm 2=(1-6,)/M for the imaginary part of

each complex elememt,,,=H?},. We generate random ma-

) i i trix H and takew=e'X" as a unitary matrix, which might be

Eg(|éi)):= _Zfl b'(l) In b'(l) ' (BS) arbitrarily close to the identity matrix. Our strategy consists

in fixing the initial angley,, performing random movements

giving the von Neuman entropy of the reduced state. Thef this size, and then gradually decreasing the angle

entanglement of the staj€ with respect to the rotated de-  The detailed algorithm of estimating the entanglement of

composition(B2) is equal to the average entropy of the pureformation of a giverNx N statep is listed below.

states involved, (1) Fix the numbeM of the components of the decompo-
sition (B2). Start withM =N.

Np

, M (2) Generate random unitary rotation matkixof size M,
E(p ):Z'l PiEs(| b)), (B6)  which defines the decompositigi in Eq. (B2). Compute
the entanglemerE=Eg(p’) according to Eqs(B5),(B6).
where=M p;=1. (3) Set the initial angley= xo.
The entanglement of formatioB of the statep is then (4) Generate a rando X M GUE matrixH and com-

defined as a minimal valuEg(p'), where the minimum is puteV'=V exp(xH). Calculate the entanglemeft for the
taken over the set of decompositiops given by Eq.(B2) ~ decompositiorp’ generated by'.

[compare with the definitioi12)]. The rotation matrixV, (5) If E'<E, accept the movésubstituteV:=V' and E

for which the minimum is achieved is called thptimal Our ~ :=E’) and continue with stef4). Otherwise, repeat step$)

task is to find the optimal matrix in the space of and(5) I¢pangetimes.

M-dimensional  unitary  matrices  where M=N,N (6) Decrease the angle:=ay, wherea<1.

+1,... N2 (7) Repeat steps$4)—(6) until x<xenq. Memorize the
We have found it interesting to also consider the generalfinal value of the entanglemei

ized entanglement (8) Repeal ,,; times step$2)—(7) starting from a differ-

ent initial random matrixv.

M (9) Memorize the valueEy,, defined as the smallest of
Eq(p')ZE piEq(|¢i)), (B7) L wat repetitions of the above procedure.
=1 (10) SetM=:M+1 and repeat the step®)—(9) until
M =M pax.

where )
(11) Find the smallest value dEy ,M=N, ... M ax-

This valueE,= Ewm, gives the upper bound for the en-

Ng . . . .
) i tanglement of formation of the mixed stgiewhile the size
Eq(ld)): = m'”(lzl [bf )]q)' (B8) M, of the optimal rotationvV, may be considered as the
cardinality of p.
The standard quantityEg(p) is obtained in the limit
limg_1E4(p). 3. Remarks on estimating the entanglement of formation

The accuracy of the above algorithm may be easily tested
for the caseN=4, for which the analytical formuld15)

The search for the optimal rotation matiik has to be exists. Results mentioned in Sec. IV B, giving a mean error
performed in theM>-dimensional space of unitary matrices. of the estimation of the entanglement smaller than 10
Starting withM =N one has to consider the 16-dimensionalwere obtained with the following algorithm parameters: the
space in the simplest casef=4. To obtain accurate mini- initial angle o= 0.3, the final angleye,q=0.0001, the angle
mization results in such a large space one should try to pereduction coefficieniv=2/3, the number of iterations with
form some more sophisticated minimization schemes; for exthe angle fixed cpang6= 25, and the number of realizations
ample, the stimulated annealing. Fortunately, the optimal o= 3. Using relatively slow routines interpreted by Mat-
rotation matrixV, is determined up to a diagonal unitary lab on a standard laptop computer we needed a couple of
matrix containingM arbitrary phases. Therefore, one canminutes to get the entanglement of any mixed sgaté\l-
hope to get reasonable results with a simple random walkhough we performed test searches with=4,5, . .. ,8, the
moving only then, if the entanglement decreases. Performingptimal rotation was always found fél =N=4.
only the “down” movements in théV>-dimensional space, The same algorithm was used for random states With
one has a good chance of landing close toMRdimensional =2X4=8. In this case the simplest search with=-N=8,
manifold defined by optimal matrices equivalentMg. This  performed in 64-dimensional space, requires much more
corresponds to fixing the temperature to zero in the annealingomputing time. It depends on all parameters characterizing
scheme, and simplifies the search algorithm. the algorithm; one may therefore impose an additional bound

2. Search for the optimal rotation matrix
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on the total numbet of generated random matric®s. To The other possibility of distinguishing the bound en-
estimate the volume of the bound entangled states we petangled states from the separable states consists in studying
formed the above algorithm only for the states with positivethe dependence of the obtained upper bound of the entangle-
partial transpose. Setting the final angleyatq=0.0002, we  ment E on the total numbet of iterations performed. Nu-
obtained in a histogran?(E) a flat local minimum at,,  merical results obtained for the separable states showEthat
~.0.0003. The minimum is located just to the righ.t of the decreases with a computation time not slower ti(h)
singular peak at even smaller valueskgfcorresponding to = ga/|. Assuming a similar effectiveness of the algorithm for
separable states. The cumulative distributioR:  the nonseparable statesith a nonzero entanglement of for-
=g P(E)dE was found not to be very sensitive to the mationE;,,), we haveE(l) = E;o;m+b/1. This allows us to
position of the minimumE,,,. We could, therefore, set the design a simple auxiliary criterion: the statés separable if
cutoff valuekE, at the position of minimunk,,,, and interpret  (for all realizations of the random walk starting from the
the quantityP, as the relative volume of the bound entangleddifferent matricesv) for sufficiently large number of itera-
states. In the computations described in Sec. IV C we tookions | one hask(l)<E(I/2)/2. If this condition is not ful-
X0=0.3, a=2/3, | change=25, andL =5, and forM=N filled, the statep can be regarded as entangled. Using this
=8 obtained the mean number of iteratigih$ of the order method we obtained the estimation for the volume of bound
5% 10%. entangled states similar .
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