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Bargmann invariants and geometric phases: A generalized connection
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We develop the broadest possible generalization of the well known connection between quantum-
mechanical Bargmann invariants and geometric phases. The key concept is that of null phase curves in
guantum-mechanical ray and Hilbert spaces. Examples of such curves are developed. Our generalization is
shown to be essential for properly understanding geometric phase results in the cases of coherent states and of
Gaussian states. Differential geometric aspects of null phase curves are also briefly explored.
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[. INTRODUCTION show that this property can be translated into an elementary
and elegant statement concerning the inner product of any
The geometric phase was originally discovered in the contwo Hilbert space vectors along any lift of such a ray space
text of cyclic adiabatic quantum-mechanical evolution, gov-curve. We refer to these as “null phase curves,” and the
erned by the time-dependent Satirger equation with a generalization of the familiar statement linking Bargmann
Hermitian Hamiltonian operatdil,2]. Subsequent work has invariants and geometric phases is achieved by replacing free
shown that many of these restrictions can be lifted. Thus thgeodesics by such curves. A free geodesic is always a null
geometric phase can be defined in nonadialj&ficnoncyc- phase curve; however, the latter is much more general.
lic and even nonunitary evolutig]. Generalization to the This paper is arranged as follows. Section Il recalls the
non-Abelian case has also been achieMgdFinally the ki-  basic features of the kinematic approach to the geometric
nematic approachi6] demonstrated that even the Schro phase; sets up free geodesics in ray and Hilbert spaces;
dinger equation and a Hamiltonian operator are not needeshows that the geometric phase for any free geodesic van-
for defining the geometric phase. The intimate relationshigshes; introduces the Bargmann invariants; and describes
between geometric phase and Hamilton’s theory of t{ifihis  their connection to geometric phases for ray space polygons
has also been brought oj&]. bounded by free geodesics. In Sec. Il it is argued that it
An important consequence of the kinematic approach hashould be possible to generalize this connection. This moti-
been to show clearly the close connection between geometricates the definition and complete characterization of null
phases, and a family of quantum-mechanical invariants introphase curves at the Hilbert space level, the previous free
duced by Bargmanfh9] while giving a new proof of the geodesics being a very specific case. It is then shown that
Wigner [10] unitary-antiunitary theorem. This connection such curves allow us to generalize the previously stated con-
depends in an essential way upon the concept of free geodaection to the broadest possible extent. Section IV defines
sics in quantum mechanical ray and Hilbert spaces, and thiae concept of constrained geodesics in ray and Hilbert
vanishing of geometric phases for these geodesics. spaces, the motivation being that in some situations such
The purpose of this paper is to generalize this importanturves may in fact be null phase curves. The idea is ex-
link between Bargmann invariants and geometric phases twemely simple, namely, we limit ourselves to some chosen
the broadest possible extent by going beyond the use of fresubmanifolds in ray(and Hilber} space, and determine
geodesics. The key is to characterize in a complete way thosgirves of minimum length lying within these submanifolds.
ray space curves with the property that the geometric phasection V examines several interesting examples to illustrate
vanishes for any connected stretch of any one of them. Wehese ideas: a submanifold arising out of a linear subspace of
Hilbert space; coherent states for one degree of freedom;
centered Gaussian pure states for one degree of freedom; and

*Electronic address: eqab@center.mutah.edu.jo an interesting submanifold in the space of two-mode coher-
TElectronic address: arvind@physics.iisc.ernet.in ent states. It turns out that in the first case constrained geo-
*Electronic address: nmukunda@cts.iisc.ernet.in desics are just free geodesics, while in the remaining cases
$Electronic address: simon@imsc.ernet.in they are very different. This shows that the generalized con-
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nection between Bargmann invariants and geometric phases #(S)= b, COSS+ ¢, SiNS,
presented in this paper is just what is needed to be physically (2.6

interesting and appropriate. In Sec. VI we present a brief (1, 91)=(d2,2)=1, (¢p1,¢$,)=0.

discussion of these ideas in the differential geometric frame- ] ]

work natural to geometric phases, and also develop a diredthus we have here a plane two-dimensional curve deter-
ray space description of null phase curves. Section VIl conMined by a pair of orthonormal vectors i, an arc of a

tains concluding remarks.

Il. CONNECTION BASED ON FREE GEODESICS

circle. It may be helpful to make the following comment
concerning free geodesics. Given any two “nonorthogonal”
points p;,poeR such that Trp,p,)#0, we can always
choose unit vectorg , ¢, € H projecting ontg,,p, respec-

Let H be the Hilbert space of states of some quantuntively, such that the inner product)(,,) is real positive.

system,R the associated ray space, and{— R the corre-
sponding projection. We shall be dealing wisufficiently)
smooth parametrized curv€f unit vectors inH, and their
imagesC in R. A curve( is described as follows:

C={y(s)eH| |p(s)|=1 s;=s<s,}CH. (2.1
Its imageC is a curve of pure state density matrices:
7[C]=CCR,

C={p(s)=(s) ()" s;=s<s,}. (2.2

Any C in 'H projecting onto a giverC in R is a lift of the
latter. In particular, we have a horizontal 1" if the vec-
tors " (s) along it are such that

d
yM(s), ——yM(s) | =0. 2.3
ds
For any curveCC R, a geometric phasgg[ C] is defined.
Its calculation is facilitated by going to any liff, calculating
the total and dynamical phases forand taking the differ-
ence

7[C]=C:
¢4l C1= @10l C1— @ayd C1,
(2.4
erof Cl=arg(h(s1), ¥(s,)),

Sy d
@ayd C]=1Im L dS( w(s),d—sw(s)).

In particular, ifC is horizontalgyy,{ C] vanishes, anegy[C]

iS just @yl CJ.
Now we define free geodesics Td andH. GivenCin R

and any liftC in H, the length of the former can be defined as

the following nondegenerate functional:

Sy 2
vor o442 25
S1

2] 1/2

ds ds
(2.9

It is easy to check that the integrand here is independent of
the choice of [iftC; it leads to the well known Fubini-Study

metric onR [11,12. Free geodesics iR are thoseC'’s for

which L[C] is a minimum for given end points. And by only the choice of then verticesp;,p5, ..

Then the free geodesi@.6) will connect ¢, and ¢, if we
take 1=y and ¢o=[ = Y1 (1, 12) {1 = (b1, b)) 212

It is now clear that ¢(0)=¢,, and (s)=¢, for s
=cos 1 (y1,4,) e(0,7/12). It is clear that the curve i
given by Eq.(2.6) is horizontal and for any two points on it
with |s;—s,| < 7/2, the inner producty(s,),¥(s,)) is real
positive, soy(s;) and ¢(s,) are in phase in the Pancharat-
nam sens¢l3]. From these properties of free geodesics, the
result[6]

(2.7)

follows. This can be exploited to connect geometric phases
to Bargmann invariants.

Let 1,95, ...,y be anyn unit vectors in, no two
consecutive ones being orthogonal, andolgtp,, . . . .o, be
their images inR. Then the corresponding-vertex Barg-
mann invariant is defined as

An(1, 2, o) = (1, 02) (2, 03) o (n s ih1)
(2.8

¢yl free geodesic inNR]=0

=Tr(pipz2 - - pn)-

Now we drawn free geodesics ifk connectingo; to p,, p»

to ps, ... ,pn t0 py. Thus we obtain an-sided polygon irR
bounded by free geodesics, and we can compute the corre-
sponding geometric phase. Repeatedly exploiting )

we obtain the basic resul6]:

n—vertex polygon inR connectingp; to po,
9 p, t0 ps,....p, t0 p; by free geodesics

=—argAn (1,42, - - - W),

pi=iwl . j=12,...n.

We mention in passing that this result is of considerable
conceptual as well as practical valLid].

In connection with the above result, the following re-
marks may be made. As is clear from ER.8), the phases of
the individual vectorsj, -, - -, i, can be freely altered.
We need only assume that successive pairs of unit vectors
are not mutually orthogonal; then the Bargmann invariant is
nonzero and has a well defined phase.

(2.9

IIl. GENERALIZED CONNECTION

The definition(2.8) of the Bargmann invariant requires
.,PnER,; con-

definition a free geodesic iH is any lift of a free geodesic in  secutive ones need not be connected in any way to form a

R. It can be showni6] that any free geodesic iR can be

closed figure. This suggests that the connecti@®) be-

lifted to H, and the parametrization chosen so that it can beween these invariants and geometric phases may apply more

described as follows:

generally, not only in the case where we conngcto p,,p»
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to ps, ...,p, 10 p; by free geodesics. We now show that We know that ifC is a free geodesic, this property does
this is indeed so. follow, but there may béindeed there ajemany other pos-
We need to characterize the most genésmlooth curves  sibilities. We can develop a simple necessary and sufficient
CCR having the property condition onC such that Eq(3.1) holds.
Given the curveCC R, let C(" be a horizontal lift and’
@glany connected portion oC]=0. (3.)  ageneral lift ofC in H. We have

C={p(s)|p(8)"=p(5)=0, p(s)®=p(s),  Tr p(s)=1, s;<s<s,},

=1 y(s) e H|m(yM(s)=p(s), w(“)(s),disw‘“)(s)) :O} :

C={y(s) e H|y(s) =€ “Oy(s)}. (3.2
Here «(s) is some(smoothly varying phase angle. For any two points @with parameter valuesands’>s we have
¢glp(s) to p(s') along Cl= g " (s) to yM(s') along CM]=argy"(s),yM(s"))
=arge " “Oy(s),e " *Cy(s))=argy(s), y(s") + a(s) — a(s'). 3.3

From this result we see that the necessary and sufficient conditi@t@secure the proper{.1) can be expressed in several
equivalent ways, using either an arbitrary (fof C or a horizontal liftC(M:

pglany connected portion o€]=0 < arg(y(s),¥(s’))=a(s')—a(s), anys’ ands

2

arg(y(s),(s"))=0

ds' ds
< arg((s),¥(s"))=separable irs’ ands
= (pM(s),y " (s"))=real positive, anys’ ands

& any two points ofZ(" are in phase. (3.4

Here, separability is to be understood in the additive, and noThe imageC= #[(] is obviously a null phase curve iR,
in the multiplicative, sense. It is important to recognize thatsince Eq.(3.4) is obeyed witha(s)=0; therefore being a
these characterizations are reparametrization invariant. Anjft of C is also a null phase curve iH. On the other hand,
curveCC R obeying(3.4) will be called a “null phase curve for a horizontal curve "W CH, only “nearby points” are in
in R,” and any lift C of such aC will be called a “null phase phase:
curve inH.” Free geodesics are null phase curves, but the
opposite is not necessarily true.

It may be helpful to make some additional remarks at this
point to clarify the ideas involved. If a curveC M is such cW={yM(s)}=horizontal
that any two points on itnot too far apaitare in phase, then

it is definitely horizontal: d
= | ¥"(s), ¥ "(s) | =0,

C={y(s)}: (Y(s),y(s"))=real positive
= ("(s), M (s+ 65))=1+0(5s)?,

- (w<s>,dﬁ(s')> - real = argy(s), YN+ 35)=0(6)%. (3.6
S/

dy(s) _ h .

= | W(s). 55| =0 However, two general points o6 may well not be in

phase, as afg(s),#(s')) could be nonzero. Hena&™" and
its imagew[C™M] may not be null phase curves. FofC™]
= C horizontal. (3.5  to be a null phase curve, in addition to being horizortal
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local property, C(" must possess the global property that forimagesp;,p», . . . .on€ R, draw any null phase curves join-
generals ands’ the inner producty(M(s),#"(s")) is real  ing consecutive pairs of poings, to p,,p, t0 p3, . . . ,py tO
positive. This is what is captured in conditio(&4). p1. (This can certainly be done since in any event free geo-

We can now generalize the res(®9) and strengthen it desics are availableThen, by exactly the same arguments
as follows. Givenn unit vectorsiq, i, ... ,hoe H with  that lead to the connectiaf2.9) we obtain

n—sided figure inR with vertices p1,p,, ... .,pn

9 and bounded by null phase curves = a0 ). 3.9

It must be clear that this is the broadest generalization of the p= 7~ M ]={y(&; ) e H|w[ ¢(&,a)1=p(€), ¥(&a)
connection(2.9) that one can obtain. We see that we can ,

replace each free geodesic belonging to a polygoR iby =e'“Y(§0)}. 4.2
any null phase curve, and the geometric phase remains the

same, since the right-hand side of E8.7) depends on the (Of course each(&; ) is a unit vector, andr and ¢ taken
vertices alone. together are local coordinates fdr(.) So in the real sense

dimM=n+1, and to avoid trivialities we must have 1
+n/2< complex dimension of+.
IV. CONSTRAINED GEODESICS AS NULL PHASE Now we consider a parametrized cur@MCR, ob-
CURVES tained by making the real variablest” into functions of a

o real parametes:
We have seen that every free geodesic is a null phase P

curve, but the converse is generally not true. Nevertheless, C={p(&(s)),51<5<5S,}CM. 4.3
the former fact inspires the following question: Can we alter

length functionalL[C] of Eq. (2.9, in a natural way to ob- angle a(s) as a function ofs must be made, and then we
tain other kinds of geodesics, and will they turn out to be nullgye

phase curves as well?

The generalization we explore is the following: instead of C={W(s)=y(£&(s);a(s))}CM,
dealing with curvegof unit vectorg in the complete Hilbert (4.4)
and ray space${ and R, we restrict ourselves to some x[C]=C.

(smooth submanifoldM CR and consider only curve€
lying in M and connecting pairs of points . For such  Using the definition(2.5 the lengthL[C] can be seen to
curves we minimizeL[ C] with respect to variations o€  involve only the partial derivatives af(&; «) with respect to
which stay withinM. The resulting curves will naturally be the ¢*, the dependence am being trivial and not contribut-
called “constrained geodesics,” and the question is, do coning at all. Therefore, we define
strained geodesics in some cases turn out to be null phase
curves? J

We emphasize that our question is not whether every null Uy &a)=—i(&a), p=12,...n;
phase curve is a constrained geodesic lying in a suitably JIg"
chosen submanifoldM CR but, rather, whether the latter . (4.9
curves sometimes have the former property. The physically — Un(&a)=u,(&a)— (& a) (Y€ a),u, (8 a)).
important examples presented in the next section show that o . o
our question is indeed interesting. In this section we set uplormalization ofy(&;a) to unity for all £ and « implies
the general framework to handle constrained geodesics in ray
space. Re(l[f(f;a),uﬂ(f;a'))zo. (4.6)

Given’H andR with dimH=dimR+1 in the real sense,
we consider a submanifol CR of n (rea) dimensions
consisting of gsufficiently smoothfamily of unit rays, with <
(local) real independent and essential coordinatés L[C]zf zdS\/\|\if(s)\|2—|(‘P(s),\if(s))|2
=(&M),pn=12,...n: st

Now L[ C] can be expressed as follows:

S2 T
M={p(¢) e R|ée R"}CR. (4.1) :lesvgw(é)é"éﬂ
(4.7)
(We do not indicate explicitly the domain B" over which 9§ =Re(U, (& a),U, (& a)),

& may vary) The inverse image df1 in H will bring in an
extra phase angle, and is denoted by: EH=EX(s).
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The parameter dependenceséoénd « are as in Eq(4.4). V. APPLICATIONS
From the essentiality of* as coordinates foM, and the
positivity of the metric o+, one easily obtains the follow-
ing results: thex n matrix{(u, (& a),u, (& a))} is Hermit-
ian positive definite and independent @f and only its real

We look at four examples to illustrate the use of con-
strained geodesics in the geometric phase context, and to
show the distinction in general between them and null phase

o . S 2 curves.
part[g,.(£)], which is symmetric positive definite, enters
into L[ C].
To obtain the differential equations for constrained geo- A. Subspaces oft
desics, we minimizeL[C] with respect to variations ilC Let Hy be a linear subspace @i (as a complex vector

that stay withinM. This amounts to minimizing[C] in the  space, and denote by\IC H,, the subset of unit vectors in
final form given in Eq.(4.7), by making independent varia- H,. By projection, we obtain the submanifoldM
tions in then real functionsé#(s); the result is well known =a[ M]CR, with the real dimension ofM equal to
from Riemannian geometry. After making a suitable choice2x{(complex dimension ofHy)—1}. In this case, con-
of the parametes (affine parametrization the differential  strained geodesics iM happen to be free geodesics. Given

equations for constrained geodesics become any two(nonorthogonalin-phase unit vectors iM, say i,
) ) . andy,, the free geodesic connecting them, namely, from Eq.
E4(s)+ T ,\[£(9)]€"(5)€N(9)=0, (2.6) the curveC consisting of the vectors

r# V)\(g):%gﬂp(g)[gpv,)\(g)+gp}\,v(§)_gv)\,p(g)]l S): CcoSS+
v -1 (48) lﬂ( wl \ 1- ( l)bl ’ ¢2)2
[9*"(&)]=[9,.(5)]

passes entirely through points #fl. Hence its imager|[C]
99,,(£) =C lies entirely withinM and, being the free geodesic con-
a—.?' nectingr (1) to m(¥,), it must be the constrained geodesic

as well. In this case, therefore, we do not get anything new.

Conversely, we see that to have a situation where con-

strained geodesics are different from free ones, the submani-
fold M C'R mustnotarise from a subspace &f in the above
manner. We now look at two such cases, of obvious physical
importance, in which true generalizations of the original
Bargmann invariant-geometric phase connection appear.

(o= (b1, 2) 1) sins, 5.0

gpv,)\(g) =

Here thel’s are the familiar symmetric Christoffel symbols
determined by the “metric” tensog,,,(§). Change in scale
and shift of origin are the only remaining freedoms in
choices for parametes: It is a consequence of the differen-
tial equations above that

9,,[£(s)]1€4(s)€"(s) =const. (4.9

A general solution to E(4.8) is uniquely determined by we consider the family of coherent states for a single

choices of initial valuest#(0),£#(0). Theresulting£(s)  degree of freedom, described by Hermitian operaippsor
determine some constrained geodeSiCc MCR, and for the non-Hermitian combinatiorssa’:

any (smooth choice ofa(s) we get a liftCC MCH, which

B. Single mode coherent states

by definition is a constrained geodesictifi The meaning of 1 1 . .
the “conservation law”(4.9) in terms of Hilbert space vec- a=—=(q+ip), a'=—=(q—ip),
tors is interesting. In terms of the derivative ¥f(s) with V2 V2
respect tcs, and its component orthogonal ¥(s), o . (5.2
. [9.p]=i, [a,a"]=1.
W(s)= d_s¢(5(s)?“(5)): gh(s)u lé(s);als)] A general normalized coherent state is labeled with a com-
_ plex numberz and is generated by applying a unitary phase
+i a(s)¥(s), (4.10 space displacement operator to tReck) vacuum statg0):
W (s)=W(s)— W ()(¥(s),¥(s))=E*(S)u,[ £(S);a(9)], |2)=exp(zal — 2¢4) |o>:exp( _ %Z*zﬂ;; 0),
we have (5.3
alz)=12|z).

9,.,L £(5)1€#(5) £ (s) = const || W+ (s)| = const.

(41D  To conform to the notations of the preceding section, we
introduce real parameters, &5, include a phase angle,
and express the above states in termg @hdp as follows
(for ease in writing we usé€; , rather thang'?):

We can then, if we wish, adjust the scale 0§0 thatWw*
becomes a unit vector for &dl

Having set up the basic formalism to determine con-
strained geodesics, in the next section we look at some 1
physically motivated examples to see whether they are some- 2= —(&+1 &), & 6N
times null phase curves as well. J2 '
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Y& a)=€"z)=exdia+i(£&0q—£p)]|0)

=exr1(ia—|§§1§z expli £,0)exp(—i£;p)|0)
= ex;{ i a+|§§1§2) exp(—i &1p)expli £,0)]0).
(5.4

(Note that, as in Eq4.2), ¢(&; ) is a vector in{ param-
etrized by ¢ and «, not a wave function. These various
equivalent forms facilitate further calculations.

The expectation values of andp in these states are

(W& @), Q&)= &1,
A (5.5
(P(&a),pP(Ea)) =&,

Now we compute the vectons,(&;«) and their projec-
tionsuy, (&; @) orthogonal toy(; ), as defined in Eq4.5):

~ 1
Ui =d1¢p= —i(p— 552) U,

~ 1
U2:32¢:i<q_§§1)¢§ (5.6

uy=—i(p— &), uz=i(q—&)y.

Here we used Eq5.5), and, for simplicity, omitted the ar-
gumentst, a in 4,u,, ,uy, . The inner products among the,

involve the fluctuations i andp and the cross term. After
easy calculations we find

(U1 ,up) = (4, (p— &)%) =(Ap)?=1/2,
(ui,uz)=— (W (p—E)Q—ENY)=il2,  (5.7)

(U3 ,Uz)=(,(q— &1)2P)=(AQ)2=1/2.

Therefore, the induced metric tensor in the— ¢, plane,
defined in Eq.(4.7), is

1

namely, it is the ordinary Euclidean metric @R%. Con-

strained geodesics in this case are just determined by straight

lines in the¢ plane, since all'’s vanish:

1 .
2(s)=29+178, Zo,ﬁﬁ(%,ﬁ‘ i Po):

(5.9
£1(s)=do+ 1S, &2(S)=pot+pis.

At the Hilbert space level, a constrained geodesic
Ceonstr.geo.CAN be taken to be a curve within the family of

coherent states

(5.10

Cconstr.geo.: {\If(s) = |ZO + le>}-
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[Here we have omitted as-dependent phase(s).] Each
vector\W(s) along this curve is @pure coherent state, and
cannot be written as a linear combination of two fixed states
as in Eqg.(2.6); so it is immediately clear that this is not a
free geodesic at all.

Now we examine whether this constrained geodesic is a
null phase curve. We find, using the criterih4):

arg V¥ (s),¥(s'))=argzo+2z:5|zp+2;8')
=ard exp{(z§ + 23 s)(zo+215')}]
=ard exp(z5 2,8’ +2pZ7 S)]

(5.11

This is a separable function ef ands, so we do have a null
phase curve. We can go from the ab@{gnsr geo 0 a hori-
zontal curve by adding a phase:

=(s'—s)Imzjz,.

Cl) rge= 1P (S)=exp(—isImz5z,) W (s)},
(5.12

and then we find thaany two points on this curve are in
phase, as expected.

The generalized connectiof8.7) in this example now
states: if|z,),|z,), . .. ,|z,) are anyn pure coherent states
given by choosing points in the complex plane, and we join
these points successively by straight lines in the complex
plane so that all along in Hilbert space we deal with indi-
vidual coherent states and never with superpositions of them,
we have

n-sided plane polygon with vertices
®9 at the coherent states,; ,z,, .. .

=—argAn(|z1),122), - - - [z0)). (5.13

The casen=3 leads to the area formula for the geometric
phase for a triangle in the plane, a very familiar re$wf.
From our point of view, the present example is a significant
generalization of the original connectid®.9).

Going further, it is easy to convince oneself that in this
example the most general null phase curve arises in the
above manner; in other words, a given one-parameter family
of coherent state§|z(s))} obeys the separability condition
(3.4 if and only if Imz(s) is a linear inhomogeneous expres-
sion in Rez(s), so thatz(s) describes a straight line in the
complex plane as varies.

Zn

C. Centered Gaussian pure states

This example again deals with one canonical pgp. It
is now more convenient to work with wave functions in the
Schralinger representation, and not with abstract ket vectors.
The submanifold MCH consists of normalized Gaussian
wave functions parametrized by two real variabdesé, and
a phase angle defined as follows:

E\V [ .
¢(§§GZQ):(¥) eXF’['“‘*’ §(§1+| £)9°],
(5.19
§1e(—2,%), £e(02), ae[0,2m).
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Normalizability requires thag, be strictly positive, so the
combinationé, +i&, is a variable point in the upper half
complex plane. The wave functioms,(§;«;q) are

5 .
Uy (& a;q)= &—&¢(§;a;q)= 'qu (& a;0q),
(5.15

0 e, _1( 2 1) .
(‘faa,Q)—E _q +2_§2 lﬂ(f:“aQ)-

Us(&a;9)= —

2(&a5q) 0é,

It is clear that to obtain the componemt§ of u, orthogonal

to ¢, and later to compute the inner productﬁi(uﬁ), we

need the expectation values qf and g* in the statey.
These ardomitting for simplicity the arguments af):

g 12 r o 1
(w,q2¢)=(;2) J_wdqqze‘@“z:g.

2

(5.16

o é)l/Z s e Z_i
(.9 ¢>—(W fmdqq“e Sy
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g"(H=g9 =&, 9§ =0. (5.20
We easily find that the nonvanishiigs are
1
I &) =T? ()= —T? 14(£)=— 5 (5.2

Using these in Eq(4.8) we find the following ordinary dif-
ferential equations to determine geodesics:

. 2. .

51_5515220, (5.223
. 1., .,

§2+§_2(§1_§2):0- (5.22h

We can exploit the fact that these differential equations
lead to the consequence

12,22
— (€11 &) =const,
2

(5.23

Now the necessary inner products and projections are easifje value of the constant depending on the particular geode-

found:

(ljlaul):4_l_§21 (lr/l!UZ):O;

1 1 1
E)‘”i( z‘z—gz)“’;

1 1\2 1
(ui,ui)IZ[l/f,( 2—2—§2> 1428_435; (5.17)

(ug ul)=i—{1/f<q2— ! >2¢}=i—'
pTEamtt 204 8¢5

_ 1
8 &

b,

1 2
q2_2 §2) v

From these results we obtain the induced metric dVer

1
(u;,u%):(UZ,Uz):Z

sic. After elementary analysis, we find that there are two
families of geodesics:

Type I: & =const, &,=aebs,
a>0,seNR; (5.243
Type II: ¢&,=c+Rcosf(s), &=Rsinf(s),
f(s)=2tan ! (ae™),
ceM, R>0, a>0, b>0, sei. (5.24h

These are both in affinely parametrized form. In Type Il it is
simpler to pass to a nonaffine angle type parameter
€ (0,7), and replace Eq5.24h with

Type II: ¢&,=c+Rcoss, &=Rsins,
(5.25

ceR, R>0, 0<s<r.

Type | geodesics are straight semi-infinite lines parallel to

=a[ M]CR, described in the upper half complex plane bythe &, axis. Type Il geodesics are semicircles centered on the

the metric tensor

1
9uu( &) =ReU, (& a),u, (& a))=8—érz Our- (518
2

&, axis and lying above this axis.

In each case we can now ask whether a constrained geo-
desic inM is a null phase curve. As in the previous example
of coherent states, here too we emphasize that we are con-
cerned with curves within the manifold of centered normal-

This is the well known form of the Lobachevskian metric in iZeéd Gaussian wave functions, and at no stage with linear

this model of Lobachevsky spaE6]. Dropping the numeri-

combinations of such wave functions. We look at the two

cal factor? for simplicity, the line element in the upper half types of constrained geodesics in turn and find these results

plane is given by

d52=§(d§§+d§§), (5.19

2

and we must find the corresponding geodesics.
First we compute the nonvanishidgs. The inverse of
[9,..,(£)] has components

(after simple reparametrizations
Type I W(s)=y[&{1=a, £,=Ds; a(s)],
arg¥(s),¥(s'))=0;

(5.263

Type IV (s)=y[ & =c+Rcoss, £&,=Rsins; a(s)],

arg¥(s),¥(s'))=3(s—s'). (5.26b
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[In both cases the choice of phase ang(s) is irrelevant] z,=c0s¥, Zzzehﬁsing' O<f<m, O<¢p<2m.

So in both cases the criteridB.4) is obeyed, and both types (5.30
of curves inM arising from the two types of geodesics in the

upper half¢ plane are simultaneously constrained geodesicSherefore, the submanifold{CH is parametrized by, ¢

and null phase curves. and a phaser and we write
The statement of the generalized connect®i) is clear,

and for illustration we consider the case of just three vertices. \1={y( 6, ¢; )
Let A, A", and A” be any three points in the upper half

complex plane, and for any choices of phasesonsider the =e'*|cosh,e'?sin )|0= b= ,0=< ¢, a<27}CH,
three normalized centered Gaussian statg$A;a), (5.31)

Y(A"; "), andy(A”;a"). JoinAto A’, A’ to A", andA” to

A by a geodesic of Type I or Type Il as appropriate in ach,pere the ket on the right is a particular two-mode coherent
case. This can always be done, and we obtain a hyperbolig .o \vithz z=1:
triangle. In M we obtain a triangle with verticep(A)

=a[ y(A;a)] etc., and whose sides are constrained geode- ) ~t R
sics, and we can state (0, ;o) =expia+a;cosf+aze'? sing—1/2)|0).

(5.32

triangle in M with vertices

g p(A),p(A"),p(A")
and sides as constrained geodesics

=—argAg[(Asa), (A" a’), (A" a")].

Omitting the arguments, ¢, « for simplicity, we easily find

u=2 =(—singa]+e'? cospal)
FTid ! 2

(5.27 p
=—y=ie’singal y; 5.33
An application of this result has been used elsewh&rgto Yo d¢ y=ievsinbaz . ( 2
show that the classical Gouy phalE8] in wave optics is
related to a Bargmann invariant and hence is a geometric ($,ug) =0, (P,uy)=isir?6; (5.33h

phase.

L_ L_i i ipAT _ i
D. Subset of two-mode coherent states Uy=Uy, Us=ising(ea;=sin)y. (5339
In the preceding two examples, we found that while con-Repeatedly exploiting the eigenvector relati@i29 and its

strained geodesics differed from free geodesics, they werggjoint, we compute the inner products among the vectors in
nevertheless null phase curves and so led to important in=q_(5.33¢:

stances of Eq(3.7). This is, however, fortuitous; the really
important objects for our purposes are the null phase curves,, 1 1\ _ Lo Ly ; Lol i
ang ina givén situation c%nsptrained geodesicspmay well not (Yo Us) =1, (Ug,ug) =i cosgsing, (u¢,u¢)—3|n(250é4)
be such curves. In our fourth and final example, dealing with '
a subset of states for a two-mode system, we will find thatl’akin th | parts h that th ic induced
this is exactly what happens. However, we will be able to, " g the reaz parts here, we see that the metric Induced on
completely determine all null phase curves directly, so tha =alM]~S"in R para_metr!zed by .anglee and ¢, is
the generalizatiot3.7) can be meaningfully stated. Just the usual rotationally invariant one:

For a two-mode system with creation and annihilation op-

eratorsa;” ,a; obeying the standard commutation relations Goo(6.4)=1, Gpy=0, Gy(6.¢)=siM 0. (5.39

[é, ’é_T]: S, [é, ,ék]:[éfr ,a’r]:o, i k=12, The corres_ponding constrained geodesics are therefore sim-
e ) 1k (529  Ply great-circle arcs. The question is whether they lead to
' null phase curves iM and M.
the general coherent state is labeled with two independent A general parametrized great-circle arc@is traced out
complex numbers arranged as a column vezto(z;,z,)": by an s-dependent unit vecton(s) with polar angles

o 0(s), 4(s):
|2)=exp( — $z'z+z,al +2,a})|0),
(5.29 n(s)=acoss+ b sins
aj|z>=ZJ'|Z>’ =12 =[sind(s) cos¢(s), siné(s)sing(s), coso(s)],

Within this family of all normalized coherent states, we now o A

define a submanifoldof real dimension three including an abeS? a-b=0. (5.39
overall phasg an “S? worth of states,” by taking, ¢ to be

spherical polar angles on a sph&@®and settingz; andz,  The corresponding constrained geodesig, . ged— M
equal to the following: (omitting the phasex) is the curve of coherent states



PRA 60 BARGMANN INVARIANTS AND GEOMETRIC PHASES: ... 3405

W (s)=]z,(8),25(8)), able to find all of the latter, and any two points. can be
connected by some null phase curve, we have succeeded in
Z,(s)=co0sf(s)=az coss+ bz sins, (5.37 providing a nontrivial two-mode example of the generalized

_ connection(3.7), without using constrained geodesics.
z,(s)=¢€' ?®sing(s)=(a,+ia,) coss+ (b, +ib,)sins.
el VI. RAY SPACE AND DIFFERENTIAL GEOMETRIC
To see if this is a null phase curve we compute the phase of FORMULATIONS
(V(s),¥(s")):
Very soon after the discovery of the geometric phase, the
argW(s), ¥ (s'))=argz1(s),z5(9)[z1(s"),2x(s")) differential geometric expressions of its structure and signifi-
_ , . , cance were developefl9,3-5,11, by relating it to an-
= argexp(zy(8)zy(s") + 2(8)* 2(s"))} holonomy and curvature in a suitable Hermitian line bundle

=arglexp([(a;—ia,)coss in quantum mechanical ray space. In this section we provide
) _ _ , a brief discussion of the properties and uses of the new con-
+(by—iby)sins][(a;+iay)coss cept of null phase curves at the ray space level and also in

. _— the differential geometric language. Only necessary back-

+(by+iby)sins'])} ground material will be recalled, and derivations will be

=(5A6)33in(s’—s). (5.39 omitted. Since they may be useful for practical calculations,
where possible local coordinate expressions of important dif-

Unless it vanishes, this is not a separable functios’cdind  ferential geometric objects will be given.
s. We conclude that the geodesi6.36) on S? leads to a From the preceding sections it is evident that for our pur-
constrained geodesitonsy ged M, Which is, in general, not POS€S it i; imppr.tant to deal with open null phase curves in
a null phase curve. The only exception is Whénf))3=0, general, since '.t IS through them tha.t the conn(_ec(B]ﬁf) of .
that is, the geodesit5.36 on S? lies on a meridian of lon- the'B'.a'lrgmann.mvanants to' geometric plhas.es IS made. Their
) S-S . definition (3.4) in terms of Hilbert space lifts is quite simple.
gitude, witha,\b being a vector in the 1-2 plane. Nevertheless, it is of interest to develop a direct ray space
On the other hand, in this example it is quite €asy 1Oy myation; this can be done essentially via the Bargmann
explicitly find all null phase curves oM (and M)! Let I' v ariants themselves. From their definiticd8), it is clear
={n(s)}CS? be given, and let us consider the induced curvethat anyA , is real nonnegative, whilé ,'s for n=3 are, in

Cr in M: general, complex. On the other hand, it is also known that
. any A, for n=4 can be written as the ratio of a suitable
Cr={¥r(s)=|ns(s),n1(s)+iny(s)) product of A5’s and a suitable product af ,'s:
_ _1 ot ; ot
=exp(—3+ng(s) a;+(ny(s)+iny(s))ay)|0)}. Ay s )
(5.39) n n
We find that :j];[3 Ag(wllelllllj)/ ]];l;1 A2(17//].117//]'71)' (61)

arg W (s), ¥r(s")=[n(s) AN(s') 5. (540 In this sense the three-vertex Bargmann invariagtis the
o ) . , basic or primitive one as far as phases are concelffdz
This will be a separable function of andsif and only if, -« cyclic invariance ofs (4y, iy, - - i) is Not mani-
for some constantg andy, we have fest in Eq.(6.1), but it is not lost eithel. Guided by these
_ facts, we give now a direct ray space characterization of null
N2(S)= ANy (s)+y. (5.43 phase curves.

_ - h
The geometrical interpretation of this is that the projection of 'f(h)c—{P_(S)}CR_ is a null phase curve and®

T on the 1-2 plane must be a straight line. In that capds ~ — 1% (S)} is a horizontal Hilbert space lift obeying Eg.
indeed a null phase curve i, as we have (3.4), we see immediately that for any choices of parameter

valuess,s’,s’,
argWr(s),¥r(s))=vy[ni(s)—ny(s")], (5.42

Agly(9), M (s"), 4 (") ]=Tr{p(s)p(s")p(s")}

which is separable is’ ands. One can easily see that each _ )
suchT is a latitude circle arc or$? corresponding tdi.e., =real and=0; 6.2
perpendicular tobsome axis lying in the 1-2 plane, and given and so also for any parameter values, ,s,, . . . S, from
any two points or§?, we can always connect them by such 3Eq. (6.1) e o
I". In other words, sucl are intersections d8? with planes R
perpendicular to the 1-2 plane. When such a latitude circle A [pM(sy), ... M(s)]1=Trp(sy) . . .p(s)}
arc is also a great-circle arc, we recover the result of the " Yo " ! "
previous paragraph. =real and=0. (6.3

The upshot of this example is that here we have a non-
trivial illustration of the difference between constrained geo-As a consequence, by differentiation with respect to
desics and null phase curves. However, since we have bees, . .. ,s, we have
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dp(sy) dp(Sn)] _ real Bn(41.42,- - ) =argAn(¢, 42, - . . 1hn)

Trkp(sl) ds, ds (6.4

=j§383(¢1.¢,~_1,¢j>. 6.9

Now, it is known that the geometric phase for any connected

portion of anyC can be expressed directly in terms g(fs)

as follows, whether or not is a null phase curve: If we connectp, back top, via C, ; to get a closed curve of
n pieces, then we have the specific result

@glp(s1) to p(s,) along C]
’ PglC12UC3U - - - UC_15,UC, 4]

s2 dp(s)
=ar4{Tr p(s1)P expfs ds—g = ¢g[ C12]+ @g[ Caal+ -+ -+ ¢g[ Cn 1
1
o _Bn(wlvlpZ!"'!l/jn)- (61@
SZ ! Sé ! S, !
=ar@{l+n§=:l . d%L dsy_q--- desl Compared to Eq(6.9), we have one extrg, term on the
! ! ! right-hand side, but the Bargmann phase t&nis the same.
dp(s!) dp(s)) We see that the lack of additivity shown in all Egs.
xTr{ p(sy) n.. ! ” (6.5 (6.8,6.9,6.1Dis due to the Bargmann pieces. There is, how-
ds) ds; ever, an exception to this general nonadditivity, which oc-

_ ) ) curs in Eq.(6.8) whenps=p; andC,,UC,3is a closed loop.
whereP is the ordering symbol placing later parameter val-Then we find

ues to the left of earlier ones. If E(6.2) holds onC [and so

as a consequence Ed6.3) and(6.4) as well, we see that at d(C12UCo9) =0, p3=p1:

every stage only real quantities are involved, the geometric

phase in Eq(6.5 vanishes, an€ is a null phase curve. This gl C12U Co1]= gl C1a]+ ¢yl Conl, (6.11

leads to the ray space characterization of null phase curves

we are seeking: i.., @gl C12]= gl C1oUCor]— gl Cogl.

C={p(s)}CR is a null phase curve In the past, this result has been ugddito relatey[ C] for
an operCto ¢,[ CUC’] for a closedCUC’ by choosingC’

&Tr{p(s)p(s')p(s")} to be a free geodesic, for thep[C']=0. Now we can

generalize this process: @ is an open curve fronp, to p,
in R, andC’ is any null phase curve from, back top,, we

Turning now to the specific differential geometric aspects, if'ave the result
is well known that while the dynamical phasg,{C] is an

=real nonnegative, ang,s’,s”. (6.6)

pglopen curveC]=gg[closed loopCUC'].

additive quantity ¢o4[ C] does not have this property. On the (6.12
manifold of unit vectors in Hilbert spack, there is a one- ’
form A such that This is the most general way in which an open curve geo-
metric phase can be reduced to a closed loop geometric
- r[C]ZfA- 6.7) phase. More generally, comparing E46.9,6.10 valid for
v c generally open and for a closed curve, we seeiftthe last

piece G, is a null phase curvewe convert an open curve
However, referring to the projection:’ H— 7R, Ais notthe  geometric phase to a closed loop geometric phase:
pull-back viaz * of any one-form on the space of unit rays,
and e[ C] is notthe integral along of any one-form ok, ®gl C12UCa3U - - UCy 1]
In fact, this lack of additivity can be expressed via the Barg-

mann invariantA 5. If C;, connectsp; to p, in R and C,3 =gl C1UC2U - - - UCh 1qUCH 4] (6.13
connectsp, to p3, thenC,U Cy3 runs fromp, to p3 and At this point it is natural to express a closed loop geomet-
ric phase as a suitable “area integral” of a two-form, both at
¢l C12U Caa]= g Caal + ¢yl Caal = Ba(ih1, b2, ), Hilbert and ray space levels. Whereass not the pull-back
(6.8)  of any one-form orR, we do haval A= 7 * w, wherew is a
Ba(i1,42,3) =argAs(hy, b2, 13). symplectic(closed, nondegeneratavo-form onR. Then, if

o Cis a closed loop i, 9C=0, so thatC=7(C) is a closed
More generally, for arigenerally open curve consisting of loop in R, we have

(n—1) piecesCy,,Cyz,---Cph_1, jOiNiNg p; tO py, py tO
P3, - ,Pn—1 t0 p,, We generalize Eq(6.8) to the follow-

ing: @l Cl= LdA: fsw. (6.14
n-1

where S and S=#(S) are two-dimensional surfaces
e C1aCadl - UC-11= 3, ¢4[C) 1] (5)

andR, respectively, with boundarigsandC :

—Bn(¢1.42,- - ¢n), dS=C, 9S=C. (6.19
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With the help of local coordinates oH andR we get ex-
plicit expressions forA,dA and w. Around any pointpg

eR, and for some chosem,e 7 1(py), we define an
(open neighborhoodNC R by

N={peR[Tr(pop)>0}. (6.16
We can introduce real independent coordinates dveas
follows. Let{¢y,e1,€5, ... &, ...} be an orthonormal ba-
sis for’H. Then points irN can be “labeled” in a one-to-one
manner with vectorste H orthogonal toy, and with norm
less than unity:

1 .
X(BJ)—EZ (Bi—iv) e,
1
Ix(BWIP=5 2 (BF+ ) <1:

(6.17
W(B.Y)=x(B.y)+V1=Ix(B.YI? o,

peNep=y(B,v)¢(B,y)', for some B, y.

Thus the real independenit's and y's, subject to the in-
equality above, are local coordinates fér They can be ex-
tended to get local coordinates fer *(N) CH by including
a phase angle:

pem YN)oy=g(a;B,7)=€YB,y), 0<a<2m.
(6.18

In these local coordinates ovdrand 7~ *(N) we have the
expressions

1
A=da+ E Er (v dB,—Bdy,),
dA=>, dy,/\dg,, (6.19

w=2r dy,/\dg, .

The closure and nondegeneracysdfare manifest, so it is a
symplectic two-form oriR; and the coordinateg, y realize
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The symplectic matrixJ plays a role in this expression for
the metric tensor matrig(»). This matrixg(») is verified

to be real symmetric positive definite, since one eigenvalue
is (1— 275" )1 (eigenvectory), another eigenvalue is (1
—15" ») (eigenvectordy), and the remaining eigenvalues
are all unity. We appreciate that for considerations of geo-
metric phases and null phase curves this kind of local de-
scription is really appropriate, while free geodesics appear
unavoidably complicated.

We also notice that, wheH is finite dimensional and the
real dimension of the space of unit rays is 2, the sym-
plectic two-formw of Eq. (6.19 is invariant under the linear
matrix groupSp(2n,R) acting on the local coordinategs y.

On the other hand, the integrand of the length functional
L[C] in Eg. (6.20 possesses invariance only under
Sp(2n,R)NSO(2n)=U(n), which is just the group of
changes in the choice of the vectées} which together with

o make up an orthonormal basis faf.

Returning now to the discussions in Secs. Ill and 1V, we
can bring in submanifold$1 CR, M==m"1(M)CH, with
local coordinates”,« as indicated in Eqsi4.1) and (4.2).
Leti,: MCH andiy:MCR be the corresponding identi-
fication maps. Straightforward calculations show that the
pull-backs ofA,dA,w in Eq. (6.195 to M andM are locally
given (with mild abuse of notationby

iy A=da+Imp(é a),u,(é a)) dér,

v dA=ig o=ImU,(&a),u, (& a))dE*AdE”
=Imlu,(&§a),u,(&a)]de*/NdE". (6.20)

We see, as is well known, that while the real symmetric part
of the Hermitian matrix{(u,, ,u,)] determines the metric,
Eq. (4.7), the imaginary antisymmetric part of the same ma-
trix is relevant for symplectic structure and geometric phase,
reinforcing the link between the latter twpWhen M =R
and M=™H, the {*’s become the8’s and y’s of Eqs.(6.17),

and we immediately recover the expressiofid9.] For our
present purposes, the following comments are pertinent.
While o is closed and nondegeneratg, » is closed but
may well be degenerate. An extreme case is wiieis an
isotropic submanifoldn R, for theni; @«=0. Such a situa-

the local Darboux or canonical structure for it. On the othertion can easily arise if, for exampléd is described by a
hand, in these “symplectic” coordinates the Fubini-Study family of real Schrdinger wave functions/(¢;q). (A La-

metric is a bit involved. If we combine th@'s and y’s into
a single column vectom=(B81Bs ... y1v¥> ... )", then
the length functionalL[C] of Eqg. (2.5 assumes the follow-
ing local form:

L[CJ=fdng<n>%7,

1 3 1
9(71):1+—2 7;_7] +§J7777TJ,
1—— T
277 Y

(6.20

grangian submanifold iR is a particular case of an isotropic
submanifold when the dimension is maximal, namely, half
the real dimension oR.) One may expect that ¥ is iso-
tropic andCC M, thenC is a null phase curve. However, this
need not always be so, and the situation is as follows. For a
general open curv€, from p; to p, in a general submani-
fold M, if we can find a null phase curv@,; from p, to p;
also lying inM, thenC4,UC,, is a closed loop; ifr(M)
=0, we can find a two-dimensional surfae M having
C,,UC,; as boundary. Then from E¢6.12 we obtain un-
der these circumstances

¢yl C12]= @[ C12U Coy]= JseMiT\rA w. (6.22
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Here, as stated above, we had to choGse to be a null [and assuming alsa;(M)=0], we can extract some very
phase curvelWhenp,=p, andC,, is already a closed loop, interesting consequences for geometric phases, though it
there is no need for ang,,; it can be chosen to be trivial! ~ falls short of the vanishing ogy[ C] for every CCM. We

If, however, M is an isotropic submanifold, i.ei w=0  have the chain of implications

ino=0< fi’,f,,w=0, any two dimensionabC M
s

< @g[C12UCH]=0, anypq,p2,C15,Co1in M

< ¢g[C4o] unchanged under any continuous deformationGab leaving the end pointg, ,p, fixed

(6.23

Thus, within an isotropic submanifold, the geometric phaséroadest one possible. The essential concept is that of null
for a general curve depends on the two end points alonghase curves in Hilbert and ray spaces—the replacement of
When the curve chosen is closed, it can be continuouslfree geodesics by such curves leads to our generalization. We
shrunk to a poinfsince,7;(M)=0] and then its geometric have seen through examples that this wider connection be-

phase vanishes. One can thus say in summary: tween Bargmann invariants and geometric phases is just
what is needed in several physically relevant situations.
MCR,iyw=0, m(M)=0, CCM: Motivated by the fact that free geodesics are always null
) phase curves, we have defined the concept of constrained
@g[C]=0 if 9C=0; (6.24  geodesics and posed the problem of determining when these

may be null phase curves. We have presented two examples
when this is indeed so and one where they are not the same.

The main conclusion is that general open curves in an isoTh'S re-emphasizes the fact that constrained geodesics and

tropic submanifold need not be null phase curves, but geor-'u” phase curves are, in principle, different objects, and in-

metric phases are invariant under continuous changes of the;]‘?ns'f'es the need to find useful characterizations of the

arguments, leaving the end points unchanged. Perhaps this Qrmer which may ensure the latter property for them. This is

not too surprising after all, since the isotropic property is acertam to shed more light on the general questions raised in

two-form condition. this paper, and we plan to return to them in the future.

¢4l C]=function of JC alone, if IC+#0.

VIl. CONCLUDING REMARKS ACKNOWLEDGMENTS

We have shown that the familiar connection between the One of us(E.M.R)) thanks the Third World Academy of
Bargmann invariants and geometric phases in quantum meciences, Trieste, ltaly for their financial support, the
chanics, based on the properties of free geodesics in ray addNCASR, Bangalore, India for support, and the Center for
Hilbert spaces, can be generalized to a very significant exfheoretical Studies, IISc., Bangalore for providing facilities
tent. In fact we have shown that our generalization is theduring the completion of this work.

[1] M. V. Berry, Proc. R. Soc. London, Ser. 292 45 (1984. ing, MA, 1981, Vol. 8. Hamilton's theory of turns has been

[2] Many of the early papers on geometric phase have been re- generalized to the simplest noncompact semisimple group
printed inGeometric Phases in Physjasdited by A. Shapere SU(1,1)~SL(2,R) in R. Simon, N. Mukunda, and E. C. G.
and F. Wilczek(World Scientific, Singapore, 1989and in Sudarshan, Phys. Rev. Le@2, 1331(1989; J. Math. Phys.
Fundamentals of Quantum Optjcedited by G. S. Agarwal, 30, 1000(1989; S. Chaturvedi, V. Srinivasan, R. Simon, and
SPIE Milestone Serie6SPIE, Bellington, 1996 N. Mukunda(unpublishegl

[3] Y. Aharonov and J. Anandan, Phys. Rev. Le#8, 1593 [8] R. Simon and N. Mukunda, J. Phys. A: Math. G&s, 6135
(1987). (1992.

[4] J. Samuel and R. Bhandari, Phys. Rev. L6, 2339(1988. [9] V. Bargmann, J. Math. Phy$, 862 (1964).

[5] F. Wilczek and A. Zee, Phys. Rev. Le§2, 2111(1984). [10] E. P. Wigner,Group Theory(Academic, NY, 1958 J. Sam-

[6] N. Mukunda and R. Simon, Ann. Phys$N.Y.) 228 205 uel, Pramana, J. Phy48, 959 (1997.
(1993, , 228 269(1993. [11] D. Page, Phys. Rev. 86, 3479(1987.

[7] W. R. Hamilton (unpublishegt L. C. Biedenharn and J. D. [12] S. Kobayashi and K. Nomizusoundations of Differential Ge-
Louck, Angular Momentum in Quantum Physics. Encyclopedia ometry(Interscience, NY, 1969 Vol. I, Chap. IX.
of Mathematics and its application®ddison-Wesley, Read- [13] S. Pancharatnam, Proc.-Indian Acad. Sci., Sect44A 247



PRA 60 BARGMANN INVARIANTS AND GEOMETRIC PHASES: ... 3409

(1956; See also, S. Ramaseshan and R. Nityananda, Curr. Sci. 19; G. A. Jones and D. Singerma@pmplex Functions: An

55, 1225(1986; M. V. Berry, J. Mod. Opt.34, 1401(1987. Algebraic and Geometric ViewpoiriCambridge University
[14] G. Khanna, S. Mukhopadhyay, R. Simon, and N. Mukunda, Press, Cambridge, 1987Chap. 5.

Ann. Phys.(N.Y.) 253 55(1997; Arvind, K. S. Mallesh, and [17] R. Simon and N. Mukunda, Phys. Rev. L&, 880(1993.

N. Mukunda, J. Phys. A: Math. GeB0, 2417 (1997). [18] G. Gouy, C. R. Hebd. Seances Acad. 3di0, 125(1890; A.
[15] S. Chaturvedi, M. S. Sriram, and V. Srinivasan, J. Phy20A E. Siegmanlasers(Oxford University Press, Oxford, 1986
L1071 (1987. Chap. 17.

[16] M. Berger,Geometry Il(Springer-Verlag, Berlin, 1987Chap.  [19] B. Simon, Phys. Rev. Letb1, 2167(1983.



