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Jost function for singular potentials

S. A. Sofianos, S. A. Rakityansky, and S. E. Massen*
Physics Department, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

~Received 11 January 1999!

An exact method for direct calculation of the Jost function and Jost solutions for a repulsive singular
potential is presented. Within this method the Schro¨dinger equation is replaced by an equivalent system of
linear first-order differential equations, which after complex rotation, can easily be solved numerically. The
Jost function can be obtained to any desired accuracy for all complex momenta of physical interest, including
the spectral points corresponding to bound and resonant states. The method can also be used in the complex
angular-momentum plane to calculate the Regge trajectories. The effectiveness of the method is demonstrated
using the Lennard-Jones~12,6! potential. The spectral properties of the realistic interatomic4He-4He potentials
HFDHE2 and HFD-B of Azizet al. @Mol. Phys.61, 1487~1987!# are also investigated.
@S1050-2947~99!03607-0#

PACS number~s!: 03.65.Nk, 11.55.Hx, 34.20.Cf, 34.50.2s
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I. INTRODUCTION

A method for locating potential resonances and Re
trajectories, based on direct calculation of the Jost func
in the complexk plane, has recently been developed@1–4#.
Within this method, the bound, resonant, and scatter
states can be found by calculating the Jost solutions and
Jost function on the appropriate domain of thek plane. The
bound- and resonant-state energies, for example, can
found by locating the zeros of the Jost function on the po
tive imaginary axis and in the fourth quadrant, respective
At the same time, as a by-product of the Jost function ca
lation, one gets the physical wave function that has the c
rect asymptotic behavior.

The method, in the form developed in Refs.@1–4#, cannot
be directly applied to potentials, which are more singu
than 1/r 2 at the origin. A significant number of practica
problems, however, where the Jost function could be v
useful, involves such potentials. For example, interatom
and intermolecular forces at short distances are strongly
pulsive due to the overlap of the electron clouds, and t
they are usually represented by repulsive singular poten
such as the Lennard-Jones~12,6! one which has;1/r 12 be-
havior. It is, therefore, desirable to extend the Jost funct
method for potentials of this kind.

It is well known that attractive singular potentials do n
admit physically meaningful solutions with the usual boun
ary conditions@5#. All solutions of the Schro¨dinger equation
with such potentials vanish at the origin and there is no
parent way to determine the arbitrary phase factor betw
them. In contrast, repulsive singular potentials do not p
any problem regarding mathematical uniqueness or phys
interpretation. However, the integration of the Schro¨dinger
equation as well as of the relevant equations for the J
function, have inherent difficulties resulting from the fa
that the singularity of the potential makes ther 50 an irregu-
lar singular point of the equation. In particular, the regu
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solution cannot be defined by universal boundary conditi
independent of the potential.

This drawback, stemming from the extremely strong
pulsion near the origin, can fortunately be tackled by t
WKB approximation, which provides the correct radial b
havior of the wave function in the neighborhood of the po
r 50 @6#. Therefore, starting with the WKB boundary cond
tions, one can find the regular solution by integrating t
Schrödinger equation fromr 50 to some intermediate poin
r 5r int . Then the equations for the Jost function can be in
grated, fromr int outwards as for the nonsingular potenti
using the boundary conditions atr 5r int , which are ex-
pressed in terms of the regular solution and its first deri
tive.

The paper is organized as follows: In Sec. II our form
ism is presented and is tested in Sec. III using an exam
known in the literature; in Sec. IV the method is applied
realistic interaction between helium atoms. Our conclusio
are drawn in Sec. V.

II. THEORY

A. Basic equations and definitions

There are three different types of physical problems as
ciated with the Schro¨dinger equation (2m/\251),

@] r
21k22l ~ l 11!/r 2#ul ~k,r !5V~r !ul ~k,r !, ~1!

namely, bound-, scattering-, and resonant-state proble
They differ in the boundary conditions imposed on the wa
function at large distances. Alternatively, a solution can
prescribed by the boundary conditions at the origin. In
case of regular potentials obeying the condition

lim
r→0

r 2V~r !50, ~2!

the solutionf l (k,r ) that vanishes nearr 50 exactly like the
Riccati-Bessel function,

lim
r→0

f l ~k,r !/ j l ~kr !51, ~3!r-
337 ©1999 The American Physical Society
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is called theregular solution. Since all physical solutions ar
regular at the origin, they differ fromf l (k,r ) only by a
normalization constant. Therefore, if the functionf l (k,r )
can be calculated at all real and complex momentak, one can
have, in principle, all solutions of physical interest in a mo
general form. For example, the calculation of the scatter
solutions on the realk axis is simply a matter of finding the
proper normalization forf l (k,r ) because the regular solu
tion has the correct behavior at larger for any k.0. In
contrast, to find the bound and resonant states where thek is
complex, one must ensure that the functionf l (k,r ) has the
proper physical asymptotic behavior, which exist only at c
tain points on thek plane. These spectral points can be fou
by many different ways, but perhaps the most conven
way to find them is by locating the zeros of the Jost functi

For any complexk, the regular solution at large distanc
can be expressed as a linear combination of the Ricc
Hankel functionshl

(6)(kr),

f l ~k,r ! →
r→`

1
2 @hl

(1)~kr ! f l
* ~k* !1hl

(2)~kr ! f l ~k!#, ~4!

where ther-independent but momentum-dependent coe
cient f l (k) is the Jost function. From the asymptotic for
~4! it is clear that the zeros off l (k) on the positive imagi-
nary axis of the complexk plane correspond to bound stat
while those in the fourth quadrant correspond to resonan

In order to findf l (k), we look for the regular solution on
the whole interval@0,̀ ) in the form

f l ~k,r !5 1
2 @hl

(1)~kr !F l
(1)~k,r !1hl

(2)~kr !F l
(2)~k,r !#,

~5!

where the unknown functionsF l
(6)(k,r ) are subjected to the

additional condition,

hl
(1)~kr !] rF l

(1)~k,r !1hl
(2)~kr !] rF l

(2)~k,r !50. ~6!

Equation~1! is then transformed into an equivalent system
first-order equations,

] rF l
(6)~k,r !56

hl
(7)~kr !

2ik
V~r !@hl

(1)~kr !F l
(1)~k,r !

1hl
(2)~kr !F l

(2)~k,r !#. ~7!

In Refs.@1,4# it was shown that at large distancesF l
(2)(k,r )

coincides with the Jost function,

lim
r→`

F l
(2)~k,r !5 f l ~k!, ~8!

but this limit only exists when

Im kr>0. ~9!

If r is real, the condition~9! is only satisfied for bound and
scattering states but not for resonances. To calculatef l (k)
we, therefore, make a complex rotation of the coordinate
Eqs.~7!, in the first quadrant

r 5x exp~ iu!, x>0 0<u,
p

2
~10!
t
g

-
d
nt
.

ti-

-

s.

f

n

with a sufficiently largeu ~see Refs.@1–4# for more details!.
Such a rotation is only possible if the potential is an analy
function of r and tends to zero whenx→` for the chosen
angleu.

B. Boundary conditions

In the case of regular potentials the boundary conditio
for Eqs.~7! are very simple,

F l
(6)~k,0!51. ~11!

They follow immediately from Eqs.~3! and~5!, and the fact
that

1
2 @hl

(1)~kr !1hl
(2)~kr !#5 j l ~kr !.

Going over to singular potentials, Eq.~3! does not hold any-
more. Due to the extremely strong repulsion, the regular
lution vanishes much faster thanj l (kr) whenr→0. In fact,
it vanishes exponentially@7# and, therefore, the condition
~11! must be modified accordingly. In order to find the exa
behavior of the regular solution near the origin we apply
familiar semiclassical WKB method. Though the strong
pulsion makes things rather complicated, it has the advan
that the criterion of the applicability of the WKB approxima
tion is satisfied whenr→0. Indeed, the WKB method work
well when the local wavelengthl varies slowly, i.e.,

udl/dr u!1. ~12!

It can be shown@5# that this derivative is given by

udl/dr u5
1

2 UdV~r !

dr
@k22V~r !#23/2U. ~13!

Assuming thatV(r ) approaches its singularity nearr 50
monotonically, we can find anr min that for all r ,r min the
momentum in Eq.~13! is negligible, i.e., we may write

udl/dr u→
r→0

1

2 UdV~r !

dr
@V~r !#23/2U. ~14!

Whenr→0, the right-hand side of Eq.~14! for usual singu-
lar potentials tends to zero. For example, if

V~r !→
r→0

g/r n,

the condition~12! is always satisfied forn.2,

udl/dr u→
r→0

nr ~1/2! n21

2Ag
→0 if n.2.

Therefore, assuming that the necessary condition~12! is ful-
filled and choosing a small enoughr min , we can express the
regular solution on the interval@0,r min# using the WKB ap-
proximation~see, for example, Ref.@8#!, viz.

f l ~k,r !5
1

Ap~r !
expF i E

r

a

p~r!drG r P@0,r min#,

~15!
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where the classical momentump(r ) is defined by

p~r ![Ak22V~r !2~ l 1 1
2 !2/r 2 ~16!

and the upper limita in the integral is an arbitrary valuea
.r min . Usually a is taken to be the inner turning point@8#,
but it is obvious from Eq.~15! that an additional integration
from a to the turning point can only change the overall no
malization of the solution, which is not our concern at t
moment. Thus, Eq.~15! together with the derivative

] rf l ~k,r !5H dV~r !

dr
22S l 1

1

2D 2

r 23

4@p~r !#5/2
2 iAp~r !J

3expF i E
r

a

p~r!drG r P~0,r min#, ~17!

can be used as boundary conditions for the regular solu
of the Schro¨dinger equation at any point in the interv
(0,r min#. To obtain the corresponding boundary conditio
for the functionsF l

(6)(k,r ), we need to express them i
terms off l (k,r ) and] rf l (k,r ). For this we can use Eq.~5!
together with relation

] rf l ~k,r !5 1
2 @F l

(1)~k,r !] rhl
(1)~kr !

1F l
(2)~k,r !] rhl

(2)~kr !#, ~18!

which follows from Eq.~6!. From Eqs.~5! and~18! we find
that

F l
(6)~k,r !56

i

k
@f l ~k,r !] rhl

(7)~kr !2hl
(7)~kr !] rf l ~k,r !#,

~19!

which is valid for anyr P@0,̀ ). Therefore, Eqs.~19! taken
at some pointr ,r min with f l (k,r ) and] rf l (k,r ) given by
Eqs. ~15! and ~17!, provide us the boundary conditions, r
quired in Eqs.~7!, for singular potentials. It can easily b
checked@by using j l (kr) for the regular solution nearr
50] that Eq.~19! gives the correct boundary conditions f
regular potentials as well.

Alternatively, to impose the boundary conditions on t
functionsF l

(6)(k,r ) near the origin, one can simply solve th
Schrödinger equation from a smallr up to some intermediate
point b where, using Eq.~19!, theF l

(6)(k,b) can be obtained
and propagated further on by integrating Eqs.~7!.

C. Integration path

The use of more complicated boundary conditions ar
50 does not change the condition~9! for the existence of the
limit ~8!. Indeed, in deriving this condition we used only th
behavior of the potential and the Riccati-Hankel functions
large distances@1,4#. Therefore, the Jost function for a sin
gular potential can also be calculated by evaluating the fu
tion F l

(2)(k,r ) at a larger. When we are dealing with reso
nances, i.e., working in the fourth quadrant of thek plane, we
need to integrate Eqs.~7! along the turned ray~10!.

As can be seen from the WKB boundary conditions~15!,
the use of a complexr near the origin, makesf l (k,r ) oscil-
-

n

s

t

c-

latory from the outset. Although this does not formally cau
any problem, in numerical calculations such oscillations m
reduce the accuracy. To avoid this we solve Eqs.~7! from a
small r min to some intermediate pointb along the real axis
and then perform the complex rotation,

r 5b1x exp~ iu!, xP@0,̀ ! 0<u,
p

2
~20!

as is shown in Fig. 1. Therefore, on the interval@r min ,b# we
can use Eqs.~7! as they are, while beyond the pointr 5b
these equations are transformed to

]xF l
(6)~k,b1xeiu!56

eiuhl
(7)~kb1kxeiu!

2ik
V~b1xeiu!

3@hl
(1)~kb1kxeiu!F l

(1)~k,b1xeiu!

1hl
(2)~kb1kxeiu!F l

(2)~k,b1xeiu!#.

~21!

Though the complex transformation~20! is different from
Eq. ~10!, the proof of the existence of the limit~8! given in
the Appendix A.2 of Ref.@4# remains applicable here. In
deed, that proof was based on the fact that for Imkr.0 the
Riccati-Hankel functionhl

(1)(kr) decays exponentially a
large ur u, and thus the derivative] rF

(2)(k,r ) vanishes there
and the functionF (2)(k,r ) becomes a constant. Under th
transformation~20! the asymptotic behavior of the Riccat
Hankel function,

hl
(1)~kr ! →

r→`

2 i exp@ i ~kr2l p/2!#, ~22!

has only an additionalr -independent phase factor exp(ikb),
which does not affect the proof.

From the above, it is clear that we can identify the J
function f l (k) as the value ofF l

(2)(k,b1xeiu) at a suffi-
ciently largex beyond which this function is practically con
stant. In the bound- and scattering-state domain, wh
Im k>0, one can choose any rotation angleu allowed by the
potential, includingu50. In the resonance domain, howeve
where

k5ukuexp~2 iw!, w.0

the rotation angleu must be greater or equal tow. If the
conditionu>w is fulfilled, the value of the limit~8! does not
depend on the choice ofu. This provides us with a reliable

FIG. 1. Deformed contour for integration of the differenti
equations.
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way to check the stability and accuracy of the calculations
comparing the results forf l (k) obtained with two different
values ofu.

From Eq.~22! it is clear that the angular momentum a
pears only in the phase factor of the asymptotic behavio
the Riccati-Hankel functions and hence of the regular so
tion. Therefore, the use of any complexl cannot change the
domain of thek plane where the limit~8! exists. This means
that the Jost function can be calculated, for any comp
angular momentum, using the same equations. Moreo
when looking for the Regge poles in thel plane, the com-
plex rotation is not necessary because these poles corres
to real energies. Locating Regge poles as zeros of the
function in the complexl plane is easier than by calculatin
them via theS matrix using three integration paths~in the r
plane! as suggested in Ref.@9#.

D. Jost solutions

By storing the values ofF l
(6)(k,r ) on the integration grid

one can also obtain the regular solution in the form~5! on the
interval @r min ,r max#. It is noted that the use of the Riccat
Hankel functions in Eq.~5! guarantees the correct~in fact,
exact! asymptotic behavior of the wave function.

The regular solution thus obtained consists of two term

1

2
hl

(1)~kr !F l
(1)~k,r ! →

r→`

2
i

2
exp@1 i ~kr2l p/2!# f l

* ~k* !,

1

2
hl

(2)~kr !F l
(2)~k,r ! →

r→`

1
i

2
exp@2 i ~kr2l p/2!# f l ~k!.

Asymptotically they behave like;e6 ikr and thus at long
distances they are proportional to the commonly usedJost
solutionsfl

(6)(k,r ) for which

fl
(6)~k,r ! →

r→`

hl
(6)~kr !. ~23!

In practice, the Jost solutions can be calculated, via Eq.~5!,
by integrating Eqs.~7! inwards from a sufficiently larger max
with the boundary conditions,

FF l
(1)~k,r max!

F l
(2)~k,r max!

G5F2

0G for fl
(1)~k,r !,

FF l
(1)~k,r max!

F l
(2)~k,r max!

G5F0

2G for fl
(2)~k,r !,

which obviously comply with the definition~23!. The advan-
tage of such an approach is that at larger all the oscillations
of fl

(6)(k,r ) are described exactly by the Riccati-Hank
functions while the functionsF l

(6)(k,r ) are smooth.

III. LENNARD-JONES POTENTIAL

In order to evaluate the accuracy and efficiency of o
method we apply it to the Lennard-Jones potential,

V~r !5DF S d

r D 12

22S d

r D 6G , ~24!
y

f
-

x
r,

ond
ost

:

l

r

which is well known in atomic and molecular physics. Com
bined with a rotational barrier, this potential supports narr
as well as broad resonant states~see, for example, Ref.@8#!.
To locate them, any method employed must be pushed to
extreme, thus exhibiting its advantages and drawbacks.

To be able to compare our results with other calculatio
we chose the parameters in Eq.~24! to be the same as thos
used in Refs.@8,10#, namely,d53.56 Å and withD varying
from 5 cm21 to 60 cm21. The choiceD560 cm21 to-
gether with the conversion factor \2/2m
58.780 237 5 cm21Å 2 ~which was used for all values o
D) approximately represents the interaction between the
atom and the H2 molecule@8#.

In Tables I and II the energies and widths of the fi
resonant states in the partial wavel 58 are presented fo
different values ofD. The results obtained with three othe
methods described in Refs.@8,10# are also given. The digits
shown there are stable under changes of the rotation a
and thus they indicate the accuracy achieved. The third
umn of these tables, contains the results obtained in Ref@8#
using a complex rotation~CR! method, which in some as

TABLE I. Energies of the lowest resonances, in thel 58 partial
wave, for the Lennard-Jones potential with differentD.

Ref. This paper CR@8# QTD @8# FRSW @10#

D (cm21) Eres (cm21) Eres (cm21) Eres (cm21) Eres (cm21)

5 30
10 27
15 25.5
20 24.5
25 22.90
30 21.193
35 19.450 19.449 19.370
40 17.6478 17.647 17.619 17.617
45 15.7768 15.777 15.769 15.769
50 13.81980 13.820 13.819 13.818
55 11.744242 11.744 11.744 11.743
60 9.4943275 9.494 9.494 9.4934

TABLE II. Widths of the lowest resonances, in thel 58 partial
wave, for the Lennard-Jones potential with differentD.

Ref. This paper CR@8# QTD @8# FRSW @10#

D (cm21) G res (cm21) G res (cm21) G res (cm21) G res (cm21)

5 60
10 42
15 29.4
20 24.8
25 18.63
30 13.70
35 9.724 9.727 10.228
40 6.533 6.536 6.604 6.603
45 4.039 4.039 3.992 3.990
50 2.1833 2.183 2.143 2.142
55 0.93915 0.939 0.926 0.926
60 0.264474 0.264 0.263 0.263
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pects is similar to ours. The authors of that reference perf
the rotation directly in the Schro¨dinger equation and inte
grate it fromr 50 outwards and from a larger max inwards.
At the origin they use the WKB boundary conditions and
r max they start from the Siegert spherical wave. In oth
words, the wave function is calculated using physical bou
ary conditions. In such an approach a resonance corresp
to a complex energy, which matches the inward and outw
integration. As indicated in Ref.@8#, this method fails for
broad resonances due to instability in the outward integ
tion. In the fourth column the results obtained in Ref.@8#
using the quantum time delay~QTD! method are cited. This
method is expected to be reliable for narrow resonances
its applicability to broad states is questionable. Finally, in
last column of Tables I and II we give the results obtained
Ref. @10# using the finite range scattering wave~FRSW!
method. The main idea of this method is based on the
that while the scattering wave function cannot be expan
properly by a finite number of square integrable functions
an infinite range, it is possible to do so for a finite range

The test calculations show that our method works w
especially for narrow resonances. Broad resonances can
be located. In contrast to the CR method of Ref.@8#, which
was unstable for broad resonances corresponding toD
,35 cm21, we succeeded even in the case ofD55 cm21,
which generates an extremely broad state~its width is greater
than the resonance energy by a factor of 2!. Our results for
small values ofD, reproduce well the curve depicted in Fi
3 of Ref. @8# which was produced semiclassically. Th
greater stability of the Jost function method as compare
the CR method of Ref.@8# can be attributed to the use of th
ansatz~5! for the regular solution. The Riccati-Hankel fun
tions, explicitly extracted there, describe correctly all osc
lations at large distances with the remaining functionsF l

(6)

being smooth. Another reason for this stability is the use
the deformed integration path shown on Fig. 1, which
ables us to avoid fast oscillations at short distances.

IV. AZIZ POTENTIALS

The model potential considered in the previous secti
though of typical form for intermolecular interactions, do
not describe any real physical system. To give a more p
tical example, we apply our formalism to study the intera
tion between two4He atoms. This interaction is of interest
the Bose-Einstein condensation and superfluidity of heli
at extremely low temperatures. It is known that two heliu
atoms form a dimer molecule with binding energy
;1 mK, but, to the best of our knowledge, the possibility
forming dimer resonances has not been investigated yet

The search for a realistic4He-4He potential is a long-
standing problem in molecular physics. The earliest succ
ful potential of the Lennard-Jones~12-6! form was fitted just
to reproduce the second virial coefficient. Later on so
other characteristics of helium gas, such as viscosity, w
included into the fitting~for a more detail review see Refs
@11,12#!. Nowadays, the potentials suggested by Azizet al.
are considered to be realistic. Therefore, in this section,
apply our method using two versions of these potenti
namely, the HFDHE2@11# and the HFD-B@12# potentials.
They can both be described using the same analytical fo
m

t
r
-
ds

rd

-

ut
e
n

ct
d

n

l,
lso

to

-

f
-

,

c-
-

f

s-

e
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e
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,

V~r !5«FA exp~2az2bz2!2S C6

z6
1

C8

z8
1

C10

z10D F~z!G ,

~25!

F~z!5H exp@2~B/z21!2# if z<B

1 if z.B,

z5r /r m ,

but with different choices of the parameters~see Table III!.
The only principal difference in the functional form betwee
them is the absence of the Gaussian term (b50) in the
HFDHE2 potential.

Formally, the HFDHE2 and HFD-B are regular potentia
since the presence of the cut-off functionF(z) in Eq. ~25!
makes them finite atr 50,

V~r !→
r→0

«A. ~26!

However, the product«A is very large (;106) as compared
with the values of the potential in the attractive region. Th
causes numerical instabilities when one tries to solve
Schrödinger equation using methods designed for regular
tentials. To avoid this difficulty, we notice that like in th
case of singular potentials the fast growth of the repuls
near the origin allows the use of the WKB boundary con
tions nearr 50. Indeed, the derivative of the potential in th
vicinity of this point,

dV

dr
→

r→0
2

a«A

r m
, ~27!

is of the same order of magnitude asV, which makes the
derivative of the local wavelength~14! very small because o
the largeA,

udl/dr u→
r→0

a

2r mA2m

\2
«A

, ~28!

TABLE III. Parameters of the two versions of the Aziz4He-4He
potential.

Parameter HFDHE2 HFD-B

« ~K! 10.8 10.948
r m ~Å! 2.9673 2.963
A 544850.4 184431.01
a 13.353384 10.43329537
b 0 2.27965105
C6 1.3732412 1.36745214
C8 0.4253785 0.42123807
C10 0.178100 0.17473318
B 1.241314 1.4826
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where the conversion factor\2/2m512.12 K Å2, corre-
sponding to the choice of the units in Table III, should
used. With the parameters given, formula~28! gives 0.003
and 0.004 for the potentials HFDHE2 and HFD-B, resp
tively. These values ofudl/dr u are small enough to compl
with Eq. ~12! and allow the use of WKB boundary cond
tions. We can, therefore, apply the method described in
preceding sections, to the potentials HFDHE2 and HFD-B
if they were singular potentials.

To begin with, we tested the ability of our method to de
with this kind of potential by calculating the dimer bindin
energy. The results of these calculations are given in Ta
IV where, for comparison, we also cite the binding energ
obtained in several earlier works. We present the value
the binding energies with ten digits after the decimal po
which are stable under changes of the rotation angle. Sin
change ofu makes Eqs.~21! quite different~different depen-
dence ofhl

(6) andV on x), such a stability cannot be acc
dental but indicates that these values are correct. They a
accord with recent calculations of Ref.@13# where the dimer
binding energies were found to four decimal places via
direct solution of the Schro¨dinger equation. While the han
dling of such potentials in a traditional way requires mu
effort rewarded by only a limited accuracy~such as four
decimal places!, the Jost function method enables us to e
ily locate the spectral points with practically any desired
curacy. This is possible because our equations contain f
tions that are smooth at large distances and the cor
asymptotic behavior of the regular solution is automatica
guaranteed.

It is seen that the potentials HFDHE2 and HFD-B supp
a dimer bound state at energies which differ by a factor o
A question then arises whether these potentials generate
quite different distribution of resonances which would res

TABLE IV. Binding energies of4He2 diatomic molecule for the
two versions of the Aziz potential.

4He-4He binding energy~mK!

Ref. HFDHE2 HFD-B

This paper 0.8301249029 1.6854110471
@13# 0.8301 1.6854
@12# – 1.684
@14# 0.830 –
@15# 0.829 –
@16# 0.8299 –

TABLE V. Energies and widths of the lowest resonant sta
generated by the two versions of the Aziz potential in several pa
waves.

HFDHE2 HFD-B
l E ~K! G ~K! E ~K! G ~K!

1 0.334 1.822 0.339 1.795
2 2.164 6.825 2.179 6.774
3 5.930 15.195 5.963 15.098
4 11.954 27.196 12.005 27.000
5 20.478 42.949 20.518 42.603
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in different on- and off-the-energy-shell characteristics of
scattering amplitude. To study this we located several ze
of the Jost function in the momentum as well as in thel
plane~Regge poles! for both potentials. Due to the absenc
of a potential barrier there are no resonances in theS wave
~at least with a reasonably small width!. They appear, how-
ever, at higher partial waves, starting froml 51. The ener-
gies and widths of several such resonances are given in T
V. They are the lowest resonant states in each partial wav
they belong to the same Regge trajectory, which starts fr
the ground state. The trajectories for the potentials HFDH
and HFD-B are practically indistinguishable and are sho
in Fig. 2 by a single curve. Few points of this curve, whi
correspond to resonances, are also given in Table VI. I
seen that, to all practical purposes, the position of the Re
poles are the same.

As can be seen in Table V, in each partial wave the
tential generates a broad resonance, which covers the w
low-energy region. This, together with the fact that t
bound-state pole of the amplitude is very close tok50, im-
plies that the cross section at energies;10 °K
(;1023 eV) must be quite large.

V. CONCLUSIONS

We presented an exact method for calculating the J
solutions and the Jost function for singular potentials,
real or complex momenta of physical interest. We dem
strated in the examples considered, the suggested meth
sufficiently stable and effective not only in the case of tr
singular potentials but also when a potential has stro
though finite, repulsion at short distances.

The method is based on simple differential equations
the first-order, which can be easily solved numerically. Th
the spectrum generated by any given potential can be t
oughly investigated. At the same time, physical wave fu

s
al TABLE VI. Regge poles corresponding to resonances gener
by the two versions of the Aziz potential.

HFDHE2 HFD-B
E ~K! l E ~K! l

0.334 0.5251 i0.429 0.339 0.5351 i0.424
2.164 1.4081 i0.778 2.179 1.4161 i0.773
5.930 2.2941 i1.065 5.963 2.3031 i1.060
11.954 3.1821 i1.332 12.005 3.1911 i1.326
20.478 4.0701 i1.590 20.518 4.0781 i1.584

FIG. 2. Regge trajectory for the HFD-B potential. Closed circ
indicate bound and resonant states.
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tion can be obtained having the correct asymptotic behav
When the potential has a Coulomb tail one can simply
place the Riccati–Hankel functions in the relevant equati
by their Coulomb analogous,H l

(6)(h,kr)[F l (h,kr)
7 iG l (h,kr) @2#. In the case of a noncentral potential th
Jost function as well as the differential equations assum
matrix form with somewhat more complicated, but still tra
table boundary conditions atr 50 @4#.

The method is also applicable when the angular mom
tum is complex. This enables us to locate Regge trajecto
as well. This could be useful, for example, in molecular sc
tering problems where the partial-wave series in many ca
i-

y

r.
-
s

a

n-
es
t-
es

converges slowly@17#. This slow convergence can be ove
come by allowing the angular momentum to become co
plex valued, which allows the use of the Watson transform
tion. However, such a procedure requires the knowledge
the positions of the Regge poles.
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