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Casimir effect between two conducting plates
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The Maxwell stress tensor is used to introduce the radiation pressure force of the electromagnetic field on a
conducting surface. This expression is related to the imaginary part of the vector potential Green function for
the fluctuating fields of the vacuum via the fluctuation dissipation theorem and Kubo'’s formula. The formalism
allows one to evaluate the vacuum radiation pressure on a conducting surface without resorting to the process
of field quantization. The latter formula is used to calculate the attractive and repulsive Casimir force between
two conducting plates. What is more, in this formalism, there is no need to apply any regularization procedure
to recover the final resulfS1050-29479)05210-3

PACS numbd(s): 12.20—m

[. INTRODUCTION between two conducting plates. Finally, the main points of
the present work are summarized in the concluding section.
The Casimir forcd1,2] on material bodies is interpreted
either traditionally as a long range retarded phenom¢gn Il. VACUUM RADIATION PRESSURE
or viewed from a modern perspective, as the force arising ON A CONDUCTING SURFACE
from a change of the zero point energy of the electromag-

netic field in the presence of a boundary surfémesurfaces The conservation of linear momentum in the classical

[4,5]. In the modern theory the concept of the Casimir en_theory of electrodynamics leads to the introduction of the

ergy is introduced, first and necessarily, as the differenc@xwell stress tensdils]

between the zero point energy in the presence and the ab- 1 1 1

sence of external constraints. In contrast to the vacuum en- Top= €0E.Ept —B,Bs— _( €oE2+ _32) Sup
ergy itself, this energy which gives rise to the Casimir force Mo 2 Mo

is a finite quantity if an appropriate regularization procedure
is used. In this sense, the Casimir force is the response of tPW

. : .~ Where =X,Y,z denote the Cartesian coordinates, &gd
vacuum against the presence of external bodies. The CaS|mér @ B=X.Y, » &9

(2.1

. : nd uo are the permittivity and permeability of free space,
effect on an object, therefore, appears if the space surroun espectively. The statement of the conservation of momen-

Ing it possesses an asymmetric nature. As a resu_lt this Eﬁe?gm indicates that the flow per unit area of momentum across
will manifest itself either as an attractive or repulsive mutual

force between macroscopic objects. The repulsive effect i§ ?lven SSU _rfac_es OL equivalently, the force per unit area
the notable difference between this phenomenon and the van ng onsis given by
der Waals—like forces.

The notion of the Casimir effect as the reaction of the F= f T-nds, (2.2
vacuum against the existence of macroscopic bodies allows S
one to calculate the force acting on a given object by evalu- . .
ating the vacuum radiation pressure of6it+10. The radia- YvhereT is the Maxwell stress tensor given by Hg.1) and

tion pressure is an indication of the momentum inherent i is the unit outward normal vector és. Equation(2.2) can

an electromagnetic field even if the field is in its vacuumtherefore be used to calculate the force acting on material
state. In this method one should necessarily go through thebjects due to the electromagnetic field.

process of electromagnetic field quantization for the particu- Consider now a perfectly conducting medium with a
lar geometry in question, and thereafter calculate the Casimpingle plane interface a=0 which fills the half space
force using the Maxwell stress tensor. Apart from a few=0. Thex andy axes lie within the interface. Recalling the
simple configurations, considerable difficulty arises in mosgsymmetry of the configuration, the radiation pressure force
practical situations when the electromagnetic field is to beexperienced by the plane interface of the conductor is in the
quantized. Any simplification in this formalism is therefore z direction and it is given by thez component of the stress
of value whenever more complicated geometries are intensor az=0. The boundary conditions on the tangenkal
volved. The aim of the present paper is to tackle the latteand normalB fields require that these two field components
difficulty. This may be a step forward to make the theoryvanish on the interface. Therefor&,, has the following

closer to the experimental resufts1—14. form on the conductor surface:
In Sec. Il we begin with the Maxwell stress tensor, the
i issipati ' - 1 1
fluctuation dissipation theorem, and Kubo’s formula to pro Tzz=§EoE§— EGOCZ(B>2(+B§)1 2.3

vide a general expression for the vacuum pressure force act-
ing on a conducting surface. This expression is used in Secs.
Il and IV to calculate the attractive and repulsive forceswhereuge,=c™ 2 has been used.
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The quantum expression of this force is obtained by con- Conducting Conducting
verting the classical quantities into quantum mechanical ~ plael ~ plate2 .
counterparts. The expectation value of the latter expression Domain 1 Domain 2 Domain 3

evaluated for the vacuum state will then yield the force as-

sociated with the vacuum field. The vacuum radiation pres-

sure force per unit area experienced by the plane interface of
the conductor is then

1 A R a
F=— 5 eo{0[EZ(r,1)|0)+ eocX(0[BY(r,1)|0), (2.4

FIG. 1. Representation of the geometry of two conducting

where account has been taken of the equal contributions &]ates'
the second and third terms in E@.3) and|0) stands for the
vacuum state of the electromagnetic field. To avoid any fu- (0|B(r,w)B;(r’,w’)|0)
ture ambiguity, the field argument ) is inserted in Eq.
(2.4). The electric field operator has the form

J d
:2ﬁ6a756‘877v(9_)(7 a7lm Gs(rr' o) dlw—w'),
7

- 1 o =+ —iw - — +iw
E(r’t):Efo do[E*(r,0)e "'+ E (r,w)e"*], (2.10

2.

29 wheree, s is the antisymmetric Levi-Civitaymbol and a
where the positive and negative frequency parts in the intesummation over the repeated Cartesian indices is implied.
grand involve only the photon annihilation and creation op-Employing Eqs(2.9) and(2.10, Eq. (2.6) can be simplified
erators, respectively. Using E(.5) and a similar decompo- as

sition for B(r,t), Eq. (2.4) can be rewritten as

EO + oo + _ Eoﬁcs e 2
F=——J dwf do'[(0|E; (r,0)E, (r,w')|0) F=——_1m| dq/|q°93.9s
4ar 0 0 0
—2¢%(0[B; (r,0)B, (r,0)[0)Je (", (2.6 26 mer g | Gt 0)
L€l gy o | DDt @l
where terms in which annihilation operators act directly on K z=0
the vacuum state0) have been set to zero. (2.11)

The vector potential correlation function is related to the
imaginary part of the vector potential Green function
G(r,r’,w) via the fluctuation dissipation theorem and Ku-
bo’s formula[16]

where 1,2,3 indicate the three Cartesian indices gnd
=(w/c). The above expression is in fact the force per unit
area acting on the interface of the conductor arising from the
A+ A—rpr _ / / vacuum fluctuations of the field in the semi-infinite free
(0[Aa (1 @)Ag(r",0")[0)=2AIM G p(r,r", @) o w a()z)%) spacez<0. The two terms in E¢(2.11) provide the electric
' and magnetic field contributions, respectively. Note that the

where the same frequency decomposition is understood fdptegral in Eq.(2.11) is divergent, but the net force per unit

A(r,t). Taking advantage of the gauge in which the scalafred evaluated for a conducting plate turns out to be a finite

potential vanishes, the electric and magnetic field operatorguam'ty'
are derived from the vector potential
R R Ill. ATTRACTIVE CASIMIR FORCE
Ef(r,o)=ioA"(r,w),
(2.9 We calculate in _this section th_e Casimir forc_:e between
B*(r,w)=VXA*(r, o) two perfect conducting plates of thickneskcated in empty
' T space. To take advantage of the symmetry of the problem the

The negative frequency part of each field operator is deter? axis is chosen to be perpendicular to the interfaces with the

mined by taking the Hermitian conjugate of E8.8). Using origin at a distance/2 from each plate as shown in Fig. 1.
Egs. (2.7 and (2.8), the electric and magnetic field correla- We label the left and right hand plates as well as the different

tion functions are related to the imaginary part of the vectodomains of this geometry by 1 and 2 as well as 1, 2, and 3,

potential Green function according to respectively, as shown in Fig. 1. In order to use &€y11) to
evaluate the Casimir force acting on the left hand plate we
OIE" (r,w)EZ(r",0")|0 mus.t flnd the approprlatg response function. Wg need the
(OlE, () plrhe )10) explicit form of the coordinate space Green function for the
=2hw?lm Gup(r,r'0)d(w—o') (2.9  case where both the source and observation poiwtsdr’

are within the gap between the two plates as well as for the
and case where both andr’ are in domain 1.
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A. The Green function

The electromagnetic field operators satisfy Maxwell's
equations, which in the frequency domain are of the form

VXE*"(r,0)=iwB*(r,0), (3.2

VXBY(r,0)=—iwuD"(r,0)+ud* (r,0), (3.2

where the monochromatic electric field and displacement o

erators are related by
D*(r,w)=ege(r,w)ET (I, w). (3.3

Combining Eqs(3.2), (3.3, and(2.8), one can easily show

that the spatial dependence of the positive frequency part of

the vector potential operator is given by

v><[v><A+(r,w)]—q2A+(r,w):izfﬁ(r,w),
Eoc
(3.9

where, as beforeq=(w/c). The Fourier time transformed
Green function tensor is defined in the usual way as

Al(r,w)=2, fd3r’Gaﬁ(r,r',w)jg(r’,w). (3.5
B

Substitution of Eq. (3.5
G,.(r,r', o) satisfies

into Eqg. (3.4 shows that

2
2 - 2 ’
% (q O™ axax, T oY )Gw(r,r )

1
=——=6,,06(r—r'"),

— (3.6
0

with the appropriate boundary conditions.

The homogeneous nature of the present configuration in
the xy plane allows us to convert the Green function differ-
ential equations into a set of algebraic equations in the wave
vector spacek = (ky,ky). Unfortunately, the homogeneity
along thez axis is broken by the inhomogeneity of the me-
dium in this direction. Therefore, one can conveniently ex-
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LR
O(|<||)=k—H —ky ke O (3.9
0 0 1

It is convenient also to introduce the auxiliary tengqy; as

g=0GO %, (3.9
where the argument(,w,z,z") has been omitted for sim-
plicity. A detailed calculation shows that the four functions
Oyx» Gyzs Oxz, andg,y all vanish, while the other five com-
ponents satisfy a set of five differential equati¢tZ]. The
two functionsg,, andg,, are the solutions of the set of two
coupled differential equations of the form

2 ) d
E"‘q gxz_lkHd_Zgzz:O!
(3.10
H d 2 2 1 ’
_|k|\d_zgxz+(q _k”)gzz:_Teoczﬁ(z_z )

The imposition of the boundary conditions makes it more
convenient to findg,, first and then to use Eq23.10 to
evaluateg,,. Combining the above differential equations,
one can easily show tha,, is given by the solution of

(d—2+k2)gxz=— M9, @1
d7 2meqw? dZ
where

k=—(g?— k)" (3.12

The choice of the sign in Eq3.12 ensures that Irk>0
whenk>q. The functiong,, is obtained by

ik d

gzz_F d_zgxz_ 5(2_2’)- (3-13)

2meac?k?

A similar treatment shows that the functiog, is deter-
mined by

d2

dz

k2

(3.19

+k2) Oux= — 25(2_21)

2meqw

press the components of the response function tensor in

terms of their Fourier transform as

GD[ (r I ! w d k G k w,Z Z, el ”( H X,)
B\l ’ ) 2 ” CIB( ”y &y ) H .

This converts the set of partial differential equatidi3s)
into a set of ordinary differential equations in varialale

The symmetry of the problem reduces the number of non-
vanishing off-diagonal components of the Green function

tensor. To exploit the remaining symmetry in thye plane, it

is sufficient to premultiply and postmultiply the new sets of

differential equations by the matric&3(k;) and O‘l(kH),
respectively, where

andg,, can be derived using the explicit form gf, as

_lky d

gzx_ﬁ d_zgxx- (3-13

Finally, theyy component of the auxiliary tensgy,, satis-

fies

¢ +k? ! 8z—2") (3.1
— =——0(z—-72"). .
dz Iy 27enC?

There are two types of boundary conditions on the func-
tionsg,,. The first are the boundary conditionszat =+ .
They are easily imposed by assuming outgoing or exponen-
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tially decaying waves at infinity, depending on the value ofand
k; andg. The second type of boundary conditions are those
at the plane interfaces of the conductors. These are governed ikf
by the boundary conditions on the different components of 9:AK|,®,2,2")=—
the electromagnetic fields. It is not difficult to impose the
continuity of the tangential components BfandH and the +(1_e72ika)71[eik[(Z+Z’)fa]
normal components ob and B to subsequently find the , ) , )
boundary conditions on the components®f, andg,, . +elkl(zmz)~2al 1 gmiki(z2) + 2]
The vanishing of the tangential electric field operator on the
conductors entails that the functions of main conceyy, +e—ik[(z+z’)+a]]}_
Oxx, andg,, should necessarily vanish when the observation 2 meqw?
point r is on the interfaces of the conducting plates.

Let us begin with calculating,, in domain 1. The gen- 322

eral solution of Eq(3.11 consists of a complementary so- where Eq.(3.13 has been used to evaluate E§.22.

lution and a particular solution of the form The coordinate space Green function needed for substitu-
tion into Eq.(2.11) is obtained with the help of Eq3.7)

e klz=ZIsgnz—7z')+Rek? (3.17)  Where due account must be taken of the rotat®@). Let us
begin with the evaluation d&,,(r,r’,w). Recalling the fact

that Eq. (3.9 is a rotation about thé, axis in the wave
The coefficient R is determined by the imposition vector space, it is clear that

Oxz 2= —(ar2)-a=0. It is straightforward, upon evaluatirig
and using Eq(3.13), to show that the explicit forms dd,, G Ak, 0,2,2")=0,4K|,0,2,2"). (3.23
andg,, are

efik\zfz’|
4reqwk

8z—-27'),

ik

Oxz= — 2

dmeqw

The latter statement may easily be checked by substituting

, ik T , Eqg. (3.8) and its inverse into Eq(3.9). Therefore, thezz
9l k) 0,2,2 ):_—4776 58 sgnz—z') component of the coordinate space Green function corre-
0@ sponding to Eq(3.19 is
_eik[(z+z’)+a+2d] 3.1
) (318 G Ar,r',w)
and i eroodk kﬁ 7ik‘27z,|\] (k| /|)
=— —e X|— X
ikﬁ ) o , 4reqw? | Jo Ik ORI
gzz(k“ ,a),Z,Z’)= _ (e7|k|zfz \+elk[(z+z )+a+2d])
47TEow2k + o0 kﬁ iK|(z+2')+ 2t 2d]
—1 Z+Z a !
+fo dkH?e Jo(k‘||XH—X“|)
- 8(z—27"). (3.19
2meqw? 1
———a8(r=r"), (3.24
A similar calculation must be carried out in domain 2. In €ow

this case the particular solution of E(.11 has the same , )

form as in Eq(3.17), while the complementary solution con- wher_e the mtegr_al representatloth the zero order Bessel
sists of both the rightwards and leftwards propagating wavedunction of the first kind of the form

The general solution of Eq3.11) is then

1 2m ) ,
Jo(kylx—x( D)= EJ dge'ii—xleos? (3,25
) , ) . 0
Ox=— —— € M¥ Zlsgnz—z') +C e**+ Cre
(3.20 has been used for the integration over the azimuth angle in
' wave vector space. The integrands in the first and second

The coefficientsC, and Cy are obtained by the boundary terms have the same form and the integration éyeman be
conditionsgys|;- — (a2 =0 aNdgyl,- (wz=0. It is not diffi-  Performed easily. The details are omitted here, but the evalu-
cult to show thag,, andg,, take on the forms ation of this integral is given in the Appendix. With the
explicit result provided in the Appendix, expressi24)

ik, . , can be rewritten as

—z{eﬂk\zfz |sgr{z—z’)

Ameqw G AT, 1, @) =G, Ar,1},®)+G,Ar,r],ot)

+ (1_ e72ika)71[ _ eik[(Z+Z’)*a]

gxz(kH ,0,2,2")=—

_eik[(z—z’)—Za]+e—ik[(z—z’)+23] 350w2

S(r—r'), (3.26

+e K(zrz)ral (3.2)  where
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Gttt o) = —2 ( N : )
rr,w)= -
2T re? |\ (A (are)? ()’
( 1, 3
(Afre)  (qr,e)?
3 Ze)?|
- 3)—( 'e')z]e'q're', (3.27
(qrrel) (rrel)
in which
re=r—ri, i=01,.... (3.28
The vectorg| are defined as
ro=r’, (3.29

r=x'i+y’j—(z’ +a+2d)k.

CASIMIR EFFECT BETWEEN TWO CONDUCTING PLATES

3425

where G,Ar,r{ ,w) is given by Eg. (3.279 and r/(i
=2,3,...)have the samr andy coordinates as’ and their
z coordinates are
zy=[-z'+(2m+1)a], z;=[z'+2(m+1)a],
(3.33

z,=[2'-2(m+1)a], zi=[—-Z'—(2m+1)a].

The evaluations of the other components are similar and
the details are omitted here for the sake of brevity. The ex-
plicit form of the coordinate space Green function with both
r andr’ in domain 1 can be written as

Gup(r,r',@)=G,p5(r,r5,0) = Gup(r,ri,w)

1
——=8,50(r—r"), (3.39
3eqw? s )
where the upper sign holds faf8=xz, yz, zzand the lower
sign stands for the other components. The tensor

The zz component of the coordinate space Green functiorfus(r,r{ ,®) is given by

corresponding to Eq(3.22 is calculated by employing a
similar approach. Substitution of E¢3.22 into Eq. (3.7
yields

. o k3
G r i )= — — f dkj-LF(k; ,@,2,2')
z 1 ’ 47760w2 0 H k H; 1 &y
XJO(k”|XH—X|H)— 25(r—r’),
Eqw
(3.30
in which

[}

F(k” ,w,Z,Z')=e_ik|Z_Z/|+ 2 {e—ik\(2m+l)a—(z+z’)\
m=0
+e—ik\2(m+1)a—(z—z’)\_
+efik\2(m+l)a+(zfz’)\

+ e—ik\(2m+ 1)a+(z+z’)\}

(3.3

where the prefactor of the square brackets in B2 has
been expanded for later calculations and 25 has been
used for integrating ove#. The integrands of all the five
terms appearing in Eq3.30 have the same form and the

integration overk; can be performed using the integration

given in the Appendix. The result is summarized as

Godr 1, 0) =Gy 1,1}, ) + 2:0 {Godr.r3,0)

TG, A1 13,0) TG, A1,1;, )

+G,Ar,rg,m)}— S(r—r'),

3eqw?

(3.32

gaﬁ(rlri, ,(,l))

q® 1 [ 1
— + - 60[3
dmegw® |\ (ATe)  (qre)?  (are)®

(rrelrrel)zaﬁ] eiqrrel,
(T rel)

_( 1 . 33 )
(qree) (qrrel)2 (qrrel)3
(3.3

wherer o ¢ is the normal Cartesian dyadic.

The structure of Eq(3.39 is typical of a semi-infinite
free space Green function. The surface part, the second term,
corresponds to the communication between the poirssd
r’ via reflection in the perfect conducting interface. The first
term together with the Diraé function term, the bulk part,
correspond to the direct communication between the two
points. The latter term resembles the free space Green func-
tion with both the source and observation pointandr’
positioned inside the region in whidB,4(r,r’,») has been
evaluated. The former term also has the same form as the
free space response function, but its source pdities out-
side the region in question and thus the singular Difac
function term has disappeared. This term corresponds to the
so-called image source.

The coordinate space response function wigmdr " both
in domain 2 is

Ga[;,,(r,r’,w)=gaﬁ(r,r(’),m)+mzO {+Gup(r.r;,0)
+Gap(rir3,0)+G,p(r,ry,m)
£ Gap(r,rg,0)} =

1
———=35,30(r—r"),
360(1)2 A ( )

(3.39

with the same sign convention as E8§.34).
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The structure of Eq(3.36) is typical of a cavity geometry Conducting ~ Conducting
made up of two perfectly conducting walls. The first term Mirror 1 plate 1 plate 2 Mirror 2
together with the Diracs function term correspond to the Digmain 1 Deniein2 Domain 3
direct communication between the two pointandr’. The
surface parts, the other four terms, correspond to the com-
munication between the two pointsandr’ via a series of
infinite reflections in the cavity walls. Each of these terms
has individually the same form as the free space response
function, but their source points lie outside the cavity and
thus their singular Dira@ function terms have disappeared.
The latter terms are associated with the infinite imagqoC
sources produced in the cavity walls.

b a b

FIG. 2. Representation of the geometry of two conducting plates
ated in the Fabry-Perot cavity.

Note that in writing Eq.(3.38 the equal contribution of the
B. The Casimir force zy andyz components of the response function allows us to

- . . avoid the explicit use ofj,,(r,r;,w). Furthermore, we have
. The Casimir fc_Jrce acting on the left hand condu_ctl_ng platetaken into account that the value gf(i=2,3,...) on the
is evaluated easily by taking into account the radiation pres:

sures on both sides of this plate. Using E2.11 the net interior interface of the conducting plate, that is, for z’
force per unit area on plate 1 is ' " =—(a/2) andx =x| , are the same. Therefore, the four re-

maining terms have equal contributions in producing the Ca-
eofic? o simir force. The latter cancellation removes the need of any
F=— 5 Imj dq (q253a53ﬁ regularization procedure for the present formalism and, on
m 0 the other hand, demonstrates how the asymmetric nature of
the surroundings gives rise to the Casimir force on a macro-
) scopic object. Using the explicit form of,(r,r;, o),
Gap(r,r,0) Gyy(r.r3, @), and G,,(r,r;,w) in Eq. (3.39 one can show

=r!

LB gy T
X =
7% z=—(al2)—d that

+ 26170,

(3.39

Jd d * 2
(q253a53,8+ Zel'yaelrjﬁﬁ_,) _ 3A4cC 1 _ hc ’
v 9% 8m%a* m=0 (m+1)* 240a*

_ (3.37) where in the last step the value of tijefunction has been
P used[18]. It is to be noted that the magnetic field contribu-
z=—(al2) tion in Eq. (3.39 is twice as much as the electric field con-
tribution. In other words, the nonvanishing field components

It is understood that a positive value of E8.37 indicates have the same role in producing the final result.
an attractive force between the two plates. The different

components of the coordinate space Green function needed IV. REPULSIVE CASIMIR FORCE

for substitution into the first and second terms of E137)
are given by Eqgs(3.34 and (3.36), respectively. The bulk ;
part contributions, which are identical in both Eq8.34) ference between this phenomenon and the van der Waals—

and(3.36, cancel each other in E¢3.37). Furthermore, the like forces. In the present formalism we can easily show that
fifth term in Eq.(3.36) with m= 0 on the interior interface of the sign _Of the Casimir force depends on the geometry of the
plate 1 is identical with the reflection term in E@®.34 on ~ Poundaries.

the exterior interface of the plate. These two terms cancel To begi.n V.Vith' let us assume that the latter configuration
one another as well. Changing the subscriptn the fifth Is located inside a Fabry-Perot cavity made up of two perfect

term asm—m+1, along with taking into account that reflecting mirrors positioned at= *+[ (a/2)+d+b], see Fig.
aloy=—alay' as well asdlaz=dldz' in the second and 2. The left and right hand plates as well as the different
fifth terms of Eq.(3.36 while a/dz= — d/3z’ in the third and domains of this configuration are I.abeled, as before, by 1 gnd
fourth terms, after some algebra one can easily show that EG, 3° well as 1, 2, and 3, respectively. We _nee_d the ex_pI|C|t
(3.37) can be rewritten as rms of the coordinate space Green function in domains 1
' and 2 for the calculation of the Casimir force. The response
function in domain 2 is given by E@3.36). One may follow
the same procedure and start with E8.20 along with the
G AT 15, 0) appropriate boundary conditions on the interfacez=at-a
—b—d andz=—-a—d to find the explicit form ofg,, in
e e domain 1. The coordinate space Green function is then ob-
+2—G (1,1}, @) — 4——G, (1,1}, @) _ tained using Eqs3.9) and(3.7). To find the response func-
922" ayaz Y* r=r’ tion it is more convenient to use the following shortcut
z=—(al2) which avoids repeating a similar calculation. We may obtain
(3.389  the required Green’s function by changiag-b along with

XGyp(r,r', o)

The repulsive Casimir force provides evidence for the dif-

F— 2€0ﬁ03 2

ko

© o
Im > f dq[(q2+2
m=0 JO

J
ay?
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z—z+(al2)+(b/2)+d and z’'—Zz'+(a/2)+(b/2)+d in the energy momentum tensor as the difference between that

Eq. (3.36. Therefore, the explicit form of this response func- in the constrained field configuration and the one corre-

tion is sponding to the unconstrained field. The modified tensor is
then related to the field propagafet].

, , - , In this paper we have used the Maxwell stress tensor for
Goup(r.r '“’):gaﬁ(r’ro’meE:O {+Gap(rre,0) the evaluation of the vacuum radiation pressure on a con-
ducting surface. The relation of this expression with the

T Gop(r.r7,0)+Gup(r,rg,w) imaginary part of the response function has been obtained

using the fluctuation dissipation theorem and Kubo'’s formula
(2.11). The attractive Casimir force between two conducting
plates(3.39 is then calculated as the net vacuum radiation
pressure acting on each plate. In a straightforward way the
(4.1 repulsive Casimir force has been calculated for two conduct-
ing plates located inside a Fabry-Perot cayity3). For the
sake of simplicity we have used the usual perfect conductor
approximation with a frequency independent reflection coef-
ficient. It is noteworthy that as in the one dimensional case
this approximation should be improved, as in Réf0], to
remedy the inconsistency of the theory.
zg=2'—-2(m+1)b, zg=—2'-2(m+1)b—a-2d The present formalism can be extended to the calculation
(4.2 of the Casimir force between two dielectric slabs exhibiting
dissipation. The work on this problem is under way.

1 !
5 0apd(r—r"),

iga;a(f,ré,w)}—g
0

where G,4(r.r{ ,w) is given by Egq.(3.27 and r{(i
=6,7, ...)have the samr andy coordinates as’ and their
z coordinates are

zi=—2'+2mb—a—2d, z,=z'+2(m+1)b,

Equation (4.1) also has the typical structure of the cavity
geometry.

Having the coordinate space Green functi¢@s6 and ACKNOWLEDGMENTS
(4.1), and using Eq(3.37), the evaluation of the Casimir
force acting on the left hand plate is straightforward. It is
clear that the positivénegative value of Eq.(3.37) indicates
an attractive(repulsive force between the two plates. The
bulk part contributions, which are identical in Eq&.36 APPENDIX
and (4.1), cancel each other in E¢3.37). Furthermore, the
fifth term of Eq.(3.36) on the interior interface of plate 1 for
m=0 is the same as the second term of E41) on the
exterior interface of the plate witm=0. These two terms
cancel one another as well. Changing the subsanipt the to K3
latter terms according ton—m+1 and taking the similar L(r,r',w)zj dkHie*‘k‘Z*ZWJo(kMx”—xH’|), (A1)
structure ofG,4(r,r’,w) on the interior and exterior inter- 0 k
faces of the left hand plate into account, one can easily show

We thank R. Loudon and S. Barnett for comments and
suggestions that helped us to improve the present work.

In Secs. lll and IV the form of the following integral was
required for the calculation of the coordinate space Green
function:

that wherek is related tok; by Eq.(3.9) andJ, is the zero order
Bessel function of the first kind. To simplify the later calcu-
3hc(1 1) & 1 hew? (11 lations let us assumg=z—2z' and X”=XH—XH’. Using the
T 82\ a4 bt i (m+1)* T 240 | g8 pA)” well-known recurrence relation
4.3
4.3 (n+1) ,
where the value of thé function has been used. Therefore, In()= = In+1() +In41(X) (A2)
the Casimir force between the two conducting plates is at-
tractive whenb>a and repulsive wheib<<a. among the Bessel functions of the first kind in which the
prime denotes derivative with respect to the argument, one
V. CONCLUSIONS can show that
The results derived in this paper amplify and extend the 1 d
previously developeil0] Green function method for calcu- kiJo(kjXp=| o+ —)Jl(k”)()_ (A3)
lating the Casimir force. In Ref10] the method was applied X dX

to a one dimensional case, while the Casimir force calcula- ] o .
tion, in principle, does need the extension of the formalism! e successive appllcatlons of the latter recurrence relation
to three dimensions. The final result of the attractive Casimi@llow one to write Eq(A1) in the form
force between two conducting plates E§.39 is in com-
plete agreement with those appearing in the literafdie L(r,r’ w):(iJri)(iJri)(iJr —)H(r [ o)
evaluated by the method of mode summation together with™ *" ’ X dX A\ X dX /X dX o
introducing an appropriate cutoff frequency.

Another field theoretical approach used for the evaluation
of the Casimir force is based on the modified definition ofwhere
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oL 1 4iR 4\
H(r,r’,w):f dkHEe 'k|Z|J3(kHXH). (A5) H(r,r’,w):——| " 5o iqR
This is a well-known integral and its value [i$8] 42| 4
( -—t—= e‘qz|] (A8)
2 2y2 :
axj - a’X

: . iq iq
H(rr' o)=il 3/2( - E(R_|Z|))K3/2( - E(R+|Z|)),
(A6)  whereR=(Xf+Z2?)"2 Substituting Eq(A8) into Eq. (Ad)

ields
wherel 3, and Ky, are the modified Bessel functions of the Y

first and second kind, respectively. Using the explicit forms .
of the latter Bessel functions, L(r,r’,w)=iq3 + o1 Y !
C (dR  (gR? (qR)® (aR)
27r( sin(ix) cogix
l3i(X) =i \/7( r(2 s i( )>, (A7) 3i 3 (22 1
X - + e'aR— 3(R).
(qR?  (aR?®/(R) 3egw’
X 1 1
Kaa(X) = 79_’( T3 (A9)
Note that the Dira@ function term disappears if we require
after some algebra, we find that R+#0.
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