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Jost function for singular potentials
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An exact method for direct calculation of the Jost function and Jost solutions for a repulsive singular
potential is presented. Within this method the Sdimger equation is replaced by an equivalent system of
linear first-order differential equations, which after complex rotation, can easily be solved numerically. The
Jost function can be obtained to any desired accuracy for all complex momenta of physical interest, including
the spectral points corresponding to bound and resonant states. The method can also be used in the complex
angular-momentum plane to calculate the Regge trajectories. The effectiveness of the method is demonstrated
using the Lennard-Jonés2,6 potential. The spectral properties of the realistic interatdthie-*He potentials
HFDHE2 and HFD-B of Azizet al. [Mol. Phys.61, 1487(1987] are also investigated.
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I. INTRODUCTION solution cannot be defined by universal boundary conditions
independent of the potential.

A method for locating potential resonances and Regge This drawback, stemming from the extremely strong re-
trajectories, based on direct calculation of the Jost functiofulsion near the origin, can fortunately be tackled by the
in the complexk plane, has recently been develogdd-4.  WKB approximation, which provides the correct radial be-
Within this method, the bound, resonant, and scatterindiavior of the wave function in the neighborhood of the point
states can be found by calculating the Jost solutions and the=0 [6]. Therefore, starting with the WKB boundary condi-
Jost function on the appropriate domain of thplane. The tions", one can find the regular solution by integrating the
bound- and resonant-state energies, for example, can BEchralinger equation fromm=0 to some intermediate point
found by locating the zeros of the Jost function on the posi¥ =rj,. Then the equations for the Jost function can be inte-
tive imaginary axis and in the fourth quadrant, respectivelygrated, fromr;,, outwards as for the nonsingular potential
At the same time, as a by-product of the Jost function calcuusing the boundary conditions at=r;,, which are ex-
lation, one gets the physical wave function that has the corpressed in terms of the regular solution and its first deriva-
rect asymptotic behavior. tive.

The method, in the form developed in Rdf$-4], cannot The paper is organized as follows: In Sec. Il our formal-
be directly applied to potentials, which are more singularism is presented and is tested in Sec. Ill using an example
than 1f2 at the origin. A significant number of practical known in the literature; in Sec. IV the method is applied to
problems, however, where the Jost function could be veryealistic interaction between helium atoms. Our conclusions
useful, involves such potentials. For example, interatomi@re drawn in Sec. V.
and intermolecular forces at short distances are strongly re-

pulsive due to the overlap of the electron clouds, and thus Il. THEORY
they are usually represented by repulsive singular potentials , , _
such as the Lennard-Jori2,6 one which has- 1/r'2 be- A. Basic equations and definitions
havior. It is, therefore, desirable to extend the Jost function There are three different types of physical problems asso-
method for potentials of this kind. ciated with the Schidinger equation (&/42=1),
It is well known that attractive singular potentials do not
admit physically meaningful solutions with the usual bound- [+ K2=/(/+D)Ir2Ju (kr)=V(Nu,(kr), (1)

ary conditiong5]. All solutions of the Schrdinger equation ]
with such potentials vanish at the origin and there is no apbamely, bound-, scattering-, and resonant-state problems.
parent way to determine the arbitrary phase factor betweehhey differ in the boundary conditions imposed on the wave
them. In contrast, repulsive singular potentials do not poséinction at large distances. Alternatively, a solution can be
any problem regarding mathematical uniqueness or physicﬁrescnbed by the bou_ndary co.nd|t|ons at thg origin. In the
interpretation. However, the integration of the Safinger ~ case of regular potentials obeying the condition

equation as well as of the relevant equations for the Jost
function, have inherent difficulties resulting from the fact
that the singularity of the potential makes the0 an irregu-

lar singular point of the equation. In particular, the regulary,e solutiong,(k,r) that vanishes near=0 exactly like the
Riccati-Bessel function,

lim r2v(r)=0, %)

r—0
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is called theregular solution. Since all physical solutions are with a sufficiently larged (see Refs[1—4] for more details
regular at the origin, they differ from®,(k,r) only by a  Such a rotation is only possible if the potential is an analytic
normalization constant. Therefore, if the functign (k,r) function of r and tends to zero whex—oo for the chosen
can be calculated at all real and complex momé&ntane can  angle 6.
have, in principle, all solutions of physical interest in a most
general form. For example, the calculation of the scattering
solutions on the redt axis is simply a matter of finding the
proper normalization fogp (k,r) because the regular solu-
tion has the correct behavior at largefor any k>0. In
contrast, to find the bound and resonant states wherk ithe
complex, one must ensure that the functibp(k,r) has the
proper physical asymptotic behavior, which exist only at cer-They follow immediately from Eqs(3) and(5), and the fact
tain points on thé plane. These spectral points can be foundipat
by many different ways, but perhaps the most convenient
way to find them is by locating the zeros of the Jost function.
For any complex, the regular solution at large distances
can be expressed as a linear combination of the RiccatiGoing over to singular potentials, E) does not hold any-

B. Boundary conditions

In the case of regular potentials the boundary conditions
for Egs.(7) are very simple,

FOI(k,00=1. (12)

$(hE(kn)+hS (k) ]=j (k).

Hankel functionsh)(kr),

b, (k1) — (A (kr)F(k*)+hE(kDf (k)] ()

r—oo

more. Due to the extremely strong repulsion, the regular so-
lution vanishes much faster than(kr) whenr—0. In fact,

it vanishes exponentially7] and, therefore, the conditions
(11) must be modified accordingly. In order to find the exact

behavior of the regular solution near the origin we apply the
where ther-independent but momentum-dependent coeffifamiliar semiclassical WKB method. Though the strong re-
cient f (k) is the Jost function. From the asymptotic form pulsion makes things rather complicated, it has the advantage
(4) it is clear that the zeros df, (k) on the positive imagi- that the criterion of the applicability of the WKB approxima-

nary axis of _the complek plane correspond to bound states tion is satisfied whem— 0. Indeed, the WKB method works
while those in the fourth quadrant correspond to resonancegye|l when the local wavelength varies slowly, i.e.,

In order to findf ,(k), we look for the regular solution on

the whole interva[0,<) in the form |d\/dr|<1. (12
&, (k,r)=3[h (k) FCI (k) +hE (k) FC) (k)] It can be showri5] that this derivative is given by
)
+ 1 dV(I’) 2 —3/2]
where the unknown functiors(*)(k,r) are subjected to the |dh/dr|= 5 | =5 [K*= V()] (13

additional condition,
Assuming thatV(r) approaches its singularity near=0

(+) (+) (-) (=) -
hy(kn)d B (kor) +hy(kr)aFy (k) =0. (8)  monotonically, we can find an,,, that for all r<r ;, the
Equation(1) is then transformed into an equivalent system ofmomentum in Eq(13) is negligible, i.e., we may write
first-order equations, 1|dv(r)
_ |[d\/dr| — = |——[V(r)] %7. (14)
. hi(kr) . . 02| O
A FEI (k) = = — V(N[ (kN FS(k,r)
Whenr —0, the right-hand side of Eq14) for usual singu-
+hE(kn)FC (k)] (7) lar potentials tends to zero. For example, if
In Refs.[1,4] it was shown that at large distande$ ) (k,r) V(r) —glr",
r—0

coincides with the Jost function,

the condition(12) is always satisfied fon>2,

lim FO) (k,r)="f,(k), (8)
e (1/2) n—1
but this limit only exists when |d)\/dr|r—>0 249 —0 if n>2.
Imkr=0. 9

Therefore, assuming that the necessary conditl@is ful-
If r is real, the conditior(9) is only satisfied for bound and filléd and choosing a small enough;,,, we can express the

scattering states but not for resonances. To calcdlate) ~ regular solution on the intervgDr y,] using the WKB ap-
we, therefore, make a complex rotation of the coordinate ifProximation(see, for example, Refg]), viz.

Egs.(7), in the first quadrant 1
a
expi d rel0, minl,
\/ﬁ F{ fr p(P) P} e[ mln]

(15

¢, (kr)=

aa
r=xexpifd), x=0 0= 0<§ (10
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where the classical momentupgr) is defined by Imr

p(N)= k2= V(r)—(/+})?r? (16)
and the upper limita in the integral is an arbitrary valua
>rmin- Usuallya is taken to be the inner turning poifg],

but it is obvious from Eq(15) that an additional integration
from a to the turning point can only change the overall nor-
malization of the solution, which is not our concern at the
moment. Thus, Eq(15) together with the derivative

b Rer

FIG. 1. Deformed contour for integration of the differential
equations.

2

av(r) — 2( an E) r—3 latory from the outset. Although this does not formally cause
P Kr)= dr 2 . ) any problem, in numerical calculations such oscillations may

rpokr)= A[p(n)]52 Hp(r reduce the accuracy. To avoid this we solve Egsfrom a

small r,,, to some intermediate poitftt along the real axis
(2 and then perform the complex rotation,
XeXp[lf p(p)dp| re(Ormnl, (17
r
a
. . r=b+xexpio), 0, O=6<- 20
can be used as boundary conditions for the regular solution Xexpio), xe[0:) 2 (20

of the Schrdinger equation at any point in the interval
(O min]. To obtain the corresponding boundary conditionsas is shown in Fig. 1. Therefore, on the interpgl,,,b] we
for the functionsF(f)(k,r), we need to express them in can use Egs(7) as they are, while beyond the pointb

terms of¢ (k,r) andd, ¢ (k,r). For this we can use E()
together with relation

g (k) =3[FE(k,r)a,hC (k)

+FO (k) ah(kn)], (18)
which follows from Eq.(6). From Egs.(5) and(18) we find
that
+ i = ¥
FEn = £ [ kN ahi7 (k) —hio (ko (k,n)],
(19

which is valid for anyr e[0°). Therefore, Eqs(19) taken
at some point <r ., with ¢ ,(k,r) andd, ¢ ,(k,r) given by
Egs. (15 and (17), provide us the boundary conditions, re-
quired in Egs.(7), for singular potentials. It can easily be
checked[by using j(kr) for the regular solution near
=0] that Eq.(19) gives the correct boundary conditions for
regular potentials as well.

Alternatively, to impose the boundary conditions on the
functionsF(/:)(k,r) near the origin, one can simply solve the
Schralinger equation from a smallup to some intermediate
pointb where, using Eq(19), theF(*)(k,b) can be obtained
and propagated further on by integrating E(3.

C. Integration path

The use of more complicated boundary conditiong at
=0 does not change the conditi(®) for the existence of the

these equations are transformed to

e'*h(")(kb+kxe?)
2ik

aF)(k,b+xe?) =+ V(b+xe?)

X[h{ (kb+kxd ) FC (k,b+xe?)
+h$)(kb+kxd?)FC)(k,b+xe?)].
(21

Though the complex transformatidi20) is different from
Eq. (10), the proof of the existence of the limi8) given in
the Appendix A.2 of Ref[4] remains applicable here. In-
deed, that proof was based on the fact that fokim 0 the
Riccati-Hankel functionh{")(kr) decays exponentially at
large|r|, and thus the derivative,F(~)(k,r) vanishes there
and the functionF(7)(k,r) becomes a constant. Under the
transformation(20) the asymptotic behavior of the Riccati-
Hankel function,

I (kr) — —i exdi(kr—/a/2)],

r—o

(22

has only an additional-independent phase factor eit),
which does not affect the proof.

From the above, it is clear that we can identify the Jost
function f (k) as the value oF{)(k,b+x€?) at a suffi-
ciently largex beyond which this function is practically con-
stant. In the bound- and scattering-state domain, where

limit (8). Indeed, in deriving this condition we used only the Imk=0, one can choose any rotation anglellowed by the
behavior of the potential and the Riccati-Hankel functions afotential, includingg=0. In the resonance domain, however,
large distance$l,4]. Therefore, the Jost function for a sin- Where
gular potential can also be calculated by evaluating the func-
tion F7)(k,r) at a larger. When we are dealing with reso-
nances, i.e., working in the fourth quadrant of ky@ane, we
need to integrate Eq$7) along the turned ray10).

As can be seen from the WKB boundary conditighs),
the use of a complex near the origin, makeé& ,(k,r) oscil-

k=|klexp—i¢), ¢>0

the rotation angled must be greater or equal tp. If the
condition 8= ¢ is fulfilled, the value of the limi{8) does not
depend on the choice d@. This provides us with a reliable
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way to check the stability and accuracy of the calculations by TABLE I. Energies of the lowest resonances, in tfre 8 partial

comparing the results fdkr, (k) obtained with two different wave, for the Lennard-Jones potential with differént

values of 6.
From Eq.(22) it is clear that the angular momentum ap-  Ref.  This paper ~ CR8] QTD[8] FRSW[10]

pears only in the phase factor of the asymptotic behavior oP (cM™*) Epes (cM™!) Eeq (€M 1) Epes (€M) Epes (cm™?)

the Riccati-Hankel functions and hence of the regular solu-

tion. Therefore, the use of any compléxcannot change the 10 22

domain of thek plane where the limi{8) exists. This means 255

that the Jost function can be calculated, for any complex 20 24'5

angular momentum, using the same equations. Moreover, '

when looking for the Regge poles in theplane, the com- 25 22.90

plex rotation is not necessary because these poles correspond 30 21.193

to real energies. Locating Regge poles as zeros of the Jost 35 19.450 19.449 19.370

function in the complex” plane is easier than by calculating 40 17.6478 17.647 17.619 17.617

them via theS matrix using three integration patfis the r 45 15.7768 1s5.777 15.769 15.769

55 11.744242 11.744 11.744 11.743

D. Jost solutions 60  9.4943275 9.494 9.494 9.4934

By storing the values of &)(k,r) on the integration grid
one can also obtain the regular solution in the f¢&non the
interval [ 1 min.rmax]- It is noted that the use of the Riccati-
Hankel functions in Eq(5) guarantees the corre@n fact, as well as broad resonant statese, for example, Ref8]).

exac} asymptotic be_hawor of the_wave fun_ctlon. To locate them, any method employed must be pushed to the
The regular solution thus obtained consists of two terms,yireme. thus exhibiting its advantages and drawbacks

which is well known in atomic and molecular physics. Com-
bined with a rotational barrier, this potential supports narrow

1 i To be able to compare our results with other calculations,
Eh(/+)(l<r)F(/+)(l<,r) — = sex+i(kr—/ w217 (k*), we chose the parameters in Eg4) to be the same as those
r—o used in Refs[8,10], namely,d=3.56 A and withD varying
. _ from 5 cmi ! to 60 cml. The choiceD=60 cm ! to-
i - - 2
L) ) I e gether  with the conversion factor #</2u
p v (knFy (k,r)r:c+ 5 X ~i(kr=/m2)]1 (k). =8.7802375 cm'A 2 (which was used for all values of

_ D) approximately represents the interaction between the Ar
Asymptotically they behave like-e*'*" and thus at long atom and the K molecule[8].

distances they are proportional to the commonly u3est In Tables | and Il the energies and widths of the first
solutionsf(f)(k,r) for which resonant states in the partial wax¥e=8 are presented for
different values ofD. The results obtained with three other
(k) — h{I(kr). (23)  methods described in Refg8,10] are also given. The digits
r—e shown there are stable under changes of the rotation angle

and thus they indicate the accuracy achieved. The third col-
umn of these tables, contains the results obtained in[REf.
using a complex rotatiofCR) method, which in some as-

In practice, the Jost solutions can be calculated, via(&y.
by integrating Egs(7) inwards from a sufficiently largey,.x
with the boundary conditions,

TABLE II. Widths of the lowest resonances, in the=8 partial

FOOK P mad | [2
O T =] for 190 al with di
F(/_)(karmax) 0 M W), wave, for the Lennard-Jones potential with differént
F(+)(k ) 0 Ref. This paper CR8] QTD[8] FRSWIJ10]
(/ ) T :[ fOI’ f(/_)(k r) D (Cm_l) Fres (Cm_l) 1_‘res (Cm_l) l_‘res (Cm_l) I‘res (Cm_l)
FS(k,r 2 ’ o
/ ( ’ max) 5 60
which obviously comply with the definitiof23). The advan- 10 42
tage of such an approach is that at largal the oscillations 15 29.4
of f*)(k,r) are described exactly by the Riccati-Hankel 20 24.8
functions while the function§(*)(k,r) are smooth. 25 18.63
30 13.70
IIl. LENNARD-JONES POTENTIAL 35 9.724 9.727 10.228
40 6.533 6.536 6.604 6.603
In order to evaluate the accuracy and efficiency of our 45 4.039 4.039 3.992 3.990
method we apply it to the Lennard-Jones potential, 50 21833 2183 2143 2142
55 0.93915 0.939 0.926 0.926

(24) 60 0.264474 0.264 0.263 0.263

ool "4
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pects is similar to ours. The authors of that reference perform TABLE IIl. Parameters of the two versions of the AZide-*He
the rotation directly in the Schdinger equation and inte- potential.
grate it fromr =0 outwards and from a largg,,, inwards.

At the origin they use the WKB boundary conditions and at ~ Parameter HFDHE2 HFD-B

rmax they start from the Siegert spherical wave. In other e (K) 10.8 10.948

words, the wave function is calculated using physical bound- (R 20673 2063

ary conditions. In such an approach a resonance corresponds " 54'4850 4 184'431 o1

to a complex energy, which matches the inward and outward 13 3533é4 10 43325537

integration. As indicated in Ref8], this method fails for ' :

broad resonances due to instability in the outward integra- A 0 227965105

tion. In the fourth column the results obtained in R] Ce 1.3732412 1.36745214

using the quantum time dela®TD) method are cited. This Cs 0.4253785 0.42123807
Cio 0.178100 0.17473318

method is expected to be reliable for narrow resonances but
its applicability to broad states is questionable. Finally, in the B 1.241314 1.4826
last column of Tables | and Il we give the results obtained in
Ref. [10] using the finite range scattering wavERSW)
method. The main idea of this method is based on the fact ) Ce Cg Cyp
that while the scattering wave function cannot be expanded V() =g| Aexp(—al—BL") —| —+ —+—|F() |,
properly by a finite number of square integrable functions on & &

L ~ . . (25
an infinite range, it is possible to do so for a finite range.

The test calculations show that our method works well, )
especially for narrow resonances. Broad resonances can also 3 exd —(B/{—1)?] if {<B
be located. In contrast to the CR method of Ré&f, which F(O)= 1 if {>B,
was unstable for broad resonances corresponding to
<35 cmi !, we succeeded even in the caseédoE5 cm 2,
which generates an extremely broad stétewidth is greater
than the resonance energy by a factor pfQur results for S )
small values oD, reproduce well the curve depicted in Fig. but with different choices of the parametésee Table II).
3 of Ref. [8] which was produced semiclassically. The The only principal difference in the functional form between
greater stability of the Jost function method as compared téhem is the absence of the Gaussian tei+0) in the
the CR method of Ref8] can be attributed to the use of the HFDHEZ2 potential.
ansatz(5) for the regular solution. The Riccati-Hankel func- ~ Formally, the HFDHE2 and HFD-B are regular potentials
tions, explicitly extracted there, describe correctly all oscil-Since the presence of the cut-off functiéiiZ) in Eq. (25)
lations at large distances with the remaining functiéis’ ~ makes them finite at=0,
being smooth. Another reason for this stability is the use of
the deformed integration path shown on Fig. 1, which en- V(r) — gA. (26)
ables us to avoid fast oscillations at short distances. r—0

I=rlry,

However, the productA is very large 10°) as compared
with the values of the potential in the attractive region. This
The model potential considered in the previous sectioncauses numerical instabilities when one tries to solve the

though of typical form for intermolecular interactions, doesSchralinger equation using methods designed for regular po-

not describe any real physica| system. To give a more pradentials. To avoid this difficulty, we notice that like in the

tical example, we apply our formalism to study the interac-case of singular potentials the fast growth of the repulsion

tion between twd'He atoms. This interaction is of interest in near the origin allows the use of the WKB boundary condi-

the Bose-Einstein condensation and superfluidity of heliuntions near =0. Indeed, the derivative of the potential in the

at extremely low temperatures. It is known that two heliumvicinity of this point,

atoms form a dimer molecule with binding energy of

~1 mK, but, to the best of our knowledge, the possibility of av agA

forming dimer resonances has not been investigated yet. o T T (27)
The search for a realistiéHe-*He potential is a long- -0 m

standing problem in molecular physics. The earliest success-

ful potential of the Lennard-Jon@L-6) form was fitted just is of the same order of magnitude ®s which makes the

to reproduce the second virial coefficient. Later on somglerivative of the local wavelengiti4) very small because of

other characteristics of helium gas, such as viscosity, werthe largeA,

included into the fitting(for a more detail review see Refs.

[11,12). Nowadays, the potentials suggested by Agial.

IV. AZIZ POTENTIALS

are considered to be realistic. Therefore, in this section, we |d\/dr| — , (28)
apply our method using two versions of these potentials, r—0 21

namely, the HFDHEZ11] and the HFD-B[12] potentials. 25 ;"\ [——eA

They can both be described using the same analytical form, h?
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TABLE IV. Binding energies of‘He, diatomic molecule for the Im#¢ e
two versions of the Aziz potential. P
“'/F .... /_,/"
“He-*He binding energymK) 19 e
Ref. HFDHE2 HFD-B =
This paper 0.8301249029 1.6854110471 -
[13] 0.8301 1.6854 04 . , . .
[12] — 1.684 0 1 2 3 Reft
. . 2. Regge trajectory for the -B potential. Closed circles
[14] 0.830 - FIG. 2. R jectory for the HFD-B potential. Closed circl
[15] 0.829 - indicate bound and resonant states.
[16] 0.8299 -

in different on- and off-the-energy-shell characteristics of the

) o 5 scattering amplitude. To study this we located several zeros
where the conversion factof“/2u=12.12 K A?, corre-  of the Jost function in the momentum as well as in the
spondlng to the choice of thg units in Table _III, should beplane(Regge polesfor both potentials. Due to the absence
used. With the parameters given, formu8) gives 0.003  of 4 potential barrier there are no resonances inSheave

a_md 0.004 for the potentials HFDHE2 and HFD-B, respec-at least with a reasonably small wigitThey appear, how-
tively. These values ofd\/dr| are small enough to comply eyer, at higher partial waves, starting frofa=1. The ener-
with Eq. (12) and allow the use of WKB boundary condi- gies and widths of several such resonances are given in Table
tions. We can, therefore, apply the method described in thg They are the lowest resonant states in each partial wave as
preceding sections, to the potentials HFDHEZ2 and HFD-B agyey pelong to the same Regge trajectory, which starts from
if they were singular potentials. the ground state. The trajectories for the potentials HFDHE2

_To begin with, we tested the ability of our method to deal 34 HFD-B are practically indistinguishable and are shown
with this kind of potential by calculating the dimer binding ;, Fig. 2 by a single curve. Few points of this curve, which

energy. The results of these calculations are given in Tab'@orrespond to resonances, are also given in Table VI. It is

IV where, for comparison, we also cite the binding energieseen that, to all practical purposes, the position of the Regge
obtained in several earlier works. We present the values Oﬁoles are the same.

the binding energies with ten digits after the decimal point, aAg can be seen in Table V, in each partial wave the po-
which are stable under changes of the rotation angle. Since@nja| generates a broad resonance, which covers the whole
change of¢ makes Eqs(21) quite different(different depen-  |ow._energy region. This, together with the fact that the
dence ofh{*) andV on x), such a stability cannot be acci- hound-state pole of the amplitude is very closéte0, im-
dental but indicates that these values are correct. They are filies that the cross section at energies10°K
accord with recent calculations of R¢13] where the dimer (1073 ev) must be quite large.

binding energies were found to four decimal places via a
direct solution of the Schrdinger equation. While the han-
dling of such potentials in a traditional way requires much

Sﬁort rlewlardedtr?y Jonltyfa Iltrnlted at(r:]c%rac{xaubrlzh as I;OUI‘ We presented an exact method for calculating the Jost
ecimal place the Jost function method enables us to €aS5olutions and the Jost function for singular potentials, for

ily locate the spectral points with practically any desired ac-

This i ble b f tain f real or complex momenta of physical interest. We demon-
curacy. 1his 1S possible because our equations contain TunGyateq jn the examples considered, the suggested method is
tions that are smooth at large distances and the corre

) . e . gufficiently stable and effective not only in the case of true
asymptotic behavior of the regular solution is automa’ucallySingular potentials but also when a potential has strong
guaranteed. '

; . though finite, repulsion at short distances.
Itis seen that the potentials HFDHE2 and HFD-B support The method is based on simple differential equations of

a dimer bound state at energies which differ by a factor of 2, first-order, which can be easily solved numerically. Thus,

A ques_tion then_ari_ses_whether these potent_ials generate alfﬁ)e spectrum generated by any given potential can be thor-
quite different distribution of resonances which would resultOughly investigated. At the same time, physical wave func-

V. CONCLUSIONS

TABLE V. Energies and widths of the lowest resonant states

generated by the two versions of the Aziz potential in several partial TABLE VI. Regge poles corresponding to resonances generated

waves. by the two versions of the Aziz potential.
HFDHE2 HFD-B HFDHE2 HFD-B
/ E (K) I' (K) E (K) I' (K) E (K) / E (K) /
1 0.334 1.822 0.339 1.795 0.334 0.525-10.429 0.339 0.535i0.424
2 2.164 6.825 2.179 6.774 2.164 1.408-i0.778 2.179 1.416i0.773
3 5.930 15.195 5.963 15.098 5.930 2.294-11.065 5.963 2.308i1.060
4 11.954 27.196 12.005 27.000 11.954 3.182i1.332 12.005 3.19%i1.326
5 20.478 42.949 20.518 42.603 20.478 4.076-11.590 20.518 4.078i1.584
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tion can be obtained having the correct asymptotic behaviorconverges slowly17]. This slow convergence can be over-
When the potential has a Coulomb tail one can simply recome by allowing the angular momentum to become com-
place the Riccati—Hankel functions in the relevant equationplex valued, which allows the use of the Watson transforma-
by their Coulomb analogous,H!")(7,kr)=F,(7,kr)  tion. However, such a procedure requires the knowledge of
FiG (n,kr) [2]. In the case of a noncentral potential the the positions of the Regge poles.
Jost function as well as the differential equations assume a
matrix form with som'e.what more complicated, but still trac- ACKNOWLEDGMENTS
table boundary conditions at=0 [4].

The method is also applicable when the angular momen- Financial support from the University of South Africa, the
tum is complex. This enables us to locate Regge trajectorieSoundation for Research Developme(fRD) of South
as well. This could be useful, for example, in molecular scatAfrica, and the Joint Institute for Nuclear ReseafdiNR),
tering problems where the partial-wave series in many casd3ubna, is greatly appreciated.
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