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Volume of the set of separable states. II

Karol Życzkowski
Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagiellon´ski, ulica Reymonta 4, 30-059 Krako´w, Poland

~Received 12 March 1999!

The problem of how many entangled or, respectively, separable states there are in the set of all quantum
states is investigated. We study to what extent the choice of a measure in the space of density matrices%

describingN-dimensional quantum systems affects the results obtained. We demonstrate that the link between
the purity of the mixed states and the probability of entanglement is not sensitive to the measure chosen. Since
the criterion of partial transposition is not sufficient to distinguish all separable states forN>8, we develop an
efficient algorithm to calculate numerically the entanglement of formation of a given mixed quantum state,
which allows us to compute the volume of separable states forN58 and to estimate the volume of the bound
entangled states in this case.@S1050-2947~99!05110-0#

PACS number~s!: 03.67.2a, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

Entangled stateshave been known almost from the ve
beginning of quantum mechanics and their somewhat
usual features have been investigated for many years. H
ever, recent developments in the theory of quantum inform
tion and quantum computing have caused a rapid increas
the interest in the study of their properties and possible
plications. To illustrate this trend let us quote some data fr
the Los Alamos quantum physics archives. In 1994 only o
paper posted in these archives contained the key word ‘
tangled’’ ~or entanglement! in the title, while two such pa-
pers were posted in 1995. Since then the number of s
papers has increased dramatically, and was equal to 8
and 70 in the consecutive years 1996, 1997, and 1998
spectively.

We do not dare fit some fast growing curves to these d
nor speculate when such an increase will eventually satu
On the other hand, since so many authors have dealt
entangled states, it is legitimate to ask whether such st
are ‘‘typical’’ in quantum theory or if they are rather rare an
unusual. Vaguely speaking, we shall be interested in the r
tive likelihood of encountering an entangled state@1#. One
may also ask a complementary question concerning the s
separablestates, that can be represented as a sum of pro
states.

Consider a quantum system described by the density
trix r that represents a mixture of the pure states of
N-dimensional Hilbert space. Let us assume that the sys
consists of two subsystems, of dimensionnA andnB , where
N5nAnB . To formulate the basic question, ‘‘What is the
probability of finding an entangled state of size N?,’’ one
needs to:

~i! Define the probability measurem, according to which
the random density matricesr are drawn.

~ii ! Find an efficient technique, which would allow one
judge whether a given mixed stater is entangled.

Representing any density matrix in the diagonal formr
5UdU† we proposed@1# to use a product measurem5D1
3n, whereD1 describes the uniform measure on the simp
( i 51

N di51 andn stands for the Haar measure in the space
PRA 601050-2947/99/60~5!/3496~12!/$15.00
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unitary matricesU(N). Based on the partial transpositio
criterion @2,3#, we found that under this measure the volum
of the set of separable states is positive and decreases
the system sizeN @1#. Some more general analytical boun
were also provided by Vidal and Tarrach@4#. Recently,
Slater suggested estimating the same quantity using s
other measures in the space of the density matrices@5,6#.
One may thus expect that the volume of the separable s
depends on the measure chosen. We show that this is in
the case. In this work we investigate which statistical pro
erties describing the set of the entangled states may be
versal; e.g., which do not depend on the measure used
particular, we demonstrate that the relation between the
rity of mixed states and the probability of entanglement
not very sensitive to the measure assumed. Based on num
cal results we conjecture that the volume of the separa
states decreases exponentially with the system sizeN.

For N54 andN56 a density matrix is separable if an
only if its partial transpose is positive@3#. For N.6, how-
ever, there exist states that are not separable and tha
satisfy this criterion@7#. These states cannot be distilled in
the singlet form and are calledbound entangled state
@8–11#. Since there are no explicit conditions allowing on
to distinguish between separable and bound entangled st
in Ref. @1# only the upper bound for the volume of separab
states has been considered forN.6. In this paper we presen
an efficient numerical method of computing theentangle-
ment of formation E@12# for any density matrix. This method
allows us to estimate the volume of bound entangled sta
by taking a reasonably small cutoff entanglementEc and
counting these states, satisfying the partial transposition
terion for whichE.Ec . Our numerical results are to a larg
extent independent of the exact value ofEc .

The paper is organized as follows. In Sec. II we revie
the necessary definitions and study how the upper boun
the volume of the separable states depends on the sy
size and the measure used. The subsequent section is de
to an analysis of the simplest caseN54, for which the
bound entangled states do not exist. In this case the ana
cal formula for the entanglement of formation is know
@13,14# and we study how this quantity changes with t
purity of the mixed states. In Sec. IV we study the caseN
3496 ©1999 The American Physical Society
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PRA 60 3497VOLUME OF THE SET OF SEPARABLE STATES. II
58 and estimate the volume of the free entangled sta
bound entangled states, and separable states. The pa
concluded by Sec. V, containing a list of open questions
Appendix A we prove the rotational invariance of the tw
distinguished measuresDo and Du , defined on the
(N21)-dimensional simplex, and demonstrate the link to
ensembles of random matrices. The algorithm of compu
the entanglement of formation for a given density matrix
presented in Appendix B.

II. VOLUME OF STATES WITH POSITIVE PARTIAL
TRANSPOSITION

A. Product measures in the space of mixed density matrices

To discuss the probability of a mixed quantum state p
sessing a given property, one needs to define a probab
measurem in the space of density matrices (N3N positive
Hermitian matrices with trace equal to unity!. Each density
matrix can be diagonalized by a unitary rotation. LetB be a
diagonal unitary matrix. Since

r5UdU†5UBdB†U†, ~1!

the rotation matrixU is determined up toN arbitrary phases
enteringB. The total number of independent variables us
to parametrize in this way any density matrixr is equal to
N221. Since the literature seemed not to distinguish a
natural measure in this space, we approached the proble
defining a product measure@1#

mu5D13nH . ~2!

The measuren is defined in the space of unitary matric
U(N), while D is defined in the (N21)-dimensional sim-
plex determined by the trace condition( i 51

N di51. In Ref.
@1# we took for n the Haar measure onU(N), while the
uniform measureD1 was used on the simplex. Our choic
was motivated by the fact that both component measures
rotationally invariant. FornH this follows directly from the
definition of the Haar measure, while in Appendix A w
prove that the uniform measureD1 corresponds to taking, fo
the vectordi , the squared moduli of complex elements o
column or a row~say, the first column! of an auxiliary ran-
dom unitary matrixV drawn with respect tonH ,

di5uVi1u2. ~3!

Hereafter we will thus refer to the measure defined by Eq.~2!
as the unitary product measuremu .

As correctly pointed out by Slater@5,6#, our choice of
measure is by far not the only possible one. He discus
several possible measures, and proposed picking the me
on the (N21)D simplex from a certain family of Dirichlet
distributions,

Dl~d1 , . . . ,dN21!5Cld1
l21 . . . dN21

l21

3~12d12•••2dN21!l21, ~4!
s,
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wherel.0 is a free parameter andCl stands for a normal-
ization constant. The last component is determined by
trace conditiondN512d12•••2dN21. The uniform mea-
sure D1 corresponds tol51. Slater distinguishes also th
casel51/2, which is related to the Fisher information me
ric @15#, the Mahalonobis distance@16#, and Jeffreys’ prior
distance@17#, and was used for many years in different co
texts @18–20#. Since this measure is induced by squared
ements of a column~a row! of a randomorthogonalmatrix
~see Appendix A!, we shall refer to

moªD1/23nH ~5!

as to the orthogonal product measure in the space of
mixed quantum states. Therefore, both measures may b
rectly linked to the well-known Gaussian unitary~orthogo-
nal! ensembles of random matrices@21#, referred to as GUE
~GOE!. The measuremu is determined by squared compo
nents of an eigenvector of a GUE matrix, while the meas
mo may be defined by components of an eigenvector of G
matrices@22#. Some properties of the orthogonal measuremo
have recently been studied in@23#. Let us stress that the
name of the product measure~orthogonal or unitary! is re-
lated to the distributionD on the simplexdW , while the ran-
dom rotationsU are always assumed to be distributed a
cording to the Haar measurenH in U(N).

It is interesting to consider the limiting cases of the d
tribution ~4!. For l→0 one obtains a singular distributio
concentrated on the pure states only@6#, while in the oppo-
site limit l→`, the distribution peaks on the maximall
mixed stater* described by the vectordW 5$1/N, . . . ,1/N%.
Changing the continuous parameterl, one can thus contro
the average purity of the generated mixed states.

B. Separable states

Consider a composite quantum system described by
density matrix r in the N-dimensional Hilbert spaceH
5HA^ HB . The dimension of the systemN is equal to the
productnAnB of the dimensions of both subsystems. If th
staterPH can be expressed asr5rA^ rB , with rAPHA
and rBPHB , it is called theproduct state~or factorizable
state!. This occurs if and only ifr5 TrBr ^ TrAr, where TrA
and TrB denote the operations of partial tracing. In oth
words, for such states the description of the composite s
is equivalent to the description in both subsystems.

A given quantum stater is calledseparableif it can be
represented by a sum of product states@24#

%5(
i 51

k

pi%Ai ^ %̃Bi , ~6!

where %Ai and %Bi are the states onHB and HB , respec-
tively. The smallest numberk of product states used in th
above decomposition is called thecardinality of the sepa-
rable stater @25#.

In general, no explicit necessary and sufficient conditio
are known for a mixed state to be separable. However, P
found a necessary condition showing that each separ
state has the positive partial transpose@2#. Later Horodeccy
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3498 PRA 60KAROL ŻYCZKOWSKI
demonstrated that forN54 andN56 this is also a sufficien
condition@3#. To represent any stater it is convenient to use
an arbitrary orthonormal product basisuej& ^ uel&, j
51, . . . ,nA , l 51, . . . ,nB ; and to define the matrixr j l , j 8 l 8
5^ej u ^ ^el uruej8& ^ uel8&. The operation ofpartial transposi-
tion is then defined@2# as

%
j l , j 8 l 8

T2 [% j l 8, j 8 l . ~7!

Even though the matrixrT2 depends on the particular bas
used, its eigenvalues$d18>d28>, . . . ,>dN8 % do not. The ma-
trix rT2 is positive if and only if all eigenvaluesdi8 are not
negative. The practical application of the partial transp
criterion is thus straightforward: for a given stater, one
computesrT2, diagonalizes it, and checks the signs of
eigenvalues. To characterize quantitatively the violation
positivity we introduced@1# the negativity

tª(
i 51

N

udi8u21, ~8!

which is equal to zero for all of the states with positi
partial transpose.

C. Relative volume in the space of the density matrices

In Ref. @1# we presented several analytical lower and u
per bounds for the volume of separable states. They w
obtained assuming the unitary product measure, but the s
reasoning can be repeated for other measures. The key re
an analytical proof that the volume of separable state
positive and less than 1 is obviously valid for any nonsing
lar measure.

To analyze the influence of the measure chosen for
volume of separable statesPs we picked several random
density matrices~ca. 106) distributed according to the or
thogonal and unitary product measures, and verified
their partial transpose~7! was positive. The results are dis
played in Fig. 1 as a function of the system sizeN. Note that
for N.6 we obtained in this way the volumePT of states
with positive partial transposition, which gives an upp

FIG. 1. ProbabilityPT of finding a state with positive partia
transpose as a function of the dimension of the problemN for the
unitary product measure~open symbols! and for the orthogona
product measure~full symbols!. For N<6, it is equal to the prob-
ability PS of finding a separable state, while forN.6 it gives an
upper bound for this quantity. Different symbols distinguish diffe
ent sizes of one subsystem:nA52 (L), 3 (n), and 4 (h).
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bound for the volume of separable states. In fact,PT5PS
1PB , where the volumePB of the entangled states wit
positive partial transpose is studied in Sec. IV.

The symbols are labeled according to the size of the fi
subsystemnA . For both measures the symbols seem to lie
one curve, which would imply thatPT(nA ,nB)5PT(nA
3nB). However, this relation is only approximate, sinc
PT(236)ÞPT(334), as pointed out by Smolin@26# . Nu-
merical results forPT and ^t& for N<12 are collected in
Table I. The difference betweenPT(236) andPT(334) is
not large, and was smaller than the statistical error of
results reported in@1#. Therefore it is reasonable to negle
for a while these subtle effects, depending on the way
N-dimensional system is composed, and to ask, how, i
first approximation,PT changes withN.

Figure 1, produced in a semilogarithmical scale, sho
that for both measures the probabilityPT decreases exponen
tially with the system sizeN. Obtained numerical results a
low us to conjecture that limN→`PT(N)50 for any~nonsin-
gular! probability measure used. We observe different slo
of both lines received for different probability measures. T
best fit givesPTu;1.8e20.26N for the unitary product mea
sure mu and PTo;3.0e20.55N for the orthogonal produc
measuremo . The dependence of the probabilityPT on the
chosen measure is due to the fact that each measure d
guishes states of a different purity. This issue is discusse
detail in the following sections.

III. 2 32 CASE: POSITIVE PARTIAL TRANSPOSE
ASSURES SEPARABILITY

A. Purity versus separability

For theN54 case the partial transpose criterion is su
cient to assure the separability@3#, so PB50 andPS5PT .
Let us investigate how the probability of drawing a separa
state changes with its purity, which may be characterized
the von Neumann entropyH1(%)52 Tr(% ln %). Another
quantity, called the participation ratio

R~% !5
1

Tr~%2!
, ~9!

is often more convenient for calculations. It varies fro
unity ~for pure states! to N ~for the totally mixed stater*

TABLE I. Probability PT of finding a mixed state of sizeN with
positive partial transpose and the mean negativity^t& for two prod-
uct measures orthogonalmo and unitarymu . For N54 andN56
one hasPT5PS .

N nA nB ^PT&mu
^t&mu

^PT&mo
^t&mo

4 2 2 0.632 0.057 0.352 0.142
6 2 3 0.384 0.076 0.122 0.182
8 2 4 0.229 0.082 0.042 0.204
9 3 3 0.166 0.094 0.022 0.238

10 2 5 0.134 0.097 0.013 0.217
12 2 6 0.079 0.098 0.0043 0.226
12 3 4 0.071 0.098 0.0039 0.266
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PRA 60 3499VOLUME OF THE SET OF SEPARABLE STATES. II
proportional to the identity matrixI ! and may be interpreted
as an effective number of states in the mixture. This quan
gives a lower bound for the rankr of the matrixr, namely,
r>R. Moreover, it is related to the von Neumann–Ren
entropy of order 2,H2(%)5 ln R(%). The latter, also called
the purity of the state; together with other quantum Re
entropies,

Hq~% !5
1

12q
ln@Tr %q# ~10!

is used, forqÞ1, as a measure of how much a given state
mixed ~see, e.g.,@27#!. Subspaces of a constantR belong to
hypersheres centered at%k of the radiusA1/R21/N.

Figure 2 presents the probability distributionsP(R) for
N54 density matrices generated according to both prod
measures. As discussed before, the orthogonal measuremo is
concentrated at the less mixed states~lower values ofR) than
the unitary measuremu . For example, the mean value ave
aged over the orthogonal product measure^R&o'2.184 is
much smaller than the corresponding mean with respec
the unitary measurêR&u'2.653. Observe a nonsmooth b
havior of both distributions atR53 (R52), for which the
manifolds of a constantR start to touch the faces~edges! of
the three-dimensional~3D! simplex formed byd1 , d2, and
d3.

Although the distributionsP(R) differ considerably for
both measures, the conditional probability of encounter
the separable statePS(R) is almost measure independent,
shown in Fig. 2~b!. This is the main result of this section: th
different results obtained for the probabilityPS of using vari-
ous product measuresml are due to the different weight
attributed to the mixed states. Since the average mix
^R&ml

grows monotonically with the parameterl ~from 1 for

l→0 to 4 forl→`), the probabilityPS also increases with
this parameter from zero to unity. Note that for both curv
the probability PS achieves unity atR53: all sufficiently

FIG. 2. Purity and separability in (N54)-dimensional Hilbert
space. Open symbols represent averaging over the orthogonal
uct measuremo , while closed symbols are obtained with the unita
measuremu; ~a! probability distributionsP(R); ~b! conditional
probability of finding a separable state as a function of the par
pation ratioR. All states beyond the dashed vertical line placed
R5N2153 are separable.
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mixed states are separable. This fact has already been pr
in @1#, but see also@28# for complementary, constructive re
sults.

The above considerations allow us to sketch the se
entangled states in the caseN54. In analogy to the Bloch
sphere, corresponding toN52, we take the liberty to depic
the set of all quantum states by a ball. Since it is har
possible to draw a picture precisely representing the comp
structure of the 15-dimensional space of the density matri
Fig. 3 should be treated cautiously. In particular, the str
ture of the set of density matrices is not as simple, and th
exist several points inside the ball that do not correspond
density matrices. Furthermore, the six-dimensional spac
the pure states possesses the structure of the complex pr
tive spaceCP3, which is much more complicated than
hypersphere. In the sense of the Hilbert–Schmidt me
„DHS(r1 ,r2)5ATr@(r12r2)2#… the set of pure states form
a six-dimensional subset of the 14-dimensional hypersph
of a radiusA3/2 centered atr* 5I /4. Keeping this fact in
mind, we represent this manifold by a circle in our oversi
plified two-dimensional sketch.

The set of separable states is visualized in Fig. 3 as
‘‘needle of a compass:’’ it is convex, has a positive measu
and includes the vicinity of the maximally mixed stater* .
Moreover, it touches the manifold of pure states~pure sepa-
rable states do exist!, but the measure of this common set
equal to zero. The more mixed the state~localized closer to
the center of the ‘‘ball’’!, the larger the probability of en
countering a separable state. All states withR>3 are sepa-
rable; this hypersheres14 of the radius 1/2A3 is represented
by a smaller circle.

B. Entanglement of formation

After discussing the problem of how the probability
encountering a separable state changes with the degre
mixing R, we may discuss a related issue: how the aver
the entanglement depends onR. For this purpose we need
quantitative measure of the entanglement of a given mi
state. Several such quantities have recently been prop
and analyzed@12,29–39#, and none of them can be consid
ered as the unique, canonical measure. However, the qua
called entanglement of formation@12# plays an important
role, due to a simple interpretation: it gives the minim
amount of entanglement necessary to create a given de
matrix.

od-

i-
t

FIG. 3. Sketch of the set of mixed quantum states forN54. The
gray color represents the separable states.
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3500 PRA 60KAROL ŻYCZKOWSKI
For a pure stateuc&, one defines the von Neuman entro
of the reduced state,

E~c!52 Tr rA ln rA52 Tr rB ln rB , ~11!

whererA is the partial trace ofuc&^cu over the subsystemB,
while rB has the analogous meaning. This quantity vanis
for a product state. The entanglement of formation of
mixed stater is then defined@12# as

E~r!5min(
i 51

k

piE~C i !, ~12!

and the minimum is taken over all possible decompositi
of the mixed stater into pure states

r5(
i 51

k

pi uC i&^C i u, (
i 51

k

pi51. ~13!

The decomposition ofr into the smallest possible number
k pure states, for which this minimum is achieved, will
called optimal decomposition, while the numberk will be
called thecardinality of an entangled state. This definitio
may be considered as an extension of the concept of
cardinality of separable states introduced in@25#, since for
any separable staterS one hasE(rS)50.

In Appendix B we present an algorithm allowing one
perform the minimization crucial to the definition~12!. It
gives an upper estimate of the entanglement of formation
an arbitrary density matrix of sizeN. The algorithm proposed
works fine forN of the order of 10 or smaller. In the case
two quantum bits~qubits!, discussed in this section, an an
lytical solution was found by Hill and Wootters@13,14#, who
introduced the concept ofconcurrence.

For any 434 density matrixr one defines the flipped
state r̃5Or* OT, wherer* denotes the complex conjuga
tion, and the orthogonal flipping matrixO contains only four
nonzero elements along the antidiagonal:O145O4151 and
O235O32521. The concurrenceC(r) is then defined@13#

C~r!ªmax$0,a12a22a32a4%, ~14!

wherea i ’s are the eigenvalues, in decreasing order, of

Hermitian matrixAArr̃Ar. Note that this matrix determine

the Bures distance@40# betweenr and r̃. In other words,
a i ’s are the non-negative square roots of the moduli of
complex eigenvalues of the non-Hermitian matrixrr̃.

The concurrenceC of a given stater determines its en-
tanglement of formation@13,14#,

E~r!5hX1
2

@11A12C2~r!#C, ~15!

where

h~x!ª2x ln~x!2~12x!ln~12x! ~16!
s
e

s

he

r

e

e

is the Shannon entropy of the two-element partition$x,1
2x%.

Note that in the definition of entropy~11! the natural loga-
rithm was used~in contrast to the binary logarithm present
@13#!, so the entanglementEP@0,ln 2#. Two histograms in
Fig. 4 present the probability distributionP(E) obtained for
N54 random density matrices distributed according to b
product measuresmo and mu . The singular peak atE50,
corresponding to the separable states, is omitted. Large
tanglements of formation are rather unlikely. The mean v
ues are not large:̂E&o'0.055 and^E&u'0.018, since the
averages are influenced by a considerable fraction of s
rable states withE50. The probability of obtaining a given
value ofE is larger for the orthogonal measure, which favo
purer and more likely entangled states.

Both histograms may be compared with the probabi
distribution P(E) obtained for the ensemble of pure state
represented by stars in Fig. 4~a!. This distribution is less
peaked; vaguely speaking, different degrees of entanglem
are almost equally likely among the pure states. The m
mum of probability can be observed for maximally entang
states (E5 ln 2), while the mean̂ E&pure'0.328 is close to
(ln 2)/2. Since the singular distribution concentrated exc
sively on pure states corresponds to the casel→0 in the
distribution~4!, we observe that the mean entanglement^E&
decreases with the increase of the parameterl, as the distri-
butionsDl increasingly favor more mixed states.

Although the mean entanglement^E& strongly depends on
the measure used, the conditional mean entanglementE(R),
averaged over all states of the same degree of mixingR, is
not sensitive to the choice of measure, as demonstrate
Fig. 4~b!. This allows us to formulate a general quantitati
conclusion, valid for nonsingular measures in the space
density matrices:the larger the average degree of mixing R,

FIG. 4. The 232 system.~a! The distributionsP(E) of the
entanglement of formation obtained for the density matrices ge
ated according tomo ~white histogram, open symbols! andmu ~gray
histogram, closed symbols!, and the rotationally uniform distribu-
tion in the set of pure states(*); ~b! average entanglementE(R)
~squares! and average negativityt(R) ~diamonds! for both measures
m.
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PRA 60 3501VOLUME OF THE SET OF SEPARABLE STATES. II
the smaller the mean entanglement of formationE. For R
.3 one hasE(R)50 @1#.

C. Negativity and concurrence

In Ref. @1# we proposed a simple quantityt defined by Eq.
~8!, which characterized, quantitatively, to what extent t
positivity of the partial transpose is violated. As shown
Fig. 4~b! the conditional averaget(R) does not depend on
the measure applied and decreases monotonically withR.
This dependence resembles the functionE(R), which sug-
gests a possible link between both quantities.

To analyze such a relation between these measure
entanglement, following the strategy of Eisert and Ple
@35#, we generated 105 random density matricesr, comput-
ing their concurrenceC, entanglementE5E(C), and nega-
tivity t. As expected, the points at the plotE versust do not
form a single curve. It means that both quantities, entan
ment of formation and negativity, donot generate the sam
ordering in the space of 434 density matrices. However
large correlation coefficients~approximately 0.978 for the
orthogonal measure and 0.967 for the unitary measure! re-
veal a statistical connection between these measures.

It is particularly useful to look at the plane concurren
versus negativity. The data presented in Fig. 5~a! are ob-
tained with the measuremo . We observed, independently o
the measure used, that all points are localized at or above
diagonal. This allows us to conjecture that for any dens
matrix r the following inequality holds:

FIG. 5. Ten thousand random density matrices of sizeN54
distributed according to the orthogonal product measure:~a! plot in
the plane negativity—concurrence;~b! plot of the differenceC2t
versus the participationR.
e

of
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t~r!<C~r!. ~17!

A similar observation was already reported in@35#, where a
modulus of the negative eigenvalueEN of the partially trans-
posed matrixrT2 was used. Since forN54 no more than one
eigenvalued48 is negative@25#, both quantities are equivalen
and t52EN . Note that due to the conjecture~17! we can
attribute a more specific meaning to negativity. By means
Eq. ~15! and the fact thath(x) decreases forx.1/2, nega-
tivity t allows us to obtain a lower bound for the entang
ment of formationE.

Numerical investigations show that the differenceC2t is
largest for mixed states withR'2, while it vanishes forR
>3 andR51 @see Fig. 5~b!#. In the former case all states ar
separable andC5t50. The latter case corresponds to pu
states for whicha25a35a450 @14# and C5a1522d48
5t. Thus the inequality~17! becomes sharp for separab
states or pure states.

D. Mixed states with the same partition ratio R

As demonstrated in Fig. 2~b!, the conditional probability
PS(R) of encountering a separable state is similar for sta
with the same participationR, averaged over both produc
measuresmo andmu . This does not mean, however, that th
probability PS is constant for each family of statesr
5UdU† defined by a given vectord with fixed participation
ratio R. To illustrate this issue we discuss the caseR52.

Consider a vector of eigenvaluesdW with r nonzero ele-
ments. This natural number (r P@1,4#) is just the rank of the
matrix r. Any stater5UdU† can be expressed by the su
of r terms, r i j 5( l 51

r dlUil U jl* . Moreover, the number o
nonzero eigenvaluesa i entering the definition of concur
rence~14! equalsr @14#.

Take any vector withr 52 nonzero elements. In this cas
the formula~14! reduces toC5a12a2. Since, per defini-
tion, a1>a2, the concurrence is positive unlessa15a2 .
Such degenerate cases occur with probability zero~e.g., for
diagonal rotation matricesU), so one arrives at a simpl
conclusion: For any setd of eigenvalues withr<2, the prob-
ability PS that a random stateUdU† is separable is equal to
zero.

For concreteness consider three vectors of eigenva
characterized byr 52, 3, and 4. We putdW a5$1/2,1/2,0,0%,
dQ b5$2/3,1/6,1/6,0%, and dW c5$x1 ,x2 ,x2 ,x2%, where x15(1
1A3)/4 andx25(12x1)/3. Each such vector generates
ensemble of density matricesr5UdU†, whereU stands for
a random unitary rotation matrix of the sizeN54. Although
all three ensembles are characterized by the same parti
tion ratio R52, the probabilities of generating a separab
state are different. The casedW a is characterized byr 52, so
PS50. Numerical results obtained of a sample of 105 ran-
dom unitary matrices givePS'0.105 and 0.200 fordW b and
dW c, respectively. Thus the probabilityPS grows with the
numberr of pure states necessary to construct given mix
stater, or with the von Neuman entropyH1.

On the other hand, the average quantities characteri
entanglement~negativity, concurrence, or entanglement
formation! decrease withr, provided the participationR is
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3502 PRA 60KAROL ŻYCZKOWSKI
fixed. For example, the mean entanglement^E& equals
0.063, 0.057, and 0.042 for the ensemblesdW a, dW b, and dW c,
respectively. Interestingly, in the latter case~or any other
ensemble withd25d35d4), one hasa35a4 andC5t.

IV. 2 34 CASE: POSITIVE PARTIAL TRANSPOSE
DOES NOT ASSURE SEPARABILITY

A. Purity and positive partial transpose

For any system size the probability of finding the sta
with positive partial transpose depends on the measure u
as shown in Fig. 1 and Table I. On the other hand, for anyN,
the relations between purity and entanglement depend
weakly on the kind of product measure used. Figure 6~b!
presents the conditional probability ofPT(R) and the mean
negativity t as a function of the degree of mixingR for the
234 system. For both quantities the results obtained w
orthogonal and unitary product measures are difficult to d
tinguish. Thus the dependence of the total probabilityPT on
the measure used is strongly influenced by the likelihood
generating highly mixed states, described by the distribu
P(R).

These distributions forN58 are shown in Fig. 6~a!. The
histogram for the unitary measuremu is shifted to larger
values ofR, with respect to the data obtained with the o
thogonal measure. Quantitatively, the mean values r
^R&u'4.74.^R&o'3.66. It is known thatPT51 for N.R
21 @1#. The right histogram, corresponding to the unita
measure, has a larger overlap with this region, which cau
^PT&u.^PT&o .

This observation is valid for an arbitrary matrix size, sin
for large N one has^R(N)&u'N/2, while ^R(N)&o'N/3
@41#. For N large enough, the distributionsP(R) tend to
Gaussians. They are centered at mean values, which de
on the measure, while the variances2 is of the order ofN/5
for both measures under consideration. Hence, the ove
with the interval@N21,N# is larger for the measuremu char-
acterized by a larger mean value^R&u .

FIG. 6. Same in Fig. 2 for the 234 system (N58). The circles
in ~b! represent the conditional probability of finding a state w
positive partial transpose,PT(R). Diamonds represent the averag
negativityt(R) obtained with the measuresmo ~open symbols! and
mu ~full symbols!.
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B. Entanglement of formation

Since forN.4 there exist no analytical methods to com
pute the entanglement of formation of an arbitrary mix
stater, we have relied on numerical computations. To p
form the minimization present in the definition~12! we
worked out an algorithm based on a random walk in
space of unitary matricesU(M ) with M>N. It is described
in detail in Appendix B. Each run ends with an approxima
optimal decompositionof the stater and provides anupper
estimation of the entanglementE. To verify the accuracy of
this technique we started with the caseN54, in which the
explicit formula ~15! is known. Computing numerically en
tanglement for 1000 randomly chosenN54 mixed states we
obtained a mean error of the order of 1027, while the maxi-
mal error was smaller than 1024.

At the beginning of each computation one has to cho
the numberM determining the number of pure states in t
decomposition. Since forN54 it is known that the cardinal-
ity of any state is not larger than 4@14,25#, it is sufficient to
look for the optimal decomposition in th
(M5N5k54)-dimensional space. For larger systems
problem of finding the maximal possible cardinality is ope
For each randomly generated mixed stater in the discussed
234 case, we started to look for the optimal decomposit
with M5N58, recorded the minimal entanglementEM58,
and repeated computations withM59,10, . . . ,Mmax. It is
known @42,7# that the maximal number of pure states do
not exceedN2, but in practice we analyzedMP@N,2N#.

The number of degrees of freedom grows asM2, so the
process of searching for the optimal decomposition beco
less efficient with an increase in the numberM. However, for
certain states we found better estimations for entanglem
e.g.,EM59(r),EM58(r). In these rare cases, improvemen
of the estimations ofE were very small, and repeating se
eral times our procedure withM58 the same upper bound
for entanglement of formation were reproduced.

Thus our results do not contradict an appealing conjec
that thecardinality kof any 234 mixed system is not large
thanN58. Further work is still needed to verify whether th
conjecture is true.

Note that the numerical algorithm for searching for t
optimal decomposition and the entropy of formation m
also be used to look for the generalized entropy of format
Eq , in the analogy to Eqs.~10! and~12!, see@37#. We found
it interesting to study the quantityE2, which has an interpre-
tation similar to the participation ratioR and equals unity for
the separable states.

C. Volume of the bound entangled states

It is known @8# that forN58 there exist bound entangle
states, which cannot be brought into the singlet form.
entangled states satisfying the partial transposition crite
are bound entangled ones@7,8,10#. It was shown in@1# that
they occupy a positive volumePB . Therefore, PS5PT
2PB is smaller than the volumePT of the states with posi-
tive partial transpose. Strictly speaking, the volumePB of
entangled states with positive partial transpose should
considered as a lower bound of the volume of bound
tangled states, since it is not proven yet that all states w
negative partial transpose are free entangled.
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To estimatePB , we generated 105 random density matri-
ces of sizeN58. We worked with the unitary product mea
suremu , since, as shown in Table I, the 234 states chosen
according to the orthogonal measuremo very seldom satisfy
the partial transposition criterion. To save computing tim
we estimated the entanglement of formationE only in the
2223 cases with positive partial transpose. Setting an
tanglement cutoffEc50.0003~see Appendix B!, we found
that 473 states enjoyed the entanglementE.Ec . This gives
a fraction ofPB'4.7% of all states, orPB /PT521.3% of
the states with positive partial transpose. Although th
numbers are influenced by systematic errors~bound en-
tangled states withE,Ec are regarded as separable, wh
separable states with numerically obtained upper estimat
of the entanglement larger thanEc are considered as en
tangled!, the dependence of the results obtained on the cu
valueEc is weak. Moreover, these results do not depend
the exact values of the parameters characterizing the ran
walk ~see Appendix B!. Consequently, we obtained an es
mate of the volume of separable states for this case,PS
5PT2PB'17.5%, as shown in the inset of Fig. 7.

D. Bound entanglement and purity

It is interesting to ask whether a certain degree of mix
favors the probability of finding the bound entangled stat
Grouping all 105 analyzed states in 30 bins according to t
participation ratioR, we computed the conditional probabil
ties of entanglement. These results are shown in Fig. 7. P
ability PS increases monotonically withR, while the prob-
ability of finding a free entangled statePF512PT decays
with the participation. On the other hand, the condition
probabilityPB(R) of finding a bound entangled state exhib
a clear maximum atR;5.5. If the mean purity is concerned
the bound entangled states are thus sandwiched between
entangled states~generally of high purity! and the separable
states are characterized by a high degree of mixing.

The above results suggest that for the bound entan
states there exists a minimal participation ratioR or a mini-
mal rank r. Preparing a sketch analogous to Fig. 3 forN
58, one should put the bound entangled states close to
center of the figure, but outside the symbolic ‘‘needle of t

FIG. 7. Conditional probabilities of finding the separable sta
(s), free entangled states (n), and bound entangled states (h) as
a function of the participation ratioR. Results are obtained with 105

random density matrices of the sizeN58 distributed according to
the measuremu . The lines are drawn to guide the eye. The in
shows the pie chart of the total probability of encountering se
rable states, bound entangled states~lower bound!, and free en-
tangled states~upper bound!.
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compass,’’ which represents the separable states.
It is worth noting that the entanglement of formation f

bound entangled states is rather small in comparison to
mean entanglement of formation for the free entang
states, which violates the partial transposition criterion. T
average taken over all free entangled states is^E&F'0.05;
the average taken over all bound entangled states is^E&B

'0.0033 ~which is much larger than the cutoff valueEc).
The maximal entanglement found for a bound state was o
EM50.0746.

V. CLOSING REMARKS

In this work we attempt to characterize the statistic
properties of the set of separable mixed quantum state
certain level of caution is always recommended for interp
tation of any results of probabilistic calculations, especia
if the space of the outcomes is infinite. Let us mention h
the famous Bertrand paradox: What is the probability tha
randomly chosen chord of a circle is longer than the side
the equilateral triangle inscribed within the circle? The a
swer depends on the construction of the randomly cho
chord, which determines the measure in infinite space of
possible outcomes.

Asking a question on the probability that a randomly ch
sen mixed state is separable, one should also expect tha
answer will depend on the measure used. This is indeed
case, as demonstrated in this work for two products m
sures, and also shown by Slater@6# for a different measure
related to themonotonemetrics@43#. We reach, therefore, a
simple conclusion, which is rather intuitive for an expe
mental physicist: the probability of finding an entangled st
depends on the way the states are prepared, which d
mines the measure in space of mixed quantum states.

On the other hand, in this paper we provide argume
supporting the conjecture that some statistical propertie
entangled states are universal and to a large extent do
depend~or depend rather weakly! on the measure used. Le
us mention only the exponential decay of the volume of
set of separable states with sizeN of the problem or the
important relation between the purity of mixed quantu
states and the probability of finding a separable state.

Studying the simplest caseN54, we have shown that fo
an ensemble of pure states the distribution of entanglem
of formation is rather flat in@0,ln 2#. The more mixed states
the larger the peak at small values of entanglement and
larger the probability of finding a separable state. We ha
shown that the negativityt, a naive measure of entanglemen
provides a lower bound for the entanglement of formatio

Analyzing a more sophisticated problemN58, we devel-
oped an efficient numerical algorithm to estimate the
tanglement of formation of any mixed state. In this way w
could differentiate between separable states and the bo
entangled states. About 79% ofN58 states satisfying the
positive transposition criterion are separable. This resul
obtained for random states generated according to the un
product measure in the space ofN58 density matrices, bu
we expect to get comparable results for other, nonsing
measures. The mean entanglement of formation for
bound entangled states is much smaller than for the free
tangled states. The relative probability of finding a bou

s

t
-



ly
os

et
on

-
tio

tr

e

n

m

n
f

-

en
g

l to
en

c
l

ric

a

el
o

a
t

s
n
ed

l

o-
in-
nd

in
ora-
en
o-

n

w,
nd
ting

a-

-
oint

ent

n-

gle

3504 PRA 60KAROL ŻYCZKOWSKI
entangled state for the 234 systems is largest for moderate
mixed systems, characterized by the participation ratio cl
to R55.5.

Even though this paper follows the previous work@1#, the
list of unresolved problems in this field is still very long. L
us collect here some of those related to this work, menti
ing also those already discussed in the literature.

~a! N54, (232 systems!. ~i! Check whether the depen
dence of the conditional probability on the participation ra
PS(R), obtained for two product measures@see Fig. 2~b!#
holds also for the measures based on the monotonic me
@6# or for the product Bures measure@44,45#. ~ii ! Prove the
relation between the concurrence and the negativity:C>t.
~iii ! Find max(C2t) as a function of the participation ratioR
@see Fig. 4~b!#. ~iv! Check whether the following conjectur

is true: If R(dW 1)5R(dW 2) and H1(dW 1)>H1(dW 2), then
PS(r1)>PS(r2). The von Neuman entropyH1 and the par-
ticipation ratioR measure the degree of mixing of a give

vector dW , while PS denotes the probability that a rando
state r i5UdiU

† is separable.~v! Find isoprobability sur-

faces in the simplex$d1 ,d2 ,d3%, such thatPS(dW )5const.
(b) N56 (233 or 332 systems!. ~vi! Find a lower

bound for the entanglement of formationE ~in analogy to
negativity t, which gives a lower bound forC and E in the
caseN54). ~vii ! Find an explicit formula forE in this case.

(c) N58 (234 or 432 systems!. ~viii ! Find necessary
and sufficient conditions for a bound entangled~or sepa-
rable! state.~ix! Find the maximal entanglement of formatio
E of a bound entangled state.~x! Check whether the rank o
bound entangled states is bounded from below.~xi! Check
that the cardinality of any state is not larger than 8.

(d) General questions.~xii ! Check whether all states vio
lating the partial transpose criterion are free entangled.~xiii !
Can we verify that the optimal decomposition of a giv
mixed state into a sum of pure states leading to the entan
ment of formation,E5E1, also gives the minimum of the
generalized entanglement of formationEq? ~xiv! For what
NA3NB composed systems is the cardinalityk of any mixed
state in theN-dimensional Hilbert space less than or equa
N5NANB? ~xv! Can we determine whether the entanglem
of formation is additive?

Not all of the above problems are of the same importan
We regard the questions~i!, ~viii !, and the last two genera
questions as the most relevant. The preliminary results
Slater @46# suggest that the relationPS(R) for monotonic
metrics is similar to that obtained here for the product met
at least forN54. Concerning problem~viii !: for separable
states withN58, some necessary conditions, stronger th
the positive partial transpose, are known@47,48#, but condi-
tions sufficient for assuring separability are still most w
come. The problem of the additivity of the entanglement
formation is present in the literature~see, e.g.,@14#!. Per-
forming numerical estimations of the entanglement of form
tion E for several states of 23NB systems, we have no
found any cases that violate questions~xiii ! and ~xv! @49#.
Recent results of Lewenstein, Cirac, and Karnas@48# suggest
that the answer to question~xiv! is negative for the system
33NB with NB.3, but they do not contradict that stateme
for the 23NB composed systems. Further effort is requir
e
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to establish whether in this case the answer to question~xiv!
is positive.

Note added in proof. After this work was completed Vida
proved that the negativityt of a mixed state does not grow
under any local operations@52#. Therefore, negativity might
be considered as a measure of entanglement.
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APPENDIX A: ROTATIONALLY INVARIANT PRODUCT
MEASURES

In this appendix we show that a vector of a
N-dimensional random orthogonal~unitary! matrix generates
the Dirichlet measure~4! with l51/2 (l51) in the (N
21)D simplex. Although these results seem not to be ne
we have not found them in the literature in this form, a
prove them here for the convenience of the reader, star
with the simplest caseN52.

Lemma 1. Let O be anN3N random orthogonal matrix
distributed according to the Haar measure onO(N). Then
the vectordi5uOi1u2,i 51, . . . ,N is distributed according to
the statistical measure on the (N21)-dimensional simplex
~Dirichlet measure withl51/2).

Proof. Due to the rotational invariance of the Haar me
sure onO(N) the vectorOi1 is distributed uniformly on the
(N21)-dimensional sphereSN21. Thus( i 51

N di51.
For N52 the vectoruOi1u is distributed uniformly along

the quarter of the circle of radius 1. Therefore,x5 cosf,
where fP@0,p/2) and P(f)52/p. Hence P(x)
5P(f)df/dx52/(pA12x2). Another substitutionj5x2

gives the required result: P(j)5P(x)dx/dj
51/@pAj(12j)#.

To discuss the generalN-dimensional case, it is conve
nient to introduce the polar angles and to represent any p
belonging to the (N21)D sphere asxN5 cosuN22, r
5sinuN22, wherer2512( i 51

N21xi
2 . Uniform distribution of

the points on the sphere is described by the volume elem
dV5sinN22 uN22duN22•••sinu1du1df. Changing the polar
variables into Cartesian, we obtainP(r);1/ cosuN22

51/A12r2. The last change of variablesj iªxi
2 for i

51, . . . ,N allows us to receive P(j1 , . . . ,jN21);
@j1j2 . . . jN21(12j12j22•••2jN21)#21/2, which gives
the statistical measureD1/2 defined in Eq.~4!. j

Geometric interpretation of this result is particularly co
vincing for N53. Then the vectorOi1 covers uniformly the
sphereS2, while uOi1u is distributed uniformly in the first
octant. The points$d1 ,d2 ,d3%5$j1 ,j2 ,j3% lie at the plane
z512x2y. Their projection into thex-y plane gives the
statistical measure on the 2D simplex; i.e., the trian
$(0,0),(1,0),(0,1)%.

Lemma 2.Let U be anN3N random unitary matrix dis-
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tributed according to the Haar measure onU(N). Then the
vectordi5uUi1u2,i 51, . . . ,N is distributed according to the
uniform measure on the (N21)-dimensional simplex~Di-
richlet measure withl51).

Proof. We will use the Hurwitz parametrization ofU(N)
@22#, based on the angleswklP@0,p/2# with 0<k, l<N
21. Their distribution can be determined by the relati
n-

in
re

d
a

d

n
b

.,
n

t
s

rix

o
ts
wkl5 arcsinjk11
1/(2k12) , where jk are the auxiliary indepen

dent random numbers distributed uniformly in@0,1# ~see
Ref. @23#!.

In the simplest caseN52, the vectordW reads uUi1u2
5$cos2w01,sin2w01%5$j1,12j1% and the variabled15j1 is
distributed uniformly in the interval@0,1# ~one-dimensional
simplex!. For N53 one obtains
dW 5$cos2w12,sin2w12cos2w01,sin2w12sin2w01%5$12j2
1/2,j2

1/2~12j1!,j2
1/2j1%,

which is distributed uniformly in the simplex$(0,0),(1,0),(0,1)%.
In the generalN-dimensional case we get

dW 5$cos2wN22,N21 , sin2wN22,N21cos2wN23,N21 , sin2wN22,N21 sin2wN23,N21

3cos2wN24,N21 , . . . , sin2wN22,N21••• sin2w1,N21cos2w0,N21 , sin2wN22,N21••• sin2w1,N21 sin2w0,N21%.

Using uniformly distributed random variables this vector may be written as

$12jN21
1/(N21) ,jN21

1/(N21)~12jN22
1/(N22)!,jN21

1/(N21)jN22
1/(N22)~12jN23

1/(N23)!, . . . ,jN21
1/(N21)

•••j2
1/2~12j1!,jN21

1/(N21)
•••j2

1/2j1%.
,

ents

the

-

n

t

-

-

This vector is uniformly distributed in the
(N21)-dimensional simplex, as explicitly shown in Appe
dix A of Ref. @1#. j

The above lemmas allow one to generate random po
distributed in the simplex according to the both measu
using vectors of random orthogonal~unitary! matrices. They
may be constructed according to the algorithms presente
Ref. @23#. Alternatively, one may take a random matrix of
Gaussian orthogonal~unitary! ensemble, diagonalize it, an
use one of its eigenvectors, as in Eq.~3!. Random matrices
pertaining to GOE~GUE! are obtained as symmetric~Her-
mitian! matrices with all elements given by independent ra
dom Gaussian variables. Several ensembles interpolating
tween GOE and GUE are known@21#. Statistics of
eigenvectors during such a transition were studied, e.g
@50#, while the transitions between circular ensembles of u
tary matrices were analyzed in@51#.

APPENDIX B: ENTANGLEMENT
OF FORMATION –A NUMERICAL ALGORITHM

1. Generating the random density matrix

In order to generate anN3N random density matrix we
write r5UdU† and use the product measurem5Dl3nH .
The vector of eigenvaluesd, taken according to the Dirichle
measure~4!, can be obtained from unitary random matrice
as shown in Appendix A. The unitary random rotation mat
U distributed according to the Haar measurenH is generated
by the algorithm presented in@22#. The random stater, gen-
erated according to a given product measure, may be dec
posed into a mixture ofN pure states determined by i
eigenvectors,

r5(
i 51

N

uC i&^C i u. ~B1!
ts
s,

in

-
e-

in
i-

,

m-

Note that the pure statesuC i& are not normalized to unity
but their norms are given by the eigenvaluesdi . Expansion
coefficients of each of these states are given by the elem
of the random rotation matrix, uC i&
5Adi$U1i ,U2i , . . . ,UNi%.

There exist many other possible decompositions of
stater into a mixture ofM pure states, withM>N. Let Ṽ be
a random unitary matrix of sizeM distributed according to
the Haar measure onU(M ). Let V denote a rectangular ma
trix constructed from theN first columns ofṼ. Any such
M3N matrix allows one to write a legitimate decompositio
r8 of the same stater,

r85(
i 51

M

uf i&^f i u, ~B2!

where

uf i&5 (
m51

N

VimuCm&, i 51, . . .M . ~B3!

The unitarity of the rotation matrixṼ assures the correc
normalization Trr85( i 51

M ^f i uf i&51.
Assume that the compositeN-dimensional quantum sys

tem consists of two subsystems of sizeNA andNB , such that
N5NANB . It is then convenient to represent any vectoruf i&
~of a nonzero normpi5^f i uf i&) by a complexNA3NB ma-
trix A( i ), which contains allN elements of this vector. To
describe the reduction of the stateuf i& into the second sub
system, we define anNB3NB Hermitian matrix,
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B( i ):5@A( i )#†A( i ). ~B4!

Diagonalizing it numerically we find its eigenvaluesb̃l
( i ) ,l

51,NB . Rescaling them by the norm of the statepi we get
bl

( i )5b̃l
( i )/pi , satisfying ( l 51

NB bl
( i )51. We compute the en

tropy of this partition,

EB~ uf i&):52(
l 51

NB

bl
( i ) ln bl

( i ) , ~B5!

giving the von Neuman entropy of the reduced state. T
entanglement of the stater8 with respect to the rotated de
composition~B2! is equal to the average entropy of the pu
states involved,

E~r8!5(
i 51

M

piEB~ uf i&), ~B6!

where( i 51
M pi51.

The entanglement of formationE of the stater is then
defined as a minimal valueEB(r8), where the minimum is
taken over the set of decompositionsr8 given by Eq.~B2!
@compare with the definition~12!#. The rotation matrixVo
for which the minimum is achieved is called theoptimal. Our
task is to find the optimal matrix in the space
M-dimensional unitary matrices where M5N,N
11, . . . ,N2.

We have found it interesting to also consider the gene
ized entanglement

Eq~r8!5(
i 51

M

piEq~ uf i&), ~B7!

where

Eq~ uf i&):5
1

12q
lnS (

l 51

NB

@bl
( i )#qD . ~B8!

The standard quantityEB(r) is obtained in the limit
limq→1Eq(r).

2. Search for the optimal rotation matrix

The search for the optimal rotation matrixV has to be
performed in theM2-dimensional space of unitary matrice
Starting withM5N one has to consider the 16-dimension
space in the simplest case ofN54. To obtain accurate mini
mization results in such a large space one should try to
form some more sophisticated minimization schemes; for
ample, the stimulated annealing. Fortunately, the optim
rotation matrixVo is determined up to a diagonal unita
matrix containingM arbitrary phases. Therefore, one c
hope to get reasonable results with a simple random w
moving only then, if the entanglement decreases. Perform
only the ‘‘down’’ movements in theM2-dimensional space
one has a good chance of landing close to theM-dimensional
manifold defined by optimal matrices equivalent toVo . This
corresponds to fixing the temperature to zero in the annea
scheme, and simplifies the search algorithm.
e
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x-
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g

To perform small movements in the space of unitary m
trices we will useM3M Hermitian random matricesH per-
taining to the Gaussian unitary ensemble~GUE!. They can
be constructed by independent Gaussian variables with
mean and the variance (smn

Re)25(11dmn)/M for the real
part and (smn

Im )25(12dmn)/M for the imaginary part of
each complex elementHmn5Hnm* . We generate random ma
trix H and takeW5eixH as a unitary matrix, which might be
arbitrarily close to the identity matrix. Our strategy consis
in fixing the initial anglex0, performing random movement
of this size, and then gradually decreasing the anglex.

The detailed algorithm of estimating the entanglement
formation of a givenN3N stater is listed below.

~1! Fix the numberM of the components of the decompo
sition ~B2!. Start withM5N.

~2! Generate random unitary rotation matrixV of sizeM,
which defines the decompositionr8 in Eq. ~B2!. Compute
the entanglementE5EB(r8) according to Eqs.~B5!,~B6!.

~3! Set the initial anglex5x0.
~4! Generate a randomM3M GUE matrix H and com-

puteV85V exp(ixH). Calculate the entanglementE8 for the
decompositionr8 generated byV8.

~5! If E8,E, accept the move~substituteVªV8 and E
ªE8) and continue with step~4!. Otherwise, repeat steps~4!
and ~5! I change times.

~6! Decrease the anglexªax, wherea,1.
~7! Repeat steps~4!–~6! until x,xend. Memorize the

final value of the entanglementE.
~8! RepeatLmat times steps~2!–~7! starting from a differ-

ent initial random matrixV.
~9! Memorize the valueEM , defined as the smallest o

Lmat repetitions of the above procedure.
~10! Set M5:M11 and repeat the steps~2!–~9! until

M5Mmax.
~11! Find the smallest value ofEM ,M5N, . . . ,Mmax.

This valueEmin5EM
*

gives the upper bound for the en

tanglement of formation of the mixed stater, while the size
M* of the optimal rotationV* may be considered as th
cardinality ofr.

3. Remarks on estimating the entanglement of formation

The accuracy of the above algorithm may be easily tes
for the caseN54, for which the analytical formula~15!
exists. Results mentioned in Sec. IV B, giving a mean er
of the estimation of the entanglement smaller than 1027,
were obtained with the following algorithm parameters: t
initial anglex050.3, the final anglexend50.0001, the angle
reduction coefficienta52/3, the number of iterations with
the angle fixedI change525, and the number of realization
Lmat53. Using relatively slow routines interpreted by Ma
lab on a standard laptop computer we needed a coupl
minutes to get the entanglement of any mixed stater. Al-
though we performed test searches withM54,5, . . . ,8, the
optimal rotation was always found forM5N54.

The same algorithm was used for random states withN
523458. In this case the simplest search withM5N58,
performed in 64-dimensional space, requires much m
computing time. It depends on all parameters characteriz
the algorithm; one may therefore impose an additional bo
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on the total numberI of generated random matricesV8. To
estimate the volume of the bound entangled states we
formed the above algorithm only for the states with posit
partial transpose. Setting the final angle atxend50.0002, we
obtained in a histogramP(E) a flat local minimum atEm
;0.0003. The minimum is located just to the right of t
singular peak at even smaller values ofE, corresponding to
separable states. The cumulative distributionPc

5*Em

` P(E)dE was found not to be very sensitive to th

position of the minimumEm . We could, therefore, set th
cutoff valueEc at the position of minimumEm , and interpret
the quantityPc as the relative volume of the bound entangl
states. In the computations described in Sec. IV C we t
x050.3, a52/3, I change525, andLmat55, and forM5N
58 obtained the mean number of iterations^I & of the order
53104.
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The other possibility of distinguishing the bound e
tangled states from the separable states consists in stud
the dependence of the obtained upper bound of the entan
ment E on the total numberI of iterations performed. Nu-
merical results obtained for the separable states show thE
decreases with a computation time not slower thanE(I )
5a/I . Assuming a similar effectiveness of the algorithm f
the nonseparable states~with a nonzero entanglement of for
mationEf orm), we haveE(I )5Ef orm1b/I . This allows us to
design a simple auxiliary criterion: the stater is separable if
~for all realizations of the random walk starting from th
different matricesV) for sufficiently large number of itera
tions I one hasE(I ),E(I /2)/2. If this condition is not ful-
filled, the stater can be regarded as entangled. Using t
method we obtained the estimation for the volume of bou
entangled states similar toPc .
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@1# K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenste
Phys. Rev. A58, 883 ~1998!.

@2# A. Peres, Phys. Rev. Lett.76, 1413~1996!.
@3# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett.

223, 1 ~1996!.
@4# G. Vidal and R. Tarrach, Phys. Rev. A59, 141 ~1999!.
@5# P. Slater, e-print quant-ph/9806089.
@6# P. Slater, e-print quant-ph/9810026.
@7# P. Horodecki, Phys. Lett. A232, 333 ~1997!.
@8# M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Re

Lett. 80, 5239~1998!.
@9# P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Re

Lett. 82, 1056~1999!.
@10# D. P. Di Vincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B

M. Terhal, e-print quant-ph/9808030.
@11# L. Linden and S. Popescu, Phys. Rev. A59, 137 ~1999!.
@12# C. H. Bennett, D. P. Di Vincenzo, J. Smolin, and W. K. Woo

ters, Phys. Rev. A54, 3814~1996!.
@13# S. Hill and W. K. Wootters, Phys. Rev. Lett.78, 5022~1997!.
@14# W. K. Wootters, Phys. Rev. Lett.80, 2245~1998!.
@15# R. A. Fisher, Proc. R. Soc. Edinburgh50, 205 ~1930!.
@16# P. C. Mahalonobis, Proc. Natl. Inst. Sci. India12, 49 ~1936!.
@17# B. R. Frieden,Probability, Statistical Optics and Data Testin

~Springer-Verlag, Berlin, 1991!.
@18# L. L. Cavalli-Sforza and A. W. F. Edwards, Evolutio

~Lawrence, Kans.! ~Lawrence, Kans.! 21, 550 ~1967!.
@19# B. S. Clarke, J. Am. Stat. Assoc.91, 173 ~1996!.
@20# V. Balasubramanian, Neural Comput.9, 349 ~1997!.
@21# M. L. Mehta, Random Matrices, 2nd ed. ~Academic Press,

New York, 1991!.
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