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Variational perturbation theory for density matrices

Michael Bachmann, Hagen Kleinert, and Axel Pelster
Institut für Theoretische Physik, Freie Universita¨t Berlin, Arnimallee 14, 14195 Berlin, Germany

~Received 22 December 1998!

We develop a convergent variational perturbation theory for quantum-statistical density matrices which is
applicable to polynomial as well as nonpolynomial interactions. We illustrate the power of the theory by
calculating the temperature-dependent density of a particle in the double-well potential to second order, and of
the electron in the hydrogen atom to first order.@S1050-2947~99!08410-3#

PACS number~s!: 03.65.Ca, 05.30.2d
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I. INTRODUCTION

Variational perturbation theory@1,2# transforms divergen
perturbation expansions into convergent ones. The resu
convergence extends to infinitely strong couplings@3#, a
property which has recently been used to derive critical
ponents in field theory without renormalization-group me
ods @4,5#. The theory was first developed in quantum m
chanics for the path-integral representation of the free ene
of the anharmonic oscillator@6# and the hydrogen atom@2,7#.
Local quantities such as quantum-statistical density matr
have been treated so far only to lowest order for the an
monic oscillator and the hydrogen atom@8,9#. Other rigorous
nonperturbative approaches to compute the energy and
wave function of the ground state for quantum-mechan
systems were developed some time ago@10# and also more
recently@11#.

The purpose of this paper is to develop a systematic c
vergent variational perturbation theory for the path-integ
representation of density matrices of a point particle mov
in polynomial as well as nonpolynomial potentials. By sy
tematically taking into account higher orders, we thus
beyond related first-order treatments in classical phase s
@12# and early Rayleigh-Ritz-type variational approximatio
@13#. With the help of a generalized smearing formula whi
accounts for the effects of quantum fluctuations, we can
thermore treat nonpolynomial interactions, thus extend
the range of applicability of the work in Ref.@14#. As a first
application, here we calculate the particle density in
double-well potential to second order, and then the elec
density in the hydrogen atom to first order.

II. GENERAL FEATURES

Variational perturbation theory approximates a quantu
statistical system by perturbation expansions around
monic oscillators with trial frequencies which are optimiz
differently for each order of the expansions. When deal
with the free energy, it is essential to give a special treatm
to the fluctuations of the path averagex̄
[(kBT/\)*0

\/kBTdt x(t), since this performs violent fluc
tuations at high temperaturesT. These cannot be treated b
any expansion, unless the potential is close to harmonic.
effect of these fluctuations may, however, easily be ca
lated at the end by a single numerical fluctuation integ
For this reason, variational perturbation expansions are
PRA 601050-2947/99/60~5!/3429~15!/$15.00
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formed for each positionx0 of the path average separatel
yielding an Nth-order approximationWN(x0) to the local
free energyVeff,cl(x0), called theeffective classical potentia
@15#. The name indicates that one may obtain the full qu
tum partition functionZ from this object by a simple integra
over x0 just as in classical statistics,

Z5E
2`

1` dx0

A2p\2/MkBT
e2Veff,cl~x0!/kBT. ~2.1!

Having calculatedWN(x0), we obtain theNth-order approxi-
mation to the partition function,

ZN5E
2`

1` dx0

A2p\2/MkBT
e2WN~x0!/kBT. ~2.2!

The separate treatment of the path average is importan
ensure a fast convergence at larger temperatures. In the h
temperature limit,WN(x0) converges against the initial po
tential V(x0) for any orderN.

Before embarking upon the theory, it is useful to visuali
some characteristic properties of path fluctuations. Cons
the Euclidean path integral over all periodic pathsx(t), with
x(0)5x(\/kBT), for a harmonic oscillator with minimum a
xm , where the action is

A
V,xm

@x#5E
0

\/kBT

dt $ 1
2 Mẋ2~t!1 1

2 MV2@x~t!2xm#2%.

~2.3!

Its partition function is

ZV,xm5 R Dx exp$2AV,xm@x#/\%5
1

2 sinh\V/2kBT
,

~2.4!

and the correlation functions of local quantitie
O1(x),O2(x),... aregiven by the expectation values

^O1„x~t1!…O2„x~t2!…¯&V,xm

5
1

ZV,xm R Dx O1„x~t1!…

3O2„x~t2!…¯ exp$2AV,xm@x#/\%. ~2.5!
3429 ©1999 The American Physical Society
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3430 PRA 60M. BACHMANN, H. KLEINERT, AND A. PELSTER
The particle distribution of the oscillator is given by

PH~x![^d„x2x~t!…&V,xm5
1

A2paH
2

expF2
~x2xm!2

2aH
2 G ,

~2.6!

which is a Gaussian distribution of width

aH
2 5

\

2MV
coth

\V

2kBT
, ~2.7!

the subscript indicating that we are dealing with a harmo
oscillator. At zero temperature, this is equal to the square
the ground-state wave function of the harmonic oscillat
whose width is

aH0
2 5

\

2MV
. ~2.8!

In the limit \→0, from Eqs.~2.6! and~2.7! we obtain the
classical distribution

PHcl~x!5
1

A2paHcl
2

expF2
~x2xm!2

2aHcl
2 G , ~2.9!

with

aHcl
2 5

kBT

MV2 . ~2.10!

The linear growth of this classical width is the origin of th
famous Dulong-Petit law for the specific heat of a harmo
system. The classical fluctuations are governed by the i
gral over the Boltzmann factor

e2MV2~x2xm!2/2kBT ~2.11!

in the classical partition function

ZHcl5E
2`

1` dx

A2p\2/MkBT
e2MV2~x2xm!2/2kBT. ~2.12!

From this we obtain the classical distribution~2.9! as the
expectation value:

PHcl~x![^d~x2 x̄!&cl
V,xm

5Zcl
21E

2`

1` dx̄

A2p\2/MkBT

3d~x2 x̄!e2MV2~ x̄2xm!2/2kBT. ~2.13!

Variational perturbation theory avoids the divergence of
harmonic widthaH

2 at high temperatures in Eq.~2.10! by the
separate treatment of the fluctuations of the path averagx̄,
as explained above. The average is fixed at some valux0
with the help of a delta functiond( x̄2x0). For eachx0 we
introduce local expectation values
c
of
r,

c
e-

e

^O1„x~t1!…O2„x~t2!…¯&x0

V,xm

5
^d~ x̄2x0!O1„x~t1!…O2„x~t2!…¯&V,xm

^d~ x̄2x0!&V,xm
. ~2.14!

The original quantum statistical distribution of the harmon
oscillator ~2.6! collects fluctuations ofx̄5x0 and those
aroundx0 , and can therefore be written as a convolution

PH~x!5E
2`

1`

dx0Px0
~x2x0!PHcl~x0!, ~2.15!

over the classical distribution~2.9! and the local one

Px0
~x!5^d„x2x~t!…&x0

V,xm5
1

A2pax0

2
expF2

~x2x0!2

2ax0

2 G .

~2.16!

Such a convolution of Gaussian distributions as in Eq.~2.15!
leads to another Gaussian distribution with added widths
that the width of the local distribution is given by the diffe
ence

ax0

2 5aHcl
2 2acl

2 5
\

2MV S coth
\V

2kBT
2

2kBT

\V D , ~2.17!

which starts out at the finite value~2.8! for T50, and goes to
zero forT→` with the asymptotic behavior\V/12kBT ~see
Fig. 1!. The latter property suppresses all fluctuations arou
x̄ and guarantees that limT→`WN(x0)5V(x0) for all N.

With this separation of the path average, the partit
function

Z5 R Dx exp$2A@x#/\% ~2.18!

FIG. 1. Temperature dependence of fluctuation widths of a
point x(t) on the path in a harmonic oscillator (l 2 is a square length
in units of \/MV). The quantityaH

2 ~dashed line! is the quantum-
mechanical width, whereasax0

2 ~dash-dotted line! shares the width
after separating out the fluctuations around the path averagex0 .
The quantityaHcl

2 ~long-dashed line! is the width of the classica
distribution, andbH

2 ~solid curve! is the fluctuation width at fixed
ends which is relevant for the calculation of the density matrix
variational perturbation theory~see Sec. III!.
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for the general particle action

A@x#5E
0

\/kBT

dt F1

2
Mẋ2~t!1V~x~t!!G ~2.19!

possesses the effective classical representation~2.1! with the
effective classical potential

Veff,cl~x0!52kBT lnF S 2p\2

MkBTD 1/2 R Dx d~x02 x̄!

3exp$2A@x#/\%G . ~2.20!

In variational perturbation theory@2#, this is expanded per
turbatively around anx0-dependent harmonic system wi
trial frequencyV(x0), whose optimization leads to the ap
proximationWN(x0) for Veff,cl(x0).

III. DENSITY MATRIX OF HARMONIC OSCILLATOR

In the present paper we dwell on the question how t
method can be extended to the density matrix

r~xb ,xa!5
1

Z
r̃~xb ,xa!, ~3.1!

wherer̃(xb ,xa) is the path integral,

r̃~xb ,xa!5E
~xa,0! ~xb ,\/kBT!

Dx exp$2A@x#/\%, ~3.2!
s

over all paths with the fixed end pointsx(0)5xa and
x(\/kBT)5xb . The partition function is found from the
trace ofr̃(xb ,xa):

Z5E
2`

1`

dx r̃~x,x!. ~3.3!

For a harmonic oscillator centered atxm with the action
~2.3!, the path integral~3.2! can be easily done with the
result ~see Chap. 2 in Ref.@2#!

r̃ 0
V,xm~xb ,xa!5S MV

2p\ sinh\V/kBTD 1/2

3expH 2
MV

2\ sinh\V/kBT

3@~ x̃b
21 x̃a

2!cosh\V/kBT22x̃bx̃a#J ,

~3.4!

where we introduced the abbreviation

x̃~t!5x~t!2xm . ~3.5!

At fixed end pointsxb ,xa , the quantum-mechanical correla
tion functions are
^O1„x~t1!…O2„x~t2!…¯&xb ,xa

V,xm 5
1

r̃ 0
V,xm~xb ,xa!

E
~xa,0! ~xb ,\/kBT!

Dx O1~x~t1!!O2„x~t2!…¯exp$2AV,xm@x#/\%,

~3.6!
er-

a-

d a
to
and the distribution function is given by

pH~x,t![^d„x2x~t!…&xb ,xa

V,xm

5
1

A2pbH
2 ~t!

expF2
„x̃2xcl~t!…2

2bH
2 ~t! G . ~3.7!

The classical path of a particle in a harmonic potential is

xcl~t!5
x̃b sinhVt1 x̃a sinhV~\/kBT2t!

sinh\V/kBT
~3.8!

and the time-dependent widthbH
2 (t) is found to be

bH
2 ~t!5

\

2MV H coth
\V

kBT
2

cosh@V~2t2\/kBT!#

sinh\V/kBT J .

~3.9!

Since the Euclidean timet lies in the interval 0<t
<\/kBT, the width~3.9! is bounded by
bH
2 ~t!<

\

2MV
tanh

\V

2kBT
, ~3.10!

thus remaining finite at all temperatures. The temporal av
age of Eq.~3.9! is

bH
2 5

kBT

\ E
0

\/kBT

dt bH
2 ~t!5

\

2MV S coth
\V

kBT
2

kBT

\V D .

~3.11!

Just asax0

2 , this goes to zero forT→` with an asymptotic

behavior\V/6kBT, which is twice as large as that ofax0

2

~see Fig. 1!.

IV. VARIATIONAL PERTURBATION THEORY FOR
DENSITY MATRICES

To obtain a variational approximation for the density m
trix, it is useful to separate the general action~2.19! into a
trial one for which the Euclidean propagator is known, an
remainder containing the original potential. If we were
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proceed in complete analogy with the treatment of the pa
tion function, we would expand the Euclidean path integ
around a trial harmonic one with fixed end pointsxb andxa
and a fixed path averagex0 , and with a trial frequency
V(xb ,xa ;x0). The result would be an effective classical p
tential WN(xb ,xa ;x0) to be optimized inV(xb ,xa ;x0). Af-
ter that we would have to perform a final integral inx0 over
the Boltzmann factor exp@2WN(xb , xa ; x0)/kBT#.

However, because of the finiteness of the fluctuat
width bH

2 at all temperatures which is similar to that ofax0

2 ,

the special treatment ofx̄5x0 becomes superfluous for path
with fixed end pointsxb ,xa . While the separation ofx0 was
necessary to deal with the diverging fluctuation width of t
path averagex̄, paths with fixed ends have fluctuations of t
path average which are governed by the distribution

px0
~xb ,xa ![^d~x02 x̄!&xb ,xa

V,xm

5
1

A2pbx0

2
expH 2

1

2bx0

2 F x̃0

2
1

2
~ x̃b1 x̃a!

2kBT

\V
tanh

\V

2kBTG2J ~4.1!

with the width

bx0

2 5
kBT

MV2 F12
2kBT

\V
tanh

\V

2kBTG , ~4.2!

which goes to zero for both limitsT→0 andT→` ~see Fig.
2!. At each Euclidean time,x(t) fluctuates narrowly around
the classical pathxcl(t) connectingxb and xa . This is the
reason why we may treat the fluctuations ofx̄5x0 by varia-
tional perturbation theory, just as the other fluctuations. A
remnant of the extra treatment ofx0 we must, however, per
form the initial perturbation expansion around the minimu
of the effective classical potential which will lie at som
point xm determined by the end pointsxb andxa and by the
minimum of the potentialV(x). Thus we shall use the Eu
clidean path integral for the density matrix of the harmo
oscillator centered atxm as the trial system around which t

FIG. 2. Temperature dependence of the width of fluctuati
around the path averagex05 x̄ at fixed ends. For comparison w
also show the widthax0

2 of Fig. 1. The vertical axis gives thes
square lengthsl 2 in units of \/MV again.
i-
l

n

a

perform the variational perturbation theory, treating the flu
tuations ofx0 aroundxm on the same footing as the remai
ing fluctuations. The positionxm of the minimum is a func-
tion xm5xm(xb ,xa), and has to be optimized with respect
the trial frequency, which itself is a functionV5V(xb ,xa)
to be optimized.

Hence we start by decomposing action~2.19! as

A@x#5AV,xm@x#1Aint@x#, ~4.3!

with an interaction

Aint@x#5E
0

\b

dt Vint„x~t!…, ~4.4!

where the interaction potential is the difference between
original oneV(x) and the inserted displaced harmonic osc
lator:

Vint„x…5V„x…2 1
2 MV2@x2xm#2. ~4.5!

For brevity, we have introduced the inverse temperature
natural unitsb[1/kBT in Eq. ~4.4!. Now we evaluate the
path integral for the Euclidean propagator~3.2! by treating
the interaction~4.4! as a perturbation, leading to a mome
expansion

r̃~xb ,xa!5 r̃ 0
V,xm~xb ,xa!F12

1

\
^Aint@x#&xb ,xa

V,xm

1
1

2\2 ^Aint
2 @x#&xb ,xa

V,xm 2¯G , ~4.6!

with expectation values defined in Eq.~3.6!. The zeroth or-
der consists of the harmonic contribution~3.4! and higher
orders contain harmonic averages of the interaction~4.4!.
The correlation functions in Eq.~4.6! can be decompose
into connected ones by going over to cumulants, yielding

r̃~xb ,xa!5 r̃ 0
V,xm~xb ,xa!expF2

1

\
^Aint@x#&xb ,xa ,c

V,xm

1
1

2\2 ^Aint
2 @x#&xb ,xa ,c

V,xm 2¯G , ~4.7!

where the first cumulants are defined as usual

^O1„x~t1!…&xb ,xa ,c
V,xm 5^O1„x~t1!…&xb ,xa

V,xm ,

~4.8!

^O1„x~t1!…O2„x~t2!…&xb ,xa ,c
V,xm

5^O1„x~t1!…O2„x~t2!…&xb ,xa

V,xm

2^O1„x~t1!…&xb ,xa

V,xm ^O2„x~t2!…&xb ,xa

V,xm .

Series~4.7! is truncated after theNth term, resulting in the
Nth-order approximant for the quantum-statistical dens
matrix

s
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r̃ N
V,xm~xb ,xa!5 r̃ 0

V,xm~xb ,xa!

3expF (
n51

N
~21!n

n!\n ^Aint
n @x#&xb ,xa ,c

V,xm G ,

~4.9!

which explicitly depends on both variational parametersV
andxm .

In analogy to classical statistics, where the Boltzma
distribution in configuration space is controlled by the cla
sical potentialV(x) according to

r̃cl~x!5S M

2p\2b D 1/2

exp@2bV~x!#, ~4.10!

we now introduce an effective classical potentia
Veff,cl(xb ,xa) which governs the unnormalized density m
trix

r̃~xb ,xa!5S M

2p\2b D 1/2

exp@2bVeff,cl~xb ,xa!#.

~4.11!

Its Nth-order approximation is obtained from Eqs.~3.4!,
~4.9!, and~4.11! via the cumulant expansion

W N
V,xm~xb ,xa!5

1

2b
ln

sinh\bV

\bV

1
MV

2\b sinh\bV

3$~ x̃b
21 x̃a

2!cosh\bV22x̃bx̃a%

2
1

b (
n51

N
~21!n

n!\n ^Aint
n @x#&xb ,xa ,c

V,xm ,

~4.12!

which is optimized for each set of end pointsxb andxa in the
variational parametersV2 andxm , the result being denote
by WN(xb ,xa). The optimal values V2(xb ,xa) and
xm(xb ,xa) are determined from the extremality conditions

]W N
V,xm~xb ,xa!

]V2 5
!

0,
]W N

V,xm~xb ,xa!

]xm
5
!

0. ~4.13!

The solutions are denoted byV2N
andxm

N , both being func-
tions of xb andxa . If no extrema are found, one has to loo
for the flattest region of function~4.12!, where the lowest
higher-order derivative disappears. Eventually theNth-order
approximation for the normalized density matrix is obtain
from

rN~xb ,xa!5ZN
21r̃

N

V2N
,xm

N

~xb ,xa!, ~4.14!

where the corresponding partition function reads
n
-

ZN5E
2`

1`

dx r̃
N

V2N
,xm

N

~xb ,xa!. ~4.15!

In principle, one could also optimize the entire ratio~4.14!,
but this would be harder to do in practice. Moreover, t
optimization of the unnormalized density matrix is the on
option, if the normalization diverges due to singularities
the potential. This will be seen in Sec. VIII B by the examp
of the hydrogen atom.

V. SMEARING FORMULA FOR DENSITY MATRICES

In order to calculate the connected correlation functions
the variational perturbation expansion~4.9!, we must find
efficient formulas for evaluating expectation values~3.6! of
any power of the interaction~4.4!:

^Aint
n @x#&xb ,xa

V,xm 5
1

r̃ 0
V,xm~xb ,xa!

E
x̃a,0

x̃b ,\b

Dx̃

3)
l 51

n F E
0

\b

dt l Vint„x̃~t l !1xm…G
3expH 2

1

\
AV,xm@ x̃1xm#J . ~5.1!

This can be done by an extension of the smearing formal
which is developed in Ref.@7#. To this end we rewrite the
interaction potential as

Vint„x̃~t l !1xm…5E
2`

1`

dzl Vint~zl1xm!

3E
2`

1` dl l

2p
exp$ il lzl%

3expF2E
0

\b

dt il ld~t2t l !x̃~t!G ,
~5.2!

and introduce a current

J~t!5(
l 51

n

i\l ld~t2t l !, ~5.3!

so that Eq.~5.1! becomes

^Aint
n @x#&xb ,xa

V,xm 5
1

r̃ 0
V,xm~xb ,xa!

)
l 51

n F E
0

\b

dt l

3E
2`

1`

dzl Vint~zl1xmin!

3E
2`

1` dl l

2p
exp$ il lzl%GKV,xm@J#.

~5.4!

The kernelKV,xm@J# represents the generating functional f
all correlation functions of the displaced harmonic oscilla
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KV,xm@J#5E
x̃a,0

x̃b ,\b

Dx̃ expH 2
1

\ E
0

\b

dt Fm

2
ẋ̃2~t!

1
1

2
MV2x̃2~t!1J~t!x̃~t!G J . ~5.5!

For zero currentJ, this generating functional reduces to th
Euclidean harmonic propagator~3.4!:

KV,xm@J50#5 r̃ 0
V,xm~xb ,xa!. ~5.6!

For nonzeroJ, the solution of the functional integral~5.5! is
given by ~see Chap. 3 in Ref.@2#!

KV,xm@J#5 r̃ 0
V,xm~xb ,xa!expF2

1

\ E
0

\b

dt J~t!xcl~t!

1
1

2\2 E
0

\b

dtE
0

\b

dt8J~t!GV~t,t8!J~t8!G ,
~5.7!
-
n

-

wherexcl(t) denotes the classical path~3.8! and GV(t,t8)
the harmonic Green function

GV~t,t8!5
\

2MV

3
coshV~ ut2t8u2\b!2coshV~t1t82\b!

sinh\bV
.

~5.8!

Expression~5.7! can be simplified by using the explicit ex
pression~5.3! for the currentJ. This leads to a generatin
functional

KV,xm@J#5 r̃ 0
V,xm~xb ,xa!exp~2 i lTxcl2

1
2 lTGl!,

~5.9!

where we have introduced then-dimensional vectorsl
5(l1 ,...,ln)T and xcl5(xcl(t1),...,xcl(tn))T, with the su-
perscriptT denoting transposition, and the symmetricn3n
matrix G whose elements areGkl5GV(tk ,t l). Inserting Eq.
~5.9! into Eq.~5.4!, and performing the integrals with respe
to l1 ,...,ln , we obtain thenth-order smearing formula fo
the density matrix
^Aint
n @x#&xb ,xa

V,xm 5)
l 51

n F E
0

\b

dt lE
2`

1`

dzl Vint~zl1xm!G 1

A~2p!ndetG
expH 2

1

2 (
k,l 51

n

@zk2xcl~tk!#Gkl
21@zl2xcl~t l !#J . ~5.10!
ths

.

for
nd
ls.

o-
or
sti-
la-

a
sti-

ap-
an
ula
The integrand contains ann-dimensional Gaussian distribu
tion describing both thermal and quantum fluctuatio
around the harmonic classical pathxcl(t) of Eq. ~3.8! in a
trial oscillator centered atxm , whose width is governed by
the Green function~5.8!.

For closed paths with coinciding end points (xb5xa), for-
mula ~5.10! leads to thenth-order smearing formula for par
ticle densities,

r~xa!5
1

Z
r̃~xa ,xa!

5
1

Z R Dx d„x~t50!2xa… exp$2A@x#/\%,

~5.11!

which can be written as

^Aint
n @x#&xa ,xa

V,xm 5
1

r0
V,xm~xa!

3)
l 51

n F E
0

\b

dt lE
2`

1`

dzl Vint~zl1xm!G
3

1

A~2p!n11deta2
expS 2

1

2 (
k,l 50

n

zkakl
22zl D ,

~5.12!
s
with z05 x̃a and t050. Here a2 denotes a symmetric (n
11)3(n11) matrix whose elementsakl

2 5a2(tk ,t l) are ob-
tained from the harmonic Green function for periodic pa
GV,p(t,t8) as ~see Chaps. 3 and 5 in Ref.@2#!

a2~t,t8![
\

M
GV,p~t,t8!5

\

2MV

coshV~ ut2t8u2\b/2!

sinh\bV/2
.

~5.13!

The diagonal elementsa25a2(t,t) represent the fluctuation
width ~2.7!, which behaves in the classical limit like Eq
~2.10! and at zero temperature like Eq.~2.8!.

Both smearing formulas~5.10! and ~5.12! allow one in
principle to determine all harmonic expectation values
the variational perturbation theory of density matrices a
particle densities in terms of ordinary Gaussian integra
Unfortunately, in many applications containing nonpolyn
mial potentials, it is impossible to solve either the spatial
the temporal integrals analytically. This circumstance dra
cally increases the numerical effort in higher-order calcu
tions.

VI. FIRST-ORDER VARIATIONAL RESULTS

The first-order variational approximation usually gives
reasonable estimate for any desired quantity. Let us inve
gate the classical and quantum-mechanical limit of this
proximation. To facilitate the discussion, we first derive
alternative representation for the first-order smearing form
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~5.12! which allows a direct evaluation of the imaginary-tim
integral. The resulting expression will depend only on te
perature, whose low- and high-temperature limits can ea
be extracted.

A. Alternative formula for first-order smearing

For simplicity, we restrict ourselves to the case of parti
densities, and allow only symmetric potentialsV(x) centered
at the origin. IfV(x) has only one minimum at the origin
then xm will also be zero. IfV(x) has several symmetri
minima, thenxm goes to zero only at sufficiently high tem
peratures~see Chap. 5 in Ref.@2#!.

To first order, the smearing formula~5.12! reads

^Aint@x#&xa ,xa

V 5
1

r0
V~xa!

E
0

\b

dtE
2`

1` dz

2p
Vint~z!

1

Aa00
4 2a01

4

3expH 2
1

2

~z21xa
2!a00

2 22zxaa01
2

a00
4 2a01

4 J , ~6.1!

so that Mehler’s summation formula

1

A12b2
expH 2

~x21x82!~11b2!24xx8b

2~12b2! J
5expH 2

1

2
~x21x82!J (

n50

`
bn

2nn!
Hn~x!Hn~x8! ~6.2!

leads to an expansion in terms of Hermite polynomi
Hn(x), whose temperature dependence stems from the d
onal elements of the harmonic Green function~5.13!:

^Aint@x#&xa ,xa

V 5 (
n50

`
\b

2nn!
Cb

~n!Hn~xa /A2a00
2 !

3E
2`

1` dz

A2pa00
2

Vint~z!e2z2/2a00
2

Hn~z/A2a00
2 !.

~6.3!

Here the dimensionless functionsCb
(n) are defined by

Cb
~n!5

1

\b E
0

\b

dt S a01
2

a00
2 D n

~6.4!

and their temperature dependence is shown in Fig. 3!. Insert-
ing Eq. ~5.13! and performing the integral overt, we obtain

Cb
~n!5

1

2n coshn \bV/2 (
k50

n S n
kD sinh\bV~n/22k!

\bV~n/22k!
.

~6.5!

At high temperatures, these functions ofb go all to unity,

lim
b→0

Cb
~n!51, ~6.6!

whereas for zero temperature we yield
-
ly

e

s
g-

lim
b→`

Cb
~n!5H 1, n50

2

\bVn
, n.0.

~6.7!

According to Eq.~4.12!, the first-order approximation to
the effective classial potential is given by

W 1
V~xa!5

1

2b
ln

sinh\bV

\bV
1

MV

\b
xa

2 tanh
\bV

2
1Va2

V
~xa!,

~6.8!

with the smeared interaction potential

V a2
V

~xa!5
1

\b
^Aint@x#&xa ,xa

V . ~6.9!

It is instructive to discuss separately the limitsb→0 andb
→` of dominating thermal and quantum fluctuations, r
spectively.

B. Classical limit of effective classical potential

In the classical limitb→0, the first-order effective clas
sical potential~6.8! reduces to

W 1
V,cl~xa!5 1

2 MV2xa
21 lim

b→0
V a2

V
~xa!. ~6.10!

The second term is determined by inserting the hig
temperature limit of the fluctuation width~2.10! and of the
polynomials~6.6! into expansion~6.3!, leading to

lim
b→0

V a2
V

~xa!5 lim
b→0

(
n50

`
1

2nn!
Hn~AMV2b/2xa!

3E
2`

1` dz

A2p/MV2b
Vint~z!e2MV2bz2/2

3Hn~AMV2b/2z!. ~6.11!

Then we make use of the completeness relation for Herm
polynomials,

FIG. 3. Temperature dependence of the first nine functi
Cb

(n) , whereb51/kBT.



la
n

s-

n
ive

o

th

i-

rd

gh
y

th

ite

ond

ed

3436 PRA 60M. BACHMANN, H. KLEINERT, AND A. PELSTER
1

Ap
e2x2

(
n50

`
1

2nn!
Hn~x!Hn~x8!5d~x2x8!, ~6.12!

which may be derived from Mehler’s summation formu
~6.2! in the limit b→12, to reduce the smeared interactio
potentialV a2

V (xa) to the pure interaction potential~4.5!:

lim
b→0

V a2
V

~xa!5Vint~xa!. ~6.13!

Recalling Eq.~4.5! we see that the first-order effective cla
sical potential~6.10! approaches the classical one:

lim
b→0

W 1
V,cl~xa!5V~xa!. ~6.14!

This is a consequence of the vanishing fluctuation widthbH
2

of the paths around the classical orbits. This property is u
versal to all higher-order approximations to the effect
classical potential~4.12!. Thus all correction terms withn
.1 must disappear in the limitb→0:

lim
b→0

21

b (
n52

`
~21!n

n!\n ^Aint
n @x#&xa ,xa ,c

V 50. ~6.15!

C. Zero-temperature limit

At low temperatures, the first-order effective classical p
tential ~6.8! becomes

W 1
V,qm~xa!5

\V

2
1 lim

b→`

V a2
V

~xa!. ~6.16!

The zero-temperature limit of the smeared potential in
second term defined in Eq.~6.9! follows from Eq. ~6.3! by
taking into account the limiting procedure for the polynom
alsCb

(n) in Eq. ~6.7! and for the fluctuation width~2.8!. Thus
with H0(x)51 and the inverse lengthk5AMV/\ we obtain

lim
b→`

V a2
V

~xa!5E
2`

1`

dz S k2

p D 1/2

H0~kz!2

3exp$2k2z2%Vint~z!. ~6.17!

Introducing the harmonic eigenvalues

En
V5\V~n1 1

2 !, ~6.18!

and the harmonic eigenfunctions

cn
V~x!5

1

An!2n S k2

p D 1/4

e2k2x2/2Hn~kx!, ~6.19!

we can reexpress the zero-temperature limit of the first-o
effective classical potential~6.16! with Eq. ~6.17! by

W 1
V,qm~xa!5E0

V1^c0
VuVintuc0

V&. ~6.20!

This is recognized as the first-order harmonic Raylei
Schrödinger perturbative result for the ground-state energ

For the discussion of the quantum-mechanical limit of
first-order normalized density,
i-

-

e

er

-
.
e

r1
V~xa!5

r̃ 1
V~xa!

Z

5r0
V~xa!

expH 2
1

\
^Aint@x#&xa ,xa

V J
E

2`

1`

dxa r0
V~xa!expH 2

1

\
^Aint@x#&xa ,xa

V J ,

~6.21!

we proceed as follows. First we expand Eq.~6.21! up to first
order in the interaction, leading to

r1
V~xa!5r0

V~xa!F12
1

\ S ^Aint@x#&xa ,xa

V 2E
2`

1`

dxa r0
V~xa!

3^Aint@x#&xa ,xa

V D G . ~6.22!

Inserting Eqs.~3.4! and ~6.3! into the third term in Eq.
~6.22!, and assumingV not to depend explicitly onxa , the
xa integral reduces to the orthonormality relation for Herm
polynomials

1

2nn!Ap
E

2`

1`

dxa Hn~xa!H0~xa!e2xa
2
5dn0 , ~6.23!

so that the third term in Eq.~6.22! eventually becomes

2E
2`

1`

dxa r0
V~xa!^Aint@x#&xa ,xa

V

52bE
2`

1`

dzS k2

p D 1/2

Vint~z!exp$2k2z2%H0~kz!.

~6.24!

But this is just then50 term of Eq.~6.3! with an opposite
sign, thus cancelling the zeroth component of the sec
term in Eq.~6.22!, which would have been divergent forb
→`.

The resulting expression for the first-order normaliz
density is

r1
V~xa!5r0

V~xa!

3F12 (
n51

`
b

2nn!
Cb

~n!Hn~kxa!

3E
2`

1`

dzS k2

p D 1/2

Vint~z!exp~2k2z2!Hn~kz!G .

~6.25!

The zero-temperature limit ofCb
(n) is, from Eqs.~6.7! and

~6.18!,
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lim
b→`

bCb
~n!5

2

En
V2E0

V , ~6.26!

so that from Eq.~6.25! we obtain the limit

r1
V~xa!5r0

V~xa!

3F122(
n51

`
1

2nn!

1

En
V2E0

V Hn~kxa!

3E
2`

1`

dzS k2

p D 1/2

Vint~z!

3exp$2k2z2%Hn~kz!H0~kz!G . ~6.27!

Taking into account the harmonic eigenfunctions~6.19!, we
can rewrite Eq.~6.27! as

r1
V~xa!5uc0~xa!u2

5@c0
V~xa!#222c0

V~xa! (
n.0

cn
V~xa!

^cn
VuVintuc0

V&

En
V2E0

V ,

~6.28!

which is just equivalent to the harmonic first-order Rayleig
Schrödinger result for particle densities.

Summarizing the results of this section, we have sho
that our method has properly reproduced the high- and l
temperature limits. Because of relation~6.28!, the variational
approach for particle densities can be used to determine
ground-state wave functionc0(xa) approximately for the
system of interest.

More recently an independent variational approach
been proposed@11#. Another rigorous, fully nonperturbativ
way to compute the energy and the wave function of
ground state for quantum-mechanical systems was devel
by generalizing the WKB method to more than one dime
sion @10#.

VII. SMEARING FORMULA IN HIGHER SPATIAL
DIMENSIONS

Most physical systems possess many degrees of freed
This requires an extension of our method to higher spa
dimensions. In general, we must consider anisotropic h
monic trial systems, where the previous variational para
eterV2 becomes aD3D matrix Vmn

2 , with m,n51,2,...,D.

A. Isotropic approximation

An isotropic trial ansatz

Vmn
2 5V2dmn ~7.1!
-

n
-

he

s

e
ed
-

m.
al
r-
-

can give rough initial estimates for the properties of the s
tem. In this case, thenth-order smearing formula~5.12! gen-
eralizes directly to

^Aint
n @r #& ra ,ra

V 5
1

r0
V~ra! )l 51

n F E
0

\b

dt lE dDzl Vint~zl !G
3

1

A~2p!n11deta2D

3expF2
1

2 (
k,l 50

n

zkakl
22zl G , ~7.2!

with the D-dimensional vectorszl5(z1l ,z2l ,...,zDl)
T. Note,

that Greek labelsm,n,...51,2,...,D specify spatial indices,
and Latin labelsk,l ,...50,1,2,...,n refer to the different
imaginary times. The vectorz0 denotesra , and the matrixa2

is the same as in Sec. V. The harmonic density reads

r0
V~r !5S 1

2pa00
2 D D/2

expF2
1

2a00
2 (

m51

D

xm
2 G . ~7.3!

B. Anisotropic approximation

In the discussion of the anisotropic approximation, w
shall only consider radially symmetric potentialsV(r )
5V(ur u) because of their simplicity and their major occu
rence in physics. The trial frequencies decompose natur
into a radial frequencyVL and a transversal oneVT ~see Ref.
@2#!:

Vmn
2 5VL

2 xamxan

r a
2 1VT

2S dmn2
xamxan

r a
2 D , ~7.4!

with r a5urau. For practical reasons we rotate the coordin
system byx̄n5Uxn so thatr̄a points along the first coordi-
nate axis,

~ r̄a!m[ z̄m05 H r a ,
0,

m51
2<m<D, ~7.5!

and the rotatedV2 matrix is diagonal:

V25S VL
2

0
0
]

0

0
VT

2

0
]

0

0
0

VT
2

]

0

¯

¯

¯

�

¯

0
0
0
]

VT
2

D 5UV2U21. ~7.6!

After this rotation, theanisotropic nth-order smearing for-
mula in D dimensions reads
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^Aint
n @r #& ra ,ra

VL,T 5
1

r0
VL,T~ r̄a!

)
l 51

n F E
0

\b

dt lE dDz̄lVint~ uz̄l u!G~2p!2D~n11!/2~detaL
2!21/2~detaT

2!2~D21!/2

3expH 2
1

2 (
k,l 50

n

z̄1kaLkl
22z̄1lJ expH 2

1

2 (
m52

D

(
k,l 51

n

z̄mkaTkl
22z̄m lJ . ~7.7!
ice
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The components of the longitudinal and transversal matr
aL

2 andaT
2 are

aLkl
2 5aL

2~tk ,t1!, aTkl
2 5aT

2~tk ,t l !, ~7.8!

where the frequencyV in Eq. ~5.13! must be substituted fo
the variational parametersVL andVT , respectively. For the
harmonic density in the rotated systemr0

VL,T( r̄ ) which is
used to normalize Eq.~7.7!, we find

r0
VL,T~ r̄ !5S 1

2paL00
2 D 1/2S 1

2paT00
2 D D21/2

3expF2
1

2aL00
2 x̄1

22
1

2aT00
2 (

m52

D

x̄m
2 G . ~7.9!

VIII. APPLICATIONS

By discussing the applications, we shall employ for si
plicity natural units with\5kB5M51. In order to develop
some feeling about how our variational method works,
first approximate the particle density in the double-well p
tential in second order. After that we approximate t
temperature-dependent electron density of the hydro
atom in first order.

A. Double well

A detailed analysis of the first-order approximation sho
that the particle density in the double-well potential is nea
exact for all temperatures if we use the two variational
rametersV2 andxm , whereas one variational parameterV2

leads to larger deviations at low temperatures and coup
strengths. For such conditions, leading to a maximum of d
sity far away from the origin,xa50, the displacement of the
trial oscillatorxm may not be supposed to vanish. Consid
ing this, our first-order results improve those obtained in R
@14#. Since the differences between the optimization pro
dures using one or two variational parameters become
significant in higher orders, the subsequent second-order
culation is restricted to the optimization inV.

1. First-order approximation

In the case of the double-well potential

V~x!52
1

2
v2x21

1

4
gx41

1

4g
~8.1!

with coupling constantg, we obtain for the expectation of th
interaction~6.3! to first order, also settingv251,
s

-

e
-

n

s
y
-

g
n-

-
f.
-
ss
al-

^A@x#&xa ,xa

V,xm 5 1
2 bg01 1

2 g1Cb
~1!H1„~xa2xm!/A2a00

2
…

1 1
4 g2Cb

~2!H2„~xa2xm!/A2a00
2
…

1 1
8 g3Cb

~3!H3„~xa2xm!/A2a00
2
…

1 1
16 g4Cb

~4!H4„~xa2xm!/A2a00
2
…, ~8.2!

with

g052a00
2 ~V211!1

3

2
ga00

4 13ga00
2 xm

2 1
1

2
gxm

4

1
1

2g
2

1

2
xm

2 ,

g152A2a00
2 xm1

3

4
g~2a00

2 !3/2 xm1gA2a00
2 xm

3 ,

g252a00
2 ~V211!13ga00

4 13ga00
2 xm

2 ,

g35g~2a00
2 !3/2 xm ,

g45ga00
4 .

Inserting Eq.~8.2! into Eq. ~6.9! and using Eq.~6.8!, we
obtain the unnormalized double-well density

r̃ 1
V,xm~xa!5

1

A2pb
exp@2bW 1

V,xm~xa!#, ~8.3!

with the first-order effective classical potential

W 1
V,xm~xa!5

1

2
ln

sinhbV

bV
1

V

b
~xa2xm!2 tanh

bV

2

1
1

b
^Aint@x#&xa ,xa

V,xm . ~8.4!

After optimizingW 1
V,xm(xa), the normalized first-order par

ticle densityr1(xa) is found by dividingr̃1(xa) by the first-
order partition function

Z15
1

A2pb
E

2`

1`

dxa exp@2bW1~xa!#. ~8.5!

SubjectingW 1
V,xm(xa) to the extremality conditions~4.13!,

we obtain optimal values for the variational paramet
V2(xa) andxm(xa). Usually there is a unique minimum, bu
sometimes this does not exist and a turning point or a v
ishing higher derivative must be used for optimization. F
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tunately, the first case is often realized. Figure 4 shows
dependence of the first-order effective classical poten
W 1

V,xm(xa) at b510 and g50.4 for two fixed values of
position xa as a function of the variational paramete
V2(xa) andxm(xa) in a three-dimensional plot. Thereby, th
darker the region the smaller the value ofW 1

V,xm. We can
distinguish between deep valleys~dark gray!, in which the
global minimum resides, and hills~light gray!. After having
roughly determined the area around the expected minim
one numerically solves the extremality conditions~4.13!
with some nearby starting values, to find the exact locati
of the minimum. The example in Fig. 4 gives an impress
of the general features of this minimization process. Furth
more we note that, for symmetry reasons,

xm~xa!52xm~2xa!, ~8.6!

and

V2~xa!5V2~2xa!. ~8.7!

Some first-order approximations of the effective classi
potentialW1(xa) are shown in Fig. 5, which are obtained b
optimizing with respect toV2(xa) and xm(xa). The sharp
maximum occurring for weak coupling is a consequence o
nonvanishingxm(xa50). In the strong-coupling regime, o
the other hand, wherexm(xa50)'0, the sharp top is absen
This behavior is illustrated in Figs. 6~b! and 7~b! at different
temperatures. In Fig. 6~b! we see that forxa.0, the optimal
xm values lie close to the right-hand minimum of the doub
well potential, which we only want to consider here. T
minimum is located at 1/Ag'3.16.

FIG. 4. Plots of the first-order approximationW 1
V,xm(xa) to the

effective classical potential as a function of the two variational
rametersV2(xa) andxm(xa) at g50.4 andb510 for two different
values ofxa .
e
al

,

s
n
r-

l

a

-

The influence of the center parameterxm diminishes for
increasing values ofg and decreasing height 1/4g of the
central barrier~see Fig. 5!. The same thing is true at hig
temperatures and large values ofxa , where the precise
knowledge of the optimal value ofxm is irrelevant. In these
limits, the particle density can be determined without op
mizing in xm , simply settingxm50, where the expectation
value Eq.~8.2! reduces to

^Aint@x#&xa ,xa

V 5 1
4 Cb

~2!H2~xa /A2a00
2 !~g113g2!

1 1
16 g2Cb

~4!H4~xa /A2a00
2 !

1b~ 1
2 g11 3

4 g21g3!, ~8.8!

with the abbreviations

g152a00
2 ~V211!, g25ga00

4 , g35
1

4g
.

Inserting Eq.~8.8! into Eq. ~6.9! and using Eq.~6.8!, we
obtain the unnormalized double-well density

r̃1
V~xa!5

1

A2pb
exp@2bW1

V~xa!#, ~8.9!

with the first-order effective classical potential

W1
V~xa!5

1

2
ln

sinhbV

bV
1

V

b
xa

2 tanh
bV

2
1

1

b
^Aint@x#&xa ,xa

V .

~8.10!

The optimization atxm50 gives reasonable results for mo
erate temperatures at couplings such asg50.4, as shown in
Fig. 8 by a comparison with the exact density which is o
tained from numerical solution of the Schro¨dinger equation.
An additional optimization inxm cannot be distinguished o
the plot. An example where the second variational param
xm becomes important is shown in Fig. 9, where we comp

-

FIG. 5. First-order approximation of the effective classical p
tential, W1(xa), for different coupling strengthsg as a function of
the positionxa at b510 by optimizing in both variational param
etersV2 andxm ~solid curves! in comparison with the approxima
tions obtained by variation inV2 only ~dashed curves!.
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the first-order approximation with one~V! and two varia-
tional parameters (V,xm) with the exact density for differen
temperatures at the smaller coupling strengthg50.1. We
observe that, with two variational parameters, the first-or
approximation is nearly exact for all temperatures, in co
trast to the results with only one variational parameter at
temperatures~see the curve forb520).

2. Second-order approximation

In second-order variational perturbation theory, the diff
ences between the optimization procedures using one or
variational parameters become less significant. Thus we
strict ourselves to the optimization inV(xa), and setxm
50.

The second-order density

r̃ 2
V~xa!5

1

A2pb
exp@2bW 2

V~xa!# ~8.11!

with the second-order approximation of the effective clas
cal potential

W 2
V~xa!5

1

2
ln

sinhbV

bV
1

V

b
xa

2 tanh
bV

2

1
1

b
^Aint@x#&xa ,xa

V 2
1

2b
^Aint

2 @x#&xa ,xa ,c
V

~8.12!

requires evaluating the smearing formula~5.10! for n51,
which is given in Eq.~8.8!, andn52 to be calculated. Going
immediately to the cumulant we have

FIG. 6. ~a! Trial frequencyV2(xa) at different temperatures an
coupling strengthg50.1. ~b! Minimum of the trial oscillator
xm(xa) at different temperatures and coupling strengthg50.1.
r
-

-
o

e-

i-

^Aint
2 @x#&xa ,xa ,c

V 5E
0

\b

dt1E
0

\b

dt2H 1

4
~V211!2@ I 22~t1 ,t2!

2I 2~t1!I 2~t2!#2
1

4
g~V211!@ I 24~t1 ,t2!

2I 2~t1!I 4~t2!#1
1

16
g2@ I 44~t1 ,t2!

2I 4~t1!I 4~t2!#J , ~8.13!

with

I m~tk!5~a00
4 2a0k

4 !m
]m

] j m expF j 212xaa0k
2 j

2a00
2 ~a00

4 2a0k
4 !G

j 50

, k51,2

~8.14!

and

I mn~t1 ,t2!

5~2detA!m1n
]m

] j 1
m

]n

] j 2
n expF F~ j 1 , j 2!

2a00
2 ~detA!2G

j 15 j 250

detA5a00
6 12a01

2 a02
2 a12

2 2a00
2 ~a01

4 1a02
4 1a12

4 !. ~8.15!

The generating function is

F~ j 1 , j 2!5a00
4 ~ j 1

21 j 2
2!22a00

6 ~a01
2 j 11a02

2 j 2!xa

12a00
2
„a12

2 j 1 j 21~a01
4 1a02

4 1a12
4 !~a01

2 j 1

1a02
2 j 2!xa…2~a01

2 j 11a02
2 j 2!~a01

2 j 11a02
2 j 2

14a01
2 a02

2 a12
2 xa!. ~8.16!

All necessary derivatives and the imaginary time integ
tions in Eq.~8.13! have been calculated analytically. Afte
optimizing the unnormalized second-order density~8.11! in
V, we obtain the results depicted in Fig. 10. Comparing
second-order results with the exact densities obtained f
numerical solutions of the Schro¨dinger equation, we see tha
the deviations are strongest in the region of intermediateb,
as expected. Quantum-mechanical limits are reproduced
well, classical limits exactly.

B. Distribution function for the electron in the hydrogen atom

With the insights gained in Sec. VIII A by discussing th
double-well potential, we are prepared to apply our meth
to the electron in the hydrogen atom which is exposed to
attractive Coulomb interaction

V~r !52
e2

r
. ~8.17!

Apart from its physical significance, the theoretical intere
in this problem originates from the nonpolynomial nature
the attractive Coulomb interaction. The usual Wick rules
Feynman diagrams do not allow one to evaluate harmo
expectation values in this case. Only by the aid of the abo
mentioned smearing formula are we able to compute
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variational expansion. Since we learned from the doub
well potential that the importance of the second variatio
parameterrm diminishes for a decreasing height of the ce
tral barrier, it is sufficient for the Coulomb potential with a
absent central barrier to setrm50 and to take into accoun
only one variational parameterV2. By doing so we will see
in first order that the anisotropic variational approximati
becomes significant at low temperatures, where radial
transversal quantum fluctuations have quite differ
weights. The effect of anisotropy disappears completely
the classical limit.

1. Isotropic first-order approximation

In the first-order approximation for the unnormalized de
sity, we must calculate the harmonic expectation value of
action,

Aint@r #5E
0

\b

dt1Vint„r ~t1!…, ~8.18!

with the interaction potential

Vint~r !52S e2

r
1

1

2
rTV2r D , ~8.19!

where the matrixVmn
2 has the form of Eq.~7.4!. Applying

the isotropic smearing formula~7.2! for n51 to the har-
monic term in Eq.~8.18!, we easily find

^r2~t1!& ra ,ra

V 53
a00

4 2a01
4

a00
2 1

a01
4

a00
4 r a

2. ~8.20!

For the Coulomb potential we obtain the local average

FIG. 7. ~a! Trial frequencyV2(xa) at different temperatures an
coupling strengthg510. ~b! Minimum of trial oscillatorxm(xa) at
different temperatures and coupling strengthg510.
-
l

-

d
t
n

-
e

K e2

r ~t1!L
ra ,ra

V

5
e2

r a

a00
2

a01
2 erfS a01

2

A2a00
2 ~a00

4 2a01
4 !

r aD .

~8.21!

The time integration in Eq.~8.18! cannot be done in an ana
lytical manner and must be performed numerically. Altern
tively we can use the expansion method introduced in S
VI A for evaluating the smearing formula in three dime
sions, which yields

^Aint@r #& ra ,ra

V 5@r0
V~ra!#21

e2r a
2/2a00

2

p2a00
2 r a

3 (
n50

` H2n11~r a /A2a00
2 !

22n11~2n11!!
Cb

~2n!

3E
0

`

dy y Vint~A2a00
2 y!e2y2

H2n11~y!.

~8.22!

This can be rewritten in terms of Laguerre polynomia
Ln

m(r ) as

^Aint@r #& ra ,ra

V 5S 2a00
2

p D 1/2 1

r a
(
n50

`
~21!nn!

~2n11!!
Cb

~2n!

3H2n11~r a /A2a00
2 !E

0

`

dy y1/2

3Vint~A2a00
2 y1/2!e2yLn

1/2~y!L0
1/2~y!.

~8.23!

Using the integral formula@Ref. @16#, Eq. ~2.19.14.15!#,

FIG. 8. First-order approximation of the double-well partic
density for b510 and g50.4 compared with the exact particl
density from numerical solution of the Schro¨dinger equation. All
values are in natural units.
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0

`

dx xa21e2cxLm
g ~cx!Ln

l~cx!

5
~11g!m~l2a11!nG~a!

m!n!ca

3 3F2~2m,a,a2l;g11,a2l2n;1!,

~8.24!

where (a)n are Pochhammer symbols,pFq(a1 ,...,ap ;
b1 ,...,bq ;x) denotes the confluent hypergeometric functio
and G(x) is the gamma function, we apply the smeari
formula to the interaction potential~8.19!, and find

^Aint@r #& ra ,ra

V 52
e2

Apr a
(
n50

`
~21!n~2n21!!!

2n~2n11!!

3Cb
~2n!H2n11~r a /A2a00

2 !

2
3

4
A2a00

6 V4
1

r a
H Cb

~0!H1~r a /A2a00
2 !

1
1

6
Cb

~2!H3~r a /A2a00
2 !J . ~8.25!

The first term comes from the Coulomb potential, the sec
from the harmonic potential. Inserting Eq.~8.25! into Eq.
~4.9!, we compute the first-order isotropic form of the rad
distribution function

g~r !5A2pb3r̃~r !. ~8.26!

This can be written as

g1
V~ra!5exp@2bW1

V~ra!# ~8.27!

with the isotropic first-order approximation of the effectiv
classical potential,

FIG. 9. First-order particle densities of the double well forg
50.1 obtained by optimizing with respect to two variational para
etersV2 and xm ~dashed curves!, and with onlyV2 ~dash-dotted
line! vs exact distributions~solid! for different temperatures. The
parameterxm is very important for low temperatures.
,

d

l

W1
V~ra!5

3

2b
ln

sinhbV

bV
1

V

b
r a

2tanh
bV

2
1

1

b
^Aint@r #& ra ,ra

V ,

~8.28!

which is shown in Fig. 11 for various temperatures. T
results compare well with Storer’s precise numerical res
@17#. Near the origin, our results are better than those
tained with an earlier approximation derived from th
lowest-order effective classical potential given in Ref.@9#.

2. Anisotropic first-order approximation

The above results can be improved by taking care of
anisotropy of the problem. For the harmonic part of acti
~8.18!,

Aint@r #5AV@r #1AC@r #, ~8.29!

the smearing formula~7.7! yields the expectation value

^AV@r #& ra ,ra

VL,T 52 1
2 $VL

2aL00
2

„Cb
~0!1 1

2 Cb,L
~2! H2~r a /A2aL00

2 !…

12VT
2aT00

2 ~Cb
~0!2Cb,T

~2! !%, ~8.30!

where theCb,L(T)
(n) are the polynomials~6.5! with V replaced

by the longitudinal or transverse frequency. For the Coulo
part of action~8.18!, the smearing formula~7.7! leads to a
double integral

^AC@r #& ra ,ra

VL,T 52e2E
0

\b

dt1S 2

paL00
2 ~12aL

4! D
1/2

3E
0

1

dlH 11l2FaT00
2 ~12aT

4!

aL00
2 ~12aL

4!
21G J 21

3expH 2
r a

2aL
4l2

2aL00
2 ~12aL

4!J , ~8.31!

with the abbreviations

-
FIG. 10. Second-order particle density~dashed! compared with

exact results from numerical solutions of the Schro¨dinger equation
~solid! in a double well at different inverse temperatures. The c
pling strength isg50.4.
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aL
25

aL00
2

aL01
2 , aT

25
aT00

2

aT01
2 . ~8.32!

The integrals must be done numerically and the first-or
approximation of the radial distribution function can be e
pressed by

g1
VL,T~ra!5exp@2bW1

VL,T~ra!#, ~8.33!

FIG. 11. Radial distribution function for an electron-proton pa
The first-order results obtained with isotropic~dashed curves! and
anisotropic~solid line! variational perturbation theory are compare
with Storer’s numerical results@17# ~dotted line! and an earlier ap-
proximation derived from the variational effective classical pote
tial method to first order in Ref.@9# ~dash-dotted line!.
r

with

W1
VL,T~ra!5

1

2b
ln

sinhbVL

bVL
1

1

b
ln

sinhbVT

bVT

1
VL

b
r a

2tanh
bVL

2
1

1

b
^Aint@r #& ra ,ra

VL,T .

~8.34!

This is optimized inVL(ra),VT(ra), with the results shown
in Fig. 11. The anisotropic approach improves the isotro
result for temperatures below 104 K.

IX. SUMMARY

We have presented variational perturbation theory
density matrices. A generalized smearing formula which
counts for the effects of thermal and quantum fluctuatio
was essential for the treatment of nonpolynomial inter
tions. We applied the theory to calculate the particle den
in the double-well potential, and the electron density in t
Coulomb potential, the latter as an example of nonpoly
mial application. In both cases, the approximations were
isfactory.
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