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Reflection and transmission in a neutron-spin test of the quantum Zeno effect
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The dynamics of a quantum system undergoing frequent “measurements,” leading to the so-called quantum
Zeno effect, is examined on the basis of a neutron-spin experiment recently proposed for its demonstration.
Unlike in all previous studies, the spatial degrees of freedom of the neutron are duly taken into account. Their
inclusion in the analysis is important for two reasons: first, neutron-reflection effects are shown to be very
important; second, the evolution may turn out to be totally different from the ideal case. Our results can be
interpreted in terms of a rigorous theorem due to Misra and Sudarshan: indeed we clarify that, in contrast with
a widespread belief, a quantum Zeno effect does not halt the evolution of a quantum system; it rather modifies
it, by forcing the system to remain in a certain subspace, defined by the very measurement performed.
[S1050-294{@9)00811-3

PACS numbd(s): 03.65.Bz, 03.65.Nk, 03.75.Be

[. INTRODUCTION essarily hinder the evolution of the quantum system. On the
contrary, the system can evolve away from its initial state,
A quantum system, prepared in a state that does not bgrovided it remains in the subspace defined by the “mea-
long to an eigenvalue of the total Hamiltonian, starts tosurement” itself. This interesting feature is readily under-
evolve quadratically in tim¢l,2]. This characteristic behav- standable in terms of rigorous theorefi3, but it seems to
ior leads to the so-called quantum Zeno phenomenonys that it is worth clarifying it by analyzing interesting physi-
namely the possibility of slowing down the temporal evolu-cal examples. We shall therefore focus our attention on an
tion (eventually hindering transitions to states different fromexperiment involving neutron spif8] and shall see that in
the initial one [3]. fact this enables us to accomplish two goals: not only will
The original proposals that aimed at verifying this effectthe state of the neutron undergoing QZEange but it will
involved unstable systems and were not amenable to experio so in a way that clarifies why reflection effects may play
mental testing4]. However, the remarkable id¢8] to use a a substantial role in the experiment analyzed.
two-level system motivated an interesting experimental test In the neutron-spin example to be considered, the evolu-
[6], revitalizing a debate on the physical meaning of thistion of the spin state is hindered when a series of spectral
phenomenor7,8]. There seem to be a certain consensusdecompositiongin Wigner's sens¢12)) is performed on the
nowadays, that the quantum Zeno eff@@ZE) can be given spin state. No “observation” of the spin states, and therefore
a dynamical explanation, involving only an explicit Hamil- no projection in the manner of von Neumann, is required, as
tonian dynamics. far as the different branch waves of the wave function cannot
It is worth emphasizing that the discussion of the past fewinterfere after the spectral decomposition. Needless to say,
years mostly stemmed from experimental considerations, rehe analysis that follows could be performed in terms of a
lated to thepractical possibility of performing experimental Hamiltonian dynamics, without making use of projection op-
tests. Some examples are the interesting issue afrators. However, we shall use in this paper the von Neu-
“interaction-free” measurementf9] and the neutron-spin mann technique, which will be found convenient because it
tests of the QZHE8,10]. In practical cases, one cannot neglectsheds light on some remarkable aspects of the Zeno phenom-
the presence of losses and imperfections, which obviouslgnon and helps to pin down the physical implications of
conspire against an almost-ideal experimental realizatiorsome mathematical hypotheses with relatively fewer efforts.
more so when the total number of “measurements” in- The paper is organized as follows. We briefly review, in
creases above certain theoretical limits. the next section, the seminal theorem for the short-time dy-
The aim of the present paper is to investigate an interestaamics of quantum systems, proved by Misra and Sudarshan
ing (and often overlookedeature of what we might call the [2]. Its application to the neutron-spin case is discussed in
guantum Zeno dynamics. We shall see that a series of “me&Bec. Ill. In Secs. IV and V, unlike in previous pap@dsl10|,
surements”(von Neumann’s projectiond 1]) does not nec- we shall incorporate the spati@ne-dimensional, for sim-
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plicity) degrees of freedom of the neutron and represent them PMN)(T) =Tr[VN(T)poVL(T)]. (7)
by an additional quantum number that labels, roughly speak-
ing, the direction of motion of the wave packet. A more Equations(6) and (7) display the “quantum Zeno effect”:
realistic analysis is presented in Sec. VI. Finally, Sec. VIl isrepeated observations in succession modify the dynamics of
devoted to a discussion. Some additional aspects of ouhe quantum system; under general conditiond) i suffi-
analysis are clarified in the Appendix. ciently large, all transitions outsidg are inhibited.
In order to consider th&l— oo limit (“continuous obser-
Il. MISRA AND SUDARSHAN’'S THEOREM vation”), one needs some mathematical requirements: define

Consider a quantum syste@) whose states belong to the W(T)= lim V(T), (8)
Hilbert spaceH and whose evolution is described by the N0
unitary operatorU(t)=exp(—iHt), where H is a semi-
bounded Hamiltonian. LeE be a projection operator and provided the above limit exists in the strong sense. The final
EHE =", the subspace spanned by its eigenstates. The infitate ofQ is then
tial density matrixp, of systemQ is taken to belong tG+¢ . -
If Q is let to follow its “undisturbed” evolution, under the p(T)=WT)poVT(T) 9
action of the HamiltoniarH (i.e., no measurements are per-
formed in order to get informations about its quantum $tate
the final state at tim@ reads

and the probability to find the system g is

P(T)= lim PN(T)=T W(T)poVT(T)]. (10)
p(T)=U(T)poU'(T) (1) N
One should carefully notice that nothing is said about the

final statep(T), which depends on the characteristics of the
P(T)=Tr{U(T)poUT(T)E]. (20 model investigated and on theery measurement performed
(i.e., on the projection operatd, which enters in the defi-

We call this a “survival _prob_abili_ty”: itisin gene_zral smaller pition of V). Misra and Sudarshan assumed, on physical
than 1, since the HamiltoniaH induces transitions out of grounds, the strong continuity of(t),

‘He . We shall say that the quantum system has “survived”
if it is found to be inHg by means of a suitable measurement lim W(t)=E, (11
procesq13]. t.ot
Assume that we perform a measurement at tinie order
to check whetheQ has survived. Such a measurement isand proved that under general conditions the operaftr3

formally represented by the projection operaforBy defi-  exist for all realT and form a semigroup labeled by the time
nition, parameter T. Moreover, VI(T)=V(-T), so that

VI(T)W(T)=E. This implies, by Eq(3), that

and the probability that the system is still’Hg at timeT is

po=EpoE, TrpoE]=1. 3
PT)=TrlpoV (TIUT)]=TH{ poE]=1. (12)
After the measurement, the state@fchanges into
If the particle is “continuously” observed, in order to check
po—p(H)=EU(t)poUT(DE, (4 whether it has survived insid&{g, it will never make a
transition toH—Hg . This is the “quantum Zeno paradox.”
An important remark is now in order: the theorem just
summarizeddoes notstate that the systememainsin its
initial state after the series of very frequent measurements.

This is the probability that the system has survivgthere — Rather, the system is left in the subspdde, instead of

is, of course, a probability 4P that the system has not €volving “naturally” in the total Hilbert space}. This
survived (i.e., it has made a transition outsidte) and its ~ Subtle point, implied by Eqgs(9)—(12), is often not duly
state has changed info’ (t)=(1—E)U(t)poUT(t)(1—E).  stressed in the literature.

Henceforth we concentrate our attention on the measurement Notice also the conceptual gap between Egsand(10):
outcome(4) and(5).] The above is the standard CopenhagenTO perform an experlm_ent W|_tN f|n|§e is only a practical
interpretation: The measurement is considered to be instafyoblem, from the physical point of view. On the other hand,
taneous. The “quantum Zeno paradof?] is the following. ~ the N—c case is physically unattainable, and is rather to be
We prepareQ in the initial statep,, at time 0 and perform a regarded as a mathematical lint@ithough a very interesting

with

P(t)=Tr[U(t)poUT(t)E]. (5

series of E observations at times,=kT/N(k=1, ... N). one. In this paper, we shall not be concerned with this prob-
reads N— oo limit for simplicity. This will make the analysis more
transparent.
p™M(T)=VN(T)poVI(T),  Vn(T)=[EU(T/N)E]",
(6) . QUANTUM ZENO EFFECT WITH NEUTRON SPIN
and the probability to find the systemhfi (“survival prob- The example we consider is a neutron spin in a magnetic

ability” ) is given by field [8]. (A photon analog was first outlined by Peifdsl].)
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| ﬂ W |m| | M setup described in Fig.(d) is equivalent to the situation

where a magnetic fiel® is contained in a single region of
B B B 0 space.
B (a) Let us now modify the experiment just described by in-
l serting at every step a device able to select and detect one

5 componenfsay the down [) ong] of the neutron spin. This

z

y
D, D, can be accomplished by a magnetic mirkbrand a detector
(] D. The former acts as a “decomposer,” by splitting a neu-
}' D, tron wave with indefinite spitia superposed state of up and
! | *lml {7 down spin$ into two branch waves each of which is in a
M M M definite spin statéup or down) along thez axis. The down
B B B (®) state is then forwarded to a detector, as shown in Rig). 1

|
E

The magnetic mirror yields a spectral decompositjdZ]
a‘ﬁ’ith respect to the spin states, and can be compared to the
Inhomogeneous magnetic field in a typical Stern-Gerlach ex-

FIG. 1. (a) Evolution of the neutron spin under the action of a
magnetic field. An emitter sends a spin-up neutron through sever
regions where a magnetic fieRlis present. The detectdr, detects

a spin-down neutron: No Zeno effect occufs) Quantum Zeno periment. L . .
effect: the neutron spin is “monitored” at every step, by selecting We choose the same initial state fQras in the previous

and detecting the spin-down componedt, detects a spin-up neu- experiment Fig. 1(@)]. The action ofM +D is represented
tron. by the operatoE=p,,; [remember that we follow the evo-

lution along the horizontal direction, i.e., the direction the
We shall consider two different experiments: Refer to FigsSPin-up neutron travels, in Fig(l)], so that if the process is
1(a) and 1b). In the case schematized in Figal, the neu- repeated\ times, as in Fig. (), we obtain
tron interacts with several identical regions in which there is ot N
a static magnetic fiel®, oriented along the direction. We pMN(T)=V(T)poVi(T)= ( co§—) Pr1
neglect here any losses and assume that the interaction is 2
given by the Hamiltonian

T N
H=puBoy, 13) :(Cogm) Pt 17

u being the(modulus of thg neutron magnetic moment, and Where the “matching” condition forT =Nt [see Eq.(15)]

o (i=1,2,3) the Pauli matrices. We denote the spin states dras been required again. The probability that the neutron

the neutron along the axis by|1) and|]). spin is up at timeT, if N observations have been made at
Let the initial neutron state bgy=p;,=|1)(1|. The in-  time intervalst (Nt=T), is

teraction with the magnetic field provokes a rotation of the -

spin around thex direction. After crossing the whole setup, P(TN)(T)=<cos°-—

the final density matrix reads 2N

N
(18)

. . oT oT This discloses the occurrence of a QZE: IndeBdl))(T)
p(T)Ee"HTpoe'HT=co§7pﬁ+sin27pu >P{N"I(T) for N>2, so that the evolution is “slowed
down” as N increases. Moreover, in the limit of infinitely
many observations,

i
—ESII'](UT([)H_PH), (14)
N—x
N(T) — p(T)= 19
wherew=2uB andT is the total time spent in thB field. P = p(D=pp (19
Notice that the free evolution is neglect@hd so are reflec- znd
tion effects, wave-packet spreading, gttf. T is chosen so as
to satisfy the “matching” condition coeT/2=0, we obtain Pi(T)= lim PN (T)=1. (20)
N—oo
p(M)=p, (T:(2m+ 1)2, me N) , (15)  Frequent observations “freeze” the neutron spin in its initial
@ state, by inhibiting N=2) and eventually hinderingN

—) transitions to other states. Notice the difference from

S0 that the probability that the neutron spin is down at time Egs. (15) and (16): The situation is completely reversed.

IS

IV. SPATIAL DEGREES OF FREEDOM

P (T)=1 T=(2m+1)g, meN). (16)

In the analysis of the preceding section only the spin de-
grees of freedom were taken into account. No losses were
The above two equations correspond to Ed$.and(2). In  considered, even though their importance was already men-
our exampleH is such that if the system is initially prepared tioned in[8,10]. In spite of such a simplification, the model
in the up state, it will evolve to the down state after time yields physical insight into the Zeno phenomenon, and has
Notice that, within our approximations, the experimentalthe nice advantage of being solvable.
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We shall now consider a more detailed description. Theealization of the quantum Zeno effect experiment described
practical realizability of this experiment has already beenn the preceding section, at present in progress at the pulsed
discussed, with particular attention to the—c limit and  ISIS neutron spallation source. Neutrons are trapped between
various possible lossd40]. One source of losses is the oc- perfect crystal blades and pass on each of their 2000 trajec-
currence of reflections at the boundaries of the interactiotories through a flipper device, which cause an adjustable
region and/or at the spectral decomposition step. A carefupin rotation. Flipped neutrons immediately leave the storage
estimate of such effects would require a dynamical analysisystem where they can be easily deteds=k, e.g9.[15]). In
of the motion of the neutron wave packet as it crosses theuch a case, the neutron burst injected into the 1-m-long
whole interaction regiomagnetic-field regions followed by perfect crystal storage system has a momentum resolution
field-free regions containing each a magnetic mifvbthat  [16]
performs the “measurement’ However, it is not an easy
task to include the spatial degrees of freedom of the neutron 5_k~10,5 23
in the analysis; instead, we shall adopt a simplified descrip- ko ' (23
tion of the system, which preserves most of the essential
features and for which an explicit solution can still be ob-The burst spreads according to the classical law
tained. It turns out that the inclusion of the spatial degrees of 5
freedom in the evolution of the spin state can result in com- (At)2=(At )2+(6—)\t ) (24)

. . . . . . o/ »
pletely different situations from the ideal case, which in turn P N
clarifies the importance of losses in actual experiments and,
at the same time, sheds new light on the Zeno phenomendihereAt,=140 um is a typical value for the neutron burst
itself. (or alternatively can be theoretically considered as the open-

Let us now try to incorporate the other degrees of freedoning time of a chopper A =2/k, andt, is the time of flight
of the neutron state in our description. Let our state space b8 the crystal storage system. For one traverse between the
the four-dimensional Hilbert spacé(,®Hs, where %,  Crystal plateso=1 ms, while for 2000 traverse¢g=2 s, so
={|R),|L)} andHs={|1),||)} are two-dimensional Hilbert that Eq.(24) yields At=170 wus. We clearly see that, under
spaces, withR (L) representing a partide trave“ng towards these conditions, the additional Spread of the burst over the
the right(left) direction along the axis, and (|) represent- total distance traveled in the storage crystal is negligible. In
ing spin up (down) along thez axis. We shall set, in the this case, the Hamiltonia22) describes the relevant physics

respective Hilbert spaces, with good approximation.
Since the spin flippes; and the direction-reversal opera-
1 0 1 0 tor 7, commute with each other and with the Hamiltonian
|IR)= ( 0) . L)= ( 1) [1)= ol [1)= , (22), the energy levels of the system governed by this Hamil-

tonian are obvioushE,,=g(1+ 7a)(1+oB) with r,0=
+. Moreover, the evolution of the system has the following
factorized structure:

(21)

so that, for example, the stafR|) represents a spin-down

particle traveling towards the right directior-f/). Also, for e IHT — g=igTg—iagTro=ifgTorg—iaBgTrioy (25)
the sake of simplicity, we shall work with vectors, rather '
than density matricegthe extension is straightforward If a neutron is initially prepared in stat&?), the evolution

In this extended Hilbert space, the first Pauli mawix  gperator is explicitly expressed as
acts only onHs as a spin flippero,|1)=|1) and o4||)
=|[1), while another first Pauli matrix; acts only on, as e M=t +r,m+tjoy+r1 109, (26)
a direction-reversal operator;|R)=|L) and,|L)=|R). To
investigate the effects of reflection, we assume that the intewheret,, t;, r,, andr are the transmission/reflection co-

action is described by the Hamiltonian efficients of a neutron, whose spin is flipped/not flipped after
interacting with a constant magnetic fieR} applied along
H=g(1+am)(1+ Boq), (220  thex direction in a finite region of spacequare potential,

stationary state problemSee Fig. 2. These coefficients are
whereg, a, andg are real constants. By varying these pa-connected with the energy levels by the following relation:
rameters and the total interaction tiriie the above Hamil- , _
tonian can describe various situations in which a neutron, (t; ;| 1(/1 1|/e ET e ETi/1 1
impinging on aB field applied alongx axis, undergoes ror, T A\1 —1/l e iE-sT emiE__T)\ 1 1/
transmission/reflection and/or spin-flip effects. @27)

It is worth pointing out that the above Hamiltonian incor-

porates the spatial degrees of freedom in an abstract wafgy specifying the values of the parameteysy,8 and the
Only the one-dimensional motion of the neutron, representetbtal interaction timeT, one univocally determines, t,,
by L andR, has been taken into account and all other effects,, andr . Direct physical meaning can therefore be attrib-
(such as, for instance, the spread of the wave packet uted to the constanty, «, andg in Eq.(22) by comparison
neglected. This amounts to considering a trivial free Hamil-with the transmission/reflection coefficients. For example, in
tonian, which can be dropped out from the outset. This mayrder to mimic a realistic experimental setup with given val-
seem too drastic an approximation; however, it is not asies oft; , r, , it is enough to obtain the values gf a,
rough as one may imagine. Let us consider, for example, and 8 from Eq. (27) and insert them into the Hamiltonian
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N :

T
N
<9

FIG. 2. Transmission and reflection coefficients for a neutron
initially prepared in thgR7) state.

|Rt> (a)
y <‘_® =
N
" <’é’ B A =
® g o
"o 4 b-f o
- ®)
T R

FIG. 3. (a) Direction-insensitive spin measurementb)
(22). The model could in principle be further improved by Direction-sensitive spin measurement.
making the constarg energy-dependent. We will consider a
more realistic Hamiltonian in Sec. VL. (All other cases, such as total reflection with/without spin-
flip can be analyzed in a similar wayln both cases, the

V. IDEAL CASE OF COMPLETE TRANSMISSION evolution is readily computed:

In the following discussions we always assume that our
initial state is|R1), i.e., a right-going spin-up neutron, and
consider, for definiteness, the case of total transmission witlthe boundary conditions are such that the neutron is trans-
spin flipped, i.e./t;|?=1, when no measurements are per- mitted and its spin flipped with unit probability. For the ex-
formed Of course, this has to be considered as an idealizegerimental realization, sg¢&7]. This is the situation outlined
situation, since a spin rotation can only take place when therin Fig. 1(a).
is an interaction potentidproportional to the intensity of the We shall now focus on some interesting cases, which il-
magnetic fielgl which necessarily produces reflection effectslustrate some definite aspects of the QZE. Let us see, in
(with the only exception of plane wavesStated differently, particular, how the evolution of the quantum state of the
when the spatial degrees of freedom are taken into account imeutron is modified by choosing different projectécsrre-
the scattering problem off a spin-flipping potential, completesponding to different “measurements”
transmission is impossible to achieve: There are always re-
flected waves. Our model Hamiltonig@2) must therefore
be regarded as a simple caricature of the physical system we ) ,
are analyzing. Wave-packet effects will be discussed in Sec. We perform now a series of measurements, in order to
VI check whether the neutron spin is up. Let us call this type of

To obtain a total transmission with spin flipped, the evo-measurement a “direction—insensitive spin measur_ement,”
T HTo o), which is for reasons that will become clear later. Refer to Fi).3

lution operator should have the formi o | .
equivalent to either The projection operator corresponding to this measurement
is

e MT|R1)= (phase factox |R|). (32)

A. Direction-insensitive spin measurement

e*iangloc 1, e*iﬁgT(rlx 1, e*iaﬂgTTlcrloc 07,

1
9 Ey=1-[RIXRI|-[LINLI|=5(1+09), (33

or
that is, the spin-down components are projected out regard-
less of the direction of propagation of the neutron. In this
case, after frequent measuremehisperformed at time in-

e*ianglocly e*iﬁgToloco_l, e*iaBngla'locl' (29)

That is,
casg(i): cosagT=sinBgT=cosaBgT=0, (30
or

caseg(ii): sinagT=cosBgT=sinaBgT=0. (31

tervalsT/N, the evolution operator in Eq6) reads
VN(T)=(E e MTNE)N= Eq(ty+rym)N, (34)

wheret,~1—igT/N andr,~—iagT/N for large N [see
Eq. (26)]. Taking the limit, one obtains the following expres-
sion for the QZE evolution operator defined in E8):
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W(T)= lim VN(T)=e‘i9TE1e‘i“9TTl. (35) with excellent approximation at any given time, one simply
N— oo has to “switch on” the polarizer when the neutron burst
impinges from the left, and to “switch it off” when the burst
Interesting physical situations can now be investigatedeomes from right. It goes without saying that the model is
Choose, for instancgT=m, a=—1/2, = —1, which be-  consistentand our discussion meaningfitdecause the free
longs to casi) in Eq. (30) [so that, without measurements, Hamiltonian does not play any role in our description and
the neutron is totally transmitted with its spin flipped, ascan be dropped from the outset.
shown in Eq.(32)]. When the direction-insensitive measure-  \We shall see that the action of the projedirwill yield

ments are continuously performed, the QZE evolution isa very interesting result. For lardé, the evolution is given
W(T)=—iE;7; and the final state is by

V(T)|RT)=—1i|LT), 36 N
(TIRT)=—i[LT) (36) VZ’N(T):(EZeiHT,NEZ)N:eigT<1_i g_TZ) :,
i.e., the neutron spin is not flipped, but the neutron itself is N
totally reflected This clearly shows that reflection “losses” +O(1/N), (39
can be very important; as a matter of fact, reflection effects
dominate in this example. Notice that this is always an ex-wherez=E,(H/g—1)E,.

ample of QZE: The projection operatéy in Eq. (33) pre- The QZE evolution is given by the limit

ventsthe spin from flipping. The point here is, however, that

E, is not “tailored” so as to prevent the wave function from Vo(T)= lim Vo (T)=e 19T 19TZE, . (40)
being reflected. N—o

To compute its effect on the initial statR]), we note that,

B. Another particular case: Seminal model - X
when acting on statg®1), |[LT), and|L|), which span the

Let us now focus on a model corresponding to d@isen  «grvival” subspace, theZ operator behaves as

Eqg. (31). The choice of parameters, e.gT=n/2, a=2n,

B=—1, obviously fulfills these conditions for arbitrary inte- IRT) 0 a apB)\ [|R])

ger n. Total transmission with spin flipped occurs again

when no measurement is performed. z| Ik = « 0 B L | (4D
When direction-insensitive spin measurements, described L]) aB B O IL1)

by projectionsk,, are performed at time interval¥ N, the N
QZE evolution operator in Eq:35) becomes, in th&N—« Let us choose for definitenegs=—1, so that
limit, simply V;(T)=—i(—1)"E; and the final state is

Vi(T)RT)=—=i(=1)"RT), (37)
_ ) o with = \/8a?+1/2. Thus the final state can be readily ob-
so that the “usual” QZE is obtained. When=0 this is our  tgjned,

seminal mode[8], reviewed in Sec. Ill. Obviously, the case

n=20 is not rich enough to yield information about reflection .
effects. In the following subsection the case of nonzero  Vy(T)|R1)=e 39772
will be discussed.

(Z—1/2%|R7) = 6?|R1), (42

(cos{gTa)+ 2|—asin(gT0)) IRT)

. (43

ia
C. Direction-sensitive spin measurements + ?Sln(gTB)(| LL)=ILT))

We now consider a different type of spin measurement.

Let the measurement be characterized by the following prol herefore, for a continuous direction-sensitivemely, E»)
jection operator: measurement, the probability of finding the initial stHRe )

is not unity. Part of the wave function will be reflected, al-
E,=1—-|R|¥R]|, (38)  though the neutron would have been totally transmitted with-

out measuremerlisee Eq.(32)] or with an “E; measure-
which projects out those neutrons that are transmitted witlnent” [see Eq(37)].
their spin flipped. Notice that spin-down neutrons that are Clearly, the action of the projectd, yields a completely
reflected back are not projected out®By. for this reason we  different result from that of, in Eq. (37). This is obvious
call this a “direction-sensitive” spin measurement. Refer toand easy to understand: the sté4&) belongs to the sub-
Fig. 3b). Even though the action of this projection is not space of the “survived” statesiccording to the projection
easy to implement experimentally, this example will clearlyE,. Notice also that the probability loss due to the measure-
illustrate some interesting issues related to the Misraments is zero, in the limit, because the QZE evolutid) is
Sudarshan theorem. Incidentally, we would like to point outunitary within the subspace of the “survived” states.
that although the projection operat@8) looks rather artifi-
cial, its experimental realization is not impossible, at least in
principle. Consider again the ISIS experimefi5,16],
shortly mentioned after Eq22): In such a case, since the Let us now introduce a more realist@lbeit stati¢ model.
position of the neutron burst in the storage crystal is knowrSuch a model can be shown to be derivable from a Hamil-

VI. A MORE REALISTIC MODEL
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{%D i directly solving a stationary Schidinger equation, which
oo A will be set up as follows.
L | R N Bl ST Let a neutron with energf=k?/2m and spin up ¢z
S I S N B S I wi % ¢ direction), moving along the+y direction, impinge onN
s " / ys " / b ™ / J / J " regions of constant magnetic field pointing to theirection,
among which there arBl—1 field-free regions. The thick-

ness of a single piece of magnetic fieldaiand the field-free
x region has sizé. The configuration is shown in Fig. 4. Thus
FIG. 4. Spin-up neutron moving along they direction with ~ W€ ha\{e the 'one—dimensional scqtter_ing prpblem of a neutron
energyE. The magnetic field points to thex direction and is zero  Off @ piecewise constant magnetic field with total thickness
in the region betweey/, andy,, in which the measurements will D =Na. The stationary Schringer equation is described by
be made. In these field-free regions the wave functions|afe  the Hamiltonian
before measurement ahd,) after the measurement. 2

p
Hy=5+ uBoaQ(y), (44)
tonian very similar to the one studied in the previous sections

by a suitable identification of parametésee the Appendjx  whereu is the modulus of the neutron magnetic momdht,
The effect of reflections in the QZE will now be tackled by the strength of the magnetic field, and

0 for y<O0, vy, ,<y<y,, Ys<y (n=12,...N),

Q(y)= 1 f ’ _
or Yn-1<Y<VYp (n=1,2,...N),

(45

with y,=n(a+b) andy/=y,_;+a, characterizes the con- : ) . ,

figuration of the magnetic field applied along thex axis. [y = Z+ (R, & V4L, e )| g)
Refer to Fig. 4. The incident state of the neutron is taken to o

be | i) =e*Y|1). Let ri be the reflection amplitude for

the spin-up(spin-down component. The wave function for (n=12,...N). (48

y<0 is written as . )
On the other hand, in the region after thih measurement,

m,<y<y,, the wave function is

o) =e"[1)+e ™ r[1)+r [1)]. (46)
= ik(y=yn) —ik(y=yn)
Denoting the transmission amplitudes for spin-up and spin- |<//n>—UZt (Rp,o€ Y ¥+, e =)l g)
down ast; andt, the outgoing wave function in the region
y=>Y reads (n=0,1,...N). (49
|¢N)=eiky[tT|T>+t¢|l>]- 47 The relation between the amplitudes of the wave func-

tions |, ,) and|,) at the right- and left-hand sides of the
nth potential region is determined by the boundary condi-

Since[o4,HZ]=0, it is convenient to work with the basis . ) )
tions at pointsy,, andy,,. In fact, we have

[=)Y=(1)*=|1))/V2, i.e., the eigenstates of, belonging to
eigenvalues+1. For later use we denote.=r;*r  and

to=t;xt,. ne1e|  [Ras -
In the field-free region, before the point=m, where the - e N (50
nth measurement is assumed to take plg¢e;y<<m,, the o
wave function is where the transfer matrix is given by
cosk.a+i coshzy.sink.a —isinhp.sink.a
M. = o . . . (51
i sinh#n.sink.a cosk.a—i coshzn.sink.a
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with k. = Vk?F 2muB andk/k.. =e”=. This can also be ex- with spin flipped ist; = (t, —t_)/2. As a result, for a spin-up
pressed in a concise way in terms of the Pauli matrices in thiseutron to go through a constant potential of wigtf= D

two-dimensional spacey, 75, and 7, as

M +:e771(1+ Tl)/2eikta7'3ef n+(1+ Tl)/2. (52

We clearly see that the above formula contains all the bound- E=———, uB=
ary information at pointy,, andy;, : The first and last factors

are the kicks exerted at the boundaries of a single piece of
constant magnetic field, while the central one represents

free evolution with relative energ + wB.

In what follows, we shall incorporate the measuremen
processes performed at poimtg, as some kind of boundary
conditions, connecting the primed and unprimed wave func

tions in the field-free region.

A. Evolution without any spin measurements

=Na without reflection and with spin flipped, i.d|=1,
one should requirk-.D=n_ or
m2(n2 +n?) m2(n2—n?)

oz P

4mD?

ith n.. two arbitrary integers, their difference, —n_ be-
ing an odd number. In this case of complete transmission
t1| =1, the energ\E must be larger than the potentiaB.
he rest of the analysis above, however, is valid also when

the energy is less than the potential.

Now we consider the case wheketends to infinity and
the magnetic field possesses a periodic lattice structure. The
relation (53) still holds and in order to preserve the transla-
tional symmetry along thg axis[that is, to keep the Hamil-

We first consider the case where there is no measuremetdnian invariant under a translation od{b) along they
at all. This enables us to set up the notation and rederivaxis], one should havég.|=1 owing to the Bloch theorem.

some known resultgvhich will be useful for future compari-

Equivalently, the trace of the transfer mate®sM_. as

son. In this case the primed and unprimed wave functiongyiven in Eq.(55) should not be greater than 1. This deter-

must be equali,)=|,) in the field-free region. By virtue
of Eq. (50) we obtain

( Rn+1,t) =eikb73M +< Rn,t) .
Lnias “\Lp,=
Notice the boundary conditiori®, .. = 12 andLy -=0 to-
gether with the definitions of transmission amplitugg -
=Nt /{2 and reflection amplitudey . =r. /\/2. After
applying the above equatiax times, we obtain the follow-
ing relation:

(53

t. . 1
eikyN< 0):([N]ielkasMi_[N_l]i)(I’+)’ (54)

where[N]..=(q%—q.")/(q. —q."), with q. ,q." being
the two eigenvalues of the transfer matef°™sM .. , which
are determined by

q.+q:t

5 =coskb cosk.a—coshz..sinkbsink. a.

(59

mines the energy band of the system: those energies that
make the absolute value of this trace greater than 1 will be
forbidden, because for these energjgs| or |g.| ! be-
comes larger than 1 arjdN]-. tends exponentially to infinity
whenN approaches infinity. For largd, even if there is no
periodical structure, there is always soké¢hat makes this
trace greater than 1e.g., kb+k.a=I). Therefore, the
transmission probability will tend to zero exponentially when
N becomes large, even though the energy may be very large
relative to the potential. This shows that reflection effects in
the presence of a lattice structure are very important; as we
shall see, this feature is preserved even when projection op-
erators are interspersed in the lattice.

B. Direction-insensitive projections

We consider now the second situation, when direction-
insensitive measurements are performed at paoinfs. By
this kind of measurement, the spin-down components are
projected out and the spin-up components evolve freely re-
gardless whether the neutron is traveling right or left.

The boundary conditions imposed by this kind of mea-
surement at pointn, for the wave functiony,) and|¢,) in

When there is only a single piece of magnetic field withthe field-free region are expressed as

lengtha, i.e.,N=1, the transmission amplitude of a neutron

in the spin staté+) is

e—ika

tas (56)

* " cosk.a—i coshy.sink.a’

as is well known. From Eq54), for an arbitraryN>1, the

RnlL: rg'lzo,

) R
:e'kbrs( L“'T), (59)
nT

whereR, ;= (R, + +R, -)/V2 andR, | = (R, + — R, -)/\2
for right-going components and similar expressions for the
left-going and primed components. Therefore, application of

transmission amplitude of the same neutron passing throughq. (50) N times yields
a magnetic field with a latticelike structure as depicted in

Fig. 4 can be written as

e kNt

t+: . .
© e MIN]L—[N=1].to

(57)

For a neutron in its spin-up stat¢), the transmission am-

plitude with spin unflipped is thet,=(t, +t_)/2 and that

(RNYT
LN,T

) = (e*07sm )N (60

RO,T)
Loy/’
where the X 2 transfer matrixM; has the following matrix
elements:

(Ml)ij:Mij_AMiZAsz/MZZ (61
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with M=(M_+M_)/2 andAM=(M, —M_)/2. My My, AMyg

Now we take the limit as required by a “continuous” _ —
measurement, i.eN—w~, a—0 keepingNa=D finite and Ma=| My My AMy . (66)
Nb—0. By the definition(51) of the transfer matrix, we AM,, AM,, '\722

have the smalk expansions
In the limit of continuous measurement®l-~, a—0,
M=1+ikars+0(a?), AM=/{ka(r,—irs)+0(a?) while keepingD=Na constant, andNb—0), the transfer
(62) ~ Matrix is expanded as
with Z=BJ2E, obtaining M2=1-ika/3+ikaZ,+0(a), €7
for small a, with ({= uB/2E)

lim (eikbr3M 1)N:eikDT3. (63)

N—o 4/3 0 _{:

. . o . Z,=( 0 =23 (¢ |, (68)
Recall thatt,=e™""Ry ; is the transmission amplitude, ¢ ;23

Lo, =r the reflection amplitude, andy ;=0 andRy;=1

because of the boundary conditions. After taking the limity,4 e have
N—oo in Eqg. (60), we see that the transmissigsurvival

probability becomes 1, i.elIT|2=1, for any input energy lim (eikb23|v|Z)N:e—ikD/SeikDZz_ (69)
and magnetic field. This reveals another aspect of neutron N— o0

QZE: When the energy of the neutron is smaller than the

potential, the transmission probability decays exponentiallyNotice that the matriZ, satisfiesS 32,3 3=2}, from which
when the length increases and no measurement is performede obtain, in the above limit, the conservation of probability
by contrast, when continuous direction-insensitive measure-

ments are made, one can obtain a total transmission. [t [+ ]2+ [r [2=1. (70)

If we choose the energy of the neutron and the potentia%_h, .
as in Eq.(58), without measurements the neutron will be ' IS S_hOWS th‘?[ there are no losses caused by the continuous
totally transmitted with its spin flipped. On the other hand, ifd|rect|o_n-§en5|t|ve measurements. On _the other hand.’ the
the spin-up state is measured continuously, the neutron wiff2nsmission amplitude with spin unflipped is  explicitly
be totally transmitted with its spin unflipped. This is exactly 9'V€N by
the QZE in the usual sense. Our analysis enables us to see _i4kD/3
that two kinds of QZEs are taking place: One is the QZE for __¢© (71)
the right-going neutron, by which we obtain a total transmis- ! (e kDZy) .’
sion of the right-going input state, and another one is for the
left-going neutron, which preserves the zero amplitude of thevhich implies that the transmission probabili|t§4|2 is in
left-going input state. This case corresponds to projeEtor generalnot equal to 1. To have a general impression of its
in our simplified model in Sec. V B. behavior, we plof; =|t;|? as a function okD and{ in Fig.

5.

Some comments are in order. There are two critical values
_ S S N for £, namely 0 and,=43/9~0.77. When 6{< (., the

The third case we consider is the direction-sensitive meamatrix 7, has three real eigenvalues and the transmission
surement. By this klnd_ of measurement the left-going COMyprobability will oscillate depending okD. When¢= ¢, the
ponents(or the reflection parjsevolve freely, no matter ansmission probability will decay according tol¥) 2. In
whether spin is up or down, and the right-going component$aet if one definesG=2,—2/3, it is easy to show that
are projected to the spin-up state. The corresponding bOUﬂ(éfikDG:1_ikDG+(e2ikD_1_2ikD)G2/4, because G
ary conditions are satisfiesG?(G+2)=0. Then one can explicitly confirm that
the element ¢ '“P®),; includes a lineakkD term, which
gives the kD) 2 behavior to the transmission probability.

] ] Finally, when{> (. the matrixZ, has two imaginary eigen-
If we apply Eqg.(50) N times, supplemented with these \jyes and therefore the transmission probability decays ex-
boundary conditions, the following relations among theponentially withkD. This can be seen clearly in Fig(db.

C. Direction-sensitive projections

Ry, =0, Ly.=e L/ . (64)

transmission and reflection amplitudes are obtained: An interesting case arises when we consider/2 ¢, or
E<uB<83E/9~1.5E. Without measurements, the trans-
t; 1 mission probability decays exponentially when the length of
ekPf 0 | =(ekbXam)N| 1y |, (65) the magnetic field is increased, because the input energy is

smaller than the potential. When continuous measurements
are performed, however, the transmission probability will os-
cillate as the length of the magnetic field increases.

where ; is a diagonal matrix, ;=diag{1,—1,— 1} and the As we can see in Fig. 6, although the conditigb8) for

3X 3 transfer matrixM, is given by total transmission in the absence of measurements have been

0 r
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ing an analysis in terms of stationary statdse.,
transmission/reflection coefficients for plane wayeasile at

the same time we are analyzing a quantum Zeno phenom-
enon, which is essentially a time-dependent effect. This is
meaningful within our approximations, where the wave-
packet spread is neglected and the measurements are per-
formed with very high frequency. A more sophisticated ar-
gument in support of this view is given in the Appendix. In
the present context, wave-packet effects, if taken into ac-
count, would result in a sort of average of the effects shown
in Figs. 5 and 6(which refer to the monochromatic case
however, our general conclusions would be unaltered. It is
worth stressing that, in neutron optics, effects due to a high
sensitivity to fluctuation phenomeriauch as fluctuations of
the intensity of the magnetic figldhecome important at high
wave number and constitute an experimental chall¢hge

VIl. SUMMARY

We have analyzed some peculiar features of a quantum
Zeno-type dynamics by discussing the noteworthy example
of a neutron spin evolving under the action of a magnetic
filed in the presence of different types of measurements
(“projections™).

The “survival probability” depends on our definition of
“surviving,” i.e., on the choice of the projection operatér
Different E’s will yield different final states, and Misra and
Sudarshan’s theorefiz] simply makes sure that the survival
probability is unity: the final state belongs to the subspace of
the survived products.

In the physical case considerédeutron spij our ex-
amples clarify that the practical details of the experimental
procedure by which the neutron spin is “measured” are very
important. For example, in order to avoid constructive inter-
ference effects, leading ttunwanted enhancement of the
reflected neutron wave, it is important to devise the experi-
mental setup in such a way that reflection effects are sup-

pressed.
FIG. 5. Transmission probability with spin unflipped,, ACKNOWLEDGMENTS
=|t;|? is plotted as a function okD and z={ in (a) and as a . .
function of B,;= ymuBD andkD in (b). This work was partially supported by the European TMR

Network on “Perfect Crystal Neutron Optics(ERB-
FMRX-CT96-0057, a Grant-in-Aid for International Scien-
imposed, the transmission probabilify is not 1, as it would tjfic ResearchJoint Research No. 1004409Bom the Japa-
be for the “OI’dinary” QZE Reflections are unavoidable. nese Ministry of Education, Science and Cu|ture, and
This case corresponds to the projediyr considered in the \vaseda University under a Grant for special research

simplified model. . _ _projects(No. 98A—619.
As we have seen, there are peculiar reflection effects in

the presence of projections, whén(total length is varied.
This is clearly an interference effect, which can lead to en-
hancement of reflection “losses,” if the “projection” does In this appendix, we shall endeavor to establish a connec-
not suppress the left component of the wadthes is what tion between the models analyzed in Secs. IV and VI. In
happens folE,). This proves that reflection effects can be- other words, we will examine whether the parametrization of
come very important in experimental tests of the QZE withthe Hamiltonian of the fornt22) is compatible with the more
neutron spin, if, roughly speaking, the total length of therealistic one considered in E¢44) and in such a case find
interaction region ‘“resonates” with the neutron wavelength.which values are to be assigned to the parameterg, and

It is interesting that such a resonance effect takes place even To this end, it is enough to consider the scattefirg, the
though the dynamical properties of the system are protransmission and reflectipprocess of a neutron off a single
foundly modified by the projection operators, in the limit of constant magnetic fielB of width a. We compare the scat-
“continuous” measurements, leading to the QZE. tering amplitudes calculated on the basis of the simple ab-

Finally, we would like to stress again that we are perform-stract Hamiltonian(22) and of the more realistic ongi4).

APPENDIX
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Notice that the process is treated as a dynamical one in th n
former case T is regarded, roughly speaking, as the time °
necessary for the neutron to go through the potentietiile e o L
in the latter case we treat it as a stationary problem. 0.98 s
Observe first that the tranfer matrM .. in Eq. (51), de- ® .
rived for the stationary scattering process, yields the follow-0. 96® e o
ing transmission/reflection amplitudes: &
0.94
L ( 1 1 )
V21 (M) (M) 0.92
R! 1( 1 1 )
== - , 2 4 6 8 10
21 (M) (MO)p
(A1) FIG. 6. The transmission probablity with spin unflippad
B 1/(My)yy (M_)y = |tT|2 as a function of, when the condition$58) for total trans-
Loi=— 2l (m +)22+ (M_),)" mission are satisfied with_=n andn,=n+9.
L :_E((M+)21_(M—)21) t; 1 1 1 1)\ [e BT
% 21(My)z (Mo)g)” t | 1(1 -1 1 -1||eET .
=— i . (A8
It is easy to show that the relatioi&1) are equivalent to Iy 411 1 -1 -1f|e &7
—iE__T
{11 1| (R M r 1 -1 -1 1 e
1 -1 1 -1 RLL M- The apparent similarity between the above relation and Eq.
_ _ = » (A2) (A2), valid in the stationary scattering setup, induces us to
1 1 1 1]| Loy My 4 . :
’ look for a more definite connection between the two cases.
1 -1 -1 1 Lo, M - If we slightly generalize the abstract Hamiltoni&2®),
where we have introduced
den:g[1+ ati+Bo+ yri04], (A9)
1+ (My)n M 1-(My)n A3
ET (Ma)gy T (Ma)gy (A3) by introducing the additional parametgy we easily find the

correspondence existing between the parameters involved:
It is important to realize that these quantities are just phas&he incident wave numbée of the neutron and the configu-
factors. In fact, since ration of the static potentigktrengthB and widtha) deter-

mine the scattering data, which are reproducible by an ap-

(M. )o=i sinhy.sink.a propriate choice of parameters, B, v, and gT in the

dynamical process governed by the Hamilton(a9).
and For definiteness, consider the case of narrow potential,
that is,a—0 or ka<<1. Incidentally, notice that this is the
case of interest for the analysis of the QZE. The abéve
and ¢.. are then approximated as

(M. )y=cosk.a—i coshy.sink.a (Ad)
and

|1+ (M 1)y 2=|(M1)pg?=1+sintt 5. sirf k. a, §-~*lka, ¢.~(1%ka, (A10)
(A5)
. . . _where we set’=uB/2E=muB/k?, as in Sec. VI. In the
their absolute values are unity. Thus we can rewrite them I it a—0, the evolution timeT is also considered to be of
the form e .
the same order o and the transmission and reflection co-

M, L=eE+o) A =elcETd) (pp) efficients are expressed, in terms of the parameteis, v,

andgT, as
where
. _ t 1
&, =tan i(sinhy.sink.a) N -
and r 1 agT |’ (A11)
¢ =tan (coshy.tank.a). (A7) r —iygT

Observe now that Eq(27), dynamically derived from the In the stationary scattering problem, the same quantities are
abstract Hamiltoniari22), is equivalent to calculated to be
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t (_;.—“<f=1|:ziT 1—ika+i(p,+¢_)I2 which reduces, for small, to
7'k 12 . _
t) [ e "Ry | i(ds—¢-)I2 R, .~1+ikaTiuBT, Lo.~TiuBT. (A16)
r Los —i(&,+E)2
r L —i(E.—E )2 On the other hand, if a neutron is preparedlirt ), we have
ol the relation
1
. R; 0
—iZka 1= |
~ o | (A12) ( e—ika) =M r( Lo,i) ' (A17)
—igka where

Therefore, the abstract Hamiltonian i i .
R .=e*(Rx[e MT|L£)~FiuBT,

Hayn=uB(1+ 71) 0y (A13) . (A18)

_ , Lo-=(L*|e"™MT|L=)~1FiuBT.

can reproduce the desired scattering data when the system ’

evolves under this Hamiltonian for time=a/v =malk. It is now an easy task to determine the matrix elements of

It is also interesting to see how such a dynamical HamiI-M . from the above relationéA14)—(A18). We obtain
tonian Hyy,, may reproduce the transfer matrM .. (51), - '

which further confirms the equivalence between the two for-

malisms, stationary and dynamical, governed by the Hamil- M.~ . _ .
toniansH; and Hgy,, respectively. For this purpose, con- B *iuBT 1-ikaxiuBT

sider first a neutron, initially prepared in staf+), subject 1T+ - _

to the dynamical evolution engendered Hy,, for time T 112 pBliryt 75) = 2E75]T. (A19)
=ma/k. By definition, the transfer matrix connects the scat-
tering products in the following way:

1+ikaxiuBT FiuBT

By defining a “generator’Gy,

R; . 1 Gy=uB(imo+ 73) 01— 2E 73, (A20)
(Sl
0t the transfer matrisM .. for finite a (or T) can be rewritten as
These scattering amplitudes are given by the corresponding g
matrix elements of the evolution operar'"7, M.=(=le "dl[x), (A21)
e k@R . =(Rx|e"™MT|R=), Lo.=(L*|e ™MT|Rx), which is nothing but the transfer matri%1), obtained for the

(A15) stationary-state problem from the Hamiltoniblp .
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