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Non-Markovian dynamics in pulsed- and continuous-wave atom lasers

H. P. Breuer,* D. Faller,† B. Kappler,‡ and F. Petruccione§

Fakultät für Physik, Albert-Ludwigs-Universita¨t, Hermann-Herder Straße 3,
D-79104 Freiburg im Breisgau, Federal Republic of Germany

~Received 7 May 1999!

The dynamics of atom lasers with a continuous output coupler based on two-photon Raman transitions is
investigated. With the help of the time-convolutionless projection operator technique the quantum master
equations for pulsed- and continuous-wave~cw! atom lasers are derived. In the case of the pulsed atom laser
the power of the time-convolutionless projection operator technique is demonstrated through comparison with
the exact solution. It is shown that in an intermediate coupling regime where the Born-Markov approximation
fails, the results of this algorithm agree with the exact solution. To study the dynamics of a continuous-wave
atom laser a pump mechanism is included in the model. Whereas the pump mechanism is treated within the
Born-Markov approximation, the output coupling leads to non-Markovian effects. The solution of the master
equation resulting from the time-convolutionless projection operator technique exhibits strong oscillations in
the occupation number of the Bose-Einstein condensate. These oscillations are traced back to a quantum
interference which is due to the non-Markovian dynamics and which decays slowly in time as a result of the
dispersion relation for massive particles.@S1050-2947~99!01610-8#

PACS number~s!: 03.75.Fi, 42.50.Ct, 42.50.Lc, 42.50.Vk
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I. INTRODUCTION

Nowadays it is a standard technique to produce a Bo
Einstein condensate in the laboratory@1,2#. In order to build
a coherent source of atoms, an atom laser, a major ach
ment was the coherent extraction of atoms from an ato
trap. At first a pulsed atom laser was built@3,4#, recently also
continuous-wave atom lasers have been realized@5,6#. A
short survey of the experimental situation is given in@7,8#.

The theoretical treatment of an atom laser is usually ba
on the Born-Markov approximation@9–13#, which has been
used in quantum optics with great success. However, a
has been shown recently by Moy and co-workers@14#, this
approximation fails in a realistic parameter regime. In t
paper we will outline a different approach, which is based
the time-convolutionless~TCL! projection operator tech
nique@15–17# to study non-Markovian effects resulting from
the output coupling. This technique is based on a pertu
tive expansion in powers of the output coupling strength

The master equation resulting from the perturbative
pansion has a form similar to the Born-Markov master eq
tion and is also local in time. This makes the equation
motion easy to solve. As we will see, the second order p
turbation theory corresponds to the Born-Markov appro
mation. By taking higher orders of the expansion no
Markovian effects can be studied in a systematic way. I
demonstrated that the perturbative expansion holds in an
termediate coupling regime, which corresponds to reali
parameters, while the Born-Markov approximation fails f
these parameters.
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This paper consists of two parts and is structured as
lows. In Sec. II we investigate the validity of the time
convolutionless projection operator technique for a puls
atom laser. The model investigated was discussed by M
et al. @14#. They showed that the Born-Markov approxim
tion fails for realistic parameters. We demonstrate that
time-convolutionless projection operator technique agr
with the exact solution for these parameters. Afterwards
apply the TCL algorithm to a simple model of a continuou
wave atom laser in Sec. III. The numerical results obtain
from a simulation using a perturbation expansion includ
fourth order clearly reveal strong oscillations in the occup
tion number of the Bose-Einstein condensate~BEC!. As will
be shown, these oscillations can be interpreted as a quan
interference effect which clearly reveals departures from
golden rule and demonstrates the non-Markovian dynam
of the atom laser. A short summary concludes the paper

II. PULSED ATOM LASERS

In this section we will investigate the dynamics of
pulsed atom laser. This means that there is an output c
pling mechanism which transfers the atoms out of the t
but there is no pump mechanism which supplies the B
with new atoms. When the trap is empty it is replenished a
a new cycle starts. Therefore our starting point is an exist
BEC inside an atomic trap and we study only the outp
coupling.

This section is organized as follows. We briefly introdu
our atom laser model and derive the exact equation of m
tion for the expectation value of the atomic number opera
of the BEC in Sec. II A. In Sec. II B we discuss the Bor
Markov approximation. The TCL algorithm is then applie
to the model in Sec. II C. Afterwards the numerical resu
are discussed in Sec. II D. A model of a continuous-wa
atom laser which includes a pumping mechanism to comp
3188 ©1999 The American Physical Society
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PRA 60 3189NON-MARKOVIAN DYNAMICS IN PULSED- AND . . .
sate losses by the output coupling will be introduced in S
III.

A. Exact solution

Usually, the output coupling from a BEC to a large re
ervoir is described within the Born-Markov approximatio
This description is based upon a master equation of the f

d

dt
rsys~ t !5gMD@a# rsys~ t !, ~1!

where the single trap mode occupied by the BEC is
scribed by the creation and annihilation operatorsa†,a and
gM is the Markovian decay rate. The superoperatorD is of
Lindblad form @18# and is defined by

D@a# P5aPa†2
1

2
~a†aP1Pa†a!. ~2!

In the Markovian approach one obtains a master equa
containing only system variables. Two basic assumptions
derlying the Born-Markov approximation are that~i! if the
system and the reservoir are uncorrelated at the begin
they remain uncorrelated for later times and~ii ! the evolution
of the system is Markovian. The Markovian property mea
that the future evolution of the system depends only on
present state and is independent of the previous history o
system. As is shown in Ref.@14#, the Born-Markov approxi-
mation is not valid in a realistic parameter regime of ato
lasers.

We want to investigate a Raman output coupler throu
state change, which was suggested by Moyet al. @14,19–21#.
Two lasers are tuned to a two-photon resonance to coupl
initial atomic state inside the trap to a final atomic sta
outside the trap. Due to the conservation of linear mom
tum the atoms receive momentum kicks during the Ram
transitions which push the atoms out of the trap. If we
sume that the lasers are detuned far from single-photon r
nances, then all initially empty modes of the atomic tr
remain empty and we can neglect all modes besides
ground state mode occupied from the BEC. In addition,
also ignore the effects of atom-atom interactions. The res
ing HamiltonianH is of the form

H5Hsys1H res1H int , ~3a!

Hsys5\v0 a†a, ~3b!

H res5E
2`

1`

dk \vkbk
†bk , ~3c!

H int52 i\~Ba†2B†a!, ~3d!

where we have defined

B5E
2`

1`

dk k~k!bk , vk5
\k2

2M
. ~4!

The bosonic creation and annihilation operators for the f
atomic state are denoted bybk

† ,bk . The ground state trap
energy is denoted by\v0 and\vk is the energy of the free
c.
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output atomic state,M is the atomic mass. The functionk(k)
describes the strength and spectral form of the coupling
the specific case of a Raman output coupler and a harm
trap with a Gaussian ground state@20,21# of width sk in k
space given by

C~k!5~2psk!
21/4exp@2k2/~4sk

2!#, ~5!

one obtains together with Eq.~3d! for the interaction Hamil-
tonianH int

k~k!5
i G1/2

A2psk
2

exp@2~k2k0!2/~4sk
2!#. ~6!

Here G1/2 denotes the coupling strength of the output co
pling and\k0 is the momentum transferred through the R
man transition. For the sake of simplicity we assume that
have two counterpropagating laser beams with the wave
tors kL1'2kL2. Therefore we havek0'0. With the atomic
dispersion relation from Eq.~4! one derives the spectral den
sity J(v) of the output coupling strength,

J~v!5
G

Apav
e2v/a, ~7!

which diverges atv50. The quantitya is given by

a5
\sk

2

2M
. ~8!

With the help of the functionJ(v) we can deduce the
Heisenberg equations of motion for the system operatorsa†

anda†a. Assuming that the reservoir is empty at the beg
ning, ^bk

†bk&(0)50, we obtain

d

dt
^a†~ t !&5 iv0^a

†~ t !&2E
0

t

dt f * ~t!^a†~ t2t!&eiv0t,

~9a!

d

dt
^a†~ t !a~ t !&52E

0

t

dt f ~t!^a†~ t !a~ t2t!&e2 iv0t1H.c.

~9b!

The function

f ~t!5Tr$r resB~t!B†~0!%eiv0t ~10!

5E
0

`

dv J~v!ei (v02v)t ~11!

5
eiv0tG

A11 iat
~12!

is the reservoir correlation function apart from a factoreiv0t.
The formal solution of the integro-differential equation

~9! can be expressed in terms of inverse Laplace transfor
However, the numerical evaluation of the inverse Lapla
transforms is very difficult@22#. As is easily shown, the so
lution of Eq. ~9b! can be written as

^a† a&~ t !5c~ t !c* ~ t !, ~13!
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3190 PRA 60BREUER, FALLER, KAPPLER, AND PETRUCCIONE
wherec* (t) is a solution of Eq.~9a! with the initial value
c(0)5A^a† a&(0). Hence one solves Eq.~9a! through direct
numerical integration and obtains the expectation value
the atom number by taking the squared absolute value.

B. Born-Markov approximation

Now we apply the Born-Markov approximation to th
above model of an atom laser. The Born-Markov approxim
tion consists in making the Born approximation, that is, o
assumes that system and reservoir are uncorrelated init
and that they remain so for later times. Hence the total d
sity operatorr tot(t) can be written as

r tot~ t !5rsys~ t ! ^ r res~0!, ~14!

wherersys(t) denotes the system density operator. In ad
tion, it is assumed here that the reservoir density oper
does not change in time,r res(t)5r res(0). The Markov ap-
proximation is based on the assumption that the time s
tsys, which describes the relaxation of the reduced system
much greater than the time scalet res, which represents a
measure for the width of the reservoir correlation functio
i.e.,

tsys@t res. ~15!

The time scalet res is obtained from the reservoir correlatio
function f (t). Because of the slowly decaying shape off (t)
in Eq. ~12! the atom laser shows a strong non-Markovi
behavior. A more detailed discussion of the application
the Born-Markov approximation to atom lasers can be fou
in Refs.@14,23#. Within the Born-Markov approximation we
get from Eqs.~3! the following master equation:

]

]t
rsys~ t !52

i

2
SM@a†a,rsys~ t !#1gMH 2

1

2
a†arsys~ t !

2
1

2
rsys~ t !a†a1arsys~ t !a†J . ~16!

Here, the Markovian Lamb shiftSM and the Markovian de-
cay rategM take the form

gM5E
0

1`

dt f~ t !, SM5E
0

1`

dt c~ t !. ~17!

The functionsf(t) andc(t) are proportional to the real an
imaginary part off (t),

f ~ t !5
1

2
@f~ t !1 i c~ t !#. ~18!

From the master equation~16! we easily get the expectatio
value of the atom number operatora†a,

^a†a&~ t !5^a†a&~0!e2gMt. ~19!

The above results enable one to derive from inequa
~15! an explicit condition for the Born-Markov approxima
tion. The system time scaletsys is given by
f

-
e
lly
n-

i-
or

le
is

,

f
d

y

tsys5
1

gM
5Av0a

4p

ev0 /a

G
. ~20!

This result is easily obtained by performing the first integ
in Eq. ~17!. As discussed in@14# we definet res as the half-
width of the integral of the real part off (t). The resulting
equation is solved numerically. In the considered param
regime one obtainst res'0.4/v0. Hence the time scale cond
tion

tsys

t res
'v0

3/2Aa

p

ev0 /a

G
@1 ~21!

must be satisfied for the Born-Markov approximation to
valid.

In our simulations we take similar parameters as d
cussed in@14#. The atom mass isM'2310226 kg. Realistic
parameters for the system frequencyv0 and the coupling
strength G are v0 /(2p)'123 s21, G'105 s22

@4–6,20,24#. The standard deviationsk in k space of the
coupling functionk(k) is assumed to besk'106 m21, cor-
responding to a wavelengthl'2 mm.

The only parameter which is varied is the couplin
strengthG; thereby we can systematically change the ratio
the time scale condition~21!. In Fig. 1 we depict the normal
ized expectation value of the atomic number operator
tained from the exact solution and from the Born-Mark
approximation forG553104 s22, leading to a ratio of time
scalestsys/t res516. Obviously the Born-Markov approxima
tion is not valid in this parameter regime. Attenuating t
coupling constantG about a factor of 5 suffices to reac
parameters where the Born-Markov approximation holds

In the following section we apply the time
convolutionless projection operator technique to our mod
This leads to a perturbative expansion for the master eq
tion, which allows us to analyze the behavior of an ato
laser in the non-Markovian parameter regime. As we will s
in Sec. II D the solution of this master equation agrees v
well with the exact solution for the parameters mention
above.

FIG. 1. Normalized occupation numbern(t)5^a†a&(t)/
^a†a&(0) of the BEC in the atomic trap. Plotted are Born-Marko
approximation, exact solution, and perturbation expansion to fo
order in the coupling strengthG553104 s21. This leads to a ratio
of time scalestsys/t res516.
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C. Time-convolutionless projection operator technique

It is usually assumed that a non-Markovian dynamics n
essarily involves a density matrix equation containing
time-convolution kernel. However, employing the tim
convolutionless projection operator technique we can de
an equation of motion for the system density operator wh
is local in time. The following discussion briefly summariz
this approach. A more detailed discussion can be found
@15–17#. Especially a discussion of the range of validity
this approach is given in Ref.@17#.

The starting point is the Liouville–von Neumann equati
for the density matrix of the total systemr tot ,

]

]t
r tot~ t !52 ia@H int~ t !,r tot~ t !#[aL~ t !r tot~ t !. ~22!

Here a denotes the strength of the coupling, andH int(t) is
the interaction Hamiltonian in the interaction picture. If w
define the projection operatorP

Pr tot~ t !5Trres$r tot~ t !% ^ r res5rsys~ t ! ^ r res, ~23!

it is possible to deduce an equation of motion for the sys
density operatorrsys(t),

]

]t
Pr tot~ t !5K~ t !Pr tot~ t !. ~24!

Here Trres denotes the trace over the reservoir. Under cer
conditions which are always satisfied for short times and
the weak coupling regime~see, e.g., Ref.@17#! it is possible
to derive a perturbative expansion for the generatorK(t) of
the time-convolutionless master equation in powers of
coupling strengtha,

K~ t !5a2K (2)~ t !1a4K (4)~ t !1a6K (6)~ t !1•••. ~25!

The superoperatorsK (n)(t) are given by

K (n)~ t !5E
0

t

dt1E
0

t1
dt2 . . . E

0

tn22
dtn21kn~ t,t1 , . . . ,tn21!,

~26!

where

kn~ t,t1 , . . . ,tn21!5( ~21!q21PL~ t !•••L~ t i !

3PL~ t j !•••L~ t l !PL~ tm!••• .

~27!

The sum in Eq.~27! is to be taken over all possible insertion
of P’s in between then factorsL, while keeping the chrono
logical order in time between two successive insertions oP
@16#. This meanst.•••.t i andt j.•••.t l . The constantq
is the number of inserted projection operatorsP. Assuming
that all odd moments ofH int(t) with respect tor resvanish we
havePL(t1)•••L(t2k11)P50. Therefore, all terms contain
ing odd powers of the coupling strengtha disappear in Eq.
~25!. With the help of Eqs.~26! and ~27! we obtain the su-
peroperators
-
a

e
h

in

m

in
n

e

K (2)~ t !5E
0

t

dt1PL~ t !L~ t1!P ~28!

and

K (4)~ t !5E
0

t

dt1E
0

t1
dt2E

0

t2
dt3$PL~ t !L~ t1!L~ t2!L~ t3!P

2PL~ t !L~ t1!PL~ t2!L~ t3!P
2PL~ t !L~ t2!PL~ t1!L~ t3!P
2PL~ t !L~ t3!PL~ t1!L~ t2!P%. ~29!

We have determined also the sixth order superoperatorK (6).
Because of its length the expression forK (6)(t) is not pre-
sented here: it is a fivefold integral of 45 terms, each c
taining six superoperatorsL(t).

The above superoperators can be expressed in term
commutators whose evaluation is simplified by invoking t
bosonic commutation relations. For the present study
have determinedK (2), K (4), and K (6) with the help of the
computer algebra systemMATHEMATICA . This system en-
ables the evaluation of the expansion coefficientsK (n)(t).

Transforming Eqs.~3d! and~4! to the interaction picture,
the interaction HamiltonianH int(t) reads

H int~ t !52 i\$B~ t !a†~ t !2B†~ t !a~ t !%, ~30!

where

B~ t !5E
2`

`

dk k~k!bke
2 ivkt, a~ t !5ae2 iv0t. ~31!

The expansion parameter in the case of the atom laser is
coupling strengthG1/2. With the assumption of an initially
empty Gaussian reservoir, Trres$r resB

†(t)B(t1)%50, we ob-
tain a master equation in Lindblad form,

]

]t
rsys~ t !52

i

2
S~ t !@a†a,rsys~ t !#1

1

2
g~ t !

3$2a†arsys~ t !2rsys~ t !a†a12arsys~ t !a†%.

~32!

Here the Lamb shiftS(t) and the decay rateg(t) are given
by

S~ t !5S(2)~ t !1S(4)~ t !1S(6)~ t !, ~33!

g~ t !5g (2)~ t !1g (4)~ t !1g (6)~ t !. ~34!

The functionsS(n)(t) andg (n)(t) can be easily evaluated a
integrals over the known functionsf(t), c(t) @see Eq.~18!#.
We find

S(2)~ t !5E
0

t

dt1c~ t2t1!, ~35a!
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3192 PRA 60BREUER, FALLER, KAPPLER, AND PETRUCCIONE
S(4)~ t !5
1

2E0

t

dt1E
0

t1
dt2E

0

t2
dt3@c~ t2t2!f~ t12t3!

1f~ t2t2!c~ t12t3!1c~ t2t3!f~ t12t2!

1f~ t2t3!c~ t12t2!#, ~35b!

and

g (2)~ t !5E
0

t

dt1f~ t2t1!, ~36a!

g (4)~ t !5
1

2E0

t

dt1E
0

t1
dt2E

0

t2
dt3@f~ t2t2!f~ t12t3!

1f~ t2t3!f~ t12t2!2c~ t2t3!c~ t12t2!

2c~ t2t2!c~ t12t3!#. ~36b!

Again we refrain from presenting the sixth order terms b
cause of their length, but they are also given as simple i
grals.

Note that we have derived a master equation in Lindb
form without making the Born-Markov approximation. If w
keep only the second order terms and extend the rang
integration in Eqs.~35a! and ~36a! to infinity we get the
Born-Markov master equation~16!. Hence our master equa
tion has the same simple form as Eq.~16!, but the paramete
regime in which Eq.~32! is valid is much larger. This will be
demonstrated in Sec. II D.

From Eq.~32! one derives the equation of motion for th
occupation number of the BEC. We are only interested in
normalized occupation numbern(t)5^a†a&(t)/^a†a&(0).
One easily demonstrates thatn(t) is given by

n~ t !5expS 2E
0

t

g~ t1!dt1D . ~37!

Hence it suffices to evaluate the integrals over the time
pendent decay ratesg (n)(t) in the different orders of the
coupling strengthG1/2 to get the normalized occupation num
ber of the BEC. Providedg (n)(t) is positive the quantity
F(t)512n(t) can be interpreted as the waiting time dist
bution @25,26# for a transition of a single atom out of th
trap.

D. Numerical results

In our simulation we take the parameters as mentione
the end of Sec. II B. Through variation of the couplin
strengthG we will go beyond the parameter regime in whic
the Born-Markov approximation is valid and compare t
results obtained from the time-convolutionless projection
erator technique with the exact solution.

In Fig. 1 the occupation number of the BEC is plotted f
a coupling strengthG553104 s22. While the Born-Markov
approximation fails to render the exact solution, the depic
fourth order is a very good approximation. Although it is n
shown here the sixth order would be almost perfect.

Figure 2 shows the results for a coupling strengthG
5105 s22. Here we clearly see that for realistic paramet
the Born-Markov approximation fails, whereas the tim
-
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convolutionless projection operator technique to sixth or
in the coupling strength reproduces the exact solution. O
numerical results show that the Born-Markov approximat
begins to fail at a coupling strengthG'104 s22. This cor-
responds to a ratio of the time scales given bytsys/t res580.
The TCL algorithm to fourth order provides reliable resu
until aboutG'53104 s22. For stronger couplings to abou
G'105 s22 corresponding to a ratio of time scalestsys/t res
58 the sixth order is needed.

For very strong coupling withG'106 s22 the sixth order
provides reliable results only for short times. The rise in t
atom number after the first collapse shown in Fig. 3 can
be reproduced by any algorithm which is based on a per
bative expansion because the transition rate diverges at
point, and the equation of motion is no longer analytic@17#.
Nevertheless the short time behavior is very important
the evaluation of correlation functions.

Figure 4 compares the decay rates for the coupl
strengthG5105 s22. As expected, the decay rate is valid f
longer times if we include higher order terms in the pert

FIG. 2. The normalized occupation numbern(t)
5^a†a&(t)/^a†a&(0) of the BEC: exact results and the results fro
the Born-Markov approximation, respectively, from fourth a
sixth order perturbation theory. The parameterG5105 s21 is cho-
sen such that the ratio of time scales becomest res/tsys58.

FIG. 3. Normalized occupation numbern(t)5^a†a&(t)/
^a†a&(0) of the BEC: Born-Markov approximation, exact solutio
and perturbation expansion to sixth order in the coupling stren
G5106 s21. This leads to a ratio of time scalest res/tsys50.8.
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PRA 60 3193NON-MARKOVIAN DYNAMICS IN PULSED- AND . . .
bation expansion. Although the decay rate in sixth order d
not exactly render the exact solution, it gives a good appro
mation over a wide range until aboutgMt'4. It constitutes
an essential improvement compared to the constant B
Markov decay rate. It is important to emphasize that the T
technique is much simpler to perform than the solution of
exact equation of motion.

III. CONTINUOUS-WAVE ATOM LASERS

The next step after the realization of a pulsed atom la
was to build a continuous-wave~cw! atom laser, which was
recently achieved@5,6#. As in the case of the pulsed ato
laser we model the output coupler through a two-photon
man transition. Such an output coupler has recently b
experimentally realized by Hagleyet al. @5#. Because of the
momentum transferred by the Raman transitions this is
first atom laser with a highly directional output.

In addition to the pulsed atom laser discussed in the
section we include a pumping mechanism to describe a
atom laser. In this section we extend the model of a pul
atom laser to a pump mechanism already proposed
@9–11,27#. While in these papers the output coupler is trea
within the Born-Markov approximation we will use the sam
output coupling mechanism as discussed in Sec. II to st
the effects of a non-Markovian output coupler. The coupl
to the pump reservoir is a fast process and may therefor
treated within the Born-Markov approximation.

A. Model of a continuous-wave atom laser

We use a binary-collision atom laser scheme based on
near resonant dipole-dipole interaction. The atomic trap fr
which we want to study the output coupling consists of ma
atomic modes. Under certain experimental conditions i
possible to restrict ourselves to three modes of the trap
discussed in@10,11#. Atoms of a thermal source—the firs
reservoir—are transferred into the pump mode of the trap
shown in Fig. 5 these atoms enter the trap mode 1 with a
k1N. They can also leave the trap from this mode with t
ratek1(11N). The bosonic creation and annihilation oper

FIG. 4. Comparison of decay rates. Plotted are Born-Mark
exact decay rates, and the decay rates in fourth and sixth o
perturbation theory. The value of the coupling strength isG55
3104 s21.
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tors of the first reservoir are denoted byQ†, Q, andN is the
stationary occupation number of the mode 1 if there were
transitions inside the trap. After the mode 1 is occupied
more than one atom, two atoms can interact via the n
resonant dipole-dipole interaction through which one atom
transferred to the weakly bound mode 2 and the other to
mode 0 of the atomic trap.

The atoms in mode 2 are outcoupled to the second re
voir with a ratek2. To enable evaporative cooling which
needed to achieve the necessary low temperatures for B
Einstein condensation the conditionk2@k1 must hold. This
means that each atom which is transferred to the high
mode leaves the trap very fast, such that this mode is m
strongly depleted. Just as in Sec. II A the atoms are o
coupled through a Raman transition from the ground stat
the atomic trap. To achieve a steady occupation numbe
the ground mode the conditionk1@k0 must hold. This out-
put coupling to the 0 reservoir will be described taking in
account the non-Markovian character of the dynami
whereas the coupling to the other two reservoirs is treate
the Born-Markov approximation. This is a reasonable
sumption because of the conditionk2@k1@k0.

In general we find for the binary-collision atom las
scheme the Hamiltonian

H5Hsys1V1HI ,01HI ,11HI ,2 , ~38!

where Hsys is the system Hamiltonian andV describes the
collisions between two atoms. The operatorsHI ,0 ,HI ,1 ,HI ,2
are responsible for the coupling to the three reservoirs.Hsys
and the most general form of the interaction HamiltonianV
can be written as

Hsys5(
j 50

2

\v jaj
†aj , ~39!

V5\ (
j ,k,l ,m50

2

gj ,k,l ,maj
†ak

†alam . ~40!

In the interaction HamiltonianV we do not consider effects
which are negligible at low densities, such as the annihilat
of two ground state atoms and the creation of two atoms
the highest modes. Such transitions are energetically u
vored at low densities. Moreover, sincek2@k1 the strongly
depleted mode 2 can be eliminated adiabatically@9#. We in-
troduce an effective reservoir which describes the annih
tion of two atoms in mode 1, the creation of an atom
modes 0 and 2, and the immediate loss of the atom in m
2. This effective reservoir includes the terms describing c

,
er

FIG. 5. Our simplified model of a cw atom laser consists o
pump mode 1, the ground state mode 0 which is occupied from
Bose-Einstein condensate, and the weakly bound mode 2 f
which the atoms are strongly coupled out.
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lision with atoms in mode 2 which were included inV. With
these assumptions the remaining terms inV are

V5\$g0000a0
†a0

†a0a01g1111a1
†a1

†a1a11g0101a0
†a0a1

†a1%.

~41!

As shown in@9,10# the first and the last term in the abov
equation cause a broadening of the output spectrum. In
paper we are only interested in the occupation number of
BEC, and we will not study the output spectrum. Because
this we can ignore these terms sinceV affects only the off-
diagonal terms of the reduced density matrixrsys. Hence we
obtain in the interaction picture

H~ t !5HI ,0~ t !1HI ,1~ t !1Heff~ t !, ~42!

where the operators describing the coupling to the three
ervoirs are given by

HI ,0~ t !52 iAk0

2
@B~ t !a0

†eiv0t2a0B†~ t !e2 iv0t#,

~43a!

HI ,1~ t !5Ak1

2
@Q~ t !a1

†eiv1t2a1Q†~ t !e2 iv1t#,

~43b!

Heff~ t !5AV

2
@R†~ t !a0

†a1
2ei (v022v1)t

2a0a1
†2R~ t !e2 i (v022v1)t#. ~43c!

The operatorsB,Q,R andB†,Q†,R† are the annihilation and
creation operators, respectively, for the reservoirs show
Fig. 5. The energies of atoms in the two atomic trap mode
and 1 are given by\v0 and\v1. The coupling constantV
describes the strength of the dipole-dipole interaction.

Summarizing, the atomic trap in which the Bose-Einst
condensate is built couples to three reservoirs. The first
ervoir provides the pump mode of the trap with atoms fro
a thermal source. Through near resonant dipole-dipole in
action the atomic trap modes 0 and 2 get occupied.
immediate loss from atoms in the second atomic trap m
to the corresponding reservoir is necessary to enable ev
ration cooling. Just as in the case of the pumped atom l
the Bose-Einstein condensate is coupled out from the mo
through a two-photon Raman transition.

B. Derivation of quantum master equations

In this section we apply the time-convolutionless proje
tion operator technique to the case of the continuous-w
atom laser. With the help of Eqs.~26! and~43! we obtain to
second order in the coupling strengthG1/2

]

]t
rsys~ t !5~L 0

(2)1Lout
(2)1Lin1Lcoll!rsys~ t !. ~44!

The superoperators describing the Lamb shiftL 0
(2) and the

output couplingLout
(2) to second order are defined throug

Eqs. ~45!. The operatorsLin andLcoll describe the coupling
to the thermal reservoir from which the atoms enter the t
is
e
f

s-

in
0

n
s-

r-
e
e
o-
er
0

-
e

p

mode 1, and the coupling to the effective reservoir wh
enables the evaporative cooling mechanism from the
mode 2. These operators are treated within the Born-Mar
approximation, and are thus independent of the expan
parameter. Hence we have

L 0
(n)R52

i

2
S(n)~ t !@a0

†a0 ,R#, ~45a!

Lout
(n)R5g (n)~ t !H a0 R a0

†2
1

2
a0

†a0 R2
1

2
R a0

†a0J ,

~45b!

LinR5Nk1H a1
†R a12

1

2
a1 a1

†R2
1

2
R a1 a1

†J
1~11N!k1H a1 R a1

†2
1

2
a1

† a1 R2
1

2
R a1

† a1J ,

~45c!

LcollR5V H a0
†a1

2 R a1
†2a02

1

2
a1

†2a1
2 a0 a0

†R

2
1

2
Ra1

†2a1
2 a0 a0

†J . ~45d!

The functionsg (2)(t) andS(2)(t) are given by Eqs.~35a! and
~36a!. From the above master equation we obtain the Bo
Markov approximation by replacing the time depende
functionsg (2)(t) and S(2)(t) through the Markovian Lamb
shift and the Markovian decay rate from Eq.~17!.

In the limit of an atom number in the Bose-Einstein co
densate which is much greater than 1 we get the station
occupation number of the ground state within the Bo
Markov approximation

^a0
†a0&5

k1

2gM
S N2

1

2
2A1

4
1

gM

V D . ~46!

Before solving the Born-Markov master equation and
equation to second order perturbation theory we evaluate
fourth order termK (4) from Eq. ~29!. We obtain after some
algebra

]

]t
rsys~ t !5~L 0

(4)1Lout
(4)1Lin1Lcoll1Loc!rsys~ t !. ~47!

Here, the superoperatorsL 0
(4) and Lout

(4) are defined through
Eqs.~45! and the corresponding functionsg (4)(t) andS(4)(t)
are given in Eqs.~35b! and~36b!, respectively. Naturally the
operatorsLin andLcoll do not change compared to the seco
order expansion. In contrast to the second order perturba
expansion~44! in the coupling strengthG1/2 the fourth order
does not only changes the functionsg (n)(t) andS(n)(t) to the
appropriate order, it also adds a new superoperatorLoc to the
master equation.Loc is given by
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LocR5r ~ t !~a0
†a1

2Ra0a1
†22a1

2Ra0a0
†a1

†2!

1r * ~ t !~a0
†a1

2Ra0a1
†22a0a0

†a1
2Ra1

†2!

1
1

2
r ~ t !~a0a1

†2a1
2Ra0

†2a0
†a0a1

†2a1
2R!

1
1

2
r * ~ t !~a0Ra0

†a1
†2a1

22Ra0
†a0a1

†2a1
2!. ~48!

The complex functionsr (t) are defined by

r ~ t !5VE
0

t

dt1E
0

t1
dt2f ~ t02t2!. ~49!

The operatorLoc appears in the fourth order perturbatio
theory due to a mixture ofLout

(2) and Lcoll . Note that this
master equation is not in Lindblad form. Equation~47! was
solved by integrating the closed system of differential eq
tions for the diagonal elements of the reduced density op
tor.

C. Numerical results

In our simulations we have chosen the parameters sim
to the pulsed atom laser. The new parameters for the pu
ing and the coupling to the effective reservoir are taken to
these of Refs.@9,10#. They are chosen such that the statio
ary occupation numbern of the ground mode isn'100. The
strength of the dipole-dipole coupling isV515gM and the
coupling constant to the pump reservoir isk1510gM . The
parameterN520.3 describes the stationary occupation nu
ber of the pump mode 1 of the atomic trap, assuming th
were no transitions inside the trap.

The only variable parameter in the simulation is t
strength of the couplingG1/2, which determines the strengt
of the coherent output couplinggM . This parameter is varied
in our simulations from a value where we expect the Bo
Markov approximation to hold, to parameters where
time-convolutionless projection operator technique for
pulsed atom laser was valid in the first part of this paper

Figure 6 shows the occupation number of the Bo
Einstein condensate for a valueG553104 s22. For this
coupling strength the TCL algorithm agreed very well w
the exact solution in the case of the pulsed atom laser. In
case of the cw atom laser we see strong oscillations in
occupation number of the BEC. Note also that in fourth or
the mean occupation number increased compared to the
tionary occupation number resulting from the Born-Mark
approximation.

If we reduce the coupling strengthG to G513104 s22,
then there are only very weak oscillations around the stat
ary value obtained from the Born-Markov approximation a
the fourth order perturbation theory agrees well with the s
ond order expansion. In the case of the pulsed atom lase
Born-Markov approximation also failed for couplin
strengthsG.13104 s22.

As expected this suggests that for the cw atom laser
parameter regime in which the TCL algorithm is valid coi
cides with that of the pulsed atom laser. Thus the parame
in Fig. 6 are chosen such that the TCL algorithm to fou
order should provide reliable results.
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The depicted oscillations in the atom number can be
terpreted as an interference effect between two favored t
sition modes. The physical origin of this interference ph
nomenon can be seen already from the second order
g (2)(t) which takes the form

g (2)~ t !5E
0

t

dsf~s!52E
0

`

dv J~v!
sin@~v02v!t#

v02v
.

~50!

Here the first factor of the integrand, namely, the spec
densityJ(v), has av21/2 singularity atv50 @see Eq.~7!#,
whereas the second factor is concentrated around the gr
state frequencyv5v0. Thus, the main contribution to thi
integral stems from transitions with frequencies nearv50
and v5v0. The corresponding transition amplitudes inte
fere and lead to the observed oscillations in the decay
and therefore to the oscillations in the occupation numbe

In a Markovian system, where the spectral density of
coupling strengthJ(v) is bounded, the second factor of th
integral ~50! quickly approaches ad function in the limit
t→`, and the oscillations decay on a time scalet res. This is
known as Fermi’s golden rule.

In contrast, in the case of an atom laser, the contribut
nearv50 is also important for long times. This can be se
by the asymptotic behavior ofg (2)(t) which can be evalu-
ated explicitly from Eq.~50! and is given through

g (2)~ t !5gM2
2G

Aav0
2t

cos~v0t1p/4!. ~51!

According to this relation the decay rateg (2)(t) approaches
the Markovian rategM very slowly ast21/2. It is important to
note that this behavior is due to thev21/2 singularity ofJ(v)
at v50 which, in turn, is a direct consequence of the d
persion relation~4! of massive particles. Thus we observ
that non-Markovian effects decay only slowly in time wi
an algebraic behavior. This clearly demonstrates that

FIG. 6. Occupation numbern(t)5^a†a&(t) of the BEC in an
atomic trap in the case of a continuous-wave atom laser. Plotted
the Born-Markov approximation and the results of a non-Markov
perturbative expansion of the output coupling to second and fo
order in the coupling strength.
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3196 PRA 60BREUER, FALLER, KAPPLER, AND PETRUCCIONE
golden rule limit gM is relevant only for extremely long
times and shows the importance of a non-Markovian tre
ment of the atom laser.

From Eq.~50! one clearly sees that the oscillations w
also appear if we abandon the assumptionk0'0. The func-
tion J(v) will then be peaked aroundvL5\k0

2/(2M ) but
still has a v21/2 singularity at v50. Hence a significan
contribution to the integral in Eq.~50! comes fromv50
and, therefore, the time dependence ofg (2)(t) again shows
an oscillatory behavior. These oscillations are also presen
the case of the damped Jaynes-Cummings model with de
ing ~see, e.g., Ref.@17#!, but there they are damped expone
tially.

IV. SUMMARY

We have demonstrated that in the case of a pulsed a
laser with a Raman output coupler in a realistic parame
regime in which the Born-Markov approximation fails, th
time-convolutionless projection operator technique is able
reproduce the exact solution.

If we leave the intermediate coupling regime and take
A

t-

in
n-

-

m
r

o

e

sixth order terms in the output coupling strength we are a
to render the exact solution for short times to abo
t54/gM in the strong coupling regime. This short time b
havior is important for the evaluation of correlation fun
tions. The long time behavior after the first collapse of t
atom number cannot be reproduced with the TCL algorith
because the decay rate diverges at such a point.

In the case of a cw atom laser we have chosen the c
pling strength such that the perturbative expansion for
pulsed atom laser agreed with the exact solution for the c
sidered times. We found strong oscillations of the occupat
number of the BEC and the mean atom number increa
Our results clearly suggest that these oscillations survive
very long times because of the slow algebraic decay of
relaxation rate.
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