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Quantum entanglement inferred by the principle of maximum nonadditive entropy
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The problem of quantum-state inference and the concept of quantum entanglement are studied using a
nonadditive measure in the form of the Tsallis entropy indexed by the positive parameterq. The maximum
entropy principle associated with this entropy along with its thermodynamic interpretation are discussed in
detail for the Einstein-Podolsky-Rosen pair of two spin-1

2 particles. Given the data on the Bell-Clauser-Horne-
Shimony-Holt observable, the analytic expression is presented for the inferred quantum entangled state. It is
shown that forq.1, indicating the subadditive feature of the Tsallis entropy, the entangled region is small and
enlarges as one goes into the superadditive regime whereq,1. It is also shown that quantum entanglement can
be quantified by the generalized~Kullback-Leibler! relative entropy.@S1050-2947~99!01111-7#

PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

Entanglement is a fundamental concept highlighting n
locality of quantum mechanics. It is well known@1# that the
Bell inequalities, which any local hidden variable theori
should satisfy, can be violated by entangled states of a c
posite system described by quantum mechanics. Experim
tal results@2# suggest that naive local realism posed by E
stein, Podolsky, and Rosen@3# may not actually hold.
Related issues arising out of the concept of quantum
tanglement are quantum cryptography, quantum telepo
tion, and quantum computation. To give a quantitative m
sure of this concept from various physical and mathemat
viewpoints is one of the main thrusts of current research
this area. The status of the ongoing research can be foun
example in a recent report@4#.

Quantum-mechanical description of composite state
given in terms of a Hermitian, traceclass, positive semid
nite operator, the density matrix,r̂. This operator replace
the classical probability concepts in addressing the quan
systems in a more general probabilistic framework. The c
sical information theory based on the Shannon entropy m
sure associated with the classical probability has been
cessful in our understanding of signal processing a
communication. Classical entanglement of a bivariate pr
ability distribution is understood in terms of the mutual e
tropy, which is always positive if the variables are correla
and zero if uncorrelated. The quantum counterpart of
entropic measure is the von Neumann entropy defined
terms of the density matrix, which incorporates both pu
and mixed states of a system. It is zero in the case when
state is pure, i.e.,r̂25 r̂, and nonzero in the case when th
state is mixed, i.e.,r̂2, r̂, the latter being the most com
monly occurring feature in practice. Quantum entanglem
can occur in both cases. There has been ongoing effor
describing quantitatively the concept of quantum entang
ment in terms of the von Neumann entropy and its varia
such as the Kullback-Leibler relative entropy.

Jaynes@5# has pioneered in developing and applying t
maximum entropy principle for inferring the states of t
system, be it classical or quantum, with given data as c
PRA 601050-2947/99/60~5!/3461~6!/$15.00
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straints. He also pointed out that the Lagrange multipli
needed to specify the constraints lend themselves to a ‘‘t
modynamiclike’’ description of the system. In a recent pap
@6#, quantum entanglement has been studied in the conte
quantum-state inference using the Jaynes maximum ent
principle. In an important special example, it was shown t
this method yieldsfakeentanglement when only the data o
the expectation value of the Bell–Clauser-Horne-Shimo
Holt ~Bell-CHSH! observable@7# is used, in that the density
matrix so derived produces apparent entanglement. To
tify this, the authors of Ref.@6# suggested that the Jayne
inference scheme be supplemented with a procedure of m
mization of entanglement. Quite recently, one of the pres
authors@8# suggested a possible cure of this problem by a
menting the data with dispersion of the Bell-CHSH obse
able. It was found that the Jaynes inference scheme with
set of two independent data can correctly yield the maxim
entropy state with true entanglement, which is an intellig
state, that is, a state that saturates the uncertainty rela
between the data on the expectation value and the disper
It was also shown how, in this example, one may interp
the Lagrange multipliers appearing therein as thermodyna
clike parameters associated with entanglement.

Much of this type of work involved ‘‘additivity’’ and
‘‘concavity’’ of the above-mentioned entropies. For a bet
understanding of mixed states and even states with fra
behavior, another ‘‘additive’’ measure, called the Re´nyi en-
tropy @9# with the parametera, has often been invoked. Thi
has been used to understand aspects of quantum enta
ment and inseparability of mixed states@10–12#. However,
this entropy is not concave for all values of the parametea,
specifically fora.1. There are also theoretical observatio
@13–15# that the degree of quantum entanglement betw
remote systems~defined in a certain manner! may be pre-
served or decreased but cannot be increased by local op
tions on each system. This property analogous to the sec
law of thermodynamics has motivated researchers to inv
tigate a thermodynamiclike description of quantum e
tangled states@4,16–19#. A point that seems to stand ou
from the works@18,19# is that the measure of quantum en
tanglement may not be additive.
3461 ©1999 The American Physical Society
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Philosophy of the Jaynes maximum entropy principle
quite universal. It is actually free from a specific choice of
entropic measure if the measure satisfies some basic pro
ties such as concavity. Additivity of the measure is not a
solutely necessary for the principle. A generalization of
Jaynes maximum entropy principle along with an attend
‘‘thermodynamics’’ to ‘‘nonadditive’’ cases has been pr
posed and widely discussed in the area of nonextensive
tistical mechanics. This scheme uses the Tsallis entropy@20#:

Sq@ r̂#5
1

12q
~Tr r̂q21!, ~1!

whereq is a positive parameter and describes the degre
nonadditivity. In the limitq→1, this entropy converges o
the von Neumann entropy:S@ r̂#52Tr( r̂ ln r̂). The Tsallis
entropy shares many of the common properties with the
Neumann entropy in that it is concave for all values ofq,
unlike the Re´nyi entropy, it obeys theH-theorem, etc. The
additivity is modified, however. For the product stater̂A
^ r̂B , Sq satisfies the following relation:

Sq@ r̂A^ r̂B#5Sq@ r̂A#1Sq@ r̂B#1~12q!Sq@ r̂A#Sq@ r̂B#.
~2!

The cases 0,q,1 and q.1 are said to be superadditiv
and subadditive, respectively. The corresponding general
maximum entropy principle is based on the data in the fo
of the constraints defined as the normalizedq-expectation
value @21#

^Q̂&q5
Tr~ r̂qQ̂!

Tr~ r̂q!
~3!

and the normalization condition Trr̂51. The resulting maxi-
mum entropy state is found to be never factorized even if
operatorQ̂ is the sum of two mutually commuting obser
ables and consequently correlation is always induced@22#.
Accordingly, we may surmise that this correlation is link
with quantum entanglement produced by the long arm
inseparability.

The purpose of this paper is therefore to reexamine
example studied in Refs.@6,8# within the framework of the
principle of maximum Tsallis entropy with two constrain
as in Ref.@8#. We suggest here that the Tsallis entropy is
valid choice for this purpose by virtue of its concavity for a
values of the parameterq. Also, unlike the Re´nyi entropy, it
has built into it the feature that even if the density matrix
separable, this entropy manifests nonadditivity of the par
entropies of the individual components, while the normaliz
q-expectation values defined in Eq.~3! remain additive. It
seems that the long arm of inseparability may be ano
feature of nonadditivity and thus lends itself, naturally as
information-theoretic quantity, to investigate the propert
of quantum entanglement. We investigate interplay betw
correlation induced by nonadditivity and quantum entang
ment induced by statistical inference. Moreover, the ma
mum entropy principle holds for the Tsallis entropy wi
attendant thermodynamic consequences for describing
additive features. This allows us to examine if indeed o
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can associate a thermodynamiclike description of entang
states using the Tsallis maximum entropy ideas in this c
text.

This paper is organized as follows. In Sec. II, we app
the Tsallis maximum entropy principle to statistical inferen
of entangled quantum states. An analytic solution of this p
cedure is given there. In Sec. III, we consider the generali
Kullback-Leibler entropy as a nonadditive measure of qu
tum entanglement and explicitly calculate it for the inferr
state obtained in Sec. II. In Sec. IV, we develop generali
thermodynamics of the inferred state. Section V is devote
concluding remarks.

II. QUANTUM ENTANGLEMENT OF MAXIMUM
TSALLIS ENTROPY STATE

As in Refs. @6,8#, we consider the Einstein-Podolsky
Rosen pair of two spin-1

2 particles,A and B, and take the
Bell-CHSH observable@7#, which is given in terms of the
Pauli matrices by

B̂5&~sAx^ sBx1sAz^ sBz!. ~4!

In the Bell basis@23#

uF6&5
1

&
~ u↑&Au↑&B6u↓&Au↓&B),

~5!

uC6&5
1

&
~ u↑&Au↓&B6u↓&Au↑&B),

this operator is expressed as follows:

B̂52&~ uF1&^F1u2uC2&^C2u!. ~6!

Its normalizedq-expectation value

^B̂&q5bq ~7!

lies in the range

0<bq<2&. ~8!

To apply the principle of maximum Tsallis entropy to stat
tical inference of quantum states, it is necessary to speci
set of statistical data. As in Ref.@8#, in addition to the ex-
pectation value, we also consider its dispersion

^B̂2&q5sq
2, ~9!

which satisfies

sq
2<8. ~10!

The reasons why we include this constraint on the dispers
are that, first,

B̂258~ uF1&^F1u1uC2&^C2u! ~11!

is linearly independent ofB̂, second, this operator obviousl
commutes withB̂, and third, any measured data onB̂ have to
be accompanied with its reliability, a measure of which
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given by the dispersion. Clearly,sq
2>bq

2. On the other hand

the Schwarz inequality,̂X̂2&q^Ŷ
2&q>^X̂Ŷ&q

2, with identifica-

tions X̂5B̂, Ŷ5B̂2, and observationsX̂25B̂2, Ŷ258B̂2,
X̂Ŷ58B̂, leads to the uncertainty relation

sq
2>2&bq . ~12!

Now, under the two constraints on the data in Eqs.~7! and
~9! together with the normalization condition, maximizatio
of the Tsallis entropy in Eq.~1! yields the following optimal
state:

r̂qAB~l1 ,l2!5
1

Zq~l1 ,l2!

3H F11
12q

cq
~l1bq1l2sq

2!G Î AB

2
12q

cq
~l1B̂1l2B̂2!J 1/~12q!

, ~13!

Zq~l1 ,l2!5TrH F11
12q

cq
~l1bq1l2sq

2!G Î AB

2
12q

cq
~l1B̂1l2B̂2!J 1/~12q!

, ~14!

where Î AB is the unit operator of the compositeAB system,
l1 and l2 are the Lagrange multipliers associated with t
constraints on the data, and the quantitycq is defined by

cq5Tr~ r̂qAB!q. ~15!

From Eqs.~13!–~15!, a general identical relation follows:

cq5@Zq~l1 ,l2!#12q. ~16!

In spite of the fact that the operator appearing in the cu
brackets in Eq.~13! is nothing but the sum of two mutuall
commuting operatorsuF1&^F1u and uC2&^C2u, the den-
sity matrix is never factorizable due to its nonexponen
form. Thus, correlation is always induced by nonadditivity
the formalism@22#. Such correlation clearly disappears wh
q→1, since in this limit Eqs.~13! and~14! acquire the ordi-
nary exponential forms obtained from the standard Jay
scheme.

To manipulate the density matrix in Eq.~13!, we use Eqs.
~6! and ~11! as well as the completeness relation

uF1&^F1u1uF2&^F2u1uC1&^C1u1uC2&^C2u5 Î AB ,
~17!

and express it in the form

r̂qAB~l1 ,l2!5
1

Zq~l1 ,l2!
@mq0~ uF2&^F2u1uC1&^C1u!

1mq2uF1&^F1u1mq1uC2&^C2u#1/~12q!,

~18!

where
y

l
f

es

mq0511
12q

cq
~l1bq1l2sq

2!, ~19!

mq6511
12q

cq
@l1~bq62& !1l2~sq

228!#. ~20!

Since uF1&^F1u, uF2&^F2u, uC1&^C1u, and uC2&^C2u
are mutually orthogonal projection operators, the above d
sity matrix is found to be

r̂qAB~l1 ,l2!5
1

Zq~l1 ,l2!
@~mq0!1/~12q!~ uF2&^F2u

1uC1&^C1u!1~mq2!1/~12q!uF1&^F1u

1~mq1!1/~12q!uC2&^C2u#, ~21!

and accordingly

Zq~l1 ,l2!52~mq0!1/~12q!1~mq2!1/~12q!1~mq1!1/~12q!.
~22!

By the same consideration, the factorcq5Tr( r̂qAB)q is cal-
culated to be

cq5
1

@Zq~l1 ,l2!#q @2~mq0!q/~12q!1~mq2!q/~12q!

1~mq1!q/~12q!#. ~23!

Then, from the identical relation in Eq.~16!, we find another
expression forZq :

Zq~l1 ,l2!52~mq0!q/~12q!1~mq2!q/~12q!1~mq1!q/~12q!.
~24!

bq5^B̂&q andsq
25^B̂2&q can also be calculated in a simila

way:

bq5
2&

Zq~l1 ,l2!
@~mq2!q/~12q!2~mq1!q/~12q!#, ~25!

sq
25

8

Zq~l1 ,l2!
@~mq2!q/~12q!1~mq1!q/~12q!#. ~26!

We wish to express the elements of the density matrix
terms of the values of the databq andsq

2. For this purpose,
some algebraic manipulations are needed. From Eq.~20!, the
Lagrange multipliers are found to be

l15
cq

4&~12q!
~mq12mq2!, ~27!

l25
cq

~sq
228!~12q! F1

2 S 12
bq

2&
D mq1

1
1

2 S 11
bq

2&
D mq221G . ~28!

Also, from Eqs.~25! and ~26!, it follows that

~mq6!1/~12q!5@ 1
16 ~sq

272&bq!Zq~l1 ,l2!#1/q. ~29!
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Using Eqs.~27!–~29! in Eq. ~19!, we have

~mq0!1/~12q!5@ 1
16 ~82sq

2!Zq~l1 ,l2!#1/q. ~30!

Substitution of Eqs.~29! and ~30! into Eq. ~22! leads to

~Zq!~q21!/q52S 82sq
2

16 D 1/q

1S sq
222&bq

16 D 1/q

1S sq
212&bq

16 D 1/q

. ~31!

Therefore, we find the following closed expression for t
density matrix:

r̂qAB5
1

~Zq!~q21!/q F S 82sq
2

16 D 1/q

~ uF2&^F2u1uC1&^C1u!

1S sq
212&bq

16 D 1/q

uF1&^F1u

1S sq
222&bq

16 D 1/q

uC2&^C2u#, ~32!

where (Zq)(q21)/q is given in Eq.~31!. In the limit q→1, this
becomes the density matrix given in Ref.@8#. On the other
hand, in the limitq→`, r̂qAB becomes reduced to a produ
state (1/4)Î AB[(1/4)Î A^ Î B , where Î A ( Î B) is the unit op-
erator in the space of the spinA ~B!.

The separability condition given in Ref.@12# states that
the eigenvalues of the density matrix do not exceed1

2. That
is, it is sufficient for realizing entanglement if the large
eigenvalue obeys the condition

Fsq
212&bq

16~Zq!q21 G1/q

.
1

2
. ~33!

This equation tells how quantum entanglement is indu
simultaneously by the maximum entropy principle and no
additivity of the Tsallis entropy. The content of quantu
entanglement in the density matrix in Eq.~32! is best illus-
trated in Fig. 1, where the condition in Eq.~33! is depicted
for some values ofq. The entangled region is shown as t
‘‘island’’ above the ‘‘sea level’’ z5 1

2 . It is of interest to
observe that forq.1, indicating the subadditive feature o
the Tsallis entropy, the entangled region is small and
larges as one goes into the superadditive regime, wheq
,1.

Closing this section, we wish to note that the intellige
state, which saturates the uncertainty relation in Eq.~12!,
does not have the element ofuC2&^C2u. Moreover, if bq

52& ~and thereforesq
258), then we see the purification o

the state:r̂qAB
pure5uF1&^F1u, which is a maximally entangled

state. This point will be revisited in Sec. IV from the the
modynamic viewpoint.

III. GENERALIZED KULLBACK-LEIBLER MEASURE
OF QUANTUM ENTANGLEMENT

To quantitatively describe the concept of quantum
tanglement, the entropic measures such as the von Neum
t

d
-

-

t

-
nn,

Kullback-Leibler, and Re´nyi entropies have been investi
gated in the literature@11–15#. These measures are additiv
under replication~or multiplication! of the system. As dis-
cussed in Refs.@18,19#, however, a measure of quantum en
tanglement may not be additive, in general. What is mo
essential is the convergence of the ‘‘thermodynamic limit
in which the system degrees of freedom become arbitrar
large. The nonadditive approach we have developed in
preceding section is based on nonextensive Tsallis statist
mechanics, which is known to lead to a consistent therm
dynamic framework. In this section, we consider as a nona
ditive measure of quantum entanglement the generaliz
Kullback-Leibler ~KL ! relative entropy associated with the
Tsallis entropy and calculate its value for the inferred e
tangled state given in Sec. II.

The generalized KL entropy ofr̂ with respect to the ref-
erence stater̂8 is defined by

Kq8@ r̂,r̂8#5
1

12q8
Tr@ r̂q8~ r̂12q82 r̂812q8!#, ~34!

which is a quantum-mechanical generalization of the clas
cal definition given in Refs.@24#. ~See also Ref.@25#.! This
quantity is positive semidefinite and is equal to zero if an

FIG. 1. The plots of the condition in Eq.~33! in the domain
$0<bq<2&,sq

2<8%: the plane z5
1
2 and z5@(sq

2

12&bq)/16(Zq)q21#1/q with sq
2>2&bq for ~a! q55, ~b! q52,

~c! q51.5, ~d! q50.9, ~e! q50.5, and~f! q50.1.
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only if r̂5 r̂8. It measures the difference betweenr̂ and r̂8.
The parameterq8 is taken differently fromq appearing in the
Tsallis entropy for the sake of generality. In the limitq8
→1, the generalized KL entropy becomes the ordinary
entropy:Kq8@ r̂,r̂8#→Tr@ r̂(ln r̂2ln r̂8)#.

Consider the marginal density matrices of the inferr
density matrixr̂qAB , which are defined as follows:

r̂qA5TrBr̂qAB , r̂qB5TrAr̂qAB , ~35!

where the symbol TrA (TrB) stands for the partial trace ove
the states of the spinA ~B!. The state is unentangled if th
total density matrix is the product of the marginal dens
matrices. Therefore the generalized KL entro
Kq8@ r̂qAB ,r̂qA^ r̂qB#, which is referred to as the generalize
mutual entropy, measures the degree of entanglement in
stater̂qAB . Note that it is invariant under the local unitar
transformations: r̂qAB→ÛA^ ÛBr̂qABÛA

†
^ ÛB

† . ~Though
the generalized conditional entropies might also be con
ered for discussing the information content given the m
ginal density matrices, the generalized mutual entropy c
sidered here seems to offer the most suitable measure.! In the
present special example, we have

TrAuF6&^F6u5TrAuC6&^C6u5 1
2 Î B , ~36!

TrBuF6&^F6u5TrBuC6&^C6u5 1
2 Î A . ~37!

Using these equations in Eq.~32!, we find the following
marginal density matrices:

r̂qA5 1
2 Î A , ~38!

r̂qB5 1
2 Î B . ~39!

Notably, these are independent of both the data on the B
CHSH observable and the parameterq. Thus we obtain

r̂qA^ r̂qB5 1
4 Î AB . ~40!

Now, the generalized mutual entropy can immediately
calculated. The result is

Kq8@ r̂qAB ,r̂qA^ r̂qB#

5
1

12q8 H 12
~Zq!q8~12q!/q

22~12q8!
F2S 82sq

2

16 D q8/q

1S sq
222&bq

16 D q8/q

1S sq
212&bq

16 D q8/qG J , ~41!

whereZq is given in Eq.~31!. In the particular case of the
intelligent maximally entangled pure stater̂qAB

pure

5uF1&^F1u corresponding tosq
252&bq and bq52&,

Eq. ~41! is simplified to

Kq8@ r̂qAB
pure ,r̂qA^ r̂qB#5

1

12q8 F12
1

22~12q8!G , ~42!

which, in the limitq8→1, converges on the value 2 ln 2. W
can see from Eq.~41! that quantum entanglement in the s
d

he

d-
r-
n-

ll-

e

peradditive and subadditive regimes is quantified byKq8 , in
conjunction with the results exhibited in Fig. 1.

IV. GENERALIZED THERMODYNAMICS
OF THE INFERRED STATE

The discussion in Sec. II is suitable for thermodynam
consideration of the inferred quantum entangled state sin
is developed in conformity with nonextensive Tsallis stat
tical mechanics. In this section, we present the thermo
namic Legendre transform structure and some equilibri
thermodynamic quantities constructed from the inferr
state.

First of all, let us see that the optimal state in Eq.~32! is
in fact the maximum Tsallis entropy state.Sq of this state
is given by

Sq@ r̂qAB#5
1

12q
$Tr@ r̂qAB~l1 ,l2!#q21%

5
1

12q
$@Zq~l1 ,l2!#12q21%, ~43!

where the identical relation in Eq.~16! has been used. Tak
ing the derivatives of this entropy with respect to t
Lagrange multipliersl1 and l2 and using Eqs.~19!, ~20!,
and ~23!–~26!, we can explicitly ascertain the maximum
Tsallis entropy condition

]Sq@ r̂qAB#

]l1
U

bq ,s
q
2
5

]Sq@ r̂qAB#

]l2
U

bq ,s
q
2
50. ~44!

We now note that the following relations hold for th
Lagrange multipliers:

]Sq@ r̂qAB#

]bq
U

l1 ,l2

5l1 ,
]Sq@ r̂qAB#

]sq
2 U

l1 ,l2

5l2 . ~45!

These allow us to formally define the ‘‘free energy’’

Fq5l1bq1l2sq
22Sq , ~46!

whereSq is given in Eq.~43!. From this, we obtain

]Fq

]l1
U

bq ,s
q
2
5bq ,

]Fq

]l2
U

bq ,s
q
2
5sq

2, ~47!

conversely. These steps establish the Legendre trans
structure promised earlier.

It is also of interest to examine the limitsl1 ,l2→`.
These limits essentially correspond to the ‘‘zero temperat
limit,’’ in which the Tsallis entropy in Eq.~43! should van-
ish, that is,Zq→1. Now, from Eq.~31! with an arbitrary
value ofq, this condition is seen to be equivalent to

bq→2&, sq
2→8, ~48!

which lead to, as expected, the purification of the st
r̂qAB→ r̂qAB

pure5uF1&^F1u.
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V. CONCLUDING REMARKS

We have studied in an example of two correlated spins
problem of quantum state inference using a nonadditive m
sure in the form of the Tsallis entropy and have presented
analytic solution for the density matrix. We have shown h
quantum entanglement is induced by the principle of ma
mum Tsallis entropy with the data on the Bell-CHSH obse
able and have quantified the degree of entanglemen
means of the generalized Kullback-Leibler entropy. We ha
found that strong nonadditivity enhances entanglement in
superadditive regime. We have also given a thermodyna
interpretation to the inferred quantum entangled state.

The present approach based on nonextensive Tsallis
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tistical mechanics has an attractive feature. The general
‘‘internal energy’’ defined by the normalizedq-expectation
value of the Bell-CHSH observable regarded as the ‘‘Ham
tonian’’ satisfies additivity@21#, whereas the generalize
‘‘free energy’’ is nonadditive. This fact has a parallelis
with an intriguing analogy between measures of entang
ment and thermodynamic quantities pointed out in Ref.@19#.
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