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Casimir effect between two conducting plates

Reza Matloob
Department of Physics, University of Kerman, Kerman, Iran

~Received 5 May 1999!

The Maxwell stress tensor is used to introduce the radiation pressure force of the electromagnetic field on a
conducting surface. This expression is related to the imaginary part of the vector potential Green function for
the fluctuating fields of the vacuum via the fluctuation dissipation theorem and Kubo’s formula. The formalism
allows one to evaluate the vacuum radiation pressure on a conducting surface without resorting to the process
of field quantization. The latter formula is used to calculate the attractive and repulsive Casimir force between
two conducting plates. What is more, in this formalism, there is no need to apply any regularization procedure
to recover the final result.@S1050-2947~99!05210-5#

PACS number~s!: 12.20.2m
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I. INTRODUCTION

The Casimir force@1,2# on material bodies is interprete
either traditionally as a long range retarded phenomenon@3#,
or viewed from a modern perspective, as the force aris
from a change of the zero point energy of the electrom
netic field in the presence of a boundary surface~or surfaces!
@4,5#. In the modern theory the concept of the Casimir e
ergy is introduced, first and necessarily, as the differe
between the zero point energy in the presence and the
sence of external constraints. In contrast to the vacuum
ergy itself, this energy which gives rise to the Casimir for
is a finite quantity if an appropriate regularization proced
is used. In this sense, the Casimir force is the response o
vacuum against the presence of external bodies. The Cas
effect on an object, therefore, appears if the space surro
ing it possesses an asymmetric nature. As a result this e
will manifest itself either as an attractive or repulsive mutu
force between macroscopic objects. The repulsive effec
the notable difference between this phenomenon and the
der Waals–like forces.

The notion of the Casimir effect as the reaction of t
vacuum against the existence of macroscopic bodies all
one to calculate the force acting on a given object by eva
ating the vacuum radiation pressure on it@6–10#. The radia-
tion pressure is an indication of the momentum inheren
an electromagnetic field even if the field is in its vacuu
state. In this method one should necessarily go through
process of electromagnetic field quantization for the parti
lar geometry in question, and thereafter calculate the Cas
force using the Maxwell stress tensor. Apart from a fe
simple configurations, considerable difficulty arises in m
practical situations when the electromagnetic field is to
quantized. Any simplification in this formalism is therefo
of value whenever more complicated geometries are
volved. The aim of the present paper is to tackle the la
difficulty. This may be a step forward to make the theo
closer to the experimental results@11–14#.

In Sec. II we begin with the Maxwell stress tensor, t
fluctuation dissipation theorem, and Kubo’s formula to p
vide a general expression for the vacuum pressure force
ing on a conducting surface. This expression is used in S
III and IV to calculate the attractive and repulsive forc
PRA 601050-2947/99/60~5!/3421~8!/$15.00
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between two conducting plates. Finally, the main points
the present work are summarized in the concluding sect

II. VACUUM RADIATION PRESSURE
ON A CONDUCTING SURFACE

The conservation of linear momentum in the classi
theory of electrodynamics leads to the introduction of t
Maxwell stress tensor@15#

Tab5e0EaEb1
1

m0
BaBb2

1

2 S e0E21
1

m0
B2D dab ,

~2.1!

wherea,b5x,y,z denote the Cartesian coordinates, ande0
and m0 are the permittivity and permeability of free spac
respectively. The statement of the conservation of mom
tum indicates that the flow per unit area of momentum acr
a given surfaceS, or equivalently, the force per unit are
acting onS is given by

FW 5E
S
T•n̂ds, ~2.2!

whereT is the Maxwell stress tensor given by Eq.~2.1! and
n̂ is the unit outward normal vector atds. Equation~2.2! can
therefore be used to calculate the force acting on mate
objects due to the electromagnetic field.

Consider now a perfectly conducting medium with
single plane interface atz50 which fills the half spacez
>0. Thex andy axes lie within the interface. Recalling th
symmetry of the configuration, the radiation pressure fo
experienced by the plane interface of the conductor is in
z direction and it is given by thezz component of the stres
tensor atz50. The boundary conditions on the tangentialE
and normalB fields require that these two field componen
vanish on the interface. Therefore,Tzz has the following
form on the conductor surface:

Tzz5
1

2
e0Ez

22
1

2
e0c2~Bx

21By
2!, ~2.3!

wherem0e05c22 has been used.
3421 ©1999 The American Physical Society
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3422 PRA 60REZA MATLOOB
The quantum expression of this force is obtained by c
verting the classical quantities into quantum mechan
counterparts. The expectation value of the latter expres
evaluated for the vacuum state will then yield the force
sociated with the vacuum field. The vacuum radiation pr
sure force per unit area experienced by the plane interfac
the conductor is then

F52
1

2
e0^0uÊz

2~r ,t !u0&1e0c2^0uB̂x
2~r ,t !u0&, ~2.4!

where account has been taken of the equal contribution
the second and third terms in Eq.~2.3! andu0& stands for the
vacuum state of the electromagnetic field. To avoid any
ture ambiguity, the field argument (r ,t) is inserted in Eq.
~2.4!. The electric field operator has the form

Ê~r ,t !5
1

A2p
E

0

1`

dv@Ê1~r ,v!e2 ivt1Ê2~r ,v!e1 ivt#,

~2.5!

where the positive and negative frequency parts in the i
grand involve only the photon annihilation and creation o
erators, respectively. Using Eq.~2.5! and a similar decompo
sition for B̂(r ,t), Eq. ~2.4! can be rewritten as

F52
e0

4pE0

1`

dvE
0

1`

dv8@^0uÊz
1~r ,v!Êz

2~r ,v8!u0&

22c2^0uB̂x
1~r ,v!B̂x

2~r ,v8!u0&#e2 i (v2v8)t, ~2.6!

where terms in which annihilation operators act directly
the vacuum stateu0& have been set to zero.

The vector potential correlation function is related to t
imaginary part of the vector potential Green functi
G(r ,r 8,v) via the fluctuation dissipation theorem and K
bo’s formula@16#

^0uÂa
1~r ,v!Âb

2~r 8,v8!u0&52\Im Gab~r ,r 8,v!d~v2v8!,
~2.7!

where the same frequency decomposition is understood
Â(r ,t). Taking advantage of the gauge in which the sca
potential vanishes, the electric and magnetic field opera
are derived from the vector potential

Ê1~r ,v!5 ivÂ1~r ,v!,
~2.8!

B̂1~r ,v!5“3Â1~r ,v!.

The negative frequency part of each field operator is de
mined by taking the Hermitian conjugate of Eq.~2.8!. Using
Eqs. ~2.7! and ~2.8!, the electric and magnetic field correla
tion functions are related to the imaginary part of the vec
potential Green function according to

^0uÊa
1~r ,v!Êb

2~r 8,v8!u0&

52\v2Im Gab~r ,r 8,v!d~v2v8! ~2.9!
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^0uB̂a
1~r ,v!B̂b

2~r 8,v8!u0&

52\eagdebhn

]

]xg

]

]xh8
Im Gdn~r ,r 8,v!d~v2v8!,

~2.10!

whereeagd is the antisymmetric Levi-Civita` symbol and a
summation over the repeated Cartesian indices is impl
Employing Eqs.~2.9! and~2.10!, Eq. ~2.6! can be simplified
as

F52
e0\c3

2p
Im E

0

1`

dqF S q2d3ad3b

12e1gae1hb

]

]xg

]

]xh8
D Gab~r ,r 8,v!G

r5r8
z50

,

~2.11!

where 1,2,3 indicate the three Cartesian indices andq
5(v/c). The above expression is in fact the force per u
area acting on the interface of the conductor arising from
vacuum fluctuations of the field in the semi-infinite fre
spacez<0. The two terms in Eq.~2.11! provide the electric
and magnetic field contributions, respectively. Note that
integral in Eq.~2.11! is divergent, but the net force per un
area evaluated for a conducting plate turns out to be a fi
quantity.

III. ATTRACTIVE CASIMIR FORCE

We calculate in this section the Casimir force betwe
two perfect conducting plates of thicknessd located in empty
space. To take advantage of the symmetry of the problem
z axis is chosen to be perpendicular to the interfaces with
origin at a distancea/2 from each plate as shown in Fig. 1
We label the left and right hand plates as well as the differ
domains of this geometry by 1 and 2 as well as 1, 2, and
respectively, as shown in Fig. 1. In order to use Eq.~2.11! to
evaluate the Casimir force acting on the left hand plate
must find the appropriate response function. We need
explicit form of the coordinate space Green function for t
case where both the source and observation pointsr and r 8
are within the gap between the two plates as well as for
case where bothr and r 8 are in domain 1.

FIG. 1. Representation of the geometry of two conduct
plates.
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A. The Green function

The electromagnetic field operators satisfy Maxwe
equations, which in the frequency domain are of the form

“3Ê1~r ,v!5 ivB̂1~r ,v!, ~3.1!

“3B̂1~r ,v!52 ivm0D̂1~r ,v!1m0Ĵ1~r ,v!, ~3.2!

where the monochromatic electric field and displacement
erators are related by

D̂1~r ,v!5e0e~r ,v!Ê1~r ,v!. ~3.3!

Combining Eqs.~3.2!, ~3.3!, and~2.8!, one can easily show
that the spatial dependence of the positive frequency pa
the vector potential operator is given by

“3@“3Â1~r ,v!#2q2Â1~r ,v!5
1

e0c2
Ĵ1~r ,v!,

~3.4!

where, as before,q5(v/c). The Fourier time transformed
Green function tensor is defined in the usual way as

Âa
1~r ,v!5(

b
E d3r 8Gab~r ,r 8,v!Ĵb

1~r 8,v!. ~3.5!

Substitution of Eq. ~3.5! into Eq. ~3.4! shows that
Gmn(r ,r 8,v) satisfies

(
m

S q2dlm2
]2

]xl]xm
1dlm“

2DGmn~r ,r 8,v!

52
1

e0c2
dlnd~r2r 8!, ~3.6!

with the appropriate boundary conditions.
The homogeneous nature of the present configuratio

the xy plane allows us to convert the Green function diffe
ential equations into a set of algebraic equations in the w
vector spaceki5(kx ,ky). Unfortunately, the homogeneit
along thez axis is broken by the inhomogeneity of the m
dium in this direction. Therefore, one can conveniently e
press the components of the response function tenso
terms of their Fourier transform as

Gab~r ,r 8,v!5
1

2pE d2kiGab~ki ,v,z,z8!eiki•(xi2xi8).

~3.7!

This converts the set of partial differential equations~3.6!
into a set of ordinary differential equations in variablez.

The symmetry of the problem reduces the number of n
vanishing off-diagonal components of the Green funct
tensor. To exploit the remaining symmetry in thexy plane, it
is sufficient to premultiply and postmultiply the new sets
differential equations by the matricesO(ki) and O21(ki),
respectively, where
p-

of

in

e

-
in

-
n

f

O~ki!5
1

ki S kx ky 0

2ky kx 0

0 0 1
D . ~3.8!

It is convenient also to introduce the auxiliary tensorgab as

g5OGO21, ~3.9!

where the argument (ki ,v,z,z8) has been omitted for sim
plicity. A detailed calculation shows that the four function
gyx , gyz , gxz , andgzy all vanish, while the other five com
ponents satisfy a set of five differential equations@17#. The
two functionsgxz andgzz are the solutions of the set of tw
coupled differential equations of the form

S d2

dz2
1q2D gxz2 ik i

d

dz
gzz50,

~3.10!

2 ik i
d

dz
gxz1~q22ki

2!gzz52
1

2pe0c2
d~z2z8!.

The imposition of the boundary conditions makes it mo
convenient to findgxz first and then to use Eq.~3.10! to
evaluategzz. Combining the above differential equation
one can easily show thatgxz is given by the solution of

S d2

dz2
1k2D gxz52

ik i

2pe0v2

d

dz
d~z2z8!, ~3.11!

where

k52~q22ki
2!1/2. ~3.12!

The choice of the sign in Eq.~3.12! ensures that Imk.0
whenki.q. The functiongzz is obtained by

gzz5
ik i

k2

d

dz
gxz2

1

2pe0c2k2
d~z2z8!. ~3.13!

A similar treatment shows that the functiongxx is deter-
mined by

S d2

dz2
1k2D gxx52

k2

2pe0v2
d~z2z8! ~3.14!

andgzx can be derived using the explicit form ofgxx as

gzx5
ik i

k2

d

dz
gxx . ~3.15!

Finally, theyy component of the auxiliary tensorgmn satis-
fies

S d2

dz2
1k2D gyy52

1

2pe0c2
d~z2z8!. ~3.16!

There are two types of boundary conditions on the fu
tions gmn . The first are the boundary conditions atz56`.
They are easily imposed by assuming outgoing or expon
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3424 PRA 60REZA MATLOOB
tially decaying waves at infinity, depending on the value
ki andq. The second type of boundary conditions are tho
at the plane interfaces of the conductors. These are gove
by the boundary conditions on the different components
the electromagnetic fields. It is not difficult to impose t
continuity of the tangential components ofÊ andĤ and the
normal components ofD̂ and B̂ to subsequently find the
boundary conditions on the components ofGmn and gmn .
The vanishing of the tangential electric field operator on
conductors entails that the functions of main concern,gxz ,
gxx , andgyy should necessarily vanish when the observat
point r is on the interfaces of the conducting plates.

Let us begin with calculatinggxz in domain 1. The gen-
eral solution of Eq.~3.11! consists of a complementary so
lution and a particular solution of the form

gxz52
ik i

4pe0v2
e2 ikuz2z8usgn~z2z8!1Reikz. ~3.17!

The coefficient R is determined by the imposition
gxzuz52(a/2)2d50. It is straightforward, upon evaluatingR
and using Eq.~3.13!, to show that the explicit forms ofgxz
andgzz are

gxz~ki ,v,z,z8!52
ik i

4pe0v2
~e2 ikuz2z8usgn~z2z8!

2eik[(z1z8)1a12d] ! ~3.18!

and

gzz~ki ,v,z,z8!52
ik i

2

4pe0v2k
~e2 ikuz2z8u1eik[(z1z8)1a12d] !

2
1

2pe0v2
d~z2z8!. ~3.19!

A similar calculation must be carried out in domain 2.
this case the particular solution of Eq.~3.11! has the same
form as in Eq.~3.17!, while the complementary solution con
sists of both the rightwards and leftwards propagating wav
The general solution of Eq.~3.11! is then

gxz52
ik i

4pe0v2
e2 ikuz2z8usgn~z2z8!1CLeikz1CRe2 ikz.

~3.20!

The coefficientsCL and CR are obtained by the boundar
conditionsgxzuz52(a/2)50 andgxzuz5(a/2)50. It is not diffi-
cult to show thatgxz andgzz take on the forms

gxz~ki ,v,z,z8!52
ik i

4pe0v2
$e2 ikuz2z8usgn~z2z8!

1~12e22ika!21@2eik[(z1z8)2a]

2eik[(z2z8)22a]1e2 ik[(z2z8)12a]

1e2 ik[(z1z8)1a] #% ~3.21!
f
e
ed
f

e

n

s.

and

gzz~ki ,v,z,z8!52
ik i

2

4pe0v2k
$e2 ikuz2z8u

1~12e22ika!21@eik[(z1z8)2a]

1eik[(z2z8)22a]1e2 ik[(z2z8)12a]

1e2 ik[(z1z8)1a] #%2
1

2pe0v2
d~z2z8!,

~3.22!

where Eq.~3.13! has been used to evaluate Eq.~3.22!.
The coordinate space Green function needed for subs

tion into Eq. ~2.11! is obtained with the help of Eq.~3.7!
where due account must be taken of the rotation~3.9!. Let us
begin with the evaluation ofGzz(r ,r 8,v). Recalling the fact
that Eq. ~3.9! is a rotation about thekz axis in the wave
vector space, it is clear that

Gzz~ki ,v,z,z8!5gzz~ki ,v,z,z8!. ~3.23!

The latter statement may easily be checked by substitu
Eq. ~3.8! and its inverse into Eq.~3.9!. Therefore, thezz
component of the coordinate space Green function co
sponding to Eq.~3.19! is

Gzz~r ,r 8,v!

52
i

4pe0v2 H E0

1`

dki
ki

3

k
e2 ikuz2z8uJ0~kiuxi2xi8u!

1E
0

1`

dki
ki

3

k
e2 iku(z1z8)1a12duJ0~kiuxi2xi8u!J

2
1

e0v2
d~r2r 8!, ~3.24!

where the integral representation ofJ0, the zero order Besse
function of the first kind of the form

J0~kiuxi2xi8u!5
1

2pE0

2p

dueik iuxi2xi8ucosu ~3.25!

has been used for the integration over the azimuth angl
wave vector space. The integrands in the first and sec
terms have the same form and the integration overki can be
performed easily. The details are omitted here, but the ev
ation of this integral is given in the Appendix. With th
explicit result provided in the Appendix, expression~3.24!
can be rewritten as

Gzz~r ,r 8,v!5Gzz~r ,r08 ,v!1Gzz~r ,r18 ,vt !

2
1

3e0v2
d~r2r 8!, ~3.26!

where
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Gzz~r ,r i8 ,v!5
q3

4pe0v2 H S 1

~qr rel!
1

i

~qr rel!
2

2
1

~qr rel!
3D

2S 1

~qr rel!
1

3i

~qr rel!
2

2
3

~qr rel!
3D ~zrel!

2

~r rel!
2J eiqr rel, ~3.27!

in which

r rel5r2r i8 , i 50,1, . . . . ~3.28!

The vectorsr i8 are defined as

r085r 8, ~3.29!

r185x8 î 1y8 ĵ 2~z81a12d!k̂.

The zz component of the coordinate space Green funct
corresponding to Eq.~3.22! is calculated by employing a
similar approach. Substitution of Eq.~3.22! into Eq. ~3.7!
yields

Gzz~r ,r 8,v!52
i

4pe0v2E0

1`

dki
ki

3

k
F~ki ,v,z,z8!

3J0~kiuxi2xi8u!2
1

e0v2
d~r2r 8!,

~3.30!

in which

F~ki ,v,z,z8!5e2 ikuz2z8u1 (
m50

`

$e2 iku(2m11)a2(z1z8)u

1e2 iku2(m11)a2(z2z8)u.

1e2 iku2(m11)a1(z2z8)u

1e2 iku(2m11)a1(z1z8)u%, ~3.31!

where the prefactor of the square brackets in Eq.~3.22! has
been expanded for later calculations and Eq.~3.25! has been
used for integrating overu. The integrands of all the five
terms appearing in Eq.~3.30! have the same form and th
integration overki can be performed using the integratio
given in the Appendix. The result is summarized as

Gzz~r ,r 8,v!5Gzz~r ,r08 ,v!1 (
m50

`

$Gzz~r ,r28 ,v!

1Gzz~r ,r38 ,v!1Gzz~r ,r48 ,v!

1Gzz~r ,r58 ,v!%2
1

3e0v2
d~r2r 8!,

~3.32!
n

where Gzz(r ,r i8 ,v) is given by Eq. ~3.27! and r i8( i
52,3, . . . )have the samex andy coordinates asr 8 and their
z coordinates are

z285@2z81~2m11!a#, z385@z812~m11!a#,
~3.33!

z485@z822~m11!a#, z585@2z82~2m11!a#.

The evaluations of the other components are similar
the details are omitted here for the sake of brevity. The
plicit form of the coordinate space Green function with bo
r and r 8 in domain 1 can be written as

Gab~r ,r 8,v!5Gab~r ,r08 ,v!6Gab~r ,r18 ,v!

2
1

3e0v2
dabd~r2r 8!, ~3.34!

where the upper sign holds forab5xz, yz, zzand the lower
sign stands for the other components. The ten
Gab(r ,r i8 ,v) is given by

Gab~r ,r i8 ,v!

5
q3

4pe0v2 H S 1

~qr rel!
1

i

~qr rel!
2

2
1

~qr rel!
3D dab

2S 1

~qr rel!
1

3i

~qr rel!
2

2
3

~qr rel!
3D ~r relr rel!ab

~r rel!
2 J eiqr rel,

~3.35!

wherer relr rel is the normal Cartesian dyadic.
The structure of Eq.~3.34! is typical of a semi-infinite

free space Green function. The surface part, the second t
corresponds to the communication between the pointsr and
r 8 via reflection in the perfect conducting interface. The fi
term together with the Diracd function term, the bulk part,
correspond to the direct communication between the
points. The latter term resembles the free space Green f
tion with both the source and observation pointsr and r 8
positioned inside the region in whichGab(r ,r 8,v) has been
evaluated. The former term also has the same form as
free space response function, but its source pointr18 lies out-
side the region in question and thus the singular Diracd
function term has disappeared. This term corresponds to
so-called image source.

The coordinate space response function withr andr 8 both
in domain 2 is

Gab~r ,r 8,v!5Gab~r ,r08 ,v!1 (
m50

`

$6Gab~r ,r28 ,v!

1Gab~r ,r38 ,v!1Gab~r ,r48 ,v!

6Gab~r ,r58 ,v!%2
1

3e0v2
dabd~r2r 8!,

~3.36!

with the same sign convention as Eq.~3.34!.
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3426 PRA 60REZA MATLOOB
The structure of Eq.~3.36! is typical of a cavity geometry
made up of two perfectly conducting walls. The first ter
together with the Diracd function term correspond to th
direct communication between the two pointsr and r 8. The
surface parts, the other four terms, correspond to the c
munication between the two pointsr and r 8 via a series of
infinite reflections in the cavity walls. Each of these term
has individually the same form as the free space respo
function, but their source points lie outside the cavity a
thus their singular Diracd function terms have disappeare
The latter terms are associated with the infinite ima
sources produced in the cavity walls.

B. The Casimir force

The Casimir force acting on the left hand conducting pl
is evaluated easily by taking into account the radiation pr
sures on both sides of this plate. Using Eq.~2.11! the net
force per unit area on plate 1 is

F52
e0\c3

2p
Im E

0

1`

dqH F S q2d3ad3b

12e1gae1hb

]

]xg

]

]xh8
D Gab~r ,r 8,v!G

r5r8
z52(a/2)2d

2F S q2d3ad3b12e1gae1hb

]

]xg

]

]xh8
D

3Gab~r ,r 8,v!G
r5r8
z52(a/2)

J . ~3.37!

It is understood that a positive value of Eq.~3.37! indicates
an attractive force between the two plates. The differ
components of the coordinate space Green function nee
for substitution into the first and second terms of Eq.~3.37!
are given by Eqs.~3.34! and ~3.36!, respectively. The bulk
part contributions, which are identical in both Eqs.~3.34!
and~3.36!, cancel each other in Eq.~3.37!. Furthermore, the
fifth term in Eq.~3.36! with m50 on the interior interface o
plate 1 is identical with the reflection term in Eq.~3.34! on
the exterior interface of the plate. These two terms can
one another as well. Changing the subscriptm in the fifth
term as m→m11, along with taking into account tha
]/]y52]/]y8 as well as]/]z5]/]z8 in the second and
fifth terms of Eq.~3.36! while ]/]z52]/]z8 in the third and
fourth terms, after some algebra one can easily show that
~3.37! can be rewritten as

F5
2e0\c3

p
Im (

m50

` E
0

1`

dqH S q212
]2

]y2D Gzz~r ,r28 ,v!

12
]2

]z2
Gyy~r ,r28 ,v!24

]2

]y]z
Gyz~r ,r28 ,v!J

r5r8
z52(a/2)

.

~3.38!
-

s
se
d

e

e
s-

t
ed

el

q.

Note that in writing Eq.~3.38! the equal contribution of the
zy andyz components of the response function allows us
avoid the explicit use ofGyz(r ,r28 ,v). Furthermore, we have
taken into account that the value ofr i8( i 52,3, . . . ) on the
interior interface of the conducting plate, that is, forz5z8
52(a/2) andxi5xi8 , are the same. Therefore, the four r
maining terms have equal contributions in producing the C
simir force. The latter cancellation removes the need of a
regularization procedure for the present formalism and,
the other hand, demonstrates how the asymmetric natur
the surroundings gives rise to the Casimir force on a mac
scopic object. Using the explicit form ofGzz(r ,r28 ,v),
Gyy(r ,r28 ,v), and Gyz(r ,r28 ,v) in Eq. ~3.38! one can show
that

F5
3\c

8p2a4 (
m50

`
1

~m11!4
5

\cp2

240a4
, ~3.39!

where in the last step the value of thez function has been
used@18#. It is to be noted that the magnetic field contrib
tion in Eq. ~3.39! is twice as much as the electric field co
tribution. In other words, the nonvanishing field compone
have the same role in producing the final result.

IV. REPULSIVE CASIMIR FORCE

The repulsive Casimir force provides evidence for the d
ference between this phenomenon and the van der Wa
like forces. In the present formalism we can easily show t
the sign of the Casimir force depends on the geometry of
boundaries.

To begin with, let us assume that the latter configurat
is located inside a Fabry-Perot cavity made up of two perf
reflecting mirrors positioned atz56@(a/2)1d1b#, see Fig.
2. The left and right hand plates as well as the differe
domains of this configuration are labeled, as before, by 1
2 as well as 1, 2, and 3, respectively. We need the exp
forms of the coordinate space Green function in domain
and 2 for the calculation of the Casimir force. The respon
function in domain 2 is given by Eq.~3.36!. One may follow
the same procedure and start with Eq.~3.20! along with the
appropriate boundary conditions on the interfaces atz52a
2b2d and z52a2d to find the explicit form ofgxz in
domain 1. The coordinate space Green function is then
tained using Eqs.~3.9! and~3.7!. To find the response func
tion it is more convenient to use the following shortc
which avoids repeating a similar calculation. We may obt
the required Green’s function by changinga→b along with

FIG. 2. Representation of the geometry of two conducting pla
located in the Fabry-Perot cavity.
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z→z1(a/2)1(b/2)1d and z8→z81(a/2)1(b/2)1d in
Eq. ~3.36!. Therefore, the explicit form of this response fun
tion is

Gab~r ,r 8,v!5Gab~r ,r08 ,v!1 (
m50

`

$6Gab~r ,r68 ,v!

1Gab~r ,r78 ,v!1Gab~r ,r88 ,v!

6Gab~r ,r98 ,v!%2
1

3e0v2
dabd~r2r 8!,

~4.1!

where Gab(r ,r i8 ,v) is given by Eq. ~3.27! and r i8( i
56,7, . . . )have the samex andy coordinates asr 8 and their
z coordinates are

z6852z812mb2a22d, z785z812~m11!b,

z885z822~m11!b, z9852z822~m11!b2a22d

~4.2!

Equation ~4.1! also has the typical structure of the cavi
geometry.

Having the coordinate space Green functions~3.36! and
~4.1!, and using Eq.~3.37!, the evaluation of the Casimi
force acting on the left hand plate is straightforward. It
clear that the positive~negative! value of Eq.~3.37! indicates
an attractive~repulsive! force between the two plates. Th
bulk part contributions, which are identical in Eqs.~3.36!
and ~4.1!, cancel each other in Eq.~3.37!. Furthermore, the
fifth term of Eq.~3.36! on the interior interface of plate 1 fo
m50 is the same as the second term of Eq.~4.1! on the
exterior interface of the plate withm50. These two terms
cancel one another as well. Changing the subscriptm in the
latter terms according tom→m11 and taking the similar
structure ofGab(r ,r 8,v) on the interior and exterior inter
faces of the left hand plate into account, one can easily s
that

F5
3\c

8p2 S 1

a4
2

1

b4D (
m50

`
1

~m11!4
5

\cp2

240 S 1

a4
2

1

b4D ,

~4.3!

where the value of thez function has been used. Therefor
the Casimir force between the two conducting plates is
tractive whenb.a and repulsive whenb,a.

V. CONCLUSIONS

The results derived in this paper amplify and extend
previously developed@10# Green function method for calcu
lating the Casimir force. In Ref.@10# the method was applied
to a one dimensional case, while the Casimir force calcu
tion, in principle, does need the extension of the formali
to three dimensions. The final result of the attractive Casi
force between two conducting plates Eq.~3.39! is in com-
plete agreement with those appearing in the literature@4#
evaluated by the method of mode summation together w
introducing an appropriate cutoff frequency.

Another field theoretical approach used for the evaluat
of the Casimir force is based on the modified definition
w

t-

e

-

ir

th

n
f

the energy momentum tensor as the difference between
in the constrained field configuration and the one cor
sponding to the unconstrained field. The modified tenso
then related to the field propagator@4#.

In this paper we have used the Maxwell stress tensor
the evaluation of the vacuum radiation pressure on a c
ducting surface. The relation of this expression with t
imaginary part of the response function has been obtai
using the fluctuation dissipation theorem and Kubo’s form
~2.11!. The attractive Casimir force between two conducti
plates~3.39! is then calculated as the net vacuum radiat
pressure acting on each plate. In a straightforward way
repulsive Casimir force has been calculated for two condu
ing plates located inside a Fabry-Perot cavity~4.3!. For the
sake of simplicity we have used the usual perfect condu
approximation with a frequency independent reflection co
ficient. It is noteworthy that as in the one dimensional ca
this approximation should be improved, as in Ref.@10#, to
remedy the inconsistency of the theory.

The present formalism can be extended to the calcula
of the Casimir force between two dielectric slabs exhibiti
dissipation. The work on this problem is under way.
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APPENDIX

In Secs. III and IV the form of the following integral wa
required for the calculation of the coordinate space Gr
function:

L~r ,r 8,v!5E
0

1`

dki
ki

3

k
e2 ikuz2z8uJ0~kiuxi2xi8u!, ~A1!

wherek is related toki by Eq. ~3.9! andJ0 is the zero order
Bessel function of the first kind. To simplify the later calc
lations let us assumeZ5z2z8 and Xi5xi2xi8 . Using the
well-known recurrence relation

Jn~x!5
~n11!

x
Jn11~x!1Jn118 ~x! ~A2!

among the Bessel functions of the first kind in which t
prime denotes derivative with respect to the argument,
can show that

kiJ0~kiXi!5S 1

Xi
1

d

dXi
D J1~kiXi!. ~A3!

The successive applications of the latter recurrence rela
allow one to write Eq.~A1! in the form

L~r ,r 8,v!5S 1

Xi
1

d

dXi
D S 2

Xi
1

d

dXi
D S 3

Xi
1

d

dXi
DH~r ,r 8,v!,

~A4!

where
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H~r ,r 8,v!5E
0

1`

dki
1

k
e2 ikuZuJ3~kiXi!. ~A5!

This is a well-known integral and its value is@18#

H~r ,r 8,v!5 i I 3/2S 2
iq

2
~R2uZu! DK3/2S 2

iq

2
~R1uZu! D ,

~A6!

whereI 3/2 andK3/2 are the modified Bessel functions of th
first and second kind, respectively. Using the explicit for
of the latter Bessel functions,

I 3/2~x!5 iA2p

x S sin~ ix !

x2
1

cos~ ix !

ix D , ~A7!

K3/2~x!5Apx

2
e2xS 1

x
1

1

x2D ,

after some algebra, we find that
s

H~r ,r 8,v!52
1

qXi
H S 11

4iR

qXi
2

2
4

q2Xi
2D eiqR

1S 12
4i uZu

qXi
2

1
4

q2Xi
2D eiquZuJ , ~A8!

whereR5(Xi
21Z2)1/2. Substituting Eq.~A8! into Eq. ~A4!

yields

L~r ,r 8,v!5 iq3H S 1

~qR!
1

i

~qR!2
2

1

~qR!3D 1S 2
1

~qR!

2
3i

~qR!2
1

3

~qR!3D ~Z!2

~R!2J eiqR2
1

3e0v2
d~R!.

~A9!

Note that the Diracd function term disappears if we requir
RÞ0.
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