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Photon statistics of a single atom laser
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We consider a laser model consisting of a single four-level or three-level atom, an optical cavity, and an
incoherent pump. Results for photon statistics for varying pump levels are obtained using a quantum trajectory
algorithm. In particular, we calculate the mean photon number, Fano faghich is the variance over the
mear). We examine that the behavior of the single-atom devicg, @lse fraction of spontaneous emission into
the lasing mode, is varied. Typical values consideregsfare 0.0k 3<1.0. We find that for large enough
lasing action, with properties similar to those predicted by semiclassical theories that factorize atom-field
correlations and use a small-noise approximation, can occur. Squeezing can ogdsriasreased. There is
no evidence of a sharp phase transition from weakly excited thermal light to coherent light at a particular pump
power. This is consistent with work on many-atom lasers itvalues in the range considered here. As
increased, the output goes from quasithermal light to coherent and finally to squeezed light, progressing into a
fully quantum-mechanical regime. We also consider the effects of cavity damping and spontaneous emission
rates on these resul{sS1050-29471@9)06510-3

PACS numbs(s): 42.50.Ar, 42.50.Dv, 42.55:f

[. INTRODUCTION may correspond to trapped atoms in a cavity, or perhaps an
exciton in a quantum dot. In the latter case, many-body ef-
Recently it has become clear that cavity QED effects sucfiects must also be considered. The former case may be ap-
as enhancement and suppression of spontaneous emiss@i®ximated by dropping cold atoms from a magneto-optical
lasers m|ght be used to fa\/orab|y alter device prope[ﬁég trap, vyhere a cavity transit time is on the order of hundreds
Typically, the enhancement or suppression of spontaneol lifetimes [7.8]. . _
emission is accomplished through a reduction of the size of A number of authors have shown that the light emitted by
the device. In a cavity of transverse dimension less than haft Single, pumped atom placed into an optical cavity should
a wavelength, spontaneous emission to nonlasing modes exhibit char_acterlstlcs similar to tha_t emitted b_y macroscopic
suppressef]. A decrease in cavity-mode volume increaseslasers prowded.that.Jaynes-Cummlngs coupling bgtween the
coupling to the lasing mode. We refer to such devices agtom and the field is large enough, and that a single-atom
microcavity lasers. The reduction in size is also driven by daser may emit amplitude squeezed li¢@t10,11. We con-
desire to have many such devices etched on a semicondudtoue those investigations with a systematic description of
ing wafer, in some sort of hybrid electro-optical computer. the output properties of a single atom laser as a function of
A key parameter for microcavity lasers g the fraction B- A quantum trajectory appro.ach |s_used for numerical con-
of spontaneous emission into the lasing mode. In the limi¥enience. We begin with a brief review of the quantum tra-
that 8 tends to unity, the gain medium is coupled only to onel€ctory method in Sec. Il. Section Il deals with the details qf
mode, the lasing mode. Hence, pump energy leaves thr@e four-level Iaser.model, and results for the photon statl_s—
atomic system in the form of photons in the cavity modetics are pre_se_nted in Sec. V. T_he three-level system and |t_s
which then exit the cavity through an output coupler. ThePhoton statistics are discussed in Sec. V, and we conclude in
input-output curve is thus linear with no abrupt transition S€C- V1.
from a nonlasing to a lasing state. This behavior has led to
proposals for “thresholdless” lasef8], and a long discus- IIl. QUANTUM TRAJECTORY THEORY

sion about the locatiofor even existengeof a lasing tran- We outline below the general quantum trajectory method
sition akin to that described by DiGiorgio and Scully for jn the form developed by Carmichafd2]. Other formula-
“ordinary” lasers[4] in these devices. Recent studies of thetjons also exis{13,14, but this one is most direct for our

photon statistics of higig devices have illuminated the dif- ,;1h0ses. Our system is described by a master equation that
ference between various regimes of operation for a microggn pe written in the general Lindblad form

cavity lasel5,6]. This work has been mainly concerned with

many-atom systems. In this paper we investigate a single- i ~ A A A
atomylaser, ar>1/d the effect of ga\ﬁty QED condi?ions on sugch p= _'[HS’P]“LEj: (CipCj —3C{ Cip—2pC Cy),

a device. We emphasize that these single-atom lasers differ (1)
from micromasers/microlasers where atoms in the excited A

state are deposited in the cavity in some manner and themhere the terms involving the€; (which are sometimes
exit the cavity at some later time. The devices we considecalled collapse operatgrgescribe the system-reservoir cou-
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pling. Formally, the master equation can be writjeal p. '—v [4)
The simulation equations can be generated by first identify- s 13)
ing terms that can be written as commutators or anticommu-
tators. These terms can be represented by a wave function r g ™ ¥
undergoing a Schroedinger equation evolution using a non- 12
Hermitian Hamiltonian. The remaining terms identify the su-
peroperatoiS ___éi‘. 11)
Sp=2 éjpér . (2 .
i
The parts of the master equation that can be written as com- 135
. . Y
mutators or anticommutators are then written as s 1 lg\ N
i r [2) /
(L=9)p=—+[Hs.p]+[Hp.pl, - '
1)
i i .
=— g[HS,p]— g[lﬁHD ] FIG. 1. Schematic diagram of a single four-level atom in a cav-

ity with an incoherent pump, and level 4 adiabatically eliminated.
i For the four-level systemy;;’s are spontaneous emission rates from
=— g[Hs_ intHp,p]*, 3 leveli toj, andI’’ is a pump rate. For the three-level systErs an
effective pump ratey is the spontaneous emission rate on the lasing
transition, andy; is the spontaneous emission rate from the lower
lasing level. For both systems,is the cavity decay rate arglis the
atom-field coupling strength.

where

HD:%éréja (49)
_ Cilee(D)
[A,B], =AB+BA, (4b) () — ) , (8)
)= 018 &l
[A,B]*=AB—B'A". (4¢)

representing the action & and subsequent normalization.
A quantum trajectory is associated with a stochastic waverhis unraveling of the master equation corresponds to direct
function|y(t)) that is conditioned upon a history of obser- detection of photons and is a natural one to use when one
vations recorded by ideal detectors that are capable of deteaiishes to determine the photon statistics of the field. In our
ing every photon emitted by the system. Ngwit) is related  case we will have several collapse processes, and our wave
to |c(t)) by function will be conditioned on various sets of perfect pho-
todetectors, one detecting photons emitted from the cavity,
p(t) = ()W (V)] (5) one detecting fluorescence out the side of the cavity at the
frequency of the laser transition, and so on. The connection
Here, the overbar represents an ensemble average over magtween this unraveling and others based, for example, on
trajectories. The time evolution dij.(t)) determines the homodyne detection is well elucidated in the article by Wise-
instantaneous rates of random photon detection at the idegdan[13]. The approach discussed above can be generalized
detectors, to absorption events in the case of an incoherent pumping
o mechanism, as we will use here.
r(0)=(¥e(D|C5 Cif e(D)). (6)

If no photon is detected, the conditioned wave function is
propagated forward in time by a non-Hermitian Hamiltonian,  In our model we adiabatically eliminate the upper atomic

Ill. SINGLE FOUR-LEVEL-ATOM LASER

H=Hs+i#iHp, so that level by assuming that the transition rate from it to the upper
. state of the lasing transition is much larger than the other
ih’/ (1)) = ﬂw (1) ) rates in the model. A schematic diagram of the system is

dt'"° f e shown in Fig. 1. The wave function is written using the

atomic-state, cavity-photon-number-state basis. In our nu-
Since the evolution doesn't preserve the nornhf(t)), we  merical work, the cavity-photon-number states are typically
normalize the wave function at each step. The temporal evaruncated at 100. The atomic raising and lowering operators
lution is performed on the computer in small time steps viaare denotedyr;;=|j)(i|. Thus,o, is a raising operator and
| ho(t+At)y=e  (/MHAY g (1)) ~[1—(IHAt/A)]|o(t)). 0,1 is a lowering operator. The cavity field operators are the
The times at which the photon emissions occur is determineboson annihilationa, and creationa’, operators. A single
in Monte Carlo style using the rateg(t). The probability of  cavity mode is resonant with the atomic lasing transition
an event occurring int(t+At)] is r;(t)At. Each emission whose interaction is described by the rotating wave, dipole
event entails a wave function collapse, approximation, Jaynes-Cummings Hamiltonian
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He=i ﬁg(a’fggz_ aoys). 9 time At are found using the rates of collapse given by &4.
and the wave function Eq11) to be
We begin with the master equation in the Born-Markoff ap-

proximation, -
Pi=7AtY, |Agl (149
n=0
=i r
p=7[H5,p]+K(Zapaf—afap—paTa)+ 5(20'13;)0'31 "
) Po=yiAL Y |Agl?, (14b)
— 0310130~ pO31013) + 5(2032P023_023(732P
Vi Pa=T ALY A% (149
—pOa03) ?202113012_0120219_10012‘721)' (10 n=0
whereg is the Jaynes-Cummings dipole coupling rate to the Py=2kAt Y, n(|Ap2+|Ag,2+|Asn?). (140
n=0 ' ' ’

cavity field, I" is the pump ratey is the radiative decay rate
for the |3)—|2) transition, y; is the radiative decay rate for
the|2)—|1) transition, and  is the cavity energy-loss rate.
Usually we will considery; much larger thary, and refer to

v; as the fast decay rate. The incoherent pump is modeled by

The non-Hermitian evolution of the conditioned probability
amplitudes is given by

. . ! . r
coupling levels 1 and 4 to a heat reservoir at a large negative Aip=—|5+tnk|Aqn, (15a
temperaturd 15]. 2
In the quantum trajectory formalism, we will take the con-
. . : Vi
ditioned wave function to be Apps1= —(7+(n+1);< Asni1tg /_n+1A31n,
- (15b)

[e()= 2, Asp(D)e™Erl|1n)+ Agp(t)e™ F22)
A3,n: -

Y —
+A3’n(t)efiE3vnt|3,n>. (11) §+nK)A3,n_g n_l—l'AZ,nJrl- (15C)

Here, theE; ,=nfiw+E; are the energies of the joint atom- Let us consider what happens whepis the fastest of all the
field eigenstates in the absence of the interaction. Here, rates (s> v,0,«,I'). In this case the amplitude associated
denotes the atomic state anddenotes the photon number. with the lower lasing state relaxes to steady state very rapidly
The A, ,, are the conditioned probability amplitudes associ-so that Eq(15b) can be solved in steady state and the result
ated with these states. The non-Hermitian Hamiltonian is used in Eq(158. We find

2

o . Y g
HD:h(w—iK)aTa+hw?Z+hw12+iﬁg(aT032— a0y Agn=—|5 Nk |Agn— K(nT)Jr%/Z(nJr DAins1-
(16)
Y .z T _ .
~ih 5 0905 1h 5 0100~ i 5 051013, (120 This form allows us to deduce the spontaneous emission fac-

tor B. With n=0, we may identify the first term as sponta-
wherefiow is the energy of a photon produced in the |asingneOUS emission into the nonlaSing mOdeS, and the second
transition (3—2) ando, is the usual Pauli operator for the term as spontaneous emission into the lasing mode; hence,
lasing transition. We have also defined=E,/# andS  We have
=|1)(1] as the energy and population operator of level 1. 2
The collapse processes are chosen, in accordance with - 297 vy (17)
Egs.(2) and(3), and master equatiofi0) to be 29° yi+ yl2

S Note that we have ignored compared toys/2 in arriving at
Ci= oz, 133 i expression. This expression is consistent with a calcula-
o tion of the spontaneous emission rate into the cavity mode
Co= \/7“721' (13D using Fermi’s golden rule; the transition rate is given by the
~ square of the matrix elemefg) times the density of states
Cs=\Toys, (139  [inverse bandwidtk (;/2)"1]. This is the numerator g8,
while the denominator is the total spontaneous emission rate
64: 2ka. (130 (29%/y¢+ y/2), where the latter term is the spontaneous

emission rate out the side of the cavity. Outside the good-
These represent the following four processes: spontaneowswvity limit the spontaneous emission factor would take the
emission or3) to |2) to noncavity modes, spontaneous emis-form B=[2g%/(ys+2«)1/[29%/ (ys+2k) + y/2].
sion on|2) to |1) to all modes, incoherent pumping, and  We typically ran the code for 10000 atomic lifetimes,
cavity decay. The corresponding probabilities of collapse inwith a time step chosen as one hundredth of the inverse of
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FIG. 2. Behavior of the Fano factor as a function of the pump
. . 0 1 1 |
for a macroscopic laser. Note that @sincreases the peak gets 0 5 10 15 20
smaller and wider.
(a) T'ly

the fastest rate in the problem. A separate random number

was used to determine whether one of the four collapses 4

occurred in a time steplt. In the rare case that multiple

collapses might occur in a given time step, we randomly pick

one. There are other methods for dealing with this, but they

all become equivalent for small time steps. 3
Note also that the Eqq15) are coupled only to each

other. So during the non-Hermitian evolution, we need only

propagate 3 quantities instead ofr8 Collapses increase or

lower the photon number index This is due to the incoher- <n>

ent nature of the pump and decay processes, which are col- 2r

lapse processes in this formalism.

IV. PHOTON STATISTICS OF THE FOUR-LEVEL LASER
1k

We calculate a number of physical quantities of interest
including the average intracavity photon number,
(ny=(ycla'alye), (18) ,

0 1 s 1 . 1 R I R

and the Fano factdf (photon number variance/mean 60 02 04 06 08 1.0

2 _/\2 () iy
n n
F= w=l+(n>[g(2)(0)—1]. (19 _
(n) FIG. 3. (a) Mean photon number versus pump for various values

of B for large pumps. For all plotsy;/y=10.0 and«/y=0.1.
Here, g'®(0)=(a'a’aa)/(a'a)? is the usual second-order Curves are from bottom to topg=0.1, 8=0.2, =0.3, 3=0.4,
intensity-correlation function. We examine these as a funcg=0.5, 3=0.6, 3=0.6, 3=0.7, 3=0.8, 8=0.9. (b) Mean pho-
tion of pump ratel” for different values ofB/y, «/y, and  ton number versus pump for various values@ofor small pumps.
vily. For purposes of comparison, Fig. 2 shows a typicalFor all plots,y;/y=10.0 and«/y=0.1. Curves are from bottom to
Fano factor vs the pumping-rate plot for a conventional smaltop; 8=0.1, 3=0.2, 3=0.3, 3=0.4, 3=0.5, 3=0.6, 3=0.6, 8
B laser. The large fluctuations at the threshold pump value=0.7, 3=0.8, 5=0.9.
(I'yy) are indicative of a well-defined phase transition. We
begin by examining the average photon number versus pumipvel |4). For small pump values, the mean photon is propor-
rate in Figs. 8) and 3b); the latter figure is an enlargement tional to the pump rate, independent &f
of the small pump regime of the former. In these figures we We next consider the Fano factor as a measure of the
see that the photon number rises with the pump and thefiuctuations in the photon number in Fig. 4. F®+=0.3, we
saturates at a very small value for large pump rates. This isee findF=1 for essentially zero pump, and then rises to
true for smaller values gB as well. As this is a single-atom some value and saturates. This is indicative of the behavior
device, it does no good to pump at a rate faster than thér smallerg as well, although the asymptotic value for large
fastest decay rate, which acts as a bottleneck. Until the atoppumps is smaller. A$3 is increased to 0.5 we observe the
makes the transition fror2) to |1), it cannot be reexcited to Fano factor showing a peak and then dropping back to unity.
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FIG. 4. Fano factor versus pump rate for various valueg.of
For all plots, y¢/y=10.0 and«/y=0.1. (i) 8=0.1, (i) 8=0.3,
(i) B=0.5, (iv) B=0.7, and(v) =0.9.

This small fluctuation peak is all that remains of the peak
depicted in Fig. 2 for macroscopic lasers. Please note that the
maximum value of the Fano factor occurs well after the
mean photon number is greater than 1. In most lasers, these
features occur at the same pump rate. In fact, either criteria
has been used to local&,, for macroscopic lasers. It has F
been proposed that the pump rate at whioh=1 be the
threshold pump ratgl6]. Clearly these criteria lead to dif-
ferent thresholds for the single-atom laser considered here.
What is the correct criteria to use? When is this device a
laser? We can determine no pump rate at which an infinitesi-
mal change in pump switches the device from a nonlasing
state to a laser. We see that different criterion for determin-
ing the threshold pump, which give the same result for small
B lasers, yield different values when applied to lagjesers N L . L
as discussed by Rice and Carmichggl At high 8 values, 0 10 20 30 40
one is not in the thermodynamic limit and one does not ex-
(b) I'ly

pect a sharp threshold, no matter how many atoms form the
gain medium. Here in the single-atom device we see a F|G. 5. (a) Mean photon number vs pump rate wjgh=0.8 and
smeared out remnant of the phase transition predicted fof/y=0.1 for variousy;. We have labeled curves b§) y;/vy
many-atom lasergs]. =1.0, (i) y¢/y=5.0, and(iii) y;/y=10.0. (b) Fano factor vs

IncreasingpB to around 0.7 leads to a very small peak in pump rate with3=0.8 and«/y=0.1 for variousy;. We have
the Fano factor, and an asymptotic value less than one, indiabeled curves by(i) y;/y=1.0, (i) y;/y=5.0, and(iii) y;/y
cating antibunching as first predicted by Mu and SaJ&je =10.0.
For B values greater than 0.8 or so, the Fano factor is 1 for
small pumps and decreases to a value slightly above 0.88nd Savag¢9], this is essentially a single-atom effect, and
This photon antibunching or number squeezing is analogougersists in the limit of a one-atom laser.
to that observed by several groupls7—2Q in many-atom We now examine the dependence(iof andF on y¢, the
lasers. In that work, the number squeezing was observed intgansition rate out of the lower lasing level. In Figabwe
regime of strong pumping and fast decay rates connectinglot the mean photon number versus pump for a variety of
nonlasing levels. The maximal antibunching predicted herg/alues ofy; (with 3=0.8 and«/y=0.1). As noted earlier,
is similar to that predicted in the many-atom systems. Thighe mean photon number saturates at pump rates comparable
antibunching occurs due to an effective pump regularizationto ys. In Fig. 8b), we plot the Fano factor versus pump for
as the atom rarely lingers in a given state, but is excited and variety of values ofy;/y. We see that for small values of
decays in a more regular fashion, giving rise to a rather reguy;/y, the Fano factor starts near unity and rises to an
lar sequence of photon emissiph7—20. As noted by Mu  asymptotic value of 1.3, indicating photon bunching. As
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FIG. 6. (&) Mean photon number vs pump rate wjg+= 0.8 andy; /y=10.0 for variousk. We have labeled curves ) «/y= 1.0, (ii)
x/y=0.1, and(iii) «/y=0.01. (b) Fano factor vs pump rate witf=0.8 andy;/y=10.0 for variousk. We have labeled curves )
«ly=1.0, (i) x/y=0.1, and(iii) x/y=0.01. (c) g'®(0)—1 vs pump rate with3=0.8 andy;/y=10.0 for variousk. We have labeled
curves by(i) x/y=1.0, (i) «/y=0.1, and(iii) «/y=0.01.

vil7y is increased, we see that the Fano factor decreasgmimp for a variety of values ot. It is seen that decreasing
initially from 1, indicating antibunching, but then rises to an increases the intracavity photon numbgn), is proportional
asymptotic value above 1. Finally, as we makdy on the to 1l/k as expected. In Fig.(b) we see that the Fano factor
order of 10 or more, we see a small peak in the Fano factareaches a smaller minimal value for largerin Fig. 6(c),
for very small pumps, dropping to a value of about 0.85, anchowever, we see that the amount of antibunching as mea-
then reaching 1 for large pumps. Here in the single-atonsured by the second-order intensity-correlation function
system, ify; is small, there are essentially two independentg®)(0)—1=1/n) (F—1) is actually greater for larger cav-
Poisson processes that contribute to the noise, the fast traity decay rates. A reduction in antibunching is not surprising
sition and the pump. Ify; is large, then the atom very for a better cavity, as the field fluctuations are essentially
quickly relaxes to the ground state after emitting on the lasaveraged out. Photons leak out of the cavity in a Poisson
ing transition, and so the only noise is the random nature oprocess determined by the cavity decay rate for a good cav-
the pump, resulting in reduced fluctuations. ity. In a bad cavity, they are emitted and basically leave the
In Fig. 6(a), we plot the average photon number versuscavity at the first encounter with the mirror. Hence, the bad-
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Here,fiw is the energy difference between the lasing levels.

I3 )1 There are now three collapse operators,
Ya2 X o
rl |2 ‘y —_— C,= m(r_ , (233
Y2 -
iy ‘ Co=\yi0+, (230)
. Cs=2«a. (230

These correspond to spontaneous emission events out the
side of the cavity, incoherent pumping events, and photons

r12) exiting the output mirror. The associated probabilities for
K these events in a timat are
r g Y —_—
4
- |1> P]_:’ylAtzo |Be,n|21 (243)
n:

FIG. 7. Schematic diagram of single-atom three-level laser. For
the three-level systemy;;’s are spontaneous emission rates from P,= YTAIE |Bg.nl%, (24b
leveli to j, I'' is a pump rate. For the two-level systdmis an n=0
effective pump rate ang is the spontaneous emission rate on the
lasing transition. For both systemsjs the cavity decay rate argl
is the atom-field coupling strength.

o0

P3=2kAt Y, n(|Bgnl2+|Benl?)- (240
n=0

cavity system preserves the regular emission of the photonEhe probability amplitudes obey the following equations of

by the atom, leading to larger antibunching. motion:
V. SINGLE-ATOM THREE-LEVEL LASER Bgn=— %HIK Bgnt9vVNBen 1, (259
The level structure for this system is depicted in Fig. 7.

This system is described by the master equation . o

Ben-1=— ?"_nK Be,n—l_g\/ﬁBg,n- (25b)
. Yl
P:W[HS’P]JFK(ZaPaT_aTap_PaaT)Jf?(Z‘LP‘H In this system, the spontaneous emission fagtdnas the
form
71

—0,0_p—po,o_)+ 7(20+p07—070+p B 29°/(y,+v¢) 28

—po_0y). (20)
Note thatg is pump-dependent. In the limit of small pumps
Here, k is the cavity decay rate as before, amd are the and small coupling, this becom$4g2/yl However, for
usual Pauli raising and lowering operators. The spontaneodarge pumps the value tends towargs=4g? Iy vy, in-
emission rate out of the cavity ig and the incoherent pump versely proportional to the pump strength, and tending to
rate is given byy, . In our quantum trajectory simulations, zero in this limit. A plot of photon number versus pump is

we use the following wave function: shown in Fig. 8a). Here, we seén) increases as the pump is
increased, and then declines dramatically as the pump is fur-
- _ _ ther increased. This has been discussed by Mu and Savage
le(t))= EO Bg.n(t)e Ean'|g,n)+Be n(t)e 'Fenl|e,n). [9] in terms of dephasing of the atomic dipole. Here we can
i

see that it is a manifestation of the pump dependenggiof
the language of microlasers, and a reduction of spontaneous
emission into the lasing mode. From the quantum trajectory
point of view, it is obvious that a large incoherent pump rate
is constantly “collapsing” the atom into the excited state,
9hd hence no atomic polarization is ever generated, and
hence no coupling to the lasing mode, in keeping with the
original discussion of Mu and Savaf@. A plot of the Fano
factor, Fig. &b), indicates a fluctuation peak as the laser
turns on, and then a broad fluctuation peak associated with
turn off of the laser. Figure(8) exhibits the trapping of the
Y M atom in the excited state for strong incoherent pumps, which
ih—~o,0_—ih—so_0o,. (22 : X . . .
results in an effective decoupling from the field as previously

(21)
Here, By, and B, are the conditioned probability ampli-
tudes for the lower and upper lasing levels m andEg

are the energies of these atom-field levels in the absence
an interaction. The non-Hermitan Hamiltonian is given by

_ L at 9z t
Hp=%(w—ik)a a+ﬁw7+|ﬁg(a o_—ao,)

2 2
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FIG. 8. (a) Mean photon number vs pump rate fpty=1.414 andx/y=0.1. (b) Fano factor vs pump rate f@/y=1.414 andx/y
=0.1. (c) Population inversion vs pump rate fgfy=1.414 andx/y=0.1.

discussed. This nonlinear dependence of laser intensity witthn macroscopic lasers, with a change in slope of laser inten-
pump rate for large pumps has also recently been investsity with pump and a peak in the Fano factor. However, the

gated by Koganov and Shukgz1]. pump rate at which the slope changes is distinct from the
pump rate where the Fano factor peaks. For value8 of
VI. CONCLUSIONS the order of 0.5 or above, the essentially classical lasing be-

havior dissappears, and the device emits amplitude-squeezed

We have examined the behavior of a single-atom lasefor number-squeezgdight. We have revisited the turning
using both three- and four-level models, with particular em-off of the three-level laser for large pumps, and interpreted
phaSiS on the behavior of the System as a function of thq“S in terms of a pump_dependwtas We” as the trapping
spontaneous emission factfrin the four-level system, 88 of the atomic population in the excited state killing off the
is increased, we find the system changes from a superthermljuced dipole moment. This is consistent with previous dis-
emitter to a “smeared out” version of a semiclassical lasercyssions in terms of dipole dephasii®.
untii we reach a cavity-QED regime where amplitude
squeezed light is emitted. There is no distinct laser threshold,
and several of the usual criteria for threshold fall at very ACKNOWLEDGMENTS
different pump values. For very small values@fthe device
is essentially an light-emitting diode. For moderate values of We would like to thank Howard Carmichael, Michael
B near 0.2, we find behavior that is qualitatively the same afRaymer, and Thomas Mossberg, for helpful discussions.
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