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Bargmann invariants and geometric phases: A generalized connection
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We develop the broadest possible generalization of the well known connection between quantum-
mechanical Bargmann invariants and geometric phases. The key concept is that of null phase curves in
quantum-mechanical ray and Hilbert spaces. Examples of such curves are developed. Our generalization is
shown to be essential for properly understanding geometric phase results in the cases of coherent states and of
Gaussian states. Differential geometric aspects of null phase curves are also briefly explored.
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I. INTRODUCTION

The geometric phase was originally discovered in the c
text of cyclic adiabatic quantum-mechanical evolution, go
erned by the time-dependent Schro¨dinger equation with a
Hermitian Hamiltonian operator@1,2#. Subsequent work ha
shown that many of these restrictions can be lifted. Thus
geometric phase can be defined in nonadiabatic@3#, noncyc-
lic and even nonunitary evolution@4#. Generalization to the
non-Abelian case has also been achieved@5#. Finally the ki-
nematic approach@6# demonstrated that even the Schr¨-
dinger equation and a Hamiltonian operator are not nee
for defining the geometric phase. The intimate relations
between geometric phase and Hamilton’s theory of turns@7#
has also been brought out@8#.

An important consequence of the kinematic approach
been to show clearly the close connection between geom
phases, and a family of quantum-mechanical invariants in
duced by Bargmann@9# while giving a new proof of the
Wigner @10# unitary-antiunitary theorem. This connectio
depends in an essential way upon the concept of free ge
sics in quantum mechanical ray and Hilbert spaces, and
vanishing of geometric phases for these geodesics.

The purpose of this paper is to generalize this import
link between Bargmann invariants and geometric phase
the broadest possible extent by going beyond the use of
geodesics. The key is to characterize in a complete way th
ray space curves with the property that the geometric ph
vanishes for any connected stretch of any one of them.
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show that this property can be translated into an elemen
and elegant statement concerning the inner product of
two Hilbert space vectors along any lift of such a ray spa
curve. We refer to these as ‘‘null phase curves,’’ and
generalization of the familiar statement linking Bargma
invariants and geometric phases is achieved by replacing
geodesics by such curves. A free geodesic is always a
phase curve; however, the latter is much more general.

This paper is arranged as follows. Section II recalls
basic features of the kinematic approach to the geome
phase; sets up free geodesics in ray and Hilbert spa
shows that the geometric phase for any free geodesic
ishes; introduces the Bargmann invariants; and descr
their connection to geometric phases for ray space polyg
bounded by free geodesics. In Sec. III it is argued tha
should be possible to generalize this connection. This m
vates the definition and complete characterization of n
phase curves at the Hilbert space level, the previous
geodesics being a very specific case. It is then shown
such curves allow us to generalize the previously stated c
nection to the broadest possible extent. Section IV defi
the concept of constrained geodesics in ray and Hilb
spaces, the motivation being that in some situations s
curves may in fact be null phase curves. The idea is
tremely simple, namely, we limit ourselves to some chos
submanifolds in ray~and Hilbert! space, and determin
curves of minimum length lying within these submanifold
Section V examines several interesting examples to illust
these ideas: a submanifold arising out of a linear subspac
Hilbert space; coherent states for one degree of freed
centered Gaussian pure states for one degree of freedom
an interesting submanifold in the space of two-mode coh
ent states. It turns out that in the first case constrained g
desics are just free geodesics, while in the remaining ca
they are very different. This shows that the generalized c
3397 ©1999 The American Physical Society
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nection between Bargmann invariants and geometric ph
presented in this paper is just what is needed to be physic
interesting and appropriate. In Sec. VI we present a b
discussion of these ideas in the differential geometric fram
work natural to geometric phases, and also develop a d
ray space description of null phase curves. Section VII c
tains concluding remarks.

II. CONNECTION BASED ON FREE GEODESICS

Let H be the Hilbert space of states of some quant
system,R the associated ray space, andp:H→R the corre-
sponding projection. We shall be dealing with~sufficiently!
smooth parametrized curvesC of unit vectors inH, and their
imagesC in R. A curveC is described as follows:

C5$c~s!PHu ic~s!i51 s1<s<s2%,H. ~2.1!

Its imageC is a curve of pure state density matrices:

p@C#5C,R,

C5$r~s!5c~s!c~s!†u s1<s<s2%. ~2.2!

Any C in H projecting onto a givenC in R is a lift of the
latter. In particular, we have a horizontal liftC (h) if the vec-
tors c (h)(s) along it are such that

S c (h)~s!,
d

ds
c (h)~s! D50. ~2.3!

For any curveC,R, a geometric phasewg@C# is defined.
Its calculation is facilitated by going to any liftC, calculating
the total and dynamical phases forC, and taking the differ-
ence

p@C#5C:

wg@C#5w tot@C#2wdyn@C#,
~2.4!

w tot@C#5arg„c~s1!,c~s2!…,

wdyn@C#5Im E
s1

s2
dsS c~s!,

d

ds
c~s! D .

In particular, ifC is horizontalwdyn@C# vanishes, andwg@C#
is just w tot@C#.

Now we define free geodesics inR andH. GivenC in R
and any liftC in H, the length of the former can be defined
the following nondegenerate functional:

L@C#5E
s1

s2
dsH UU dc~s!

ds UU2

2US c~s!,
dc~s!

ds D U2J 1/2

.

~2.5!

It is easy to check that the integrand here is independen
the choice of liftC; it leads to the well known Fubini-Stud
metric onR @11,12#. Free geodesics inR are thoseC’s for
which L@C# is a minimum for given end points. And b
definition a free geodesic inH is any lift of a free geodesic in
R. It can be shown@6# that any free geodesic inR can be
lifted to H, and the parametrization chosen so that it can
described as follows:
es
lly
f
-
ct
-

of

e

c~s!5f1 coss1f2 sins,
~2.6!

~f1 ,f1!5~f2 ,f2!51, ~f1 ,f2!50.

Thus we have here a plane two-dimensional curve de
mined by a pair of orthonormal vectors inH, an arc of a
circle. It may be helpful to make the following comme
concerning free geodesics. Given any two ‘‘nonorthogona
points r1 ,r2PR such that Tr(r1r2)Þ0, we can always
choose unit vectorsc1 ,c2PH projecting ontor1 ,r2 respec-
tively, such that the inner product (c1 ,c2) is real positive.
Then the free geodesic~2.6! will connect c1 and c2 if we
take f15c1 and f25@c22c1(c1 ,c2)#/$12(c1 ,c2)2%1/2.
It is now clear that c(0)5c1, and c(s)5c2 for s
5cos21 (c1,c2)P(0,p/2). It is clear that the curve inH
given by Eq.~2.6! is horizontal and for any two points on
with us12s2u,p/2, the inner product„c(s1),c(s2)… is real
positive, soc(s1) andc(s2) are in phase in the Panchara
nam sense@13#. From these properties of free geodesics,
result @6#

wg@ free geodesic inR#50 ~2.7!

follows. This can be exploited to connect geometric pha
to Bargmann invariants.

Let c1 ,c2 , . . . ,cn be anyn unit vectors inH, no two
consecutive ones being orthogonal, and letr1 ,r2 , . . . ,rn be
their images inR. Then the correspondingn-vertex Barg-
mann invariant is defined as

Dn~c1 ,c2 , . . . ,cn!5~c1 ,c2!~c2 ,c3! . . . ~cn ,c1!

5Tr ~r1r2 . . . rn!. ~2.8!

Now we drawn free geodesics inR connectingr1 to r2 , r2
to r3 , . . . ,rn to r1. Thus we obtain ann-sided polygon inR
bounded by free geodesics, and we can compute the co
sponding geometric phase. Repeatedly exploiting Eq.~2.7!
we obtain the basic result@6#:

wgFn2vertex polygon inR connectingr1 to r2 ,

r2 to r3 , . . . ,rn to r1 by free geodesics G
52argDn~c1 ,c2 , . . . ,cn!,

r j5c jc j
† , j 51,2, . . . ,n. ~2.9!

We mention in passing that this result is of considera
conceptual as well as practical value@14#.

In connection with the above result, the following r
marks may be made. As is clear from Eq.~2.8!, the phases of
the individual vectorsc1 ,c2 ,•••,cn can be freely altered
We need only assume that successive pairs of unit vec
are not mutually orthogonal; then the Bargmann invarian
nonzero and has a well defined phase.

III. GENERALIZED CONNECTION

The definition ~2.8! of the Bargmann invariant require
only the choice of then verticesr1 ,r2 , . . . ,rnPR; con-
secutive ones need not be connected in any way to for
closed figure. This suggests that the connection~2.9! be-
tween these invariants and geometric phases may apply m
generally, not only in the case where we connectr1 to r2 ,r2
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to r3 , . . . ,rn to r1 by free geodesics. We now show th
this is indeed so.

We need to characterize the most general~smooth! curves
C,R having the property

wg@any connected portion ofC#50. ~3.1!
n
a

A

th

hi
We know that if C is a free geodesic, this property doe
follow, but there may be~indeed there are! many other pos-
sibilities. We can develop a simple necessary and suffic
condition onC such that Eq.~3.1! holds.

Given the curveC,R, let C (h) be a horizontal lift andC
a general lift ofC in H. We have
al
C5$r~s!ur~s!†5r~s!>0, r~s!25r~s!, Tr r~s!51, s1<s<s2%,

C (h)5H c (h)~s!PHup~c (h)~s!!5r~s!, S c (h)~s!,
d

ds
c (h)~s! D50J ,

C5$c~s!PHuc~s!5eia(s)c (h)~s!%. ~3.2!

Herea(s) is some~smoothly varying! phase angle. For any two points onC with parameter valuess ands8.s we have

wg@r~s! to r~s8! along C#5w tot@c (h)~s! to c (h)~s8! along C (h)#5arg„c (h)~s!,c (h)~s8!…

5arg„e2 ia(s)c~s!,e2 ia(s8)c~s8!…5arg„c~s!,c~s8!…1a~s!2a~s8!. ~3.3!

From this result we see that the necessary and sufficient condition onC to secure the property~3.1! can be expressed in sever
equivalent ways, using either an arbitrary liftC of C or a horizontal liftC (h):

wg@any connected portion ofC#50 ⇔ arg„c~s!,c~s8!…5a~s8!2a~s!, anys8 ands

⇔ ]2

]s8]s
arg„c~s!,c~s8!…50

⇔ arg„c~s!,c~s8!…5separable ins8 ands

⇔ „c (h)~s!,c (h)~s8!…5real positive, anys8 ands

⇔ any two points ofC (h) are in phase. ~3.4!
,

Here, separability is to be understood in the additive, and
in the multiplicative, sense. It is important to recognize th
these characterizations are reparametrization invariant.
curveC,R obeying~3.4! will be called a ‘‘null phase curve
in R,’’ and any lift C of such aC will be called a ‘‘null phase
curve inH.’’ Free geodesics are null phase curves, but
opposite is not necessarily true.

It may be helpful to make some additional remarks at t
point to clarify the ideas involved. If a curveC,H is such
that any two points on it~not too far apart! are in phase, then
it is definitely horizontal:

C5$c~s!%: „c~s!,c~s8!…5real positive

⇒ S c~s!,
dc~s8!

ds8
D 5real

⇒ S c~s!,
dc~s!

ds D50

⇒ C horizontal. ~3.5!
ot
t
ny

e

s

The imageC5p@C# is obviously a null phase curve inR,
since Eq.~3.4! is obeyed witha(s)50; therefore,C being a
lift of C is also a null phase curve inH. On the other hand
for a horizontal curveC (h),H, only ‘‘nearby points’’ are in
phase:

C (h)5$c (h)~s!%5horizontal

⇒ S c (h)~s!,
d

ds
c (h)~s! D50,

⇒ „c (h)~s!,c (h)~s1ds!….110~ds!2,

⇒ arg„c (h)~s!,c (h)~s1ds!…50~ds!2. ~3.6!

However, two general points onC (h) may well not be in
phase, as arg„c(s),c(s8)… could be nonzero. HenceC (h) and
its imagep@C (h)# may not be null phase curves. Forp@C (h)#
to be a null phase curve, in addition to being horizontal~a
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local property!, C (h) must possess the global property that
generals ands8 the inner product„c (h)(s),c (h)(s8)… is real
positive. This is what is captured in conditions~3.4!.

We can now generalize the result~2.9! and strengthen it
as follows. Givenn unit vectorsc1 ,c2 , . . . ,cnPH with
th
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r imagesr1 ,r2 , . . . ,rnPR, draw any null phase curves join
ing consecutive pairs of pointsr1 to r2 ,r2 to r3 , . . . ,rn to
r1. ~This can certainly be done since in any event free g
desics are available.! Then, by exactly the same argumen
that lead to the connection~2.9! we obtain
wgFn2sided figure inR with vertices r1 ,r2 , . . . ,rn

and bounded by null phase curves G52argDn~c1 ,c2 , . . . ,cn!. ~3.7!
1

e

It must be clear that this is the broadest generalization of
connection~2.9! that one can obtain. We see that we c
replace each free geodesic belonging to a polygon inR by
any null phase curve, and the geometric phase remains
same, since the right-hand side of Eq.~3.7! depends on the
vertices alone.

IV. CONSTRAINED GEODESICS AS NULL PHASE
CURVES

We have seen that every free geodesic is a null ph
curve, but the converse is generally not true. Neverthel
the former fact inspires the following question: Can we al
the definition of a free geodesic, based on minimizing
length functionalL@C# of Eq. ~2.5!, in a natural way to ob-
tain other kinds of geodesics, and will they turn out to be n
phase curves as well?

The generalization we explore is the following: instead
dealing with curves~of unit vectors! in the complete Hilbert
and ray spacesH and R, we restrict ourselves to som
~smooth! submanifoldM,R and consider only curvesC
lying in M and connecting pairs of points inM. For such
curves we minimizeL@C# with respect to variations ofC
which stay withinM. The resulting curves will naturally be
called ‘‘constrained geodesics,’’ and the question is, do c
strained geodesics in some cases turn out to be null p
curves?

We emphasize that our question is not whether every
phase curve is a constrained geodesic lying in a suita
chosen submanifoldM,R but, rather, whether the latte
curves sometimes have the former property. The physic
important examples presented in the next section show
our question is indeed interesting. In this section we set
the general framework to handle constrained geodesics in
space.

GivenH andR with dimH5dimR11 in the real sense
we consider a submanifoldM,R of n ~real! dimensions
consisting of a~sufficiently smooth! family of unit rays, with
~local! real independent and essential coordinatesj
5(jm),m51,2, . . . ,n:

M5$r~j!PRujPRn%,R. ~4.1!

~We do not indicate explicitly the domain inRn over which
j may vary.! The inverse image ofM in H will bring in an
extra phase anglea, and is denoted byM:
e

he

se
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M5p21@M #5$c~j;a!PHup@c~j;a!#5r~j!, c~j;a!

5eiac~j;0!%. ~4.2!

~Of course eachc(j;a) is a unit vector, anda andjm taken
together are local coordinates forM.! So in the real sense
dimM5n11, and to avoid trivialities we must have
1n/2, complex dimension ofH.

Now we consider a parametrized curveC,M,R, ob-
tained by making then real variablesjm into functions of a
real parameters:

C5$r„j~s!…,s1<s<s2%,M . ~4.3!

To lift C to someC,M,H, some~smooth! choice of phase
anglea(s) as a function ofs must be made, and then w
have

C5$C~s!5c„j~s!;a~s!…%,M,
~4.4!

p@C#5C.

Using the definition~2.5! the lengthL@C# can be seen to
involve only the partial derivatives ofc(j;a) with respect to
the jm, the dependence ona being trivial and not contribut-
ing at all. Therefore, we define

um~j;a!5
]

]jm
c~j;a!, m51,2, . . . ,n;

~4.5!
um

'~j;a!5um~j;a!2c„j;a)~c~j;a!,um~j;a!….

Normalization ofc(j;a) to unity for all j anda implies

Re„c~j;a!,um~j;a!…50. ~4.6!

Now L@C# can be expressed as follows:

L@C#5E
s1

s2
dsAiĊ~s!i22u„C~s!,Ċ~s!…u2

5E
s1

s2
dsAgmn~j!j̇mj̇n,

~4.7!
gmn~j!5Re„um

'~j;a!,un
'~j;a!…,

jm5jm~s!.
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The parameter dependences ofj and a are as in Eq.~4.4!.
From the essentiality ofjm as coordinates forM, and the
positivity of the metric onH, one easily obtains the follow
ing results: then3n matrix $„um

'(j;a),un
'(j;a)…% is Hermit-

ian positive definite and independent ofa; and only its real
part @gmn(j)#, which is symmetric positive definite, ente
into L@C#.

To obtain the differential equations for constrained ge
desics, we minimizeL@C# with respect to variations inC
that stay withinM. This amounts to minimizingL@C# in the
final form given in Eq.~4.7!, by making independent varia
tions in then real functionsjm(s); the result is well known
from Riemannian geometry. After making a suitable cho
of the parameters ~affine parametrization!, the differential
equations for constrained geodesics become

j̈m~s!1Gm
nl@j~s!#j̇n~s!j̇l~s!50,

Gm
nl~j!5 1

2 gmr~j!@grn,l~j!1grl,n~j!2gnl,r~j!#,
~4.8!

@gmn~j!#5@gmn~j!#21,

grn,l~j!5
]grn~j!

]jl
.

Here theG ’s are the familiar symmetric Christoffel symbo
determined by the ‘‘metric’’ tensorgmn(j). Change in scale
and shift of origin are the only remaining freedoms
choices for parameters. It is a consequence of the differen
tial equations above that

gmn@j~s!#j̇m~s!j̇n~s!5const. ~4.9!

A general solution to Eq.~4.8! is uniquely determined by
choices of initial valuesjm(0),j̇m(0). The resulting jm(s)
determine some constrained geodesicC,M,R, and for
any ~smooth! choice ofa(s) we get a liftC,M,H, which
by definition is a constrained geodesic inH. The meaning of
the ‘‘conservation law’’~4.9! in terms of Hilbert space vec
tors is interesting. In terms of the derivative ofC(s) with
respect tos, and its component orthogonal toC(s),

Ċ~s!5
d

ds
c„j~s!;a~s!…5 j̇m~s!um@j~s!;a~s!#

1 i ȧ~s!C~s!, ~4.10!

Ċ'~s!5Ċ~s!2C~s!„C~s!,Ċ~s!…5 j̇m~s!um
'@j~s!;a~s!#,

we have

gmn@j~s!#j̇m~s!j̇n~s!5const⇒iĊ'~s!i5const.
~4.11!

We can then, if we wish, adjust the scale ofs so thatĊ'

becomes a unit vector for alls.
Having set up the basic formalism to determine co

strained geodesics, in the next section we look at so
physically motivated examples to see whether they are so
times null phase curves as well.
-

e

-
e
e-

V. APPLICATIONS

We look at four examples to illustrate the use of co
strained geodesics in the geometric phase context, an
show the distinction in general between them and null ph
curves.

A. Subspaces ofH
Let H0 be a linear subspace ofH ~as a complex vector

space!, and denote byM,H0 the subset of unit vectors in
H0. By projection, we obtain the submanifoldM
5p@M#,R, with the real dimension ofM equal to
23$~complex dimension ofH0)21%. In this case, con-
strained geodesics inM happen to be free geodesics. Give
any two~nonorthogonal! in-phase unit vectors inM, sayc1
andc2, the free geodesic connecting them, namely, from
~2.6! the curveC consisting of the vectors

c~s!5c1 coss1
~c22~c1 ,c2!c1!

A12~c1 ,c2!2
sins, ~5.1!

passes entirely through points ofM. Hence its imagep@C#
5C lies entirely withinM and, being the free geodesic co
nectingp(c1) to p(c2), it must be the constrained geodes
as well. In this case, therefore, we do not get anything n

Conversely, we see that to have a situation where c
strained geodesics are different from free ones, the subm
fold M,R mustnot arise from a subspace ofH in the above
manner. We now look at two such cases, of obvious phys
importance, in which true generalizations of the origin
Bargmann invariant-geometric phase connection appear.

B. Single mode coherent states

We consider the family of coherent states for a sin
degree of freedom, described by Hermitian operatorsq̂,p̂ or
the non-Hermitian combinationsâ,â†:

â5
1

A2
~ q̂1 i p̂ !, â†5

1

A2
~ q̂2 i p̂ !,

~5.2!
@ q̂,p̂#5 i , @ â,â†#51.

A general normalized coherent state is labeled with a co
plex numberz and is generated by applying a unitary pha
space displacement operator to the~Fock! vacuum stateu0&:

uz&5exp~zâ†2z* â! u0&5expS 2
1

2
z* z1zâ†D u0&,

~5.3!
âuz&5zuz&.

To conform to the notations of the preceding section,
introduce real parametersj1 ,j2, include a phase anglea,
and express the above states in terms ofq̂ and p̂ as follows
~for ease in writing we usej1,2 rather thanj1,2):

z5
1

A2
~j11 i j2!,j1,2eR:
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c~j;a!5eiauz&5exp@ ia1 i ~j2q̂2j1p̂!#u0&

5expS ia2
i

2
j1j2Dexp~ i j2q̂!exp~2 i j1p̂!u0&

5expS ia1
i

2
j1j2Dexp~2 i j1p̂!exp~ i j2q̂!u0&.

~5.4!

~Note that, as in Eq.~4.2!, c(j;a) is a vector inH param-
etrized by j and a, not a wave function.! These various
equivalent forms facilitate further calculations.

The expectation values ofq̂ and p̂ in these states are

„c~j;a!,q̂c~j;a!…5j1 ,
~5.5!

~c~j;a!,p̂c~j;a!!5j2 .

Now we compute the vectorsum(j;a) and their projec-
tionsum

'(j;a) orthogonal toc(j;a), as defined in Eq.~4.5!:

u15]1c52 i S p̂2
1

2
j2Dc,

u25]2c5 i S q̂2
1

2
j1Dc; ~5.6!

u1
'52 i ~ p̂2j2!c, u2

'5 i ~ q̂2j1!c.

Here we used Eq.~5.5!, and, for simplicity, omitted the ar
gumentsj,a in c,um ,um

' . The inner products among theum
'

involve the fluctuations inq̂ and p̂ and the cross term. Afte
easy calculations we find

~u1
' ,u1

'!5„c,~ p̂2j2!2c…5~Dp!251/2,

~u1
' ,u2

'!52„c,~ p̂2j2!~ q̂2j1!c…5 i /2, ~5.7!

~u2
' ,u2

'!5„c,~ q̂2j1!2c…5~Dq!251/2.

Therefore, the induced metric tensor in thej12j2 plane,
defined in Eq.~4.7!, is

gmn~j!5
1

2
dmn , ~5.8!

namely, it is the ordinary Euclidean metric onR2. Con-
strained geodesics in this case are just determined by str
lines in thej plane, since allG ’s vanish:

z~s!5z01z1s, z0,15
1

A2
~q0,11 i p0,1!:

~5.9!
j1~s!5q01q1s, j2~s!5p01p1s.

At the Hilbert space level, a constrained geode
Cconstr.geo.can be taken to be a curve within the family
coherent states

Cconstr.geo.5$C~s!5uz01z1s&%. ~5.10!
ht

c

@Here we have omitted ans-dependent phasea(s).# Each
vectorC(s) along this curve is a~pure! coherent state, and
cannot be written as a linear combination of two fixed sta
as in Eq.~2.6!; so it is immediately clear that this is not
free geodesic at all.

Now we examine whether this constrained geodesic
null phase curve. We find, using the criterion~3.4!:

arg~C~s!,C~s8!!5arĝ z01z1suz01z1s8&

5arg@exp$~z0* 1z1* s!~z01z1s8!%#

5arg@exp~z0* z1s81z0z1* s!#

5~s82s!Im z0* z1 . ~5.11!

This is a separable function ofs8 ands, so we do have a nul
phase curve. We can go from the aboveCconstr.geo.to a hori-
zontal curve by adding a phase:

C constr.geo.
(h) 5$C8~s!5exp~2 i s Im z0* z1!C~s!%,

~5.12!

and then we find thatany two points on this curve are in
phase, as expected.

The generalized connection~3.7! in this example now
states: if uz1&,uz2&, . . . ,uzn& are anyn pure coherent state
given by choosingn points in the complex plane, and we joi
these points successively by straight lines in the comp
plane so that all along in Hilbert space we deal with in
vidual coherent states and never with superpositions of th
we have

wgFn-sided plane polygon with vertices

at the coherent statesz1 ,z2 , . . . ,zn
G

52argDn~ uz1&,uz2&, . . . ,uzn&). ~5.13!

The casen53 leads to the area formula for the geomet
phase for a triangle in the plane, a very familiar result@15#.
From our point of view, the present example is a significa
generalization of the original connection~2.9!.

Going further, it is easy to convince oneself that in th
example the most general null phase curve arises in
above manner; in other words, a given one-parameter fam
of coherent states$uz(s)&% obeys the separability conditio
~3.4! if and only if Imz(s) is a linear inhomogeneous expre
sion in Rez(s), so thatz(s) describes a straight line in th
complex plane ass varies.

C. Centered Gaussian pure states

This example again deals with one canonical pairq̂,p̂. It
is now more convenient to work with wave functions in th
Schrödinger representation, and not with abstract ket vect
The submanifoldM,H consists of normalized Gaussia
wave functions parametrized by two real variablesj1 ,j2 and
a phase anglea defined as follows:

c~j;a;q!5S j2

p D 1/4

expH ia1
i

2
~j11 i j2!q2J ,

~5.14!
j1P~2`,`!, j2P~0,̀ !, aP@0,2p!.
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Normalizability requires thatj2 be strictly positive, so the
combinationj11 i j2 is a variable point in the upper ha
complex plane. The wave functionsum(j;a;q) are

u1~j;a;q!5
]

]j1
c~j;a;q!5

i

2
q2 c~j;a;q!,

~5.15!

u2~j;a;q!5
]

]j2
c~j;a;q!5

1

2 S 2q21
1

2j2
Dc~j;a;q!.

It is clear that to obtain the componentsum
' of um orthogonal

to c, and later to compute the inner products (um
' ,un

'), we
need the expectation values ofq2 and q4 in the statec.
These are~omitting for simplicity the arguments ofc):

~c,q2c!5S j2

p D 1/2E
2`

`

dq q2 e2j2q2
5

1

2j2
,

~5.16!

~c,q4c!5S j2

p D 1/2E
2`

`

dq q4 e2j2q2
5

3

4j2
2

.

Now the necessary inner products and projections are e
found:

~c,u1!5
i

4j2
, ~c,u2!50;

u1
'5

i

2 S q22
1

2j2
Dc,u2

'5u252
1

2 S q22
1

2j2
Dc ;

~u1
' ,u1

'!5
1

4 Fc,S q22
1

2j2
D 2

c G5
1

8j2
2

; ~5.17!

~u1
' ,u2

'!5
i

4 Fc,S q22
1

2 j2
D 2

cG5
i

8j2
2

;

~u2
' ,u2

'!5~u2 ,u2!5
1

4 Fc,S q22
1

2 j2
D 2

cG5
1

8 j2
2

.

From these results we obtain the induced metric overM
5p@M#,R, described in the upper half complex plane
the metric tensor

gmn~j!5Re„um
'~j;a!,un

'~j;a!…5
1

8j2
2

dmn . ~5.18!

This is the well known form of the Lobachevskian metric
this model of Lobachevsky space@16#. Dropping the numeri-
cal factor 1

8 for simplicity, the line element in the upper ha
plane is given by

ds25
1

j2
2 ~dj1

21dj2
2!, ~5.19!

and we must find the corresponding geodesics.
First we compute the nonvanishingG ’s. The inverse of

@gmn(j)# has components
ily

g11~j!5g22~j!5j2
2 , g12~j!50. ~5.20!

We easily find that the nonvanishingG ’s are

G1
12~j!5G2

22~j!52G2
11~j!52

1

j2
. ~5.21!

Using these in Eq.~4.8! we find the following ordinary dif-
ferential equations to determine geodesics:

j̈12
2

j2
j̇1j̇250, ~5.22a!

j̈21
1

j2
~ j̇1

22 j̇2
2!50. ~5.22b!

We can exploit the fact that these differential equatio
lead to the consequence

1

j2
2 ~ j̇1

21 j̇2
2!5const, ~5.23!

the value of the constant depending on the particular geo
sic. After elementary analysis, we find that there are t
families of geodesics:

Type I: j15const, j25aebs,

a.0,sPR; ~5.24a!

Type II: j15c1R cosf ~s!, j25R sin f ~s!,

f ~s!52 tan21 ~aebs!,

cPR, R.0, a.0, b.0, sPR. ~5.24b!

These are both in affinely parametrized form. In Type II it
simpler to pass to a nonaffine angle type parametes
P(0,p), and replace Eq.~5.24b! with

Type II: j15c1R coss, j25R sins,
~5.25!

cPR, R.0, 0,s,p.

Type I geodesics are straight semi-infinite lines parallel
thej2 axis. Type II geodesics are semicircles centered on
j1 axis and lying above this axis.

In each case we can now ask whether a constrained
desic inM is a null phase curve. As in the previous examp
of coherent states, here too we emphasize that we are
cerned with curves within the manifold of centered norm
ized Gaussian wave functions, and at no stage with lin
combinations of such wave functions. We look at the tw
types of constrained geodesics in turn and find these res
~after simple reparametrizations!:

Type I: C~s!5c@j15a, j25bs; a~s!#,
~5.26a!

arg„C~s!,C~s8!…50;

Type II:C~s!5c@j15c1R coss, j25R sins; a~s!#,

arg„C~s!,C~s8!…5 1
4 ~s2s8!. ~5.26b!
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@In both cases the choice of phase anglea(s) is irrelevant.#
So in both cases the criterion~3.4! is obeyed, and both type
of curves inM arising from the two types of geodesics in th
upper halfj plane are simultaneously constrained geode
and null phase curves.

The statement of the generalized connection~3.7! is clear,
and for illustration we consider the case of just three vertic
Let A, A8, and A9 be any three points in the upper ha
complex plane, and for any choices of phasesa consider the
three normalized centered Gaussian statesc(A;a),
c(A8;a8), andc(A9;a9). JoinA to A8, A8 to A9, andA9 to
A by a geodesic of Type I or Type II as appropriate in ea
case. This can always be done, and we obtain a hyperb
triangle. In M we obtain a triangle with verticesr(A)
5p@c(A;a)# etc., and whose sides are constrained geo
sics, and we can state

wgF triangle in M with vertices

r~A!,r~A8!,r~A9!

and sides as constrained geodesics
G

52argD3@c~A;a!,c~A8;a8!,c~A9;a9!#.

~5.27!

An application of this result has been used elsewhere@17# to
show that the classical Gouy phase@18# in wave optics is
related to a Bargmann invariant and hence is a geome
phase.

D. Subset of two-mode coherent states

In the preceding two examples, we found that while co
strained geodesics differed from free geodesics, they w
nevertheless null phase curves and so led to importan
stances of Eq.~3.7!. This is, however, fortuitous; the reall
important objects for our purposes are the null phase cur
and in a given situation constrained geodesics may well
be such curves. In our fourth and final example, dealing w
a subset of states for a two-mode system, we will find t
this is exactly what happens. However, we will be able
completely determine all null phase curves directly, so t
the generalization~3.7! can be meaningfully stated.

For a two-mode system with creation and annihilation o
eratorsâ j

1 ,â j obeying the standard commutation relations

@ â j ,âk
†#5d jk , @ â j ,âk#5@ â j

† ,ak
†#50, j ,k51,2,

~5.28!

the general coherent state is labeled with two independ
complex numbers arranged as a column vectorz5(z1 ,z2)T:

uz&5exp~2 1
2 z†z1z1â1

†1z2â2
†!u0&,

~5.29!
â j uz&5zj uz&, j 51,2.

Within this family of all normalized coherent states, we no
define a submanifold~of real dimension three including a
overall phase!, an ‘‘S2 worth of states,’’ by takingu,f to be
spherical polar angles on a sphereS2 and settingz1 and z2
equal to the following:
s

s.

h
lic

e-

ic

-
re
n-

s,
ot
h
t

t

-

nt

z15cosu, z25eif sinu, 0<u<p, 0<f<2p.
~5.30!

Therefore, the submanifoldM,H is parametrized byu,f
and a phasea and we write

M5$c~u,f;a!

5eiaucosu,eif sinu&u0<u<p,0<f, a<2p%,H,

~5.31!

where the ket on the right is a particular two-mode coher
state withz†z51:

c~u,f;a!5exp~ ia1â1
†cosu1â2

†eif sinu21/2!u0&.
~5.32!

Omitting the argumentsu,f,a for simplicity, we easily find

uu5
]

]u
c5~2sinuâ1

†1eif cosuâ2
†!c,

uf5
]

]f
c5 i eif sinu â2

† c; ~5.33a!

~c,uu!50, ~c,uf!5 i sin2 u; ~5.33b!

uu
'5uu , uf

'5 i sinu~eifâ2
†2sinu!c. ~5.33c!

Repeatedly exploiting the eigenvector relation~5.29! and its
adjoint, we compute the inner products among the vector
Eq. ~5.33c!:

~uu
' ,uu

'!51, ~uu
' ,uf

'!5 i cosu sinu, ~uf
' ,uf

'!5sin2 u.
~5.34!

Taking the real parts here, we see that the metric induced
M5p@M#;S2 in R, parametrized by anglesu and f, is
just the usual rotationally invariant one:

guu~u,f!51, guf50, gff~u,f!5sin2 u. ~5.35!

The corresponding constrained geodesics are therefore
ply great-circle arcs. The question is whether they lead
null phase curves inM andM.

A general parametrized great-circle arc onS2 is traced out
by an s-dependent unit vectorn̂(s) with polar angles
u(s),f(s):

n̂~s!5â coss1b̂ sins

5@sinu~s! cosf~s!, sinu~s!sinf~s!, cosu~s!#,

â,b̂PS2, â•b̂50. ~5.36!

The corresponding constrained geodesicCconstr. geo.,M
~omitting the phasea) is the curve of coherent states
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C~s!5uz1~s!,z2~s!&,

z1~s!5cosu~s!5a3 coss1b3 sins, ~5.37!

z2~s!5ei f(s)sinu~s!5~a11 i a2! coss1~b11 i b2!sins.

To see if this is a null phase curve we compute the phas
„C(s),C(s8)…:

arg„C~s!,C~s8!…5arĝ z1~s!,z2~s!uz1~s8!,z2~s8!&

5arg$exp~z1~s!z1~s8!1z2~s!* z2~s8!!%

5arg$exp~@~a12 i a2!coss

1~b12 i b2!sins#@~a11 i a2!coss8

1~b11 i b2!sins8# !%

5~ â`b̂!3 sin~s82s!. ~5.38!

Unless it vanishes, this is not a separable function ofs8 and
s. We conclude that the geodesic~5.36! on S2 leads to a
constrained geodesicCconstr.geo.,M, which is, in general, not
a null phase curve. The only exception is when (â`b̂)350,
that is, the geodesic~5.36! on S2 lies on a meridian of lon-
gitude, withâ`b̂ being a vector in the 1-2 plane.

On the other hand, in this example it is quite easy
explicitly find all null phase curves onM ~and M)! Let G

5$n̂(s)%,S2 be given, and let us consider the induced cu
CG in M:

CG5$CG~s!5un3~s!,n1~s!1 i n2~s!&

5exp„2 1
2 1n3~s! â1

†1~n1~s!1 i n2~s!!â2
†)u0&%.

~5.39!

We find that

arg„CG~s!,CG~s8!…5@ n̂~s!`n̂~s8!#3 . ~5.40!

This will be a separable function ofs8 ands if and only if,
for some constantsb andg, we have

n2~s!5bn1~s!1g. ~5.41!

The geometrical interpretation of this is that the projection
G on the 1-2 plane must be a straight line. In that case,CG is
indeed a null phase curve inM, as we have

arg„CG~s!,CG~s8!…5g@n1~s!2n1~s8!#, ~5.42!

which is separable ins8 ands. One can easily see that eac
suchG is a latitude circle arc onS2 corresponding to~i.e.,
perpendicular to! some axis lying in the 1-2 plane, and give
any two points onS2, we can always connect them by such
G. In other words, suchG are intersections ofS2 with planes
perpendicular to the 1-2 plane. When such a latitude ci
arc is also a great-circle arc, we recover the result of
previous paragraph.

The upshot of this example is that here we have a n
trivial illustration of the difference between constrained ge
desics and null phase curves. However, since we have
of

o

e

f

le
e

-
-
en

able to find all of the latter, and any two points inM can be
connected by some null phase curve, we have succeede
providing a nontrivial two-mode example of the generaliz
connection~3.7!, without using constrained geodesics.

VI. RAY SPACE AND DIFFERENTIAL GEOMETRIC
FORMULATIONS

Very soon after the discovery of the geometric phase,
differential geometric expressions of its structure and sign
cance were developed@19,3–5,11#, by relating it to an-
holonomy and curvature in a suitable Hermitian line bun
in quantum mechanical ray space. In this section we prov
a brief discussion of the properties and uses of the new c
cept of null phase curves at the ray space level and als
the differential geometric language. Only necessary ba
ground material will be recalled, and derivations will b
omitted. Since they may be useful for practical calculatio
where possible local coordinate expressions of important
ferential geometric objects will be given.

From the preceding sections it is evident that for our p
poses it is important to deal with open null phase curves
general, since it is through them that the connection~3.7! of
the Bargmann invariants to geometric phases is made. T
definition ~3.4! in terms of Hilbert space lifts is quite simple
Nevertheless, it is of interest to develop a direct ray sp
formulation; this can be done essentially via the Bargma
invariants themselves. From their definition~2.8!, it is clear
that anyn2 is real nonnegative, whilenn’s for n>3 are, in
general, complex. On the other hand, it is also known t
any nn for n>4 can be written as the ratio of a suitab
product ofn3’s and a suitable product ofn2’s:

nn~c1 ,c2 ,•••,cn!

5)
j 53

n

n3~c1 ,c j 21 ,c j !Y )
j 54

n

n2~c1 ,c j 21!. ~6.1!

In this sense the three-vertex Bargmann invariantn3 is the
basic or primitive one as far as phases are concerned.@The
basic cyclic invariance ofnn(c1 ,c2 ,•••,cn) is not mani-
fest in Eq.~6.1!, but it is not lost either.# Guided by these
facts, we give now a direct ray space characterization of n
phase curves.

If C5$r(s)%,R is a null phase curve andC (h)

5$c (h)(s)% is a horizontal Hilbert space lift obeying Eq
~3.4!, we see immediately that for any choices of parame
valuess,s8,s9,

n3@c (h)~s!,c (h)~s8!,c (h)~s9!#5Tr$r~s!r~s8!r~s9!%

5real and >0; ~6.2!

and so also for anyn parameter valuess1 ,s2 , . . . ,sn , from
Eq. ~6.1!,

nn@c (h)~s1!, . . . ,c (h)~sn!#5Tr$r~s1! . . . r~sn!%

5real and >0. ~6.3!

As a consequence, by differentiation with respect
s2 , . . . ,sn we have



te

al

tr

rv

,

e

s,

rg

f

f

s.
w-
c-

eo-
etric

et-
at

3406 PRA 60EQAB M. RABEI, ARVIND, N. MUKUNDA, AND R. SIMON
TrH r~s1!
dr~s2!

ds2
•••

dr~sn!

dsn
J 5real. ~6.4!

Now, it is known that the geometric phase for any connec
portion of anyC can be expressed directly in terms ofr(s)
as follows, whether or notC is a null phase curve:

wg@r~s1! to r~s2! along C#

5argFTrH r~s1!PS expE
s1

s2
ds

dr~s!

ds D J G
5argF11 (

n51

` E
s1

s2
dsn8E

s1

sn8dsn218 •••E
s1

s28ds18

3TrH r~s1!
dr~sn8!

dsn8
•••

dr~s18!

ds18
J G , ~6.5!

whereP is the ordering symbol placing later parameter v
ues to the left of earlier ones. If Eq.~6.2! holds onC @and so
as a consequence Eqs.~6.3! and~6.4! as well#, we see that at
every stage only real quantities are involved, the geome
phase in Eq.~6.5! vanishes, andC is a null phase curve. This
leads to the ray space characterization of null phase cu
we are seeking:

C5$r~s!%,R is a null phase curve

⇔Tr$r~s!r~s8!r~s9!%

5real nonnegative, anys,s8,s9. ~6.6!

Turning now to the specific differential geometric aspects
is well known that while the dynamical phasewdyn@C# is an
additive quantity,wg@C# does not have this property. On th
manifold of unit vectors in Hilbert spaceH, there is a one-
form A such that

wdyn@C#5E
C
A. ~6.7!

However, referring to the projectionp:H→R, A is not the
pull-back viap * of any one-form on the space of unit ray
andwg@C# is not the integral alongC of any one-form onR.
In fact, this lack of additivity can be expressed via the Ba
mann invariantn3. If C12 connectsr1 to r2 in R and C23
connectsr2 to r3, thenC12øC23 runs fromr1 to r3 and

wg@C12øC23#5wg@C12#1wg@C23#2B3~c1 ,c2 ,c3!,
~6.8!

B3~c1 ,c2 ,c3!5argn3~c1 ,c2 ,c3!.

More generally, for an~generally! open curve consisting o
(n21) piecesC12,C23,•••Cn21,n joining r1 to r2 , r2 to
r3 , •••,rn21 to rn , we generalize Eq.~6.8! to the follow-
ing:

wg@C12øC23ø•••øCn21,n#5 (
j 51

n21

wg@Cj , j 11#

2Bn~c1 ,c2 ,•••,cn!,
d

-

ic

es

it

-

Bn~c1 ,c2 ,•••,cn!5argnn~c1 ,c2 , . . . ,cn!

5(
j 53

n

B3~c1 ,c j 21 ,c j !. ~6.9!

If we connectrn back tor1 via Cn,1 to get a closed curve o
n pieces, then we have the specific result

wg@C12øC23ø•••øCn21,n ,øCn,1#

5wg@C12#1wg@C23#1•••1wg@Cn,1#

2Bn~c1 ,c2 ,•••,cn!. ~6.10!

Compared to Eq.~6.9!, we have one extrawg term on the
right-hand side, but the Bargmann phase termBn is the same.
We see that the lack of additivity shown in all Eq
~6.8,6.9,6.10! is due to the Bargmann pieces. There is, ho
ever, an exception to this general nonadditivity, which o
curs in Eq.~6.8! whenr35r1 andC12øC23 is a closed loop.
Then we find

]~C12øC23!50, r35r1 :

wg@C12øC21#5wg@C12#1wg@C21#, ~6.11!

i.e., wg@C12#5wg@C12øC21#2wg@C23#.

In the past, this result has been used@4# to relatewg@C# for
an openC to wg@CøC8# for a closedCøC8 by choosingC8
to be a free geodesic, for thenwg@C8#50. Now we can
generalize this process: ifC is an open curve fromr1 to r2
in R, andC8 is any null phase curve fromr2 back tor1, we
have the result

wg@open curveC#5wg@closed loopCøC8#.
~6.12!

This is the most general way in which an open curve g
metric phase can be reduced to a closed loop geom
phase. More generally, comparing Eqs.~6.9,6.10! valid for
generally open and for a closed curve, we see thatif the last
piece Cn,1 is a null phase curve, we convert an open curve
geometric phase to a closed loop geometric phase:

wg@C12øC23ø•••øCn21,n#

5wg@C12øC23ø•••øCn21,nøCn,1#. ~6.13!

At this point it is natural to express a closed loop geom
ric phase as a suitable ‘‘area integral’’ of a two-form, both
Hilbert and ray space levels. WhereasA is not the pull-back
of any one-form onR, we do havedA5p * v, wherev is a
symplectic~closed, nondegenerate! two-form onR. Then, if
C is a closed loop inH, ]C50, so thatC5p(C) is a closed
loop in R, we have

wg@C#5E
S
dA5E

S
v, ~6.14!

where S and S5p(S) are two-dimensional surfaces inH
andR, respectively, with boundariesC andC :

]S5C, ]S5C. ~6.15!
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With the help of local coordinates onH andR we get ex-
plicit expressions forA,dA and v. Around any pointr0
PR, and for some chosenc0Pp21(r0), we define an
~open! neighborhoodN,R by

N5$rPRuTr ~r0r!.0%. ~6.16!

We can introduce real independent coordinates overN as
follows. Let $c0 ,e1 ,e2 , . . . ,er , . . . % be an orthonormal ba
sis forH. Then points inN can be ‘‘labeled’’ in a one-to-one
manner with vectorsXPH orthogonal toc0 and with norm
less than unity:

x~b,g!5
1

A2
(

r
~b r2 ig r ! er ,

ix~b,g!i25
1

2 (
r

~b r
21g r

2!,1:

~6.17!
c~b,g!5x~b,g!1A12ix~b,g!i2 c0 ,

rPN⇔r5c~b,g!c~b,g!†, for some b,g.

Thus the real independentb ’s and g ’s, subject to the in-
equality above, are local coordinates forN. They can be ex-
tended to get local coordinates forp21(N),H by including
a phase anglea:

cPp21~N!⇔c5c~a;b,g!5eiac~b,g!, 0<a,2p.
~6.18!

In these local coordinates overN andp21(N) we have the
expressions

A5da1
1

2 (
r

~g rdb r2b rdg r !,

dA5(
r

dg r`db r , ~6.19!

v5(
r

dg r`db r .

The closure and nondegeneracy ofv are manifest, so it is a
symplectic two-form onR; and the coordinatesb,g realize
the local Darboux or canonical structure for it. On the oth
hand, in these ‘‘symplectic’’ coordinates the Fubini-Stu
metric is a bit involved. If we combine theb ’s andg ’s into
a single column vectorh5(b1 b2 . . . g1 g2 . . . )T, then
the length functionalL@C# of Eq. ~2.5! assumes the follow-
ing local form:

L@C#5E dsAḣT g~h! ḣ ,

g~h!511
1

2

h hT

12
1

2
hT h

1
1

2
J h hT J,

J5S 0 1

21 0D , hT h,2. ~6.20!
r

The symplectic matrixJ plays a role in this expression fo
the metric tensor matrixg(h). This matrixg(h) is verified
to be real symmetric positive definite, since one eigenva
is (12 1

2 hT h)21 ~eigenvectorh), another eigenvalue is (1
2 1

2 hT h) ~eigenvectorJh), and the remaining eigenvalue
are all unity. We appreciate that for considerations of g
metric phases and null phase curves this kind of local
scription is really appropriate, while free geodesics app
unavoidably complicated.

We also notice that, whenH is finite dimensional and the
real dimension of the spaceR of unit rays is 2n, the sym-
plectic two-formv of Eq. ~6.19! is invariant under the linea
matrix groupSp(2n,R) acting on the local coordinatesb,g.
On the other hand, the integrand of the length functio
L@C# in Eq. ~6.20! possesses invariance only und
Sp(2n,R)ùSO(2n).U(n), which is just the group of
changes in the choice of the vectors$er% which together with
c0 make up an orthonormal basis forH.

Returning now to the discussions in Secs. III and IV, w
can bring in submanifoldsM,R, M5p21(M ),H, with
local coordinatesjm,a as indicated in Eqs.~4.1! and ~4.2!.
Let i M : M,H and i M :M,R be the corresponding identi
fication maps. Straightforward calculations show that
pull-backs ofA,dA,v in Eq. ~6.15! to M andM are locally
given ~with mild abuse of notation! by

i M* A5da1Im„c~j;a!,um~j;a!… djm,

i M* dA5 i M* v5Im„um
'~j;a!,un

'~j;a!… djm`djn

5Im@um~j;a!,un~j;a!# djm`djn. ~6.21!

We see, as is well known, that while the real symmetric p
of the Hermitian matrix@(um

' ,un
')# determines the metric

Eq. ~4.7!, the imaginary antisymmetric part of the same m
trix is relevant for symplectic structure and geometric pha
reinforcing the link between the latter two.@When M5R
andM5H, thejm’s become theb ’s andg ’s of Eqs.~6.17!,
and we immediately recover the expressions~6.19!.# For our
present purposes, the following comments are pertin
While v is closed and nondegenerate,i M* v is closed but
may well be degenerate. An extreme case is whenM is an
isotropic submanifoldin R, for then i M* v50. Such a situa-
tion can easily arise if, for example,M is described by a
family of real Schro¨dinger wave functionsc(j;q). ~A La-
grangian submanifold inR is a particular case of an isotropi
submanifold when the dimension is maximal, namely, h
the real dimension ofR.) One may expect that ifM is iso-
tropic andC,M , thenC is a null phase curve. However, th
need not always be so, and the situation is as follows. F
general open curveC12 from r1 to r2 in a general submani
fold M, if we can find a null phase curveC21 from r2 to r1
also lying in M, thenC12øC21 is a closed loop; ifp1(M )
50, we can find a two-dimensional surfaceSPM having
C12øC21 as boundary. Then from Eq.~6.12! we obtain un-
der these circumstances

wg@C12#5wg@C12øC21#5E
SPM

i M* v. ~6.22!
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Here, as stated above, we had to chooseC21 to be a null
phase curve.~Whenr25r1 andC12 is already a closed loop
there is no need for anyC21; it can be chosen to be trivial!!
If, however, M is an isotropic submanifold, i.e.,i M* v50
s
n
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is
e
th
his

th
m
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th
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.
dia
@and assuming alsop1(M )50], we can extract some ver
interesting consequences for geometric phases, thoug
falls short of the vanishing ofwg@C# for every C,M . We
have the chain of implications
i M* v50 ⇔ E
S
i M* v50, any two dimensionalS,M

⇔ wg@C12øC21#50, anyr1 ,r2,C12,C21 in M

⇔ wg@C12# unchanged under any continuous deformation ofC12 leaving the end pointsr1 ,r2 fixed
~6.23!
null
t of

. We
be-
just

ull
ined
ese
ples
me.
and
in-
the
is

d in

f
he
for
es
Thus, within an isotropic submanifold, the geometric pha
for a general curve depends on the two end points alo
When the curve chosen is closed, it can be continuou
shrunk to a point@since,p1(M )50] and then its geometric
phase vanishes. One can thus say in summary:

M,R,i M
.* v50, p1~M !50, C,M :

wg@C#50 if ]C50; ~6.24!

wg@C#5function of ]C alone, if ]CÞ0.

The main conclusion is that general open curves in an
tropic submanifold need not be null phase curves, but g
metric phases are invariant under continuous changes of
arguments, leaving the end points unchanged. Perhaps t
not too surprising after all, since the isotropic property is
two-form condition.

VII. CONCLUDING REMARKS

We have shown that the familiar connection between
Bargmann invariants and geometric phases in quantum
chanics, based on the properties of free geodesics in ray
Hilbert spaces, can be generalized to a very significant
tent. In fact we have shown that our generalization is
e
e.
ly

o-
o-
eir

is
a

e
e-
nd
x-
e

broadest one possible. The essential concept is that of
phase curves in Hilbert and ray spaces—the replacemen
free geodesics by such curves leads to our generalization
have seen through examples that this wider connection
tween Bargmann invariants and geometric phases is
what is needed in several physically relevant situations.

Motivated by the fact that free geodesics are always n
phase curves, we have defined the concept of constra
geodesics and posed the problem of determining when th
may be null phase curves. We have presented two exam
when this is indeed so and one where they are not the sa
This re-emphasizes the fact that constrained geodesics
null phase curves are, in principle, different objects, and
tensifies the need to find useful characterizations of
former which may ensure the latter property for them. This
certain to shed more light on the general questions raise
this paper, and we plan to return to them in the future.
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