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Quantum entanglement inferred by the principle of maximum nonadditive entropy
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The problem of quantum-state inference and the concept of quantum entanglement are studied using a
nonadditive measure in the form of the Tsallis entropy indexed by the positive param&tee maximum
entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in
detail for the Einstein-Podolsky-Rosen pair of two séiparticles. Given the data on the Bell-Clauser-Horne-
Shimony-Holt observable, the analytic expression is presented for the inferred quantum entangled state. It is
shown that foilg>1, indicating the subadditive feature of the Tsallis entropy, the entangled region is small and
enlarges as one goes into the superadditive regime vefrefe It is also shown that quantum entanglement can
be quantified by the generalizélullback-Leiblep relative entropy[S1050-29479)01111-7

PACS numbds): 03.67—a, 03.65.Bz

[. INTRODUCTION straints. He also pointed out that the Lagrange multipliers
needed to specify the constraints lend themselves to a “ther-
Entanglement is a fundamental concept highlighting nonimodynamiclike” description of the system. In a recent paper
locality of quantum mechanics. It is well knowW] that the  [6], quantum entanglement has been studied in the context of
Bell inequalities, which any local hidden variable theoriesquantum-state inference using the Jaynes maximum entropy
should satisfy, can be violated by entangled states of a conprinciple. In an important special example, it was shown that
posite system described by quantum mechanics. Experimethis method yield$ake entanglement when only the data on
tal results[2] suggest that naive local realism posed by Ein-the expectation value of the Bell-Clauser-Horne-Shimony-
stein, Podolsky, and Rose[8] may not actually hold. Holt (Bell-CHSH) observabld7] is used, in that the density
Related issues arising out of the concept of quantum ermatrix so derived produces apparent entanglement. To rec-
tanglement are quantum cryptography, quantum teleportaify this, the authors of Ref[6] suggested that the Jaynes
tion, and quantum computation. To give a quantitative meainference scheme be supplemented with a procedure of mini-
sure of this concept from various physical and mathematicamization of entanglement. Quite recently, one of the present
viewpoints is one of the main thrusts of current research irauthorg 8] suggested a possible cure of this problem by aug-
this area. The status of the ongoing research can be found fanenting the data with dispersion of the Bell-CHSH observ-
example in a recent repdr]. able. It was found that the Jaynes inference scheme with this
Quantum-mechanical description of composite states iset of two independent data can correctly yield the maximum
given in terms of a Hermitian, traceclass, positive semidefientropy state with true entanglement, which is an intelligent
nite operator, the density matrip, This operator replaces state, that is, a state that saturates the uncertainty relation
the classical probability concepts in addressing the quanturbetween the data on the expectation value and the dispersion.
systems in a more general probabilistic framework. The clask was also shown how, in this example, one may interpret
sical information theory based on the Shannon entropy medhe Lagrange multipliers appearing therein as thermodynami-
sure associated with the classical probability has been suclike parameters associated with entanglement.
cessful in our understanding of signal processing and Much of this type of work involved “additivity” and
communication. Classical entanglement of a bivariate prob“concavity” of the above-mentioned entropies. For a better
ability distribution is understood in terms of the mutual en-understanding of mixed states and even states with fractal
tropy, which is always positive if the variables are correlatedbehavior, another “additive” measure, called thénRieen-
and zero if uncorrelated. The quantum counterpart of théropy[9] with the parametew, has often been invoked. This
entropic measure is the von Neumann entropy defined ihas been used to understand aspects of quantum entangle-
terms of the density matrix, which incorporates both purement and inseparability of mixed statg0—12. However,
and mixed states of a system. It is zero in the case when this entropy is not concave for all values of the parameter
state is pure, i.ep?=p, and nonzero in the case when the specifically fora>1. There are also theoretical observations
state is mixed, i.e.p?<p, the latter being the most com- [13-15 that the degree of quantum entanglement between
monly occurring feature in practice. Quantum entanglementemote systemsdefined in a certain mannemay be pre-
can occur in both cases. There has been ongoing efforts erved or decreased but cannot be increased by local opera-
describing quantitatively the concept of quantum entangletions on each system. This property analogous to the second
ment in terms of the von Neumann entropy and its variantsiaw of thermodynamics has motivated researchers to inves-
such as the Kullback-Leibler relative entropy. tigate a thermodynamiclike description of quantum en-
Jayned 5] has pioneered in developing and applying thetangled state$4,16—19. A point that seems to stand out
maximum entropy principle for inferring the states of the from the works[18,19 is thatthe measure of quantum en-
system, be it classical or quantum, with given data as contanglement may not be additive
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Philosophy of the Jaynes maximum entropy principle iscan associate a thermodynamiclike description of entangled
quite universal. It is actually free from a specific choice of anstates using the Tsallis maximum entropy ideas in this con-
entropic measure if the measure satisfies some basic propeext.
ties such as concavity. Additivity of the measure is not ab- This paper is organized as follows. In Sec. I, we apply
solutely necessary for the principle. A generalization of thethe Tsallis maximum entropy principle to statistical inference
Jaynes maximum entropy principle along with an attendanbf entangled quantum states. An analytic solution of this pro-
“thermodynamics” to “nonadditive” cases has been pro- cedure is given there. In Sec. lll, we consider the generalized
posed and widely discussed in the area of nonextensive st&ullback-Leibler entropy as a nonadditive measure of quan-
tistical mechanics. This scheme uses the Tsallis enfid@ly  tum entanglement and explicitly calculate it for the inferred

state obtained in Sec. II. In Sec. IV, we develop generalized
1 thermodynamics of the inferred state. Section V is devoted to
Sylpl= R(Tr pi-1), (1) concluding remarks.
whereq is a positive parameter and describes the degree of !l QUANTUM ENTANGLEMENT OF MAXIMUM
nonadditivity. In the limitqg— 1, this entropy converges on TSALLIS ENTROPY STATE
the von Neumann entropy:S§[p]=—Tr(p In p). The Tsallis As in Refs.[6,8], we consider the Einstein-Podolsky-
entropy shares many of the common properties with the Vojgsen pair of two spif- particles, A and B, and take the

Neumann entropy in that it is concave for all values®f  ge|l.CHSH observabld7], which is given in terms of the
unlike the Rayi entropy, it obeys théd-theorem, etc. The pgyii matrices by

additivity is modified, however. For the product stdgig
®pg, Sy satisfies the following relation: B=v2(0p® Tyt 0p,® 0,). (4)

Spa2Pel=S{pa+ Slpel + (L= ASLpalSlpel. - Inthe el basiq23

L1
The cases @q<1 andq>1 are said to be superadditive |‘D’>:5(|T>A|T>Bi|l>A|l>B),
and subadditive, respectively. The corresponding generalized
maximum entropy principle is based on the data in the form 1 ®)
S;Lhee[zcl?nstramts defined as the normalizpéxpectation [Py = E(|T>A|l>8i|l>A|T>B)a
THHIO) this operator is expressed as follows:
(=70 ) .
T B=2v2(|® ) (@ |- W) (¥ ). ®)

and the normalization condition pr=1. The resulting maxi- Its normalizedg-expectation value
mum entropy state is found to be never factorized even if the

operatorQ is the sum of two mutually commuting observ- (B)q=bq 0
ables and consequently correlation is always indu&si.
Accordingly, we may surmise that this correlation is linke
with quantum entanglement produced by the long arm of 0<b.<2v3 g
inseparability. d ' ®

The purpose of this paper is therefore to reexamine the g apply the principle of maximum Tsallis entropy to statis-
example studied in Ref$6,8] within the framework of the tjca| inference of quantum states, it is necessary to specify a
principle of maximum Tsallis entropy with two constraints get of statistical data. As in Refg], in addition to the ex-

as in Ref.[8]. We suggest here that the Tsallis entropy is apectation value, we also consider its dispersion

valid choice for this purpose by virtue of its concavity for all

values of the parameter Also, unlike the Rayi entropy, it <{32>ng§, 9)

has built into it the feature that even if the density matrix is

separable, this entropy manifests nonadditivity of the partialvhich satisfies

entropies of the individual components, while the normalized

g-expectation values defined in E(B) remain additive. It 05=<8. (10)
seems that the long arm of inseparability may be another ) ) . ] ]
feature of nonadditivity and thus lends itself, naturally as an' he reasons why we include this constraint on the dispersion
information-theoretic quantity, to investigate the propertiesare that, first,

of quantum entanglement. We investigate interplay between <0 N N B B

correlation induced by nonadditivity and quantum entangle- B*=8(|® "N "|+|¥ (¥ |) (11
ment induced by statistical inference. Moreover, the maxi- .
mum entropy principle hOIdS for the Tsa”is entropy W|th is |inear|y indeeendent @, Second, this OperatOAr ObViOUSIy
attendant thermodynamic consequences for describing nomemmutes witlB, and third, any measured data Brhave to
additive features. This allows us to examine if indeed onée accompanied with its reliability, a measure of which is

OIIies in the range
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given by the dispersion. CIearly,gz bg. On the other hand,

the Schwarz inequalit)(%}q(?z)q;()A(\?A)é, with identifica-
tions X=B, Y=B2, and observation&?=B?, Y?=8B?,
XY =8B, leads to the uncertainty relation

o5=2vaby. (12

Now, under the two constraints on the data in E@sand
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1-¢

Mq0:1+c_()\lbq+)\20€)y (19
q

1_
pge=1+ qu[)\l(bqi 2v2)+Ny(05—-8)].  (20)

Since|®FWDT|, |[@ WD, [TTNTT|, and| TNV |
are mutually orthogonal projection operators, the above den-

(9) together with the normalization condition, maximization Sity matrix is found to be

of the Tsallis entropy in Eq(1) yields the following optimal
state:

f’qAB()\ly)\Z):Z()\—l)\z)
q )

1-q 21 |n
X 1+ C_()\lbq+>\20'q) IAB
q
1-q ) Ui
——(>\15+>\252)] . (13
Cq
1-q o |
Zq(N1,\p)=Tr 1+C—q()\1bq+7\20q) I aB
1_q " " 1/(1—Q)
— o (MBHA.B) , (14)
q

wherel g is the unit operator of the composi system,

N, and\, are the Lagrange multipliers associated with the

constraints on the data, and the quantityis defined by
Cq= Tr(i)qAB)q- (19

From Egs.(13)—(15), a general identical relation follows:

1
A _ UL=a) (|~ -
PqAB(M-)\z) Zq()\la)\Z)[(MqO) (|c1> ><‘D |
HW NI+ (pg-) VTN (DT
+ () VW, (21
and accordingly

Zyhahe)=20paq0 0 (g )M

By the same consideration, the facty=Tr(pqap)? is cal-
culated to be

Ci=—— 12 YVA=D) gy HA(A=0)
q [Zq()\la)\Z)]q[ (Mqo (Mq )

+ (Mq+)q/(1_q)]-

Then, from the identical relation in E¢L6), we find another
expression foiZ,:

(23

Zg(N1,hp)= Z(Mqo)q/(l_q)+ (,u,qi)q/(l—Q)_F (Mq+)q/(l_(qz);1)

bq=(B)q ando=(B?), can also be calculated in a similar

Ca=[Zq(\ 1 AT 0. (16 W&y
In spite of the fact that the operator appearing in the curly qui[(ﬂq_)q/<l—q>_(Mq+)q/<1—q>]' (25)
brackets in Eq(13) is nothing but the sum of two mutually Zg(N1,N2)
commuting operator$® “){(®*| and | ¥ ~)(¥ |, the den- 8
sity matrix is never factorizable due to its nonexponential o= [(Mqi)q/(l—q)_l_(Mqu)q/(l—q)]. (26)

form. Thus, correlation is always induced by nonadditivity of
the formalism22]. Such correlation clearly disappears when
g—1, since in this limit Eqs(13) and(14) acquire the ordi-

q_zq(hl,)\z)

We wish to express the elements of the density matrix in

nary exponential forms obtained from the standard Jaynet§rms of the values of the dabg and ag. For this purpose,

scheme.

To manipulate the density matrix in E(L3), we use Egs.

(6) and(11) as well as the completeness relation

|<I>*><<I>*|+|<I>*><<I>*|+|‘P*><‘P*|+|‘I”><‘I"I=TA(31,
and express it in the form

1
Pgas(N1,N2)= m[ﬂqo(m)v(@i“‘ NS )

g | QNPT+ g [T NPT,
(18)

where

some algebraic manipulations are needed. From(Hjy, the
Lagrange multipliers are found to be

C

Ng=—— 3 — q_), 2

e e k) (27)
c 1 b
)\ R P B D —
2" (02-8)(1-q) 2( vz ) Hat
b

+o| 1+ = g —1 (28)

2 2V2

Also, from Egs.(25) and(26), it follows that

()" V=[£(05F 2V20g) Zg(A 1, 1) M. (29)
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Using Egs.(27)—(29) in Eq. (19), we have

(qo) "~ V=[1(8—0g)Zg(N1, M) ], (30

Substitution of Egs(29) and(30) into Eq. (22) leads to A ?6
0.
8—o2\" [ol—2v2by\ 1
(a—1D/q— q q q
(Zq) 2\ 16 ) +( 16 )
0§+2V§bq g
+ —1 | (31

Therefore, we find the following closed expression for the
density matrix:

1
PqAB™ (Zq)(q—n/q

=g

_ 2\ 14
) oy )
o] (o
U§+2\/§bq

7 16

1/q
| oy

0'5—2\/7b

q1/q
+ 45 )|~1f—><~1f-|], 32

where ¢,)@ s given in Eq.(31). In the limitq— 1, this
becomes the density matrix given in RE8]. On the other L.
hand, in the limitq—c, pysg becomes reduced to a product °.3-
state (1/4)ag=(1/4)i p® 15, Wherel, (i) is the unit op-
erator in the space of the spk(B).
The separability condition given in Ref12] states that A
the eigenvalues of the density matrix do not excéed@hat (e
is, it is sufficient for realizing entanglement if the largest
eigenvalue obeys the condition

FIG. 1. The plots of the condition in Eq33) in the domain
{0<by<2v2,07<8}: the plane z=; and z=[(0;
o2+ 2v3b. ] 1 +2v2bg)/16(Z,)% 1M with o5=2v2b, for (@) =5, (b) q=2,
123(T)q71q >>. (33 (0 g=1.5,(d) q=0.9,(¢) q=0.5, and(f) q=0.1.

é<u||back—LeibIer, and Reyi entropies have been investi-

This equation tells how quantum entanglement is induce : . >
simultaqneously by the m;ximum entropygprinciple and non_gated in the literatur€l1-15. These measures are additive

additivity of the Tsallis entropy. The content of quantum under r(_aplication(or multiplication) of the system. As dis-
entanglement in the density matrix in E@2) is best illus- cussed in Refq.18,19, however, a measure of quantum en-

trated in Fig. 1, where the condition in E(®3) is depicted tanglement may not be additive, in general. What is more

for some values ofl. The entangled region is shown as the gssenlual is the convergence of the “thermodynamic I|.m|t,_
1 in which the system degrees of freedom become arbitrarily

“island” above the “sea level’z=3. It is of interest to o .
R - large. The nonadditive approach we have developed in the
observe that fogq>1, indicating the subadditive feature of . o . X .
preceding section is based on nonextensive Tsallis statistical

the Tsallis entropy, the entangled region is small and en:

larges as one goes into the superadditive regime, where mechanics, which is known to lead to a consistent thermo-
<1g 9 P gime, dynamic framework. In this section, we consider as a nonad-

Closing this section, we wish to note that the intelli entdmve measure of quantum entanglement the generalized
state wh?ch saturates, the uncertainty relation in Ek?-)g Kullback-Leibler (KL) relative entropy associated with the
' i "y . Tsallis entropy and calculate its value for the inferred en-
does not have the element p¥F ~)(W¥ ~|. Moreover, ifb,

o tangled state given in Sec. Il.
- 2_
=2v2 (arlgutrgireforerq—S), then we see the purification of The generalized KL entropy gf with respect to the ref-

the statepgag=|P ")(® |, which is a maximally entangled & once statg’ is defined by
state. This point will be revisited in Sec. IV from the ther-

modynamic viewpoint.

1 ! ~ _ ’ ~ _ !
Kq[p.p'1= 1_q,Tr[pq P -p'N)L (39
Il. GENERALIZED KULLBACK-LEIBLER MEASURE

OF QUANTUM ENTANGLEMENT L . L .
Q which is a quantum-mechanical generalization of the classi-

To gquantitatively describe the concept of quantum en-<al definition given in Refs[24]. (See also Refl25].) This
tanglement, the entropic measures such as the von Neumarqyantity is positive semidefinite and is equal to zero if and
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only if p=p’. It measures the difference betweemndp’. peradditive and subadditive regimes is quantified<y, in
The parameteq’ is taken differently frong appearing in the  conjunction with the results exhibited in Fig. 1.

Tsallis entropy for the sake of generality. In the lingjt

—1, the generalized KL entropy becomes the ordinary KL IV. GENERALIZED THERMODYNAMICS
entropy:Kq[p,p"]—=Tr[p(In p—Inp")]. OF THE INFERRED STATE

Consider the marginal density matrices of the inferred _ o . _ .
density matrixpgag, Which are defined as follows: The discussion in Sec. Il is suitable for thermodynamic

consideration of the inferred quantum entangled state since it
pga=TrepgaB:  Pqe= TTAPqAB: (35 is developed in conformity with nonextensive Tsallis statis-
tical mechanics. In this section, we present the thermody-
where the symbol Ty (Trg) stands for the partial trace over namic Legendre transform structure and some equilibrium
the states of the spiA (B). The state is unentangled if the thermodynamic quantities constructed from the inferred
total density matrix is the product of the marginal densitystate.
matrices. Therefore the generalized KL entropy First of all, let us see that the optimal state in E2p) is

Kq'[Pgas:Pqa® Pgsl, Which is referred to as the generalized in fact the maximum Tsallis entropy stateS, of this state
mutual entropy, measures the degree of entanglement in the given by

statepgag. Note that it is invariant under the local unitary
transformations: pgag—Ua®UppgasUa®@UL.  (Though
q_

the generalized conditional entropies might also be consid- SylPqasl= {Tr[PqAB(M No)]9-1}
ered for discussing the information content given the mar-
ginal density matrices, the generalized mutual entropy con- _ 1-q_
sidered here seems to offer the most suitable measorée 1-q {[Z4(A1:02)] 1}, (43
present special example, we have

where the identical relation in Eq16) has been used. Tak-

Tra| @ W DF | =Tra| W)W (W= | =214 (36)  ing the derivatives of this entropy with respect to the
Lagrange multipliers\; and N\, and using Eqgs(19), (20),
Trg| @ WD * | =Trg| W W W= |=10,. (37  and (23)—(26), we can explicitly ascertain the maximum

Tsallis entropy condition
Using these equations in E432), we find the following

marginal density matrices: ISq[ Pgasl ISq[ Pgasl
) - TN, i TN, i 2—0. (44
pga=zlA, (38 a'%q 4%
A oo=1 39 We now note that the following relations hold for the
Pge= 2B (39 T
Lagrange multipliers:
Notably, these are independent of both the data on the Bell- . .
CHSH observable and the paramegeiThus we obtain IS4[ pgasl 3S4[ pqasl —\,. (45
- A 17 dbq A\ . 00-(21 ApA :
Paa® pqe= 31 AB- (40 Lz 12

Now, the generalized mutual entropy can immediately belhese allow us to formally define the “free energy”
calculated. The result is

)\1bq+)\20'3_8qy (46)
Kq’[f’qAB vFA)qA® f)qB]

o (g wheresS, is given in Eq.(43). From this, we obtain
1 [ (Z)¥

8 o a’/g
2( 16) Fq

N,

T 1-q 22(1=0") Fq

P

=0 (47)

:bq! )
bq,a'q

2
bq,aq

o'g— 2v2Db, a'lq
+| —— + (41

16

Uc2]+ 21/§bq) a /q} ]

16 conversely. These steps establish the Legendre transform

structure promised earlier.
WhereZq is given in Eq(31) In the particular case of the It is also of interest to examine the |imiﬂsl,)\2_>oo_
intelligent  maximally entangled pure statepfag  These limits essentially correspond to the “zero temperature
=|®*)P*| corresponding t0¢r =2v2by and by=2v2,  limit,” in which the Tsallis entropy in Eq(43) should van-
Eq. (41) is simplified to ish, that is,Z,—1. Now, from Eq.(31) with an arbitrary
L value ofq, this condition is seen to be equivalent to

1-q'

pure -

Kq’[PqAB 'Pqa® Pqsl=

(42

_22(1—q’) ’ bq—2v2, Ug—>8, (48)

which, in the limitg’ — 1, converges on the value 2 In2. We which lead to, as expected, the purification of the state
can see from Eq41) that quantum entanglement in the su- pqag— paag=|P (P |.
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V. CONCLUDING REMARKS tistical mechanics has an attractive feature. The generalized
“internal energy” defined by the normalizeg-expectation

We have studied in an example of two correlated spins thg o of the Bell-CHSH observable regarded as the “Hamil-

problem of quantum state inference using a nonadditive mege ian” satisfies additivity[21], whereas the generalized

Zl;;elylgctr;iIﬁ??n?‘fomﬁgzgrl::ig/ nrt;g%(ar\}sehﬁ;\e/epgizmgeﬁowef'ree energy” 'is nonadditive. This fact has a parallelism
guantum entanglement is induced by. the principle of maxi-Wlth an intriguing analo_gy betV\_/E_zen measures Qf entangle-
mum Tsallis entropy with the data on the Bell-CHSH observ-ment and thermodynamic quantities pointed out in REd).
able and have quantified the degree of entanglement by

means of the generalized Kullback-Leibler entropy. We have ACKNOWLEDGMENTS
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