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Variational perturbation theory for density matrices
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We develop a convergent variational perturbation theory for quantum-statistical density matrices which is
applicable to polynomial as well as nonpolynomial interactions. We illustrate the power of the theory by
calculating the temperature-dependent density of a particle in the double-well potential to second order, and of
the electron in the hydrogen atom to first ord&81050-294{@9)08410-3

PACS numbds): 03.65.Ca, 05.306:d

[. INTRODUCTION formed for each positiox, of the path average separately,
yielding an Nth-order approximationNy(x,) to the local
Variational perturbation theoryl,2] transforms divergent free energy(Xo), called theeffective classical potential

perturbation expansions into convergent ones. The resultind5]. The name indicates that one may obtain the full quan-
convergence extends to infinitely strong couplii@y, a tum partition functionZ from this object by a simple integral
property which has recently been used to derive critical exever x, just as in classical statistics,
ponents in field theory without renormalization-group meth-
ods [4,5]. The theory was first developed in quantum me- s dxo
chanics for the path-integral representation of the free energy Z= f — e VethaXo/keT, 2
of the anharmonic oscillatg6] and the hydrogen atof2,7]. —= N2mhIMKgT
Local quantities such as quantum-statistical density matrices . . .
have t?een treated so farqonly to lowest order for t¥1e anhaljﬂ"’w.Ing caIcuIated/yN(xo), we obtain theNth-order approxi-
monic oscillator and the hydrogen at¢89]. Other rigorous mation to the partition function,
nonperturbative approaches to compute the energy and the

wave function of the ground state for quantum-mechanical N dxo — Wi (xg)/ kT

) Zn= ——————¢e "Xk, (2.2
systems were developed some time &40] and also more — \2mh2IMkgT
recently[11].

The purpose of this paper is to develop a systematic conthe separate treatment of the path average is important to
vergent variational perturbation theory for the path-integralensure a fast convergence at larger temperatures. In the high-
representation of density matrices of a point particle movingemperature limit\Wy(x,) converges against the initial po-
in polynomial as well as nonpolynomial potentials. By Sys-tential V(xo) for any orderN.
tematically taking into account higher orders, we thus go Before embarking upon the theory, it is useful to visualize
beyond related first-order treatments in classical phase spaggme characteristic properties of path fluctuations. Consider
[12] and early Rayleigh-Ritz-type variational approximationsihe Eyclidean path integral over all periodic patigs), with

[13]. With the help of a generalized smearing formula WhiChX(o):X(ﬁ/kBT), for a harmonic oscillator with minimum at
accounts for the effects of quantum fluctuations, we can fury _ “\vhere the action is

thermore treat nonpolynomial interactions, thus extending
the range of applicability of the work in Rdf14]. As a first hlkgT
application, here we calculate the particle density in the A2 [X]=f dr{3MX*(7) + s MQZ[X(7) = X%}
double-well potential to second order, and then the electron Xm 0

density in the hydrogen atom to first order. 2.3
Its partition function is
Il. GENERAL FEATURES
Variational perturbation theory approximates a quantum-  7Q,xy,— § Dx expl — AY*[x]/fi} = — ’
statistical system by perturbation expansions around har- 2 sinhf (2/2kgT

monic oscillators with trial frequencies which are optimized 2.4
differently for each order of the expansions. When dealing ) ) -
with the free energy, it is essential to give a special treatmer@"d the =~ correlation  functions ~ of ~local quantities
to the fluctuations of the path averagex 04(x),0,(x),... aregiven by the expectation values

= (ke T/%) %87 7 x , since this performs violent fluc-
(ka /)]~ O7X(7) P (01(K(71))05(x( 7)) )2

tuations at high temperaturds These cannot be treated by

any expansion, unless the potential is close to harmonic. The 1

effect of these fluctuations may, however, easily be calcu- = 20, f# Dx Oy(x(71))

lated at the end by a single numerical fluctuation integral.

For this reason, variational perturbation expansions are per- X Oy(X(75)) - exp{ — AP*m x]/1}. (2.5
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The particle distribution of the oscillator is given by 1.0 7
( )2 ’I///
1 X—X ;
Pu(X)=(8(x—x( T))>Q’Xm: —IZ_ZeXF{ - sz ) I afy S ///
78H H S/ fluctuation
(2'6) R width
which is a Gaussian distribution of width
) h h nQ 2.7
ag=5-~ coth——, .
H2MQ 2kgT
the subscript indicating that we are dealing with a harmonic
oscillator. At zero temperature, this is equal to the square of

the ground-state wave function of the harmonic oscillator, 0.0
whose width is 0.0

FIG. 1. Temperature dependence of fluctuation widths of any
pointx(7) on the path in a harmonic oscillatdP(is a square length
in units of#/MQ). The quantitya, (dashed lingis the quantum-
mechanical width, WhereaiO (dash-dotted lineshares the width
after separating out the fluctuations around the path avexgge
The quantitya? (long-dashed lingis the width of the classical
distribution, andbf| (solid curve is the fluctuation width at fixed

h

aﬁo=m. (28)

In the limit #—0, from Eqgs.(2.6) and(2.7) we obtain the
classical distribution

1 ;{ (X—Xpm)? ends which is relevant for the calculation of the density matrix by
Pug(X)= exp — , (2.9  variational perturbation theorisee Sec. I\,
Hcl m Zal%icl p s I
Q,
with (O1(X(71))02(X(72))" - _>X0xm
KeT _ (3(X=X%0) O1(X(7))O(X(2))- ) *m (2.14
5 = — . .
A= 02 (2.10 (8(X—xp))H*m

) ) i i i o The original quantum statistical distribution of the harmonic
The linear growth of this classical width is the origin of the oscillator (2.6) collects fluctuations ofk=x, and those

famous Dulong-Petit law for the specific heat of a harmonic, o ndx, | and can therefore be written as a convolution
system. The classical fluctuations are governed by the inte-

gral over the Boltzmann factor

e~ M Q2(x—x) 22kgT

(2.11

in the classical partition function

- M&)Z(x—xm)Z/ZKBT_ (2.12

+o0 dx
ZHcI:J =t
—» 2t IMkgT

From this we obtain the classical distributio®.9) as the
expectation value:

Pha(X)=(8(x=X))5m

1 + oo d?
N
—= \27h2IMKgT

X S(x—X)e" MQ2(x— xm)z/szT_

(2.13

+oo
Pu(x)= Jiw dXOPxo(X_XO)PHcI(XO)v (2.19

over the classical distributiof2.9) and the local one

(X_Xo)2
——exg ——=——|-
27Ta20 Zaxo

(2.19

Such a convolution of Gaussian distributions as in 2dql5
leads to another Gaussian distribution with added widths, so
that the width of the local distribution is given by the differ-
ence

P00 = (00— X(7)) ). "=

2:
X0

Q) 2kgT
af—a%= coth e

a oM | kT RO )

(2.17

which starts out at the finite valu2.8) for T=0, and goes to
zero forT— o with the asymptotic behavidrQ2/12kgT (see
Fig. ). The latter property suppresses all fluctuations around

Variational perturbation theory avoids the divergence of thec and guarantees that lm..Wy(xo) = V(Xo) for all N.

harmonic widtha? at high temperatures in E(.10 by the

With this separation of the path average, the partition

separate treatment of the fluctuations of the path avexage function

as explained above. The average is fixed at some wgjue

with the help of a delta functiod®(x—X,). For eachx, we
introduce local expectation values

Z= i;l)x exp{— A[x]/h} (2.18
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for the general particle action over all paths with the fixed end points(0)=x, and
et X(h/kgT)=Xp. The partition function is found from the
AlX]= J " dr
0

(2.19 trace ofp(Xy,Xa):
possesses the effective classical representazidnwith the Z= fmdxf;(x,x). (3.3
effective classical potential

1
E|\/|>'<2(T)+V(x(r))

112
Vit of(Xo) = —KgT In ) f’px S(Xo—X) For a harmonic oscillator centered af, with the action
’ MkBT (2.3, the path integral3.2) can be easily done with the
result(see Chap. 2 in Ref2])
xexp{—A[x]/ﬁ}}. (2.20
~0,X MQ vz
In variational perturbation theorh?], this is expanded per- Po "(XpXa) = 27h SinhQ/KgT
turbatively around arxy-dependent harmonic system with
trial frequency((x,), whose optimization leads to the ap- » B MQ
proximationWy(Xo) for Ve ci(Xo)- &P T 2k sinhh QTkgT
I1l. DENSITY MATRIX OF HARMONIC OSCILLATOR ><[(7(§+7<§)coshh9/kBT—Z>*<b7(a]],
In the present paper we dwell on the question how this
method can be extended to the density matrix (3.4

1 . .
p(Xp Xa) = Zp(xb Xa), (3.1) where we introduced the abbreviation

wherep(xy ,X,) is the path integral, X(7)=X(T) =X . (3.9
P(Xp ,Xa):f Dx exp{— A[x]/h}, (3.2 At fixed end points, ,X,, the quantum-mechanical correla-
(X@.0)~(xp ,AlkgT) tion functions are
|
Xm 1 Q,x
(O1(X(71))O02(X(72))- - > = Z0ax Dx O1(X(711))O2(X(72)) - -exp{ — A" *m[x]/%i},
o M(Xp,X (Xg.0)~ (Xp ,AilkgT)
(3.9
|

and the distribution function is given by f

(7')\ tanh— (3.10
Q xm 2MQ

PH(X, 7)=(8(Xx=X(7)),
thus remaining finite at all temperatures. The temporal aver-
age of Eq.(3.9 is

1 X—Xg(7))?
_ exp[_ G oo
V2mbi(7) 2by(7) , keT [#keT fi nQ kgT
. o . . W), 9TPROD = ug | o T e )
The classical path of a particle in a harmonic potential is (3.19)
« |(r)=7(b sinhQ 7+X, sinhQ (A/kgT - 7) 3g Just asa; , this goes to zero fol — with an asymptotic
’ SinhA{}/ksT behavior /6ksT, which is twice as large as that e
and the time-dependent widt,(7) is found to be (see Fig. 1
, % AQ  cosiQ(27—#ilkgT)] IV. VARIATIONAL PERTURBATION THEORY FOR
by ()= coth — - DENSITY MATRICES
2MQ kgT sinhaQ/kgT
(3.9 To obtain a variational approximation for the density ma-

trix, it is useful to separate the general acti@l9 into a
Since the Euclidean timer lies in the interval Gs7  trial one for which the Euclidean propagator is known, and a
<#fi/kgT, the width(3.9) is bounded by remainder containing the original potential. If we were to
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' perform the variational perturbation theory, treating the fluc-
\ tuations ofxy aroundx,, on the same footing as the remain-
0.4\ 1 ing fluctuations. The positior,, of the minimum is a func-
\ tion Xm=Xm(Xy ,Xa), and has to be optimized with respect to
\ the trial frequency, which itself is a functidd = Q (X ,Xz)
\ O to be optimized.

02l \ | Hence we start by decomposing acti@19 as

-~ A[X]= AL [ x]+ Aind X], 4.3

g
iy
L2y

with an interaction
0.0

0.0 1.0 ksT /A 2.0

hB
- Ix]= dr V. ..(X , 4.4
FIG. 2. Temperature dependence of the width of fluctuations Al x] fo 7Vin(X(7)) “.49
around the path averagg=x at fixed ends. For comparison we

. 2 . . . . R . R 3 .
also show the widtre, of Fig. 1. The vertical axis gives these where the interaction potential is the difference between the
square lengths” in units of #/MQ again. original oneV(x) and the inserted displaced harmonic oscil-

lator:
proceed in complete analogy with the treatment of the parti-

tion function, we would expand the Euclidean path integral
around a trial harmonic one with fixed end poirtsandx,

and a fixed path average,, and with a trial frequency por previty, we have introduced the inverse temperature in
Q(Xp,Xa;Xo). The result would be an effective classical po- natural unitsf=1ksT in Eq. (4.4). Now we evaluate the

tential Wy (Xp ,Xa; Xo) to be optimized in)(Xp,Xa;Xo)- At path integral for the Euclidean propagatt2) by treating
ter that we would have to perform a final integralxigover

the interaction(4.4) as a perturbation, leading to a moment
the Boltzmann factor exp-Wn(%, Xa; Xo)/KsT].

» _expansion
However, because of the finiteness of the fluctuation

width bf; at all temperatures which is similar to thataf ,

the special treatment of=x, becomes superfluous for paths B(X.Xa) =P 5 ""(Xp Xa)
with fixed end pointx, ,X,. While the separation of, was

necessary to deal with the diverging fluctuation width of the T, Q.

path average, paths with fixed ends have fluctuations of the + W<Aint[x]> T (4.9

Vi) =V (x) = sM Q[ X = Xpn]%. (4.5

1
1= = (AnlXD

Xb ,Xa

Xb,Xa ’
path average which are governed by the distribution
Qi with expectation values defined in E@.6). The zeroth or-
pr(Xb,Xa)E<5(Xo_ﬂ>xb,xa der consists of the harmonic contributié8.4) and higher
orders contain harmonic averages of the interactibd).
1 1 The correlation functions in Eq4.6) can be decomposed
- Wex N 2bxz Xo into connected ones by going over to cumulants, yielding
Xo 0
1 2kgT hQ 12 Bk X = “ (% x)ext] — 1<A_ [x]) 2
— E(Xb_"xa) mtanhm (41) PR, Ra) =P ¢ b Ra % int Xp X 1C
with the width + oz (AR =], 4.7
b2 = il 2|(BTt h i) 4.2 where the first cumulants are defined as usual
% MOZ|T RO 2KT) (4.2
Q. Xy _ Q,Xm
which goes to zero for both limitf—0 andT—« (see Fig. <01(X(71))>Xb ,Xa,c—<01(X(71))>Xb e
2). At each Euclidean timeg(7) fluctuates narrowly around 4.9
the classical patixy(7) connectingx, andXx,. This is the O+ (X(7 )0 (X(75))) 2 *m
reason why we may treat the fluctuationsxef x,, by varia- (O1(x(72))0X( 2))>Xb'xa'°
tional perturbation theory, just as the other fluctuations. As a _ QX
remnant of the extra treatment x§ we must, however, per- (O1X(71)OAX(72)))
form the initial perturbation expansion around the minimum B Q% Q%X
of the effective classical potential which will lie at some (Oa(x( Tl)»xbvxa<02(x(T2))>xbvxa'

point x,, determined by the end pointg andx, and by the
minimum of the potentiaM(x). Thus we shall use the Eu- Series(4.7) is truncated after th&lth term, resulting in the

clidean path integral for the density matrix of the harmonicNth-order approximant for the quantum-statistical density
oscillator centered at,, as the trial system around which to matrix
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~ QX _~ O.Xm 4o N N
PN (X Xa) =P o M (Xp Xa) ZN:J dxp ﬁ ’Xm(xbaxa)- (4.15
! (_1)n Q h
X
XeXF{ nzl AT <Air:1t[x]>xb ,Q;,c ' In principle, one could also optimize the entire ratibl14),

but this would be harder to do in practice. Moreover, the
4.9 optimization of the unnormalized density matrix is the only
] o o option, if the normalization diverges due to singularities of
which explicitly depends on both variational paramet®rs  he potential. This will be seen in Sec. VIII B by the example
andXp,. _ o of the hydrogen atom.
In analogy to classical statistics, where the Boltzmann

d_istribution _in configuratio_n space is controlled by the clas- \, sMEARING FORMULA FOR DENSITY MATRICES
sical potentiaV(x) according to
In order to calculate the connected correlation functions in

2 the variational perturbation expansi@d.9), we must find
) exfd — BV(X)], (4.10 efficient formulas for evaluating expectation valu@ss) of
any power of the interactiot¥.4):

~ M
pe(X)= (m

we now introduce an effective classical potential 1 ST
Veirel(Xp . Xa) Which governs the unnormalized density ma- (A{;t[x])ﬂ'xmz T DX
trix X 0 M(Xp 1 Xa) J%,,0
Mo\ I Jﬁﬁd VinX(7) +Xm)
- X T VintX( 7 X
P(Xp,Xa) = (m) eXFi - Bveff,cl(xb ’Xa)]- =1 0 " "
(4.11 1o,
Xexp — %A X[ X+ X | - (5.2
Its Nth-order approximation is obtained from EqS.4),
(4.9), and(4.11) via the cumulant expansion This can be done by an extension of the smearing formalism
which is developed in Ref.7]. To this end we rewrite the
0x 1 sinhzBQ interaction potential as
Wy (Xbaxa):ﬁlnw )
MQ VintX (7)) + X)) = f_ dz Vin(z+Xm)
¥ 2% Bsinh O
+edN .
X {(Xe+%2)coshh BO — 2%;X .} X f_m gexp{lxm}
N
1 (-1)" 0, 1B
- Enzl W<Air;lt[x]>xbfg,c' Xexp{— fo driN (7= 7)X(7) |,
(4.12 (5.2)
which is optimized for each set of end poimisandx, inthe  and introduce a current
variational parameter®? andx,, the result being denoted
by Wy(Xp,Xs). The optimal values Q2%(x,,x,) and n
Xm(Xp ,Xg) are determined from the extremality conditions J(7)=|21 AN S(T— 7)), (5.3
c?Wﬁ’xm(Xb.Xa) ! ¢9Wﬁ'xm(xbyxa) ! so that Eq(5.1) becomes
A D)2~ e TT | [ "or
The solutions are denoted I§y2" andx", both being func- AnlxDy, x, P o m(Xp Xa) =1 [Jo
tions ofx, andx,. If no extrema are found, one has to look .
for the flattest region of functiot4.12, where the lowest < dz V. X
. . L . 4 |nt(ZI Xmln)
higher-order derivative disappears. Eventually itb-order —o
approximation for the normalized density matrix is obtained N
*AA .
from xf_wﬁexp{l)\,z,} KXl J].
1 02N
PO X =20 Py O Xa), (414 4

The kernelk**m[ J] represents the generating functional for
where the corresponding partition function reads all correlation functions of the displaced harmonic oscillator
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Xp /i B 1 (4B m. wherex,(7) denotes the classical patB.8) and G(r,7')
KQ’X"‘[J]ZJ: . DX ex —gJO dr EXZ(T) the harmonic Green function
Xas
Q  —
1 G771 )=5o
+ SMOZR(7)+I(7X(7) } (5.5 2Ma

><coshQ(|7-— 7'|=hB)—coshQ(r+ 7' — 1)

For zero current, this generating functional reduces to the sinh7 B
Euclidean harmonic propagat(3.4):

(5.9
KXl J=01=7 2*m X.). 56 Expression(5.7) can be simplified by using the explicit ex-
[ 155 7" (X0 Xa) 69 pression(5.3 for the current]. This leads to a generating
functional
For nonzeral, the solution of the functional integréh.5) is 0 ax . .
given by (see Chap. 3 in Ref2)) KEX [ J]=5 o "(Xp . Xa)€XP(— TN "X — 3N GN),
(5.9

KOk 375 O 1 J'ﬁﬁd 3 where we have introduced the-dimensional vectorsh
[II=P o "Xo Xa)exp = 2 | - d7 I(7)Xe(7) =1, np) T and xg=(Xg(71),... Xa(7)T, with the su-
perscriptT denoting transposition, and the symmetnix n
matrix G whose elements a®,,=G"(7,, 7). Inserting Eq.
; (5.9 into Eq.(5.4), and performing the integrals with respect
to Nq,...,\y, We obtain thenth-order smearing formula for
(5.7  the density matrix

1 (4B B
+ —zf drf dr'J(7)G(r,7)I(7)
2h° Jo 0

n

§ he o0
<A?nt[x]>i1',,';:|1:[1 [I dr fﬁx dz Vind Z1+ Xm)

0

1 12 .
mexp’ _Ek,IEzl [Zx—Xa(T) IG TZ—Xe(7) 1. (5.10

The integrand contains amdimensional Gaussian distribu- with zy=%, and 7,=0. Herea? denotes a symmetricn(
tion describing both thermal and quantum fluctuations+1)x (n+ 1) matrix whose elements, =a?( 7y, 7)) are ob-

around the harmonic classical path(7) of Eq.(3.8) in @  tained from the harmonic Green function for periodic paths
trial oscillator centered at,,, whose width is governed by G%.P(7 ') as(see Chaps. 3 and 5 in R¢2])
the Green functiorn5.8).

For closed paths with coinciding end pointg, € x,), for- .,y , h coshQ(|7—7'| - BI2)
r_nula(5.1(_)_leads to thenth-order smearing formula for par- a°(7,7")= MG P(r,7')= MO sinh7 BO./2
ticle densities,
(5.13
p(Xg) = %ﬁ(xayxa) The diagonal element®=a?(r,7) represent the fluctuation

width (2.7), which behaves in the classical limit like Eq.
1 (2.10 and at zero temperature like E@.8).
=_ § Dx S(x(7=0)—x,) exp{ — A[x]/%}, Both smearing formula$5.10 and (5.12 allow one in
z principle to determine all harmonic expectation values for
(5.1 the variational perturbation theory of density matrices and
particle densities in terms of ordinary Gaussian integrals.
Unfortunately, in many applications containing nonpolyno-
mial potentials, it is impossible to solve either the spatial or

which can be written as

(A{Mx]}f}’x;" = oxo oL the temporal integrals analytically. This circumstance drasti-
a’a py"(Xa) cally increases the numerical effort in higher-order calcula-
tions.

n hB + 0
Xll;[l UO dﬂfﬁ dz Vin(z/+Xm)

VI. FIRST-ORDER VARIATIONAL RESULTS

The first-order variational approximation usually gives a

n
% 1 exdl — 1 E 7.a-27 reasonable estimate for any desired quantity. Let us investi-
[(2m)" Ldeta? 2520 KK A gate the classical and quantum-mechanical limit of this ap-

proximation. To facilitate the discussion, we first derive an
(5.12 alternative representation for the first-order smearing formula
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(5.12 which allows a direct evaluation of the imaginary-time C}]‘)
integral. The resulting expression will depend only on tem-

perature, whose low- and high-temperature limits can easily 1.0 0
be extracted.

0.8} ]
A. Alternative formula for first-order smearing 9

For simplicity, we restrict ourselves to the case of particle 0.6 } 3 .
densities, and allow only symmetric potentigléx) centered 4

at the origin. IfV(x) has only one minimum at the origin, 04l g |
then x,,, will also be zero. IfV(x) has several symmetric 7
minima, thenx,, goes to zero only at sufficiently high tem- n=3

peraturegsee Chap. 5 in Ref2]). 0.2
To first order, the smearing formu(&.12 reads

0.0 . . .
o np +oo dz 1 0.0 2.0 4.0 6.0 232 8.0
<Aint[x]>x WX Zi f J |m(z) . . .
é Po (Xa) \/aoo a01 FIG. 3. Temperature dependence of the first nine functions

CY, whereg=1KgT.

1 (2 +x3)a2,—2zx,a2
Xexp{——( a)8oo Xa 01, 6.1

2 age— any 1, n=0
i e(m
so that Mehler's summation formula ;ILTLCB 2 , n>0. ©.7
hBON

According to Eq.(4.12, the first-order approximation to
the effective classial potential is given by

(X?+x'?)(1+b?) —4xx’ b}

J— p{ 2(1-b?)

B 1, i D O (x 62 W) 1I sinhipQ MO 2t hBQ o
=exp = 3 (XX 2 sanr HaOOHA (XD (6.2 1) = a5 7 Xaenh - 22(%a),
(6.9
leads to an expansion in terms of Hermite polynomials th th di . ial
H,(x), whose temperature dependence stems from the diag‘j‘f't the smeared interaction potentia
onal elements of the harmonic Green funct{éil3: 1
- ng(xa): ﬁ(“‘lim[x])%,xa' (6.9

h
<~’4int[x]>f<)a,xa 2 znﬁ Xa/\/zaoo)

It is instructive to discuss separately the lim@s-0 andp
—oo of dominating thermal and quantum fluctuations, re-
dz spectively.

+ o
XJ N |nt(z) e’ /2a00 Hn(Z/\/zaOO)-
- 2’77&00

B. Classical limit of effective classical potential

(6.3
In the classical limit3—0, the first-order effective clas-
Here the dimensionless functios” are defined by sical potential(6.8) reduces to
- a2, W) = MO+ lim V (). (6.10
c=-" f = (6.4) B0
hB aoO

The second term is determined by inserting the high-
and their temperature dependence is shown in Bign3ert- ~ temperature limit of the fluctuation widt{2.10 and of the
ing Eq.(5.13 and performing the integral over we obtain ~ polynomials(6.6) into expansior(6.3), leading to

o

n .
cm____ L (”)S'”hﬁﬂm”/z_k) im v h(x,) = lim > oo (VM OZBI2,)
B T 2"cosHABOREL \ K| ABQ(N2—K) -0 p—0n=02"N
(6.9

z 25,2

: . . X EE—Y2 (Z) —MQ“Bz°2
At high temperatures, these functions®fo all to unity, —w \27IM Q28 int
limci’=1, (6.6) X H,(VYMQ?BI22). (6.11)

B—0
Then we make use of the completeness relation for Hermite
whereas for zero temperature we yield polynomials,
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PR | L , P 1(xa)
= 2 Sipr HaOOHA(x)=80x=x"), (6.12 Pl (e = >
which may be derived from Mehler's summation formula exp{ _E<A Ix])2 ]
(6.2 in the limit b— 1", to reduce the smeared interaction :pg(x ) i
potentialvﬂz(x ) to the pure interaction potentiéd.5): il r o 1 '
el [ anpben - 5 (A2 o,
limV  2(Xa) = Vind Xa) - (6.13

Recalling Eq.(4.5) we see that the first-order effective clas-

sical potential(6.10 approaches the classical one: we proceed as follows. First we expand 821 up to first

order in the interaction, leading to
lim W &%(x,) = V(xy). (6.14
B—0

p1 (Xa) =pg(Xa)

1 Q i Q
1- % <-Aint[x]>xa,xa_f dXa pg (Xa)
This is a consequence of the vanishing fluctuation whiﬁh o
of the paths around the classical orbits. This property is uni-
versal to all higher-order approximations to the effective X(Aim[x])z,xa”. (6.22
classical potentia(4.12. Thus all correction terms witim

>1 must disappear in the limg—0: ) ) ] ]
Inserting Egs.(3.4) and (6.3 into the third term in Eq.

_ (—1) 0 (6.22), and assuming) not to depend explicitly oxx,, the
lim 7 22 L <Alnt[x]>xa,xa <=0 (619  x, integral reduces to the orthonormality relation for Hermite
p—0 7 N= polynomials

C. Zero-temperature limit

2
At low temperatures, the first-order effective classical po- i Vo wa dXa Hn(Xa)Ho(Xa)€ *a=8ng, (6.23
tential (6.8) becomes '

so that the third term in Eq6.22 eventually becomes

hQ)
WQ qm( Xy) = 7-!— lim Vaz(xa) (6.16

B—»

The zero-temperature limit of the smeared potential in the J_ dxa pg (Xa)<A'”t[X]>X *a

second term defined in E¢6.9) follows from Eq. (6.3 by
taking into account the limiting procedure for the polynomi-
alsCY" in Eq. (6.7 and for the fluctuation widti2.8). Thus
with Ho(x) 1 and the inverse length= M /% we obtain

2 1/2
——,G'f dz( ) Vind 2)exp{ — k22%}H( k2).

(6.249
2 1/2
lim V 5(xa) = j dZ( ) Ho(x2)? But this is just then=0 term of Eq.(6.3) with an opposite
poe sign, thus cancelling the zeroth component of the second
X exp{ — k222 Vin(2). (6.17) term in Eq.(6.22), which would have been divergent f@r
— 00,
Introducing the harmonic eigenvalues The resulting expression for the first-order normalized
0 density is
E =hAQ(n+3), (6.18
and the harmonic eigenfunctions P ()= p(Xy)
1 K 1/4 55 w
Qo o — k2x%12 B
llfn (X) \/W( 77_) e Hn(KX): (619) X 1_nzl 2nn! C(ﬁn)Hn(KXa)

we can reexpress the zero-temperature limit of the first-order
effective classical potentidb.16) with Eq. (6.17) by x f

W IM(x) = EQ + (48| Vind 5). (6.20 )

This is recognized as the first-order harmonic Rayleigh-
Schralinger perturbative result for the ground-state energy.

For the discussion of the quantum-mechanical limit of theThe zero-temperature limit dt(”) is, from Eqgs.(6.7) and
first-order normalized density, (6.18,

+

w2\ 12
dz( ?) Vin(2)exp — k22%)H(k2) |.

(6.29
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2
lim BCY =——1,
B—© A En _EO

(6.26

so that from Eq(6.25 we obtain the limit
P (Xa) = pg (Xa)

i 1
X 1_2n:1 2nn' E‘?—Eoﬁ Hn(KXa)

too K2\ 12
><J7 dz(?> Vini(2)

X exp{ — k?z?}H(k2) HO(KZ)} : (6.27

Taking into account the harmonic eigenfunctigfsl9, we
can rewrite Eq(6.27) as

pT (Xa) = o(Xa)|?

(W Vind 98)
S

(6.28

=[¢8(xa>12—2w8(xa>n§0 Prl(xa)
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can give rough initial estimates for the properties of the sys-

tem. In this case, theth-order smearing formulé.12 gen-
eralizes directly to

1 [ e
<Aﬁmt[r]>g,ra:7(rlﬂl [f d7'|j d°2 Vin(2)

Po 0
y 1
V2" deta’®

1 n
Xex;{—— > zag’zl, (7.2
2o

with the D-dimensional vectors,=(zy,,2y,,...,Zp)) - Note,
that Greek labelg,v,...=1,2,...D specify spatial indices,
and Latin labelsk,l,...=0,1,2,..n refer to the different
imaginary times. The vectag, denotes ,, and the matrixa®
is the same as in Sec. V. The harmonic density reads

. (7.3

1 D/2 1 D
Q 2
N={\-——> exp ———= X
pol(r) ( 27Ta§0> ZaSO,Zl "

B. Anisotropic approximation

In the discussion of the anisotropic approximation, we
which is just equivalent to the harmonic first-order Rayleigh-shall only consider radially symmetric potentialé(r)
Schralinger result for particle densities. =V(|r|) because of their simplicity and their major occur-

Summarizing the results of this section, we have showrence in physics. The trial frequencies decompose naturally
that our method has properly reproduced the high- and lowinto a radial frequency), and a transversal orfé; (see Ref.
temperature limits. Because of relati@28), the variational  [2]):
approach for particle densities can be used to determine the
ground-state wave functiofyy(x,) approximately for the Xa,Xa
system of interest. 02, =0 —"5—=+0%

More recently an independent variational approach has fa
been proposefiL1]. Another rigorous, fully nonperturbative
way to compute the energy and the wave function of tth.
ground state for quantum-mechanical systems was developeg
by generalizing the WKB method to more than one dimen-

Xa XaV
5,(1.1)_ ':2 ) ’ (74)

a

th r,=|r,|. For practical reasons we rotate the coordinate
ystem byx,=UXx, so thatr, points along the first coordi-

sion[10]. nate axis,
VIl. SMEARING FORMULA IN HIGHER SPATIAL (T2, =20 [ra, <'“_<1 (7.5
DIMENSIONS 0, 2s=ps<D,
Most physmal systems possess many degree_s of freed(_) nd the rotated)? matrix is diagonal:
This requires an extension of our method to higher spatial
dimensions. In general, we must consider anisotropic har-
. . . .. 2
monic trial systems, where the previous variational param- (O o -~ O
eter )2 becomes @ XD matrix 02, with p,v=1,2,...D. o o 02 0 - 0
Q= 0 0 0F -+ 0 |=uQ?Ul (7.9
A. Isotropic approximation 0 0 0 Q%

An isotropic trial ansatz

After this rotation, theanisotropic rth-order smearing for-

2 _ N2 . . .
0,,=Q%6 mula in D dimensions reads

wv

(7.9
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1 n Y o
(AT = ———T1 { [ an [ aozvual | 2m) 2o 2 ceta) VA detad) 022
a'fa i=1|Jo

poT(ra)

1 n . - 1 D n . -
XeXp{ — EkZ’o zlkauﬁfﬂ] exp{ -5 > Z, zﬂkaﬂﬁ?mJ . (7.7

n=2 kl=1

The components of the longitudinal and transversal matrices Qxm_1 1 (1) _ [542
aE anda%pare 9 <A[X]>Xa!xa_ 2890+ 3291Cp H1((Xa—Xm)/\/2a50)

+595C 2 Ho((Xa—Xm)/ V2230

+593C}5" Ha((Xa—Xm)/ \2250)
where the frequenc{) in Eqg. (5.13 must be substituted for 5
the variational parametef3, andQ+, respectively. For the +1694C5 Ha((Xa=Xm) /2850, (8.2

harmonic density in the rotated systeprg”(ﬂ which is

aty=al(rq,m), afg=af(n,m), (7.9

. . with
used to normalize Eq7.7), we find
3 1
o V2 q o \DPol2 go=—a§0(92+1)+Egago+3gagoxﬁ1+§gxﬁ1
LTy =
P00 2mat o, (Zwaioo 1 1
D +——=x2
1 . 1 2 2°m
xexp — =~ X~ > X2|. (7.9 g
2ai o 2atgou=2 * 3
9:1= — V2ag X+ 29(2330)3/2 Xm+ V225, X,
VIII. APPLICATIONS
22002 4 2 2
By discussing the applications, we shall employ for sim- 92= —ag( 2+ 1) + 3gage* 39ago Xm,
plicity natural units withi=kg=M =1. In order to develop 2 3
some feeling about how our variational method works, we 93=9(2a50) " X,
first approximate the particle density in the double-well po- 4
tential in second order. After that we approximate the 94=93890
temperature-dependent electron density of the hydrogen ) ) )
pera’ P y yarog Inserting Eq.(8.2) into Eq. (6.9 and using Eq.6.8), we
atom in first order. . ) )
obtain the unnormalized double-well density
A. Double well 0 1 0
~ Q,Xp _ . Xm
A detailed analysis of the first-order approximation shows P "(Xa)= mex;{ AW M(xa)], (8.3

that the particle density in the double-well potential is nearly

exact for all temperatures if we use the two variational pawith the first-order effective classical potential
rameters)? andx,,, whereas one variational parames&f

leads to larger deviations at low temperatures and coupling Qe 1 sinhgQ QO 5
strengths. For such conditions, leading to a maximum of den- W M(Xa) = §|”ﬂ—9 + E(Xa—xm) tanhT
sity far away from the originx,=0, the displacement of the
trial oscillatorx,,, may not be supposed to vanish. Consider-
ing this, our first-order results improve those obtained in Ref.
[14]. Since the differences between the optimization proce-
dures using one or two variational parameters become legsfter optimizing W ?'Xm(xa), the normalized first-order par-
significant in higher orders, the subsequent second-order cafcle densityp;(x,) is found by dividingp,(x,) by the first-

+ 1(«4mt[x]>3’XQ‘- (8.9
ﬁ a’a

culation is restricted to the optimization {. order partition function
1. First-order approximation 1 .
In the case of the double-well potential 21= 273 fﬁx dxa expl —~ BWa(Xa)]- 8.5
1 1 1 P QX . .
V)= — = 02+ - gxt — 8.1) Subject|QgW L (Xg) to the extremality _co_ndltlon(54.13§,
2 4 49 we obtain optimal values for the variational parameters

02(x,) andx.,(X,). Usually there is a unique minimum, but
with coupling constang, we obtain for the expectation of the sometimes this does not exist and a turning point or a van-
interaction(6.3) to first order, also setting?=1, ishing higher derivative must be used for optimization. For-
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Wl(fta

1.5¢
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0.5f

Vg -UVG 0 FINE +2VE
FIG. 5. First-order approximation of the effective classical po-
tential, W (x,), for different coupling strengthg as a function of
the positionx, at 8=10 by optimizing in both variational param-
etersQ? andx,, (solid curve$ in comparison with the approxima-
tions obtained by variation if2? only (dashed curves

_ o ox The influence of the center parameigy diminishes for

FIG. 4. Plots of the first-order approximatid ;" "™(x,) to the increasing values of and decreasing height Yj4of the
effective classical potential as a function of the two variational pa-cantrag| barrier(see Fig. 5. The same thing is true at high
rameters*(x,) andxp(Xs) atg=0.4 andg=10 for two different  temperatures and large values xf, where the precise
values ofx, . knowledge of the optimal value of,, is irrelevant. In these

, . _ . limits, the particle density can be determined without opti-
tunately, the first case is often reahze_d. Figure 4 shows t_hﬁwizing in x,,, simply settingx,,=0, where the expectation
dependence of the first-order effective classical potentia) e Eq.(8.2 reduces to

W?'Xm(xa) at =10 andg=0.4 for two fixed values of

position x, as a function of the variational parameters (Aim[x])f}a,,(: FCPH,(xa/\2a50) (91 +395)
Q2(x,) andxq(x,) in a three-dimensional plot. Thereby, the

darker the region the smaller the value\Wf; ™. We can +1502C Ha(Xa/ V2850)
distinguish between deep valleydark gray, in which the N 3

global minimum resides, and hillsight gray). After having +B(201+292%9a), (8.8

roughly determined the area around the expected minimu

m,. I
one numerically solves the extremality conditiof%.13 With the abbreviations

with some nearby starting values, to find the exact locations 1
of the minimum. The example in Fig. 4 gives an impression g1= —a§0(92+ 1), gz=gaéo, g3=4—.
of the general features of this minimization process. Further
more we note that, for symmetry reasons, Inserting Eq.(8.9) into Eq. (6.9 and using Eq(6.8), we
obtain the unnormalized double-well density

Xm(Xa) = —Xm( —Xa), (8.6

and P2(xe) = s exiT — BWE (x,)], 8.9
V27
2 — 02/ _
07(%a) == Xa). (8.7 with the first-order effective classical potential
Some first-order approximations of the effective classical 0 1 _sinhgQ Q , B 1 0

potentialW,(x,) are shown in Fig. 5, which are obtained by Wi (X,)= Elnﬂ—ﬂ T g% tanh—-+ E(v‘\mt[x])xa,xa-
optimizing with respect td?(x,) and xm(X,). The sharp (8.10

maximum occurring for weak coupling is a consequence of a

nonvanishingx,,(x,=0). In the strong-coupling regime, on The optimization ak,=0 gives reasonable results for mod-
the other hand, whene,(x,=0)~0, the sharp top is absent. erate temperatures at couplings suclyas0.4, as shown in
This behavior is illustrated in Figs(i§) and qb) at different  Fig. 8 by a comparison with the exact density which is ob-
temperatures. In Fig.(6) we see that fox,>0, the optimal  tained from numerical solution of the Schlinger equation.

Xm Values lie close to the right-hand minimum of the double-An additional optimization irx,, cannot be distinguished on
well potential, which we only want to consider here. Thethe plot. An example where the second variational parameter
minimum is located at 1jg~3.16. Xm becomes important is shown in Fig. 9, where we compare
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-1/ 0 +l/\F
T (24)
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b) 8 100
2.95

i)

2
0 N 2/\/3

FIG. 6. (a) Trial frequency(2?(x,) at different temperatures and
coupling strengthg=0.1. (b) Minimum of the trial oscillator
Xm(X,) at different temperatures and coupling strength0.1.

the first-order approximation with ong) and two varia-
tional parameters({,x,,) with the exact density for different
temperatures at the smaller coupling strength0.1. We
observe that, with two variational parameters, the first-order
approximation is nearly exact for all temperatures, in con-
trast to the results with only one variational parameter at low
temperaturegsee the curve fop=20).

2. Second-order approximation

KLEINERT, AND A. PELSTER

PRA 60
hB hB 1
<Ai2;1t[x]>§<)a,xa,c: J;) dTlfo de[Z(QZ+1)2[|22(71,Tz)
1
—la(11)15(72) _29(924'1)['24(7'1,72)

1
—la(1)l4(72) ]+ 1_692[|44(7'1a7'2)

—la(m)l4(12) ]}, (8.13
with
m P2 2
J 9+ 2Xa04]
I (7)=(ak—as m.—ex;{— , k=12
m( 7)) = (@~ Aok o 2a§0(ago_agk) o
(8.149
and
Imn(71,72)
m " F(jl!jZ) }
=(—detA)"" "—= —sexg =7 ——
( ) ajT 9j5 r{Zaoo(detA)2 -

detA=ad,+2a5,a5,a2,— aag+ag,+aj,). (8.19
The generating function is
Fi1.2)=agiT+i3) — 288031+ a5 )X

2 .2 4 A AN 2
+2ag0(aiyi1j2+ (ag+agtag)(ags

+ a8, 2)Xa)— (833111 Adyd ) (a8 1+ a0

+4aga5,a7X,). (8.16

All necessary derivatives and the imaginary time integra-

In second-order variational perturbation theory, the differ-ions in Eq.(8.13 have been calculated analytically. After

ences between the optimization procedures using one or
variational parameters become less significant. Thus we r
strict ourselves to the optimization i0(x,), and setx,,
=0.

The second-order density

P 5(Xa)= exf—BW(x)]  (8.11

1
V27
with the second-order approximation of the effective classi
cal potential

1

sinhBQ)
W3 (xa) = 5In—25—

BQ

Q BQ
Y2
+ ’BxatanhT
1 1
+ (AR ™ 55 (AR, 0
(8.12
requires evaluating the smearing formy&a10 for n=1,

which is given in Eq(8.8), andn=2 to be calculated. Going
immediately to the cumulant we have

tweptimizing the unnormalized second-order denggyll) in
&2, we obtain the results depicted in Fig. 10. Comparing the

second-order results with the exact densities obtained from
numerical solutions of the Schiimger equation, we see that
the deviations are strongest in the region of intermediate

as expected. Quantum-mechanical limits are reproduced very
well, classical limits exactly.

B. Distribution function for the electron in the hydrogen atom

With the insights gained in Sec. VIII A by discussing the
double-well potential, we are prepared to apply our method
to the electron in the hydrogen atom which is exposed to the
attractive Coulomb interaction

(8.17

Apart from its physical significance, the theoretical interest
in this problem originates from the nonpolynomial nature of
the attractive Coulomb interaction. The usual Wick rules or
Feynman diagrams do not allow one to evaluate harmonic
expectation values in this case. Only by the aid of the above-
mentioned smearing formula are we able to compute the
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."I?m(.'l?a) \\\\
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0.00 0.0 1.0 T, 2.0 3.0
FIG. 8. First-order approximation of the double-well particle
b) density for =10 andg=0.4 compared with the exact particle
density from numerical solution of the Schiinger equation. All
—0.01 values are in natural units.
2
0 2/v/g 4/\/9 < e’ >Q e aooe f( ap; . )
T, PSRy — 7 T lal-
r(ry/, la o1 V2a54ag,—ag,)
FIG. 7. (a) Trial frequency)?(x,) at different temperatures and (8.21)

coupling strengtlg=10. (b) Minimum of trial oscillatorx,(x,) at
different temperatures and coupling strength 10.

The time integration in Eq8.18 cannot be done in an ana-
variational expansion. Since we learned from the doublelytical manner and must be performed numerically. Alterna-
well potential that the importance of the second variationatively we can use the expansion method introduced in Sec.
parameter ,, diminishes for a decreasing height of the cen-VI A for evaluating the smearing formula in three dimen-
tral barrier, it is sufficient for the Coulomb potential with an sions, which yields
absent central barrier to set,=0 and to take into account
only one variational paramet€r?. By doing so we will see

in first order that the anisotropic variational approximation 0 ~r312ag
becomes significant at low temperatures, where radial and {(An{r Dt =[p0(ra)] * e
transversal quantum fluctuations have quite different o'
weights. The effect of anisotropy disappears completely in “ Honia(ra /\/ﬁoo)

o %
the classical limit. HZO 220 I(on+ 1)1 5

1. Isotropic first-order approximation

) 5 2
In the first-order approximation for the unnormalized den- X fo dy y Vin(V2a50Y)€ Y Honsa(Y).

sity, we must calculate the harmonic expectation value of the
action, (8.22

This can be rewritten in terms of Laguerre polynomials
LA(r) as

hp
Alr1= [ dr V), (8.18

with the interaction potential

ZaSO

o

1/2 % __1\n
s DM o
ran=o (2n+1)!

e 1
Vin(r) = _(T+ ErTQZr), (8.19 (Al D8 = —
where the matrifow has the form of Eq(7.4). Applying

the isotropic smearing formulé&7.2) for n=1 to the har-
monic term in Eq.(8.18), we easily find

><H2n+1(ra/\/2aOO)Jo dy y1/2

4.4 .4 X Vin(v2a3,y e YLEAy)LgAy).
Ann— 4 a
(r(m)H =3°°a—2°1+ a—?ﬁrg. (8.20 (8.23
ara 00 00

For the Coulomb potential we obtain the local average Using the integral formul@Ref. [16], Eq. (2.19.14.15%],
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FIG. 9. First-order particle densities of the double well épr FIG. 10. Second-order particle densityashed compared with

=0.1 obtained by optimizing with respect to two variational param-exact results from numerical solutions of the Sclinger equation
etersQ? and x,, (dashed curves and with onlyQ? (dash-dotted (solid) in a double well at different inverse temperatures. The cou-
line) vs exact distributiongsolid) for different temperatures. The pling strength isg=0.4.

parametek,, is very important for low temperatures.

WO(r) 3 | sinhBQ+Q 2, BQ+ 1<A [ ])Q
* ra)===In —ritanh——+ — (A {r ,
f dx x* e LY (cx)LA(cx) et pO B 2 2 gt g,
0 (8.28
_ A+ yY)m(A—a+1),I'(a) which is shown in Fig. 11 for various temperatures. The
min!c® results compare well with Storer’s precise numerical results

[17]. Near the origin, our results are better than those ob-
tained with an earlier approximation derived from the
(8.24  lowest-order effective classical potential given in Réfl.

X gFa(—m,a,a—N\;y+1la—A—n;1),

where (@), are Pochhammer symbols,F4(a;,...,.ay; 2. Anisotropic first-order approximation

by, ...,bq;X) denotes the confluent hypergeometric function,  the apove results can be improved by taking care of the
and I'(x) is the gamma function, we apply the smearing ynisotropy of the problem. For the harmonic part of action

formula to the interaction potenti&8.19, and find (8.18
€ < (=1"2n-1!! And 1= A[r]+ Ad[ 1], 8.2
<Aim[r]>$zvra:_ \/— 2 [[ ] [ ] C[ ] ( 9)

mran=o  2"(2n+1)!
the smearing formuld7.7) yields the expectation value
XC%ZH)H2n+1(ra/\/ESO)
3 1 (AT =~ 3{0%aloo(CY + 3L Halra/ V28T 00)
7 2a0094a:c,(80)H1(ra/\/5C2)_0)

+205a%(CY—CZ)}, (8.30
1
+ gcf,f)Hg(ra/ VZaSO)]. (825  where theC} 1, are the polynomial$6.5) with Q) replaced

by the longitudinal or transverse frequency. For the Coulomb

The first term comes from the Coulomb potential, the secon@artb?f ?“;“0”(?-189' the smearing formulg7.7) leads to a
from the harmonic potential. Inserting E(.25 into Eq. ouble integra
(4.9, we compute the first-order isotropic form of the radial

distribution function 0 5 [ 2 vz
Aclr L*T:—ef dry| ————~
(Acl ]>ra’ra o 1 mago(l-ar)
g(r)=v2mB%p(r). (8.26 ) s 1
! »| @Tool 1 —a7)
. . X | AN 14N
This can be written as 0 argl—ay)
2,4y 2
Q Q rga A
g1 (ra)=exd — BWi(ra)] (8.27 X __ At
) ) T 2all1=ad)’ ®30

with the isotropic first-order approximation of the effective
classical potential, with the abbreviations
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FIG. 11. Radial distribution function for an electron-proton pair.
The first-order results obtained with isotrogitashed curvgsand

with

1 | sinhﬁQL+ 1 sinhpQ+
2B B B BQr
Q , B 1 0
+ FratanthL E<Aim[r]>r;}2'

WLT(r)=

(8.39

This is optimized inQ) (r,),Q+(r,), with the results shown
in Fig. 11. The anisotropic approach improves the isotropic
result for temperatures below 4.

IX. SUMMARY

We have presented variational perturbation theory for

anisotropic(solid line) variational perturbation theory are compared density matrices. A generalized smearing formula which ac-

with Storer's numerical resul{d 7] (dotted ling and an earlier ap-

counts for the effects of thermal and quantum fluctuations

proximation derived from the variational effective classical poten-was essential for the treatment of nonpolynomial interac-

tial method to first order in Ref9] (dash-dotted ling

a2 a2

L00 To0

af=——, afj=—. (8.32
A o1 ato1

tions. We applied the theory to calculate the particle density
in the double-well potential, and the electron density in the
Coulomb potential, the latter as an example of nonpolyno-
mial application. In both cases, the approximations were sat-
isfactory.

The integrals must be done numerically and the first-order

approximation of the radial distribution function can be ex-

pressed by
gyt T(ry) =exd — BW, (1)1, (8.33
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