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Non-Markovian dynamics in pulsed- and continuous-wave atom lasers
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The dynamics of atom lasers with a continuous output coupler based on two-photon Raman transitions is
investigated. With the help of the time-convolutionless projection operator technique the quantum master
equations for pulsed- and continuous-wdge) atom lasers are derived. In the case of the pulsed atom laser
the power of the time-convolutionless projection operator technique is demonstrated through comparison with
the exact solution. It is shown that in an intermediate coupling regime where the Born-Markov approximation
fails, the results of this algorithm agree with the exact solution. To study the dynamics of a continuous-wave
atom laser a pump mechanism is included in the model. Whereas the pump mechanism is treated within the
Born-Markov approximation, the output coupling leads to non-Markovian effects. The solution of the master
equation resulting from the time-convolutionless projection operator technique exhibits strong oscillations in
the occupation number of the Bose-Einstein condensate. These oscillations are traced back to a quantum
interference which is due to the non-Markovian dynamics and which decays slowly in time as a result of the
dispersion relation for massive particl¢§1050-2947©9)01610-9

PACS numbgs): 03.75.Fi, 42.50.Ct, 42.50.Lc, 42.50.Vk

[. INTRODUCTION This paper consists of two parts and is structured as fol-
lows. In Sec. Il we investigate the validity of the time-
Nowadays it is a standard technique to produce a Bosezonvolutionless projection operator technique for a pulsed
Einstein condensate in the laboratdfy2]. In order to build atom laser. The model investigated was discussed by Moy
a coherent source of atoms, an atom laser, a major achievet al. [14]. They showed that the Born-Markov approxima-
ment was the coherent extraction of atoms from an atomition fails for realistic parameters. We demonstrate that the
trap. At first a pulsed atom laser was biBt4], recently also  time-convolutionless projection operator technique agrees
continuous-wave atom lasers have been realiZgf]. A with the exact solution for these parameters. Afterwards we
short survey of the experimental situation is giverf ;8]. apply the TCL algorithm to a simple model of a continuous-
The theoretical treatment of an atom laser is usually basegjave atom laser in Sec. Ill. The numerical results obtained
on the Born-Markov approximatiof9—13|, which has been  from a simulation using a perturbation expansion including
used in quantum optics with great success. However, as fhyrth order clearly reveal strong oscillations in the occupa-
has been shown recently by Moy and co-workird], this  tjon number of the Bose-Einstein condens@EC). As will
approximation fails in a realistic parameter regime. In thispe shown, these oscillations can be interpreted as a quantum
paper we will outline a different approach, which is based onpterference effect which clearly reveals departures from the
the time-convolutionles§TCL) projection operator tech- go|den rule and demonstrates the non-Markovian dynamics

nique[15—-17 to study non-Markovian effects resulting from qf the atom laser. A short summary concludes the paper.
the output coupling. This technique is based on a perturba-

tive expansion in powers of the output coupling strength.
The master equation resulting from the perturbative ex- Il PULSED ATOM LASERS

pansion has a form similar to the Born-Markov master equa-

tion and is also local in time. This makes the equation of In this section we will investigate the dynamics of a

motion easy to solve. As we will see, the second order perpulsed atom laser. This means that there is an output cou-

turbation theory corresponds to the Born-Markov approxi-pling mechanism which transfers the atoms out of the trap

mation. By taking higher orders of the expansion non-but there is no pump mechanism which supplies the BEC

Markovian effects can be studied in a systematic way. It iswvith new atoms. When the trap is empty it is replenished and

demonstrated that the perturbative expansion holds in an ira new cycle starts. Therefore our starting point is an existing

termediate coupling regime, which corresponds to realisti@EC inside an atomic trap and we study only the output

parameters, while the Born-Markov approximation fails for coupling.

these parameters. This section is organized as follows. We briefly introduce
our atom laser model and derive the exact equation of mo-
tion for the expectation value of the atomic number operator
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"Electronic address: Daniel.Faller@physik.uni-freiburg.de Markov approximation. The TCL algorithm is then applied

*Electronic address: Bernd.Kappler@physik.uni-freiburg.de to the model in Sec. Il C. Afterwards the numerical results

SElectronic address: are discussed in Sec. Il D. A model of a continuous-wave
Francesco.Petruccione@physik.uni-freiburg.de atom laser which includes a pumping mechanism to compen-

1050-2947/99/6@)/31889)/$15.00 PRA 60 3188 ©1999 The American Physical Society



PRA 60 NON-MARKOVIAN DYNAMICS IN PULSED- AND ... 3189

sate losses by the output coupling will be introduced in Secoutput atomic stateéyl is the atomic mass. The functiak)
[l describes the strength and spectral form of the coupling. In
the specific case of a Raman output coupler and a harmonic

A. Exact solution trap with a Gaussian ground stdi20,21] of width oy in k

Usually, the output coupling from a BEC to a large reS_space given by

ervoir is described within the Born-Markov approximation. - —14 _K2 2
This description is based upon a master equaltailca)n of the form Fll)=(2mo)exd ~k (4] ©
g one obtains together with E¢3d) for the interaction Hamil-
&psyit) =vymDla] Psys(t)- D tonian Hin
i 1‘*1/2
where the single trap mode occupied by the BEC is de- Kk(k)= —=—=exil — (k—ko)%/(407)]. (6)
scribed by the creation and annihilation opera@mts and 270
yu IS the Markovian decay rate. The superoperdbois of
Lindblad form[18] and is defined by

Here 'Y denotes the coupling strength of the output cou-
pling andzkg is the momentum transferred through the Ra-
1 man transition. For the sake of simplicity we assume that we
Dla]P=aPa'— E(aTa P+Pa'a). (2 have two counterpropagating laser beams with the wave vec-
torsk, 1~ —Kk_ 5. Therefore we hav&,~0. With the atomic

In the Markovian approach one obtains a master equatiofiSPersion refation from Ed4) one derives the spectral den-
containing only system variables. Two basic assumptions ureY J(@) of the output coupling strength,

derlying the Born-Markov approximation are th@t if the r

system and the reservoir are uncorrelated at the beginning Jw)= e ola, )
they remain uncorrelated for later times &fidlthe evolution Taw

of the system is Markovian. The Markovian property means

that the future evolution of the system depends only on th&vhich diverges ato=0. The quantitya is given by
present state and is independent of the previous history of the 2

system. As is shown in Reff14], the Born-Markov approxi- = @

mation is not valid in a realistic parameter regime of atom 2M

lasers.

We want to investigate a Raman output coupler throughfVith the help of the functionJ(w) we can deduce the
state change, which was suggested by Mogl.[14,19-2]. Helsefnberg equations of motion for_ the system operaibrs_
Two lasers are tuned to a two-photon resonance to couple &d@ a. Assuming that the reservoir is empty at the begin-
initial atomic state inside the trap to a final atomic statening, {byby)(0)=0, we obtain
outside the trap. Due to the conservation of linear momen- .
tum t'h'e atoms receive momentum kicks during the Raman —(a*(t)>=iw0<aT(t)>—f drf*(r)(al(t—r7))eiwor,
transitions which push the atoms out of the trap. If we as- dt 0
sume that the lasers are detuned far from single-photon reso- (99
nances, then all initially empty modes of the atomic trap q t
remain empty and we can neglect all modes besides the + _ + Ciwnr
ground state mode occupied from the BEC. In addition, we grlaam)=- Jode(T)<a (Da(t—r))e '™+ H.c.
also ignore the effects of atom-atom interactions. The result- (9b)
ing HamiltonianH is of the form

®

The function

M=ot HrestHin o f(7)=Tr{peB(7)BT(0)}e!*0" (10)
Hys=fiwpa'a, (3b) )
. = f dw J(w)e'(@o=e)7 (11)
Hyes= f dkfiwbiby, (30) 0
- elwoT
Hin=—i#(Ba'—B'a), (3d) ~Triar (12)

where we have defined is the reservoir correlation function apart from a fasto”.

+oo 7 k2 The formal solution of the integro-differential equations
B:f dk k(K)by, w==—. (4)  (9) can be expressed in terms of inverse Laplace transforms.
- 2M However, the numerical evaluation of the inverse Laplace

) ] o transforms is very difficulf22]. As is easily shown, the so-
The bosonic creation and annihilation operators for the freg iion of Eq. (9b) can be written as

atomic state are denoted th;l,bk. The ground state trap
energy is denoted b w, and% w, is the energy of the free (aTa)(t)=c(t)c* (1), (13
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wherec* (t) is a solution of Eq.(9a) with the initial value 1.0rS

c(0)={a'a)(0). Hence one solves Ea) through direct ' axact soldtion
numerical integration and obtains the expectation value of ¢ % . Born-Markov approximation
the atom number by taking the squared absolute value. + TCL4

0.6
B. Born-Markov approximation

n(t)

Now we apply the Born-Markov approximation to the 0.4h
above model of an atom laser. The Born-Markov approxima-
tion consists in making the Born approximation, that is, one
assumes that system and reservoir are uncorrelated initially
and that they remain so for later times. Hence the total den-
Sity operatorp,,(t) can be written as

0.2f

0.0 05 1.0 1.5 20 25 3.0

wl
Piol(t) = Peyd 1) @ pred 0), (14) &
) . FIG. 1. Normalized occupation numben(t)=(a'a)(t)/
where p,{t) denotes the system density operator. In addivata)(0) of the BEC in the atomic trap. Plotted are Bor-Markov
tion, it is assumed here that the reservoir density operatofpproximation, exact solution, and perturbation expansion to fourth

does not change in timeye{t)=pre{0). The Markov ap-  order in the coupling strengli=5x 10" s™*. This leads to a ratio
proximation is based on the assumption that the time scalgf time scaleg ge/t o= 16.

tsys, Which describes the relaxation of the reduced system, is

much greater than the time scalgs, which represents a 1 woae”0l®
measure for the width of the reservoir correlation function, toy=— =\ (20
ie., ™ 4m T

toot (15) This result is easily obtained by performing the first integral
sys™ trest in Eq. (17). As discussed ifl14] we definet,. as the half-

The time scald,.is obtained from the reservoir correlation width of the integral of the real part di(7). The resulting

functionf (). Because of the slowly decaying shapef 6f) equ_ation is solvgd numerically. In the considered parameter
in Eq. (12) the atom laser shows a strong non—Markovianr%(‘?]'me one obtaink,¢~0.4/we. Hence the time scale condi-
behavior. A more detailed discussion of the application oft'

the Born-Markov approximation to atom lasers can be found ¢ avola
in Refs.[14,23. Within the Born-Markov approximation we S wg/Z\/E >1 (21)
get from Egs.(3) the following master equation: tres ™

9 i 1 must be satisfied for the Born-Markov approximation to be
SiPsd) == 5Sula'a,pgd )]+ m[ — 5a'apgydt) valid. o o _
In our simulations we take similar parameters as dis-
1 cussed if14]. The atom mass M ~2x 10" 2% kg. Realistic
- Epsys(t)aTaJr apsys(t)aT]- (16)  parameters for the system frequeney and the coupling
strength ' are wy/(2m)=~123 s, TI'=10° s?
[4-6,20,24. The standard deviationr, in k space of the
coupling functionk(k) is assumed to be,~10° m™1, cor-
responding to a wavelengtt=2 um.
o oo The only parameter which is varied is the coupling
M= f dt ¢(t), Sy= f dt (). a7 strengthl”; thereby we can systematically change the ratio of
0 0 the time scale conditiof21). In Fig. 1 we depict the normal-
_ ) ized expectation value of the atomic number operator ob-
The functionse(t) and(t) are proportional to the real and tained from the exact solution and from the Born-Markov

Here, the Markovian Lamb shifsy,, and the Markovian de-
cay rateyy take the form

imaginary part off(t), approximation fol’=5x 10* s~2, leading to a ratio of time
1 scalestgys/t,es= 16. Obviously the Born-Markov approxima-
_ ; tion is not valid in this parameter regime. Attenuating the
f(t)y== t)+1 (1) ]. 18
® 2[¢( )+ 9] (18 coupling constani” about a factor of 5 suffices to reach

parameters where the Born-Markov approximation holds.
From the master equatidii6) we easily get the expectation In the following section we apply the time-

value of the atom number operaiata, convolutionless projection operator technique to our model.
This leads to a perturbative expansion for the master equa-
(a'a)(t)=(a'a)(0)e” ™!, (199  tion, which allows us to analyze the behavior of an atom

laser in the non-Markovian parameter regime. As we will see

The above results enable one to derive from inequalityin Sec. Il D the solution of this master equation agrees very

(15 an explicit condition for the Born-Markov approxima- well with the exact solution for the parameters mentioned
tion. The system time scalg is given by above.
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C. Time-convolutionless projection operator technique

t
@)(t)y=
It is usually assumed that a non-Markovian dynamics nec- K J'OdtlpL(t)L(tl)P (28)

essarily involves a density matrix equation containing a

time-convolution kernel. However, employing the time- 54

convolutionless projection operator technique we can derive

an equation of motion for the system density operator which ¢ 4 6

is local in time. The following discussion briefly summarizes K(4)(t)=f dtlf dtzJ’ dtg{ PL(t)L(ty)L(t,)L(tg)P

this approach. A more detailed discussion can be found in 0 0 0

[15-17. Especially a discussion of the range of validity of _

this approach is given in Ref17]. PLIOL(t)PL(E)L(t) P
The starting point is the Liouville—von Neumann equation —PL(t)L(tp)PL(t;)L(t3)P

for the density matrix of the total system,
—PL()L(t3)PL(ty)L(t2)P}. (29
Jd
gt Pl U= ~TalHin(1), (D)1= al (0 prof V). (22 \we have determined also the sixth order superopehafdr
Because of its length the expression fof)(t) is not pre-
Here o denotes the strength of the coupling, afg(t) is  sented here: it is a fivefold integral of 45 terms, each con-
the interaction Hamiltonian in the interaction picture. If we taining six superoperatoits(t).
define the projection operat@ The above superoperators can be expressed in terms of
commutators whose evaluation is simplified by invoking the
Ppiot() = Tried prot 1)} ® pres= psyd ) ®press  (23)  bosonic commutation relations. For the present study we
o _ _ _ have determine&(®, K*, andK(® with the help of the
it is possible to deduce an equation of motion for the SysteNgomputer algebra systemATHEMATICA. This system en-

density operatops{t), ables the evaluation of the expansion coefficig€i3(t).
P Transforming Eqs(3d) and(4) to the interaction picture,
Epptot(t)=K(t)73Ptot(t)- (24) the interaction Hamiltoniam;(t) reads
Hin(t) = —i%{B(D)a'(t) =B (Da(t)}, (30)

Here Tr.cdenotes the trace over the reservoir. Under certain

conditions which are always satisfied for short times and ir]/vhere

the weak coupling regimésee, e.g., Ref17]) it is possible

to derive a perturbative expansion for the gener&i) of .

the time-convolutionless master equation in powers of the B(t)=f dk k(k)be 'K, a(t)=ae i@, (31
coupling strengthx, o

K(t)=a’K@(t) + a*K@(t) +a®K®(t)+---. (25  The expansion parameter in the case of the atom laser is the
- . coupling strength™*2. With the assumption of an initially
The superoperatos™(t) are given by empty Gaussian reservoir, I p.8'(t)B(t;)} =0, we ob-

. . tain a master equation in Lindblad form,
K(”)(t)zf dtlJ' 1dt2...fn72dtn_1kn(t,tl, b)),

0 0 0 d i + 1
(26 rpsd)=—5S(O[@"apsdt)]+ 5 (1)

where x{—a'apg,dt)— pgdt)a’a+2apg(t)a’}.

(32)
Kn(titr, - th-1)= 2 (= 1)FPL(Y- - L(Y)
Here the Lamb shif§(t) and the decay rate(t) are given

XPL(tj) - -L(t)PL(ty)-- - . by
(27) 2 4 6
S(t) =S (t) +SW(t) + SO)(t), (33
The sum in Eq(27) is to be taken over all possible insertions
of P's in between then factorsL, while keeping the chrono- y(t) = y@(t) + Y1) + yO(1). (34)

logical order in time between two successive insertion® of
[16]. This meang> - - ->t; andt;>--->t;. The constang

is the number of inserted projection operatBtsAssuming
that all odd moments dfl;(t) with respect tg,.svanish we
havePL(t;)- - -L(ty1)P=0. Therefore, all terms contain-
ing odd powers of the coupling strengthdisappear in Eq. .
(25). With the help of Eqs(26) and (27) we obtain the su- S(Z)(t)=f dtyg(t—ty), (353
peroperators 0

The functionsS™(t) and y"(t) can be easily evaluated as
integrals over the known function(t), (t) [see Eq(18)].
We find
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1t ty t2 10
s(t)= —f dtlJ dtzJ’ dts[ (t—t2) p(t1—t3) )
2 0 0 0 N exact solution
0.8 -------- Born-Markov approximation
T p(t—to) Pty —t3) + h(t—ta) p(t1—t2) . TCLB
+(t—ta) Y(ts—to)], (35b) osf
and =
0.4F
t
Y1) = f dt;(t—ty), (363 oal
0
1 t tl tz 1 I L L !
7’(4)(t):§f dtlJ dtZJ’ dt3[¢(t—t2)¢(t1_t3) 0.0 0.5 1.0 15 2.0 25 3.0
0 0 0 Yt
+d(t—t3)p(ty—ty) — (t—ta)h(t;—t5) FIG. 2. The normalized occupation numbemn(t)
=(a'a)(t)/(a'a)(0) of the BEC: exact results and the results from
— (1=t P(ti—t3)]. (36D the Born-Markov approximation, respectively, from fourth and

: . . . ixth ord turbation theory. Th dier 10° s ! is cho-
Again we refrain from presenting the sixth order terms be— 1 Order PEriurbaton tieory. 'hs perametet S s

sen such that the ratio of time scales becomegsts,—8.
cause of their length, but they are also given as simple inte- TR eys
grals. ] o ] )
Note that we have derived a master equation in Lindbmd:onvolutlonlgss projection operator technique to SIXj[h order
form without making the Born-Markov approximation. If we N the _coupllng strength reproduces the exact solutl_on. Qur
keep only the second order terms and extend the range @umerical results show that the Born-Markov approximation
integration in Eqs.(3538 and (364 to infinity we get the Degins to fail at a coupling strengii~10" s 2. This cor-
Born-Markov master equatiofi6). Hence our master equa- '€Sponds to a ratio of the time scales giventRy/t,e<=80.
tion has the same simple form as Ef6), but the parameter The TCL algorithm to fourth order provides reliable results
regime in which Eq(32) is valid is much larger. This will be until aboutl'~5x10* s For stronger couplings to about
demonstrated in Sec. Il D. I'~10° s 2 corresponding to a ratio of time scalgs/tes
From Eq.(32) one derives the equation of motion for the =8 the sixth order is needed. » _
occupation number of the BEC. We are only interested in the For very strong coupling witlf ~10° s~ the sixth order
normalized occupation numben(t)=(ata)(t)/(a’a)(0). provides reliable results only for short times. The rise in the

One easily demonstrates tha(t) is given by atom number after the first collapse shown in Fig. 3 cannot
be reproduced by any algorithm which is based on a pertur-
t bative expansion because the transition rate diverges at this

n(t)ZEXF{ - fo 7(t1)dt1)- (37 point, and the equation of motion is no longer analytiz].

Nevertheless the short time behavior is very important for

Hence it suffices to evaluate the integrals over the time det"® evaluation of correlation functions.

pendent decay rates(™(t) in the different orders of the  Figure 4 compares the decay rates for the coupling
coupling strength' 2 to get the normalized occupation num- strengthl’ =10° s~ 2. As expected, the decay rate is valid for

ber of the BEC. Provided/(™(t) is positive the quantity longer times if we include higher order terms in the pertur-

F(t)=1-—n(t) can be interpreted as the waiting time distri-
bution [25,2€ for a transition of a single atom out of the or
exact solution

trap.
!
osf | TCL 6

D. Numerical results \ —-—-= Bom-Markov approximation

In our simulation we take the parameters as mentioned at os}
the end of Sec. IIB. Through variation of the coupling £
strengthl” we will go beyond the parameter regime in which
the Born-Markov approximation is valid and compare the
results obtained from the time-convolutionless projection op-
erator technique with the exact solution. 021

In Fig. 1 the occupation number of the BEC is plotted for
a coupling strengtl' =5x 10* s~2. While the Born-Markov
approximation fails to render the exact solution, the depicted
fourth order is a very good approximation. Although it is not
shown here the sixth order would be almost perfect. FIG. 3. Normalized occupation numben(t)=(a'a)(t)/

Figure 2 shows the results for a coupling strendth (a'a)(0) of the BEC: Born-Markov approximation, exact solution,
=10 s 2. Here we clearly see that for realistic parametersand perturbation expansion to sixth order in the coupling strength
the Born-Markov approximation fails, whereas the time-T'=10° s *. This leads to a ratio of time scalég/ts,=0.8.

0.4
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4 2. reservoir

1. reservoir RLR
K1 N 1

k(N +1) 0. reservoir

w [5ur]

FIG. 5. Our simplified model of a cw atom laser consists of a
pump mode 1, the ground state mode O which is occupied from the
Bose-Einstein condensate, and the weakly bound mode 2 from
which the atoms are strongly coupled out.

exact decay rate
--------------- decay rate in 4th order
....... decay rate in 6th order

, tors of the first reservoir are denoted ®, Q, andN is the
05 10 15 20 25 30 85 40 45 50 stationary occupation number of the mode 1 if there were no
Yut transitions inside the trap. After the mode 1 is occupied by
FIG. 4. Comparison of decay rates. Plotted are Born-Markov,mOre than. one a.tom’ .tWO atqms can Intera_ct via the ne_ar
exact decay rates, and the decay rates in fourth and sixth orgéfsonant dipole-dipole interaction through which one atom is
perturbation theory. The value of the coupling strengtH is5 transferred to the wgakly bound mode 2 and the other to the
10" s 1. mode O of the atomic trap.
The atoms in mode 2 are outcoupled to the second reser-
bation expansion. Although the decay rate in sixth order doe¥?" with a raterc,. To enable evaporative cooling which is

not exactly render the exact solution, it gives a good approxi-n%ded to achieve the necessary low temperatures for Bose-

mation over a wide range until aboyt,t~4. It constitutes Einstein condensation the conditia3> x; must hold. This

S means that each atom which is transferred to the highest
an essential improvement compared to the constant Born- . )
- . mode leaves the trap very fast, such that this mode is most
Markov decay rate. It is important to emphasize that the TCLStron v depleted. Just as in Sec. Il A the atoms are out-
technique is much simpler to perform than the solution of the gly dep ' o
' . coupled through a Raman transition from the ground state of
exact equation of motion. . . .

the atomic trap. To achieve a steady occupation number of

the ground mode the conditiof, > ko must hold. This out-

lil. CONTINUOUS-WAVE ATOM LASERS put coupling to the 0 reservoir will be described taking into

The next step after the realization of a pulsed atom lasefccount the non-Markovian character of the dynamics,
was to build a continuous-wavew) atom laser, which was whereas the coupling to the other two reservoirs is treated in
recently achieved5,6]. As in the case of the pulsed atom the Born-Markov approximation. This is a reasonable as-
laser we model the output coupler through a two-photon Rasumption because of the conditian> x> «o.
man transition. Such an output coupler has recently been In general we find for the binary-collision atom laser
experimentally realized by Haglest al. [5]. Because of the Scheme the Hamiltonian
momentum transferred by the Raman transitions this is the B
first atom laser with a highly directional output. H=HgstVHHi ot HiitH 2, (38)

In addition to the pulsed atom laser discussed in the fir ; P :
section we include appumping mechanism to describe a csxév;}ﬁ;%ﬂ;y%gnﬁzznsﬁfg zt:n?;n Il:%glinp:rg\:bsﬁeosg:tieafze
gtgm I?s?seer; I:]oth;s ;E(r:r::))nn\:veik?;;?:rﬂ tZﬁerggseL?;pisgéseiEre responsible for the coupling to the three 'reseyrvblg%

[9-11,27. While in these papers the output coupler is treate 22 Ek;ewr?ii)tztngae: eral form of the interaction Hamiltorian
within the Born-Markov approximation we will use the same
output coupling mechanism as discussed in Sec. Il to study 2
the effects of a non-Markovian output coupler. The coupling Heys= 2 ﬁwjajTaj , (39
to the pump reservoir is a fast process and may therefore be =0
treated within the Born-Markov approximation. )
V=t > gj,k,l,majfalﬁalam- (40)
A. Model of a continuous-wave atom laser Iikl,m=0

We use a binary-collision atom laser scheme based on tha the interaction Hamiltonia we do not consider effects
near resonant dipole-dipole interaction. The atomic trap fronwhich are negligible at low densities, such as the annihilation
which we want to study the output coupling consists of manyof two ground state atoms and the creation of two atoms in
atomic modes. Under certain experimental conditions it ighe highest modes. Such transitions are energetically unfa-
possible to restrict ourselves to three modes of the trap, agored at low densities. Moreover, sineg> «, the strongly
discussed if10,11. Atoms of a thermal source—the first depleted mode 2 can be eliminated adiabaticly We in-
reservoir—are transferred into the pump mode of the trap. Asroduce an effective reservoir which describes the annihila-
shown in Fig. 5 these atoms enter the trap mode 1 with a ratéon of two atoms in mode 1, the creation of an atom in
x1N. They can also leave the trap from this mode with themodes 0 and 2, and the immediate loss of the atom in mode
rate x1(1+N). The bosonic creation and annihilation opera-2. This effective reservoir includes the terms describing col-
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lision with atoms in mode 2 which were included\ With mode 1, and the coupling to the effective reservoir which

these assumptions the remaining term¥iare enables the evaporative cooling mechanism from the trap
- ot i mode 2. These operators are treated within the Born-Markov
V=7{go00R0@02080F 9111121818181 + 010820208181} approximation, and are thus independent of the expansion

(41  Pparameter. Hence we have

As shown in[9,10] the first and the last term in the above :

equation cause a I_Jroadenlng_ of the output spectrum. In this /jg‘)Rz __ (”)(t)[agao,R], (453
paper we are only interested in the occupation number of the 2

BEC, and we will not study the output spectrum. Because of

this we can ignore these terms sinéaffects only the off- 1 1
diagpnal terms of the_ redu_ced density mapriys. Hence we Lgﬁ)tR: y(”)(t)( agR ag— Eagao R— ER agao ,
obtain in the interaction picture (45b)

H(t)=H; o(t) +H, 1(t) + Her(t), (42

1 1
where the operators describing the coupling to the three res- £;;R=Nk a{R a— §a1 aIR— ER =) a{}

ervoirs are given hy

1 1
+(1+ N)Klr a;Ral—-ala;R—-Ra] al],

K . .
Hiot)=—i\ 5 [B(hage'"s'~agBl(te o1, E 2
(433 (450
H (t)_\/E [Q(baje’“r'~a;Q'(t)e™"“11] 12 R alay- al?al ao a)
N A 1 1 ; LagR=Q jajaiRy a5 a1 ajapgayR
(43b
1
) _ - ERaIZai ao a(T)] : (450)
Her()=\/5 [RT(t)ajaje! (w0~ 2wt

The functionsy(®(t) andS®)(t) are given by Eqs35a and
(369. From the above master equation we obtain the Born-
The operator,Q,R andB,Q",R" are the annihilation and Markov aeg)roxmaﬂorgz)by replacing the time dependent
creation operators, respectively, for the reservoirs shown ifinctions y(t) and S(t) through the Markovian Lamb
Fig. 5. The energies of atoms in the two atomic trap modes §hift @nd the Markovian decay rate from Eg.).

and 1 are given byiw, and% w;. The coupling constart2 In the limit of an atom number in the Bose-Einstein con-
describes the strength of the dipole-dipole interaction. densate which is much greater than 1 we get the stationary

Summarizing, the atomic trap in which the Bose-EinsteinOCCUp""tion number of the ground state within the Born-

condensate is built couples to three reservoirs. The first redfiarkov approximation

ervoir provides the pump mode of the trap with atoms from

a thermal source. Through near resonant dipole-dipole inter- + K1 1 1 ym

action the atomic trap modes 0 and 2 get occupied. The <aoao>:m N_E_ Z+ﬁ . (46)
immediate loss from atoms in the second atomic trap mode

to the corresponding reservoir is necessary to enable evapo- ¢ i h K . h
ration cooling. Just as in the case of the pumped atom laséefore solving the Born-Markov master equation and the

the Bose-Einstein condensate is coupled out from the mode gAuation to second order perturbation theory we evaluate the
through a two-photon Raman transition. fourth order termK*® from Eq. (29). We obtain after some

algebra

—agal?R(t)e (wo=200)t], (430

B. Derivation of quantum master equations

~ In this section we apply the time-convolutionless projec- %Psys(t):(ﬁ(()A)+£gt)t+ Lint Leoit Lod psydt). (47)

tion operator technique to the case of the continuous-wave

atom laser. With the help of Eq&6) and(43) we obtain to

second order in the coupling strendth? Here, the superoperatoss(? and £ are defined through
Eqs.(45) and the corresponding function&®(t) andS*)(t)

(@ @, are given in Eqs(35b) and(36b), respectively. Naturally the

D=L Lout Lint Leat)psyd - (44) operatorsC;, and L. do not change compared to the second
order expansion. In contrast to the second order perturbative

The superoperators describing the Lamb sﬁigf) and the  expansion44) in the coupling strengtl'¥’ the fourth order

output couplingZ{?) to second order are defined through does not only changes the functiop®)(t) andS™(t) to the

Egs. (45). The operators;, and L, describe the coupling appropriate order, it also adds a new superopetgipto the

to the thermal reservoir from which the atoms enter the trapnaster equation’. is given by

d
Epsy
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120

LoR=r(1)(afaiRapa)’~aiRaagal’)

+r*(t)(aja’Rajal’—ajala’Ral?) 100 PP AV VI VEL VALV

1 i
+ 51 (D (@0aj*afRal—ajacai ‘aiR) ’

—— Born-Markov approximation

1 et /. TCL 4
+ Er*(t)(aORagaJ{zai— Ralajal?a?). (49 wl oo
The complex functions(t) are defined by 2ok
t tq !
r(t)ZQJOdtIJO dtzf(to_tz). (49) co 1 2 3 4 5 5 7 P
Yut

The operator,. appears in the fourth order perturbation g\ 6. Occupation numben(t)=(a’a)(t) of the BEC in an
theory due to a mixture of{:) and L. Note that this  atomic trap in the case of a continuous-wave atom laser. Plotted are
master equation is not in Lindblad form. Equati@V) was  the Born-Markov approximation and the results of a non-Markovian
solved by integrating the closed system of differential equaperturbative expansion of the output coupling to second and fourth
tions for the diagonal elements of the reduced density operarder in the coupling strength.

tor.

The depicted oscillations in the atom number can be in-
C. Numerical results terpreted as an interference effect between two favored tran-

In our simulations we have chosen the parameters similafition modes. The physical origin of this interference phe-
to the pulsed atom laser. The new parameters for the pump71enon can be seen already from the second order term
ing and the coupling to the effective reservoir are taken to bg’ (1) which takes the form
these of Refs[9,10]. They are chosen such that the station-

ary occupation number of the ground mode in~100. The YA(t)= ftds¢(s)=2jwde(w)M_
strength of the dipole-dipole coupling {3=15y,, and the 0 0 Wo— ®
coupling constant to the pump reservoirkg= 10y, . The (50)

parameteN = 20.3 describes the stationary occupation num-

ber of the pump mode 1 of the atomic trap, assuming thergjere the first factor of the integrand, namely, the spectral
were no transitions inside the trap. densityJ(w), has aw ™2 singularity atw=0 [see Eq(7)],
The only variable parameter in the simulation is thewhereas the second factor is concentrated around the ground
strength of the coupling™*/%, which determines the strength state frequency»=w,. Thus, the main contribution to this
of the coherent output couplingy . This parameter is varied integral stems from transitions with frequencies near0
in our simulations from a value where we eXpeCt the Born'and 0= w,. The Corresponding transition amp”tudes inter-
Markov approximation to hold, to parameters where thefere and lead to the observed oscillations in the decay rate
time-convolutionless projection operator technique for theand therefore to the oscillations in the occupation number.
pulsed atom laser was valid in the first part of this paper.  |n a Markovian system, where the spectral density of the
Figure 6 shows the occupation number of the Bosetoupling strengtil(w) is bounded, the second factor of the
Einstein condensate for a valué=5x10" s™2. For this integral (50) quickly approaches @ function in the limit
COUp|ing Stl’ength the TCL algorithm agreed very well with t_>m’ and the oscillations decay on atime S(ﬁé@ This is
the exact solution in the case of the pulsed atom laser. In thgnown as Fermi's golden rule.
case of the cw atom laser we see strong oscillations in the |n contrast, in the case of an atom laser, the contribution

the mean occupation number increased compared to the stgy the asymptotic behavior of®(t) which can be evalu-

tionary occupation number resulting from the Born-Markov gieq explicitly from Eq(50) and is given through
approximation.
2

If we reduce the coupling strengihto I'=1x10* s 2,
then there are only very weak oscillations around the station- @)1 — r
ary value obtained from the Born-Markov approximation and Y= rm— \/=2C°5( wot+ 7r/4). (5D

. . awgt

the fourth order perturbation theory agrees well with the sec-
ond order expansion. In the case of the pulsed atom laser the
Born-Markov approximation also failed for coupling According to this relation the decay ra4é?)(t) approaches
strengthd">1x10¢ s2, the Markovian rateyy, very slowly ast~ Y2 It is important to

As expected this suggests that for the cw atom laser theote that this behavior is due to tae 2 singularity ofJ(w)
parameter regime in which the TCL algorithm is valid coin- at «=0 which, in turn, is a direct consequence of the dis-
cides with that of the pulsed atom laser. Thus the parametegersion relation(4) of massive particles. Thus we observe
in Fig. 6 are chosen such that the TCL algorithm to fourththat non-Markovian effects decay only slowly in time with
order should provide reliable results. an algebraic behavior. This clearly demonstrates that the
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golden rule limit vy, is relevant only for extremely long sixth order terms in the output coupling strength we are able
times and shows the importance of a non-Markovian treatto render the exact solution for short times to about
ment of the atom laser. t=4/yy in the strong coupling regime. This short time be-
From Eq.(50) one clearly sees that the oscillations will havior is important for the evaluation of correlation func-
also appear if we abandon the assumptig 0. The func-  tions. The long time behavior after the first collapse of the
tion J(w) will then be peaked around, =%k3/(2M) but  atom number cannot be reproduced with the TCL algorithm,
still has a2 singularity atw=0. Hence a significant because the decay rate diverges at such a point.
contribution to the integral in Eq(50) comes fromw=0 In the case of a cw atom laser we have chosen the cou-
and, therefore, the time dependencey®?(t) again shows pling strength such that the perturbative expansion for the
an oscillatory behavior. These oscillations are also present iaulsed atom laser agreed with the exact solution for the con-
the case of the damped Jaynes-Cummings model with detugidered times. We found strong oscillations of the occupation
ing (see, e.g., Ref17]), but there they are damped exponen-number of the BEC and the mean atom number increased.
tially. Our results clearly suggest that these oscillations survive for
very long times because of the slow algebraic decay of the
IV. SUMMARY relaxation rate.

We have demonstrated that in the case of a pulsed atom
laser with a Raman output coupler in a realistic parameter
regime in which the Born-Markov approximation fails, the  B.K. would like to thank the DFG-Graduiertenkolleg
time-convolutionless projection operator technique is able t¢'Nichtlineare Differentialgleichungen” at the Albert-
reproduce the exact solution. Ludwigs-Universita Freiburg for financial support of the re-

If we leave the intermediate coupling regime and take thesearch project.
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