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Quasicontinuum modeling of photoassociation

Matt Mackie and Juha Javanainen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

~Received 22 December 1998!

We analyze photoassociation theoretically by treating the dissociation continuum of a molecule as a quasi-
continuum~QC! of discrete states. In this manner, free-bound transitions are reduced to a few-level problem.
The correct continuum limit is deduced from an explicit analysis of the density of QC states. Besides giving the
usual photoassociation rate, the QC model facilitates the analysis of the steady-state molecular yield. More-
over, complications such as velocity redistribution and line broadening due to atom-atom collisions may be
treated basically in the same way as in connection with the customary two-level atom. Next we adapt the
standard three-level quantum optics to describe free-bound-bound photoassociation for both continuous-wave
and pulsed two-color excitation. For a quantum degenerate gas of atoms, a proper two-photon resonant scheme
may transform atoms to ground state molecules with near-unit efficiency even in the presence of spontaneous
losses from the intermediate state.@S1050-2947~99!08310-9#

PACS number~s!: 34.50.Rk, 03.75.Fi
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I. INTRODUCTION

Theoretical descriptions of photoassociation first emer
as an early application of quantum mechanics, and are
among the first direct numerical computations in quant
mechanics. Coolidgeet al. investigated the continuum of ul
traviolet radiation emitted in the photodissociative transitio
of the H2 and D2 molecules@1#. Also in the early days of
quantum mechanics, Bose and Einstein predicted@2# that a
gas of integer-spin particles cooled to a sufficiently low te
perature would undergo a phase transition whereby its c
stituents would condense into the lowest available state
the center-of-mass motion. The evolution of lasers and
associated cooling and trapping techniques led first to the
of photoassociation as a high-precision tool in molecu
spectroscopy@3#, followed shortly thereafter by the observ
tion of Bose-Einstein condensation~BEC! @4#. The primary
connection between these two fields has been the utility
photoassociation for measuring atomic scattering lengths@5#.
However, this connection is strengthened as of late by
suggestions that photoassociation might serve as a me
nism for producing a BEC of molecules from an atomic co
densate@6,7#.

The bulk of the theoretical work on photoassociation
founded on collision theory@8–10#, and continues the nu
merical tradition of Refs.@1#. However, novel approache
have surfaced over the last few years. Photoassociation
can be found by analyzing the equations of motion for
density matrix in the perturbative regime@11#, or by solving
the time-dependent Schro¨dinger equation@12#.

We have taken yet another tack@7# by constraining the
relative motion of the colliding atoms to a large but fini
volume, so as to convert the continuum of dissociated m
lecular states into a quasicontinuum~QC!. The correct physi-
cal results corresponding to the free-atom states are re
ered no later than the end of a given calculation by taking
limit that the QC spacing tends to zero@13#. There are sev-
eral advantages to such an approach beyond its nonpert
tive nature. First and foremost, the QC model leads natur
to a few-level description, allowing one to bring the theor
PRA 601050-2947/99/60~4!/3174~14!/$15.00
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ical machinery of quantum optics and laser spectroscop
bear on problems of photoassociation. Second, the ave
over the thermal energy distribution of the colliding atoms
performed trivially, and the density parameter for photoas
ciation is then unveiled to be essentially the same ph
space density that governs BEC@7#. Third, a hierarchy is
revealed for three-level free-bound-bound schemes, such
the Rabi frequency for the photoassociation color is negl
bly small compared to that for the color driving the discre
molecular transition. Aside from facilitating analytical solu
tions, such a hierarchy renders coherent processes suc
STIRAP @12# unimportant@7# in a nondegenerate gas.

The purpose of the present paper is twofold. We supp
ment our initial Rapid Communication@7# with details on the
QC approach to photoassociation for one laser color, and
an analysis of two-color photoassociation. In the latter c
we pay particular attention to potential ways of avoidi
spontaneous-emission losses from an electronically exc
intermediate molecular state. We suggest that resonant
photon processes, as opposed to the two-step processe
vocated earlier@6,14#, might be the optimal way to reduc
spontaneous-emission losses in a dense sample such
condensate. Also, unlike in treatments based on collis
theory, we may easily discuss pulsed excitation schem
One of the practical advantages is that with pulses one m
achieve higher intensities for the photoassociating laser t
in the typical continuous-wave case. In an atomic sam
that is not dense enough to be near-degenerate, incre
intensity of the photoassociating laser turns out to be the
to reducing spontaneous-decay losses.

In Sec. II we introduce the QC approach in the mod
with one stable bound molecular state coupled by a laser
dissociation continuum of a molecule. The emphasis is
the relations of this model to the prototype two-level syst
of quantum optics and laser spectroscopy. While we h
stated the basic ideas before@7#, here we add a wealth o
detail so as to include, e.g., the counting of QC states, thre
old law of photodissociation rate, atom-atom collisions, a
the absence of coherent power broadening.

Section III presents an application of our QC approach
3174 ©1999 The American Physical Society
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PRA 60 3175QUASICONTINUUM MODELING OF PHOTOASSOCIATION
two-color free-bound-bound photoassociation. Althou
continuous-wave excitation may not be of immediate r
evance in experiments, we analyze it in detail as an illus
tion of the pertinent concepts borrowed from laser spect
copy, such as two-photon and two-step transitions. We t
proceed to pulsed-laser excitation. The brief summary
concluding remarks in Sec. IV complete our paper.

II. FREE-BOUND TRANSITIONS

In this section we consider photoassociation and photo
sociation to and from a bound, stable molecular state.
though we know of no laser-based experiment on direct o
color photoassociation to a stable molecular state, one
envisage models in which this is possible at least in p
ciple. We sketch such a situation in Fig. 1.

A. Quasicontinuum „QC… model

As indicated in Fig. 1, we model the dissociation co
tinuum of a molecule with a QC, an infinite number of sta
un& between which there is an equal energy spacing\«. In
our model the QC is also ‘‘flat,’’ so that the coupling matr
element between the bound stateub& and any QC stateun&
equals the same constant\k. For dipole coupling to light we
have the Rabi frequencyk5dE/2\, whereE is the ampli-
tude of the electric field andd is the dipole matrix elemen
between the bound state and any QC state. Within
rotating-wave approximation, the Hamiltonian of the syst
is

H

\
5 (

n52`

`

vnun&^nu2 (
n52`

`

~kun&^bu1k* ub&^nu!, ~1!

FIG. 1. ~a! Scheme in which a laser drives transitions betwee
dissociated~quasicontinuum! statem and a~stable! bound molecu-
lar stateb. ~b! Quasicontinuum model of the same.
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with vn5n«. The labeling of the QC states is chosen in su
a way that the transitionub&↔un50& is on optical reso-
nance.

The state vector of the system is written

uc&5bub&1(
n

anun&, ~2!

where b and an are generally time-dependent amplitude
Combining Eqs.~1! and ~2!, we have the time dependen
Schrödinger equation

ḃ5 ik* (
n

an1b~0!d~ t !, ~3a!

ȧn52 ivnan1 ikb1an~0!d~ t !. ~3b!

The delta functions together with the requirement that
amplitudes vanish fort,0 impose the initial conditions on
the system att50.

The equations of motion~3! are solved using Fourie
transform methods. Closed-form analytical solutions are
tained using the substitution for the self-energy

(
n52`

`
1

v2n«1 ih
.

1

«E2`

`

dx
1

v2x1 ih
52

ip

«
. ~4!

This is the crucial continuum limit that has to be taken
order to recover the free-atom results from the QC mode
is valid for times short enough that the discreteness of
QC states is unresolved, i.e.,t&«21. This fact has been con
firmed with extensive numerical studies of the solutions
the Schro¨dinger equation@15#. At any rate, using Eq.~4!, the
Fourier solutions for the respective amplitudes are given

b~ t !5
i

2pE dv e2 ivtF 1

v1 iG/2G
3Fk* (

n

an~0!

v2vn1 ih
1b~0!G , ~5a!

an~ t !5
i

2pE dv e2 ivtH F k

~v2vn1 ih!~v1 iG/2!G
3Fk* (

n

an~0!

v2vn1 ih
1b~0!G1

an~0!

v2vn1 ihJ ,

~5b!

where we have defined

G5
2puku2

«
. ~6!

The termsih, with h501, implement the requirement tha
the amplitudes vanish fort,0.

We begin with the analog of photodissociation, in whi
the system is initially in the bound state and finally in t
QC. The initial conditions areb(0)51 and an(0)50.
Evaluation of the integrals in Eqs.~5a! and ~5b! gives the
time-dependent amplitudes as

a
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b~ t !5e2Gt/2, ~7a!

an~ t !5
k

vn2 iG/2
~e2 ivnt2e2Gt/2!. ~7b!

The bound-state population is of course found to decay
ponentially at the photodissociation rateG. Upon depletion
of the bound state,t@G21, the population winds up in the
QC, and has a Lorentzian profile with the half width at h
maximum

g5G/2. ~8!

In the continuum limit, one obtains a nonzero and fin
value for the photodissociation rate by letting«→0 and
uku2→0 in such a way thatG remains constant, the photo
dissociation rate as obtained from measurements
molecular-structure calculations for the given light intensi
In the continuum limit the time.«21 over which our ap-
proximation~4! remains valid automatically tends to infinit
@16#.

Moving on to photoassociation, the system is initia
placed in themth QC state, so that the initial conditions a
b(0)50 and an(0)5dmn . Integrating the Fourier expres
sions~5! gives the time dependence of the respective am
tudes as

b~ t !5
k*

vm1 ig
~e2 ivmt2e2Gt/2!, ~9a!

anÞm~ t !5
g«

p F e2gt

~vm1 ig!~vn1 ig!
1

e2 ivmt

vmn~vm1 ig!

2
e2 ivnt

vmn~vn1 ig!G , ~9b!

am~ t !5
g«/p

~vm1 ig!2
$e2gt2@11 i ~vm1 ig!t#e2 ivmt%

1e2 ivmt, ~9c!

where we use the temporary definitionvmn5vm2vn .
Equation~9c! possesses a linear time dependence, an

appears that the population of the initially occupied st
diverges fort→`. However, our continuum limit~4! is valid
only for t&«21. The continuum-limit expressions have be
compared with direct numerical solutions of the QC Sch¨-
dinger equations~3!, and we find an agreement over such
timescale@15#. Again, this timescale tends to infinity in th
limit «→0.

B. Equivalent two-level system

It should be clear from our preceding analysis that in
continuum limit the only effect of the light-induced couplin
to the QC on the bound-state amplitude is exponential da
ing. This suggests that photoassociation may be mod
with a two-level system consisting of the initial stateum& and
bound stateub&, and that the attendant photodissociation is
be regarded simply as irreversible decay of the bound sta
the ~unobserved QC! states outside the two-level syste
x-

f

or
.

i-

it
e

e

p-
ed

o
to

$um&,ub&%. Moreover, the solution of the QC model, Eqs.~9!,
have the feature that in the continuum limit («→0,
k→0) all light-induced perturbations vanish.

To study photoassociation, we therefore write a two-le
model with the equations of motion

ḃ52gb1 ikam , ȧm52 ivmam1 ik* b. ~10!

It is also understood that these equations are always to
solved perturbatively in the Rabi frequencyk, so that we
write ȧm52 ivmam . The solutions obtained in this wa
from Eq.~10! indeed agree with Eqs.~9a! and~9c! to lowest
order ink, i.e., they become exact in the continuum limit.

Whichever formalism we are using to study photoassoc
tion, evidently after an initial transient that lasts a time of t
orderG21, atoms that were initially in the QC stateum& are
transferred to the bound stateub& at the steady rate

Rm5
2guku2

vm
2 1g25

gG«/p

vm
2 1g2 . ~11!

Since photodissociation removes molecules at the rateG, the
equilibrium occupation probability of the stateub& is

ub~ t5`!u25
Rm

G
5

g«/p

vm
2 1g2 . ~12!

The observation that a certain two-level system may
used to model photoassociation is the first of the two ess
tial ingredients in our approach. The other one is also alre
implicit in Eq. ~12!, and will be discussed next.

C. Multiple colliders

From the expression~12!, the bound state population i
proportional to the spacing of QC states«. Hence, in the
continuum limit with «→0, the initial stateum& is not de-
pleted at all, and the population of the bound state tend
zero. It seems as if photoassociation were impossible in
context of our QC model.

We make physical sense of this counterfactual result w
two realizations. The first is that the limit of zero QC spaci
corresponds to the limit of an infinite quantization volum
The second is that we have so far considered the rela
motion of only two atoms in either the dissociated or bou
state of a molecule. That photoassociation fails to oc
should then come as no surprise, since two atoms do
collide at all in the limit of an infinite volume. This situatio
is remedied if we consider all the otherN21.N atoms as
potential colliders while studying collisions experienced
any single ‘‘spectator’’ atom.

In the first steps of our argument, we continue to analy
a pair of atoms. As usual, we consider the relative coordin
only. In collisional calculations it is customary to treat di
ferent angular momental separately. To prepare for explic
discussions, our QC should thus have angular momentum
a good quantum number. The frequency separation« of the
QC model is essentially the inverse of the density of ene
eigenstates. In order to work out photoassociation, we n
the density of energy eigenstates for the two colliding ato
for a given angular momentum of the relative motion.
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To facilitate our discussion, we quantize the continuu
states by enclosing the relative motion of the atom pair i
spherical potential well with radiusR, and use reflecting
boundary conditions at the surface. Now, the interacti
between the atoms change the continuum states and the
sity of energy eigenstates. For instance, the interactions
some states down from the continuum, and make disc
molecular eigenstates out of them. However, if the inter
tion potential has a finite range, in the limitR→` its effect
on the density of unbounded states is clearly negligible.
told, to study the density of states, we consider a free par
with reduced massm.

The eigenstates of energy in a spherical box are w
known, of the form

unlm~r ,u,f!5KnlmYm
l ~u,f! j l~kr !. ~13!

Here Knlm is a normalization constant,Ym
l is a spherical

harmonic, andj l is the spherical Bessel function of orderl.
Energy and wave number are related byE5\2k2/2m. The
reflecting boundary conditions give the quantization rule

kl ,n5
j l ,n

R
, n51,2, . . . , ~14!

wherekl ,n are the possible wave numbers for fixed angu
momentuml, and j l ,n are the zeros of the spherical Bess
function. A study of the density of states reduces to count
these zeros.

Fortunately, good tools are available for the task. Re
ence @17# provides in Eqs. ~9.3.39!, ~9.3.42!, ~9.5.22!,
~9.5.26!, ~10.4.94!, and ~10.4.105! an asymptotic expansio
for j l ,n which should be valid in the limitn→` uniformly
for all l 50,1,2, . . . . We have implemented this formula
denote it by j ( l ,n), numerically. By comparing the result
from the asymptotic formula with the actual zeros of t
spherical Bessel functions, we have found thatj ( l ,n) gives a
very good approximation forj l ,n even for l 50, n51. The
expressionj ( l ,n) is in practice exact for our purposes, fo
the studies of the limitR→`.

Notwithstanding the restrictions onl and n in j l ,n ,
j ( l ,n) is a continuous function of its variables. We therefo
define the density of wavenumber eigenstates for a gi
angular momentuml and a given wave numberk by finding
a solution withn.3/2 to the equationj ( l ,n)5kR, and then
write

Dl~k!5
dnl

dk
.H R

j ~ l ,n11/2!2 j ~ l ,n21/2!
, n.3/2,

0, otherwise.
~15!

The key result from our numerical computations is that in
limit R→` this density of states is of the form

Dl~k!5H R

p
A12S l

kRD 2

, u l u<kR,

0, otherwise.

~16!

Summing over all possible angular momenta, for largeR we
find the total density of states
a

s
en-
ull
te
-

ll
le

ll

r
l
g

r-

n

e

D~k!5E
0

kR

dl ~2l 11!Dl~k!.
2k2R3

3p
5

k2V

2p2 , ~17!

whereV54pR3/3 is the volume of the sphere. The result
the same as the density ofk states obtained by quantizin
free-particle motion in a cubic box. This is in accord with th
standard assumption in quantum mechanics that, in the l
of infinite volume, the precise geometry of the quantizati
volume does not matter.

Let us again focus onl-wave collisions. Then we have
Dl(k) as the density ofk states,

dnl

d«
5

dnl

dk

dk

d~E/\!
5

1

v
Dl~k! ~18!

for the density of frequency eigenstates, and

« l5
d«

dnl
5

v
Dl~k!

~19!

for the spacing of quasicontinuum levels.
The next step is to introduce allN21.N colliders. We

assume that each collider acts independently on our spec
atom, so that we simply multiply transitionprobabilities or
transitionratesdue to one collider by the number of collisio
partners. The number of colliders comes with a subtle
though. While we haveN atoms for the spectator to collid
with, in an isotropic ensemble they are uniformly distribut
over all available angular momentum states. The fraction
atoms available for l-wave collisions is therefore (2l
11)Dl(k)/D(k). To obtain the total photoassociation ra
for the spectator atom, we substitute Eq.~19! for the spacing
of energy eigenstates in the one-collider rate~11!, and mul-
tiply by N(2l 11)Dl(k)/D(k).

The final phase of the derivation is to take the thermo
namic limit; V→` andN→`, in such a way that the densit
of atomsr5N/V stays constant. The spacing of levels wi
angular momentuml and the fraction of atoms with angula
momentuml conspire to produce a nonzero, finite continuu
limit for the photoassociation rate of a spectator atom in
gas with the densityr. The rate is

Rm52p~2l 11!
rv
k2

gG

vm
2 1g2 . ~20!

We encapsulate our argument into the following prescr
tion: For a given collisional angular momentuml, the
continuum-limit photoassociation rate for an isotropic man
atom gas with densityr is obtained by multiplying the QC
photoassociation rate for one collider by

f l5~2l 11!
2p2rv

«k2 . ~21!

The« in the denominator formally cancels the dependence
the one-atom photoassociation rate on the spacing of
levels, leaving a factor that depends on atom density.

One might argue that the level density in wave numbe
simply D(k) and the density of states in frequency
D(k)/v. This expression in fact agrees with the energy le
density for free particles as quoted in virtually all statistic
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3178 PRA 60MATT MACKIE AND JUHA JAVANAINEN
mechanics textbooks. Thus, the simplistic argument con
ues, the level spacing is«5v/D(k), which is to be inserted
into Eq. ~11!. Finally, multiplying byN, taking into account
that there are 2l 11 angular momentum states for a givenl,
and going to the continuum limit, the result~20! is recov-
ered.

Nonetheless, as neatly as this argument agrees with
ementary textbook material and gives the right answer,
believe that it is in principle wrong. For instance, if th
sample were not isotropic and some angular momen
eigenstates would occur more frequently than others, the
of photoassociation could change. Yet nothing in our sec
type of argument would take this into account. We regard
right result from the simplistic reasoning as a pure accide

In sum, we have shown how to circumvent the dilemm
of the QC approach that the rate of photoassociation app
to vanish in the continuum limit. The foundation for our Q
method is thus laid. In the remainder of the present Sec
we basically just clean up the rough edges.

D. Velocity distribution

Up to now, we have tacitly assumed that for any tw
colliders, the initial QC stateum& is the same. One sign o
this assumption is the single collision velocityv in Eq. ~20!.
Of course, in a thermal gas the atom pairs do not all have
same collision velocity. Correspondingly, we next adop
probability distribution over the QC statesPm , and average
the photoassociation rate over the distribution of init
states:

R5(
m

PmRm . ~22!

As an implementation of this idea, we average the r
~20! over the distribution of relative collision velocities in
thermal Maxwell-Boltzmann gas, which reads

f 0~v !54pS m

2pkBTD 3/2

v2e2mv2/2kBT. ~23!

The task is to calculate

R5E
0

`

dv f 0~v !R~v !, ~24!

whereR(v) is to be inferred from Eq.~20!.
A few details must be attended to while carrying out t

average. First, the resonance denominator in Eq.~20! con-
tains the frequencyvm . That obviously stands for the detun
ing from optical resonance for a collision pair with the re
tive velocity v. Suppose that the laser is tuned so that t
atoms with the collision velocityv0 and the corresponding
collision energy\D5E(v0)5mv0

2/2 above the continuum
threshold are on optical resonance, then we have the rep
ment

vm→E~v !/\2D. ~25!

Second, and contrary to our flat-quasicontinuum model,
rate of photodissociationG ~and henceg5G/2) depends on
the relative velocity of the atoms after photodissociation. F
-

el-
e

m
te
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e
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a
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II

e
a
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e
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e
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instance, according to the Wigner threshold law, fors-wave
processesG}v. This means that the coupling matrix ele
mentsk must similarly depend on the relative velocity of th
incoming atoms. Without a full-blown~and difficult! exact
QC or continuum analysis it is unclear how these dep
dences should be properly taken into account. Here we
vocate the model that in the linewidths that depend on p
todissociation one should use the values corresponding to
relative velocity of the atoms after photodissociationv0:

g5g0[g~v0!. ~26!

On the other hand, the photodissociation rateG in Eq. ~11! is
actually a placeholder for the square of the matrix elem
uku2, and so we write in Eq.~20!

G5G~v !5
v
v0

G0 . ~27!

The second equality holds for~low-energy! s-wave pro-
cesses, in which caseG0 is the photodissociation rate for th
resonance velocityv0. All told, for s-wave processes the rat
to be averaged reads

R~v !52p
rv2

v0k2

g0G0

@E~v !/\2D#21g0
2 . ~28!

The integral in Eq.~24! may now be written down explic-
itly, and analyzed numerically for arbitrary values of the p
rameters. However, here we only consider the case when
linewidth due to photodissociationg0 is the smallest relevan
frequency parameter in the problem. In particular, we assu
thatg0!kBT/\. Then the resonance denominator in Eq.~28!
in effect makes a delta function in energy that peaks w
E(v)5E(v0), or a delta function in velocity that peaks a
v5v0. One simply has to convert the delta function in e
ergy properly into a delta function in velocity, and carry o
the integral. The result is

R5rlD
3 e2\D/kBT G0 , ~29!

where

lD5S 2p\2

mkBTD 1/2

~30!

is the thermal de Broglie wavelength.
From Eqs.~28! and ~29! it is easy to see that our QC

results are in agreement with the standard scattering re
@8#, and with the latest analytical models@11,12# as well. The
photoassociation density parameterrlD

3 is essentially the
same density parameter as the phase space density for
@7#. In a way, the rest of the present paper consists of an
sis of the role of the parameterrlD

3 . The same paramete
appears explicitly in, say, Ref.@11#, but other authors do no
seem to have realized the significance of this connection
tween photoassociation and BEC.

E. Equilibrium

Given the rateR as in Eq.~29!, namely, the probability
per unit time at which any given atom participates in pho
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PRA 60 3179QUASICONTINUUM MODELING OF PHOTOASSOCIATION
association, plus the fact that the photoassociated molec
also tend to break apart at the photodissociation rateG0, we
have an opportunity to discussequilibrium photoassociation
yield. For the time being we continue to assume that, pho
association or no photoassociation, the velocity distribut
of the atoms remains thermal, but allow for the depletion
the number of atoms remaining. Let us denote byNm the
number of molecules in the sample and byN the initial num-
ber of atoms, then the rate equation for molecule format
reads

Ṅm5
R

2
~N22Nm!2G0Nm . ~31!

We have the factorR/2 instead ofR becauseR is the prob-
ability per unit time that a given atom participates in pho
association, and it double counts the rate at which molec
are formed. The equilibrium probability of photoassociati
is given by

P5
2Nm

N
5

R

R1G0
5

rlD
3 e2\D/kBT

11rlD
3 e2\D/kBT

. ~32!

Within the present model, the equilibrium photoassoc
tion yield is largely determined by the parameterrlD

3 . This
is basically the same phase phase density that dictates
absence or presence of the Bose-Einstein condensate. P
another way, since the rate of photoassociation scales
the density asr2 and the rate of the competing photodiss
ciation asr, the equilibrium probability of photoassociatio
must involve a dimensionless parameter proportional to a
density—and this parameter just happens to be the p
space density that also governs BEC. We therefore antici
that a near-unit yield is possible when photoassociatin
condensate.

F. Density matrix, power broadening, and collisions

One of the keys to our QC method is to treat the init
QC state and the bound state of the molecule as a two-l
system irreversibly damped by the photodissociation of
molecules. So far we have discussed this two-level system
terms of probability amplitudes. However, in quantum opt
and optical spectroscopy it is more customary to use
density matrix to describe the two-level system. In the pr
ence of interactions between the two states and the rest o
universe, the two-level system need not remain in a p
state. Then something equivalent to a density matrix desc
tion is a must as a matter of principles. The density ma
formalism also conveys practical advantages, in that one
illustrate basic concepts and transparently add new phen
ena to the model.

First consider an elementary two-level system consis
of the bound state and one QC state,$ub&,um&%[$u1&,u2&%,
for one pair of atoms only. As before, this system is a
effectively irreversibly coupled to the rest of the QC states
the rateG0, so that the density matrix equations read

ṙ1152G0r111 i ~k* r212kr12!, ~33a!

ṙ2152~ ivm1g0!r212 ik~r222r11!, ~33b!
les
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ṙ2252 i ~k* r212kr12!. ~33c!

Concerning basic concepts, in the continuum limit t
Rabi frequencyk tends to zero while the photodissociatio
rate G0 remains constant. Coherent transitions induced
light are thus much slower than the damping, and it is i
possible to saturate or power-broaden this two-level syst
That the physical system may nonetheless exhibit any di
bution of the population between the two states has noth
to do with power broadening. Increasing the density of ato
enhances the molecular yield, but the time scale for cohe
Rabi flopping remains unaffected.

In addition to illustrating the absence of coherent pow
broadening, the density matrix comes in handy for describ
collisions phenomenologically. Hence, we complete our d
cussion of the two-level system with a rudimentary collisi
model that is already implicit in our preceding results. Wh
it is all said and done, we assume that the relative velocity
the atoms tends to thermalize quickly.

Allowing for a distribution of atom-pair velocities, we
have to make those density matrix elements that refe
atoms, all butr11, functions of the relative velocityv. More-
over, we add several ingredients that are so far missing f
our model. First, the molecules that get photodissociated
not vanish without a trace, but reemerge as atom pairs w
some ~normalized! distribution of relative velocityL(v).
Second, collisions disrupt the coherence in photoassocia
We model this by adding a collisional broadeninggc to the
linewidth of the transitiong0. While at that, we also replac
the resonance frequency with the same detuning facto
before, see Eq.~25!. Third, collisions redistribute atoms be
tween the velocities, so that there is some collision opera
K involved. Different collision models correspond to diffe
ent collision operators. For the sake of illustration we wr
the explicit collision operator for strong collisions. By a
sumption, one such collision, which takes place at the r
Gc , is sufficient to restore the normalized thermal veloc
distribution f 0(v), Eq. ~23!. Fourth, as we are treating pho
todissociation separately and on a different footing fro
photoassociation, to avoid double-counting we have to d
all processes driven by the Rabi frequency whose ef
would be to make atoms (r22) from molecules (r11), i.e., the
r11 term in Eq.~33b!. Altogether, the two-level collisiona
model yields the integrodifferential equations

ṙ1152G0r111 i E dv@k* ~v !r21~v !2k~v !r12~v !#,

~34a!

ṙ21~v !52$ i @E~v !/\2D#1@g01gc#%r21~v !

2 ik~v !r22~v !, ~34b!

ṙ22~v !5G0L~v !r111GcF f 0~v !E dv8r22~v8!2r22~v !G
2 i @k* ~v !r21~v !2k~v !r12~v !#. ~34c!

For an illustration of the implications of this model, w
begin with the rate approximation. Whatever the justificati
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3180 PRA 60MATT MACKIE AND JUHA JAVANAINEN
might be, we just setṙ21 equal to zero in Eq.~34b!, solve for
r215r12* , and insert into the remaining equations. This giv
the rate equations

ṙ1152G0r111E dv
2~g01gc!uk~v !u2

@E~v !/\2D#21~g01gc!
2 r22~v !,

~35a!

ṙ22~v !5G0L~v !r111GcF f 0~v !E dv8r22~v8!2r22~v !G
2

2~g01gc!uk~v !u2

@E~v !/\2D#21~g01gc!
2 r22~v !. ~35b!

Next we assume that the total atom number for the dis
ciated system isN, and reinterpret the quantityr11[P as the
probability of photoassociation of any given spectator ato
Correspondingly,r22(v)[ f (v) is the probability density for
atoms in a collision pair characterized by relative velocityv
that have not photoassociated. We also impose the nor
ization

E dv f ~v !512P. ~36!

Finally, as before we simply multiply the photoassociati
rate for two atoms, the terms proportional touk(v)u2 in Eqs.
~35!, by the factor~21!. While there are in fact (12P)N
atoms left, the normalization of the velocity distributio
takes care of the factor 12P, so that our rate equations ar

Ṗ52G0P1E dv
2 f l~g01gc!uk~v !u2

@E~v !/\2D#21~g01gc!
2 f ~v !,

~37a!

ḟ ~v !5G0L~v !P1Gc@~12P! f 0~v !2 f ~v !#

2
2 f l~g01gc!uk~v !u2

@E~v !/\2D#21~g01gc!
2 f ~v !. ~37b!

In the last step of our demonstration we assume that
rate of strong collisionsGc is the largest rate occurring i
Eqs.~37!. In steady state we then approximately have

Gc@~12P! f 0~v !2 f ~v !#50 ~38!

or

f ~v !5~12P! f 0~v !. ~39!

With this observation, we are back to the same mathema
that was already presented in Sec. II D. The only differe
is that where we used to have the photodissociation linew
g0, we now have the collision-broadened linewidthg5g0
1gc . If the collision broadened linewidth satisfiesg
!kBT/\, the steady-state photoassociation yield is the sa
as before, Eq.~32!.

It is easy to develop density matrix models with differe
levels of sophistication for various purposes. We will neith
enter any general discussion of such models, nor even
tempt a comprehensive analytical or numerical solution
our example case. We merely hope to have made two po
s
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First, as needed, one may devise density matrix treatm
for the analysis of photoassociation in close analogy with
density matrix approaches that one sees in laser spec
copy. Second, our particular model demonstrates that, g
the right kind of collisions, the velocity distribution of colli
sion pairs may well remain thermal in spite of photoassoc
tion. The simple model of the preceding sections rema
valid, provided one uses the collision broadened linewi
g5g01gc in lieu of the photoassociation linewidthg0 in all
the proper places. If the rethermalizing collisions are not f
enough, collision pairs with the resonance velocityv0 are
depleted. One may deal with this case, e.g., by solving E
~37! numerically.

III. ADDITION OF A SECOND COLOR

We now turn to the physical model depicted in Fig. 2~a!,
and to its QC counterpart sketched in Fig. 2~b!. Two light
frequencies are present, one of which drives photoassocia
to a vibrational state within an electronically excited ma
fold, and the second that takes the excited molecules to
other vibrational state in a stable electronic manifold. T
motivation for such a scheme could be that the electronic
excited molecule created in ordinary photoassociation is
stable, and decays spontaneously at the rateGs to either

FIG. 2. ~a! Scheme in which two lasers drive transitions b
tween a dissociated~quasicontinuum! statem, an intermediate state
b, and a stable bound molecular stateg. ~b! Quasicontinuum mode
of the same. As appropriate for a proper rotating frame, level e
gies are given by detunings and laser-driven couplings are inde
dent of time.
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PRA 60 3181QUASICONTINUUM MODELING OF PHOTOASSOCIATION
bound vibrational states or back to the dissociation c
tinuum ~radiative escape!. We regard both of these outcome
as undesirable, and use the second laser to guide the
ecule to the intended vibrational level. The goal is to put
many molecules as possible into the final stable state.

In the continuum limit precisely the same mathemat
that led us to treat photoassociation using a two-level mo
now gives a three-level scheme that is implicit in Fig. 2~b!.
We again denote the initial QC state bym, the intermediate
molecular state byb ~as in ‘‘bound’’!, and introduce the fina
stable state asg ~‘‘ground’’ !. Two lasers with the frequencie
v1 andv2 and Rabi frequenciesk, V drive transitions be-
tween the respective state pairs$um&,ub&% and $ub&,ug&%. In
the rotating-wave approximation and in a suitable rotat
frame, we have a Hamiltonian of the form

H0

\
52Dug&^gu1~d2D!ub&^bu2~Vub&^gu1V* ug&^bu!

2~kub&^mu1k* um&^bu!. ~40!

Here

d5vb2vg2v2 , ~41a!

D5vm2vg2~v22v1! ~41b!

are the intermediate detuning that characterizes the degr
being off resonance in the transition between the two bo
molecular states, and the two-photon detuning that stand
the total energy mismatch in the free-bound-bound molec
process. The slightly unusual appearance of the Hamilton
is because here we have chosen the zero of energy in su
way that the energy of the state corresponding to the in
QC stateum& equals zero. We have assumed theL configu-
ration as in Fig. 2. Other types of three-level schemes, s
as the cascade, can be accommodated with trivial chang
the notation.

In addition to the light-driven couplings, we have to co
sider both photodissociation taking place at the rateG0, and
the potentially harmful spontaneous transitions at the
Gs . Since both of these mechanisms take the system ou
of the three states under consideration, it is known fr
quantum optics and laser spectroscopy that such dam
may be incorporated correctly by adding a piece with ima
nary energy to the HamiltonianH0,

Hd

\
52

i

2
~G01Gs!ub&^bu. ~42!

Writing the state vector in the form

uc~ t !&5g~ t !ug&1b~ t !ub&1am~ t !um&, ~43!

we thus have the time dependent Schro¨dinger equation

ġ5 iDg1 iV* b, ~44a!

ḃ5F id2
1

2
~G01Gs!Gb1 iVg1 ikam , ~44b!

ȧm5 ik* b. ~44c!
-
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As before, the couplingk to the QC vanishes in the limi
V→`. It follows immediately thatk!V holds for a large
volume. This is exactly the result that prohibits the adiaba
condition from being satisfied@7# in a free-bound-bound
STIRAP process@12#. Furthermore, while considering th
state triplet$ug&,ub&,um&%, we should treat the free-boun
coupling k as a perturbation. In practical terms, we simp
adopt the reservoir approximation and setam[1 in Eq.~44!.
In later sections, we apply these insights to obtain results
both continuous-wave and time dependent couplings.

A. Dressed two-level system

Because we are going to treat transitions from the QC
perturbations, the basic system to be considered consis
the two bound statesug& andub& and light with the detuning
d and Rabi frequencyV. The exact solution to this system
the familiar dressed atom@18#. For completeness, we briefl
reiterate a few of the pertinent aspects.

Suppose first that the detuning is large,udu@uVu. In this
case the dressed statesu1& andu2& are close in character to
the original statesug& and ub&; say,u1&.ug& and u2&.ub&.
The dressed states are separated in frequency by an am
;udu, and so coupling to the third stateum& will show two
resonances@14# separated approximately byudu. The reso-
nance between statesum& and u1& is the two-photon reso-
nance@19#. In a sense, the system makes its transition
rectly from the initial stateum& to the ground stateug&. The
other resonance, between statesum& andu2&, corresponds to
two-step processes. The image we have in mind is that
system primarily makes a transition from the stateum& to the
bare stateub&. Whatever population is found in the bare sta
ug& is there as a result of a second step, transitions betw
ub& and ug&.

If only the stateub& is damped, the state that has predom
nantly the character of the stable state,u1&, only decays
because it has a small admixture of the unstable stateub&.
The decay rate is

G1.
uVu2

d2 ~G01Gs!. ~45!

The other stateu2& experiences the full force of damping a
the rateG2.G01Gs . Of course, since the third stateum& is
coupled directly to the bare stateub& only, the coupling
strength to the dressed stateu1& is similarly decreased, so
that the matrix element fromum& to u1& is of the order
ukV/du.

In the contrary caseudu!uVu, the dressed statesu6&,
separated by.2uVu, are both near fifty-fifty admixtures o
the bare statesug& and ub&. Both of them are coupled to th
QC stateum& with a comparable strength, and both of the
also decay at a similar rate.(G01Gs)/2 to states outside
our three-level system.

B. Continuous-wave transitions

In the continuous-wave case we find the steady state
Eqs.~44! with the additional simplifications that, by virtue o
the continuum limit and the reservoir approximation,k→0
and am[1. The result is a two-by-two set of linear equ
tions, which may be solved trivially.
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3182 PRA 60MATT MACKIE AND JUHA JAVANAINEN
Instead of writing down the general solution, which is n
particularly transparent, we go directly to the two spec
cases already mentioned in the preceding section on
dressed atom. First consider a large intermediate detun
udu@uVu,G0 ,Gs . If the detuning of the photoassociating l
ser is chosen in such a way that we are operating in
proximity of the two-photon resonance,D.0, the QC state
um& is near resonance with the dressed stateu1& that has
predominantly the character of the stable ground stateug&.
Hence, we take the two-photon detuning to be small. T
populations of the two states are

ugu2.
uVu2uku2/d2

@D1uVu2/d#21@~G01Gs!uVu2/2d2#2
, ~46!

ubu2.
D2uku2/d2

@D1uVu2/d#21@~G01Gs!uVu2/2d2#2
. ~47!

Both populations show the two-photon resonance shi
by the usual amount2uV2u/d and broadened by the sim
larly expected spontaneous decay rate (G01Gs)uVu2/d2. Be-
sides, the expression forubu2 also displays the dark state: fo
D50 there should beno steady-state population at all in th
intermediate stateub&, and hence no harmful spontaneo
leakage through the intermediate state.

In reality, the picture is not so rosy. First, one wou
usually photoassociate atoms from a range of energies
that the two-photon resonance conditionD50 cannot hold
for all colliders. Second, as a result of phase perturbati
due to, say, atom-atom collisions, the two-photon cohere
that maintains the dark state tends to decay, and the
state loses molecules. Third, even if the dark state were
act, when it is reached, photoassociation ceases as well.
fraction of atoms converted during the buildup of the da
state determines the final photoassociation yield. But, du
this initial transient the intermediate stateis populated, and it
loses population to spontaneous emission.

The first two complications depend on experimental
tails, and we do not undertake any quantitative calculatio
As a matter of fact, including collisional damping of th
two-photon coherence would bring in the entire density m
trix formalism, and substantially complicate the analysis.

The loss of atoms during the build-up of the dark sta
though, is intrinsic to the physics, and we study it in so
detail. We solve the Schro¨dinger equation~44! as a function
of time, and find the total probability that leaked due to spo
taneous emission losses from the intermediate state.
D50 we find

E
0

`

dt Gsub~ t !u25
Gs

G01Gs

uku2

uVu2
. ~48!

But Eq.~46! gives the corresponding steady-state probabi
of the ground state as

ug~ t5`!u25
uku2

uVu2
, ~49!

so that the fractionGs /(G01Gs) of the atoms leaked ou
through the loss channel. The only way to improve on t
t
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~within the present assumptions! is to increase the intensity
of the photoassociating laser, and thereby enhance the fa
able branching.

Let us now take Eq.~46! at face value, ignoring
spontaneous-emission leakage. Just as before, we may
the continuum limit and average over the thermal distrib
tion of collider pairs. In so doing, with the assumptionam
[1 we in effect ignore depletion of the atoms owing
photoassociation. Correspondingly, we regain basically
no-depletion version of the photoassociation yield of E
~32!,

P5rlD
3 e2\(D1uVu2/d)/kBT. ~50!

Here the physical mechanism leading to steady state invo
coherent population trapping and is not simply the bala
between photoassociation and photodissociation, but
quantitative result is very similar regardless.

We next take up the second dressed-atom case in w
the auxiliary light between the discrete molecular states
tuned near resonance,uVu@udu. Then both dressed state
have approximately a 1/2 admixture of the bare excited s
ub&, and are subject to nearly the full spontaneous-emiss
leakage. If there is any such leakage, all atoms will eit
wind up in bound molecular states as determined by bran
ing ratios in spontaneous emission, or are lost to radia
escape. To make physical sense of the steady state o
continuous-wave case we therefore assume that there i
branching to spontaneous emission at all,Gs50.

The two dressed states are separated by 2uVu, which we
assume large, and so there are two separate resonance
photoassociation starting from a given QC state. We ass
that the photoassociating laser is tuned close to reson
with the one that is higher up in frequency. Corresponding
for the same photoassociating laser, the other dressed st
on resonance with atoms whose energies are about 2\uVu
lower at the onset. If 2uVu is large enough, this spuriou
resonance is below the continuum threshold and may be
nored. We take this to be the case, and only consider tra
tions to the dressed state higher in energy.

All told, with the assumptions thatuVu@udu, G0 and
D.uVu, the steady-state population of the stable molecu
state is

ugu25
~ uku/2!2

~D2uVu!21~g0/2!2 . ~51!

Just as twice before, we obtain the photoassociation yiel
the assumed absence of atom depletion,

P5
1

2
rlD

3 e2\(D2uVu)/kBT. ~52!

The second resonance we have ignored carries half of
transition strength, accordingly we have lost a factor of 2
the yield. Another way of thinking about the same factor o
is that the state pairug& andub& is saturated by the laser wit
a large Rabi frequency, and so only half of the atoms in t
state pair are in the ground stateug&.
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PRA 60 3183QUASICONTINUUM MODELING OF PHOTOASSOCIATION
C. Transient excitation

Leaving the lasers on continuously is likely to lead to lo
of atoms in the form of radiative escape and spontane
transitions to unwanted vibrational states. Our three-le
model also suggests that increasing the intensity of the p
toassociating laser could improve the branching betw
photoassociation and spontaneous-emission loss. Bot
these observations suggest that it might be advantageo
pulse the photoassociating laser. Accordingly, in this sec
we give examples of methods that could be used to t
pulsed excitation, and discuss a few generic results.

1. Two-photon transitions

Given time dependent Rabi frequencies and a damp
rate that also depends on time because the intensity o
photoassociating laser does, the Schro¨dinger equation~44!
remains valid. However, for later convenience we change
overall zero of the energy, so that the matrix representing
Hamiltonian becomes

H0

\
5S 0 2V* ~ t ! 0

2V~ t ! d 2k~ t !

0 2k* ~ t ! D
D . ~53!

We seek to solve the time dependent response from
Hamiltonian using an adiabatic approximation valid in t
limit when direct two-photon processes are the domin
mechanism for transfer of atoms from the QC to the grou
state. Once more, we therefore haveudu@uVu,uDu. We apply
a ~time dependent! unitary transformationU that makes the
dressed states out of the two bound states, i.e., diagona
the two-by-two block on the upper left corner of the mat
in Eq. ~53!. This unitary matrix is

U~ t !5S 1 2
V* ~ t !

d
0

V~ t !

d
1 0

0 0 1

D 1OF 1

d2G , ~54!

and the corresponding transformed Hamiltonian reads

H̃0

\
5 i

]U

]t
U†1U

H0

\
U†

5S 2
uV~ t !u2

d
0 2

k~ t !V* ~ t !

d

0 d1
uV~ t !u2

d
2k~ t !

2
k* ~ t !V~ t !

d
2k* ~ t ! D

D
1OF 1

d2G . ~55!

Here we have assumed that the time derivative of the R
frequencyV(t) is formally zeroth order ind. This holds if
V(t) changes little over the timed21.
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At this point a digression on level shifts is due. The e

ment H̃11 in Eq. ~55! is the same shift of the two-photo
resonance that we already encountered in the preceding
tion on the continuous-wave response. This time, howe
the level shift depends on time, which complicates the ana
sis. There is also another level shift present that we have
far not mentioned. Namely, because the photodissocia
rateG0 depends on the final continuum state, analogously
Kramers-Kronig relations it follows from causality that the
must be an attendant shift of the continuum with respec
the stateub&. This is akin to an imaginary part of the damp
ing rateG0, and is similarly proportional to the intensity o
the photoassociating light. Both anab initio theoretical
analysis and an explicit measurement of this shift app
difficult, but as a rule of thumb one might expect that t
shift is of the order of the photodissociation rate@20#. Fi-
nally, for the purpose of the argument, we have meticulou
allowed the Rabi frequencies to be time dependent comp
numbers. A time dependence of the forme2 i jt obviously has
precisely the same effect as a shift of the driving laser f
quency byj.

The shift of the two-photon resonance,2uVu2/d, is pro-
portional to 1/d, and appears small within our approxim
tions. However, it may be seen, e.g., from Eq.~46! that we
may end up comparing this shift with a linewidth that is
the order 1/d2, and so the shift may be cause for concern.
it comes to the shift of the continuum with respect to t
stateub&, at the moment we believe that it may instead
considered as a shift of the levelub& with respect to the
continuum, and therefore directly affects the intermediate
tuningd rather than the two-photon detuningD. The change
in the two-photon detuning enters via the shift2uVu2/d, and
is second order in 1/d. We have not, however, constructed
proof of this assertion. Hence, the possibility that the tw
photon detuning might be affected even in the order 1/d0 is
not ruled out.

In what follows, we simply ignore all time depende
level shifts. We have two potential justifications. First, w
are going to assume short pulses of light. Obviously, a s
of the two-photon resonance smaller than the spectral w
of the light pulse cannot have much physical effect. Altern
tively, the driving pulsesk(t) and/orV(t) may be chirped to
cancel the level shifts. Since we are talking pulse widths
the order of the inverse of the photodissociation time a
chirps of the order of photodissociation rateG0, such chirp-
ing should not be much of a challenge to today’s laser te
nology.

2. Transition probabilities

As represented schematically in Fig. 3, we have three
evant pools of atoms: atoms available for photoassociat
atoms converted into stable ground state molecules, and
oms lost to radiative escape and branching to wrong mole
lar states. We denote the probabilities that an atom belo
to one of these pools byPa , P, andPl , respectively. As with
our continuous-wave case, we assume that no other prop
of the pools changes with applied laser pulses except
numbers of atoms. For instance, each pulse leaves the
maining atoms available for photoassociation in the sa
~say, thermal! velocity distribution, and the two-photon co
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3184 PRA 60MATT MACKIE AND JUHA JAVANAINEN
herences are assumed to decay away between succe
pulses. Provided such a description is sufficient, a laser p
causes transitions between the various pools with the p
abilitiesP i→ j , wherei , j 5a,m,l . The probabilitiesPa ,P,Pl
evolve from pulsen to pulsen11 according to

P(n11)5~12Pm→a2Pm→ l !P
(n)1Pa

(n)Pa→m , ~56a!

Pa
(n11)5~12Pa→m2Pa→ l !Pa

(n)1P(n)Pm→a , ~56b!

Pl
(n11)5Pl

(n)1Pa
(n)Pa→ l1P(n)Pm→ l . ~56c!

The immediate task is to find the transition probabiliti
P i→ j . We proceed under the assumption that for a sin
pulse of light all of these probabilities are small. The prac
cal implication is that while calculating, say,Pa→m , one
may ignore depletion of the atoms.

We first turn toPa→m . Using the Hamiltonian~55! and
the familiar reservoir approximation that the population
the initial QC state remains a constant unity, i.e.,c
5$g,b,e2 iDt%, we find a version of the Schro¨dinger equation

ġ5
i

d
e2 iDtk* ~ t !V~ t !, ~57a!

ḃ52 i @db1e2 iDtk~ t !#. ~57b!

It should be noted that here the amplitudesb and g do not
refer to the bare ground and bound statesug& andub&, but to
the dresses statesu1& and u2&. However, with our assump
tion of larged, the ensuing difference in the final results
negligible.

We now proceed by imposing the adiabatic condition
the photoassociation color as well, i.e., we assume thatk(t)
changes little over the timed21. Recalling thatudu@uDu, the
bound state amplitude is then given by

b~ t !52e2 iDtk~ t !/d. ~58!

In order to facilitate an easy analytical treatment, the sha
of the pulses are specified as

k~ t !5k0 exp@2utu/t#, ~59a!

V~ t !5V0 exp@2utu/t#. ~59b!

The rate of photodissociation then varies in time as

FIG. 3. Pictorial representation of various pools of atoms in
case of two-color excitation, also showing transition probabilit
between the pools.
sive
se
b-

le
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G~ t !5G0 exp@22utu/t#, ~60a!

G052puk0u2/«. ~60b!

The probability that an atom is photoassociated after
pulse is

Pa→m52U E
2`

`

dt8ġ~ t8!U2

5
16t2G0V0

2«

pd2~41D2t2!2 , ~61!

where the factor 2 is because one process of photoassoci
converts two atoms into a molecule. Again there seemin
is no photoassociation in the continuum limit. To include t
contributions from all colliders, we multiply by the facto
~21! as before, assumingl 50. In the process, we must divid
the result by two in order to cancel the double-counting
collision pairs.

We must also contend with the velocity distribution of th
atoms. To this end we first assume that the light pulse is
short that its spectral broadening covers all of the veloc
distribution at once. In fact, in our argument we choose
pulse lengtht such thatkBTt/\.1. At microkelvin tem-
peratures this allows for pulse durations of the order of m
crosecond, which is not particularly short in the standards
laser technology. The result is that in all of our expressio
we may setDt.0. Second, the use of Eq.~21! explicitly
brings the collision velocityv into the picture. We use the
thermal velocityu5AkBT/m wherever the velocityv ap-
pears. Third, we define the thermal frequencyu5kBT/\, so
that for our pulse durationt we havet.1/u. The net result
is

Pa→m.
rlD

3 G0V0
2

2A2pd2u
. ~62!

We next consider spontaneous-emission losses du
photoassociation. Given that the excited molecular state
cays spontaneously at the rateGs , the corresponding popu
lation loss during one pulse in a transition from an initia
occupied QC state to the ground state is

Pa→ l52E
2`

`

dt8Gsub~ t8!u25
tGsG0«

pd2 . ~63!

Including the contributions from all colliders as before, w
have

Pa→ l.
rlD

3 GsG0

2A2pd2
. ~64!

The probability for spontaneous decay now increases pro
tionally to the BEC phase space density of the gas. But, fr
Eqs. ~62! and ~64!, we see that the fraction of populatio
diverted to losses in spontaneous decay instead of endin
as ground state molecules is

h5
Pa→ l

Pa→ l1Pa→m
.

Gsu

Gsu1V0
2 , ~65!

which is independent of atom density.

e
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Once molecules begin to accumulate in the ground st
they may also be depleted through the reverse bound-bo
free transitions. Our next assignment is to consider the c
where the ground state is initially occupied, and determ
the population gone to photodissociation after one pulse
our solution of the Schro¨dinger equation we simply kee
g51, and calculate the probability of photodissociation
the integral

Pm→a5E dtub~ t !u2G~ t !. ~66!

In this case, there is only one possible initial state, and th
fore no need to consider any velocity distribution. Two
oms are released per pulse, but on the other hand the nu
of molecules is half the number of atoms. The impli
double counting therefore corrects itself, and the probab
is

Pm→a5
G0V0

2

2d2u
. ~67!

Losses due to spontaneous emission also incur during
todissociation. The probability is

Pm→ l5
GsV0

2

d2u
, ~68!

which is nothing but the usual scattering rateGsV0
2/d2 mul-

tiplied by the duration of the pulse.
From these expressions, the fraction of photodissocia

population that is unavailable for recycling due to the los
to spontaneous decay is

z5
2Gs

G012Gs
. ~69!

This is almost the self-evident branching ratio. The ex
factors of two are there because photodissociation rate
pends on intensity, and thus on time.

3. Photoassociation yield

One may study photoassociation yield as a function of
number of pulses by iterating Eqs.~56! numerically. How-
ever, instead of producing numerical data, we bring up a
qualitative points.

First suppose that there were no leakage due to spont
ous emission,Pa→ l5Pm→ l50. Photoassociation yield ma
then be found as the invariant distribution~same forn and
n11) of Eqs.~56!. Using Eqs.~62! and ~67!, we have

P5

)
a→m

)
m→a

1 )
a→m

.
rlD

3

A2p1rlD
3

. ~70!

Conversion of a degenerate sample of atoms to ground
molecules with near-unit efficiency is possible in principle

Next allow for nonzero spontaneous leakage. Technica
the pooll is what is known as absorbing state for the Mark
chain described by Eqs.~56!. In physical terms, in the limit
e,
d-
se
e
In

s
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-
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d
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a
e-

e

w

e-

te
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of large pulse number, all atoms are lost to spontaneous l
age. Nonetheless, let us consider the case of an ultrade
erate atomic sample, so thatPa→m@Pm→a ,Pm→ l , and
pulse numbersn!1/Pm→a,1/Pm→ l , so that we may ignore
all transitions that break up ground-state molecules. Un
these conditions a quasi-steady state valid for 1/(Pa→m
1Pa→ l)!n!1/(Pm→a1Pm→ l) is found from Eqs.~56! as

P5
Pa→m

Pa→m1Pa→ l
512h.

uV0u2

Gsu1uV0u2
. ~71!

Branching between the transitions from atoms to molecu
and from atoms to spontaneous-emission losses then d
mines the photoassociation yield. Interestingly enough,
yield may be adjusted by tuning the bound-bound Rabi f
quencyV0. Given microkelvin temperatures or lower, a Ra
frequency satisfyingV0@Gs ,u.kBT/\ is nothing unusual
in discrete atomic and molecular transitions. Efficient co
version of atoms into molecules is feasible for dense ato
samples in spite of spontaneous losses.

Conversely, suppose that the initial gas is nondegene
so thatPm→a@Pa→m ,Pa→ l . For pulse numbersn such that
1/(Pm→a1Pm→ l)!n!1/(Pa→m1Pa→ l), a quasisteady
state still hasPa.1, and so Eqs.~56! give

P.
Pa→m

Pm→a1Pm→ l
!

Pm→a

Pm→a1Pm→ l
512z.

G0

G012Gs
.

~72!

Unless the gas is degenerate so thatrl3>1, branching be-
tween photodissociation and spontaneous emission se
limit on photoassociation yield.

Although the scaling in the first~approximate! equality in
Eq. ~72! actually is such that photoassociation yield is ind
pendent of intensity, at some level one will always meet w
competition between spontaneous emission and lig
induced transitions. The characteristic scale for the effect
light is the photodissociation rateG0, which winds up being
compared with the rate of spontaneous emissionGs . For a
typical dipole transition in a molecule, it takes@8# a laser
intensity of the order of 100 W/cm2 to reach a photodisso
ciation rate such thatG0;Gs .

D. Discussion of two-color schemes

Our focus is on photoassociation of a highly degener
atomic sample using two pulsed lasers. Spontaneous lo
from the intermediate state always set the ultimate limit
photoassociation yield. Nonetheless, according to Eq.~71!,
the unwanted branching may be controlled by adjusting
parameters of the light that drives thediscrete molecular
transition. Highly efficient production of ground-state mo
ecules appears possible in spite of losses to spontan
emission.

Since the result of Eq.~71! is somewhat counterintuitive
we will reaffirm it using simple arguments. First, as is obv
ous from Eq.~58!, the population of the bound state durin
the light pulse is of the orderuk0 /du2. This population
will last a time of the order of the pulse durationt, and
leads to spontaneous emission losses proportional
Ps;uk0 /du2tGs . On the other hand, according to the Ham
tonian of Eq. ~55!, the initial QC state is coupled to th
ground state by the familiar two-photon Rabi frequen
uk0V0 /du. In the continuum limit this is small, so that Rab
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3186 PRA 60MATT MACKIE AND JUHA JAVANAINEN
oscillations back and forth between the ground state and
QC state do not occur within our premises. Instead,
ground-state amplitude simply grows at a rate proportiona
the Rabi frequency. At the end of the pulse the amplitu
therefore is of the orderuk0V0 /dut. The probability that the
system has made a transition to the ground state is the sq
of the latterPg;uk0V0 /du2t2. The branching ratio betwee
spontaneous emission and transitions to the ground state
is

Ps

Pg
;

Gs

uV0u2t
. ~73!

This may indeed be made arbitrarily small by increasing
Rabi frequencyuV0u.

The reason for such advantageous branching is that, in
case of a two-photon resonance with an off-resonant in
mediate state, the light-dressed ground state of the mole
acquires only a small admixture}V0

2/d2 of the character of
the excited state that is subject to spontaneous-emis
losses. In addition, after the light pulse acting on the disc
transition has passed adiabatically, the dressed ground
has turned into the pure ground state again. This stat
affairs is to be compared with the schemes considered
viously @6,14#, in which the intermediate state is also o
resonance. The relevant dressed states are then fifty-fifty
mixtures of the ground and intermediate states. In the nor
course of affairs, after the light pulses the molecule will
left in this same admixture of ground and intermediate sta
Half of the molecules will subsequently branch to sponta
ous emission, and even more are lost if the pulses are
enough so that the molecules may decay substantially du
the pulses.

In a continuous-wave experiment with an electronica
excited intermediate state, the desired ground-state m
ecules would eventually be lost to spontaneous decay as
cycle back to the intermediate state. For this reason alone
expect pulsed schemes to dominate in the experiments. S
pulses bring additional advantages. First, thanks to spe
broadening, it is possible to influence the entire thermal d
tribution of the atoms at once. Second, by adjusting the d
cycle, one may adjust the overall time scale of ato
molecule conversion. In this way, it might be possible to
the atoms thermalize between the pulses, and let the
photon coherences decay away. Third, short pulses ma
produced at much higher intensities than continuous-w
light. This is important in the case of a nondegener
sample, when branching between spontaneous emission
photodissociation gives one, and possibly the dominant, li
tation on photoassociation yield. By increasing the peak
tensity, one may improve the yield.

IV. CONCLUSIONS

We have presented a quasicontinuum model of fr
bound transitions. The main achievement is that the mo
facilitates a treatment of photoassociation as a few-le
problem analogous to the standard models in quantum op
he
e
o
e

are

us

e

he
r-
le

on
te
ate
of
e-

d-
al

s.
-

ng
ng

l-
ey
e

ort
ral
-

ty
-
t
o-
be
e
e
nd
i-
-

-
el
el
cs

and laser spectroscopy. The decades of experience acc
lated in these disciplines is thus transferable to problems
volving photoassociation. As first illustrations, we have d
cussed the absence of coherent power broadening,
sketched a two-level density matrix approach for the stud
of the effects of atom-atom collisions on photoassociatio

As a further example of the few-level philosophy, w
have addressed two-color photoassociation in a free-bou
bound scheme. Dressed states, dark state, two-photon
nance, and other standard paraphernalia of theoretical l
spectroscopy were found to bear on the problem. Our e
phasis was on devising ways to avoid spontaneous-emis
losses of atoms from the intermediate molecular state in t
color photoassociation. We have discussed the advantag
two-photon processes, as opposed to two-step processes
of pulsed excitation. In a degenerate sample it is possibl
achieve a near-unit photoassociation yield even in the p
ence of severe spontaneous losses from the intermed
state, and the high intensity of pulsed lasers could impr
photoassociation yield in a nondegenerate sample.

We have focused on theoretical concepts related to f
level modeling of QC systems, and have nonchalantly
nored experimental complications. For instance, we have
sumed that the molecules stay around arbitrarily long, i
that they are trapped@21#. We have also taken the continuu
limit for the atoms, even though in a tight enough trap t
relative motion of two atoms should really be treated a
QC. Our theoretical machinery has its rough spots as w
As an example, we have used the Maxwell-Boltzmann
locity distribution while at the same time discussing dege
erate gases.

The next logical step in our endeavor is to consider
plicitly the quantum degeneracy of both the atoms and
molecules. Having already included these considerations
a description of one-color photoassociation in a Bo
Einstein condensate@22#, we are currently working on the
free-bound-bound analysis. From a theoretical viewpoint,
major change is that in a degenerate sample one wind
dealing with a transitionamplitude that characterizes a
~large! number of colliders, while here we add transitio
probabilities. Besides the Maxwell-Boltzmann statistics, th
field theory approach we are currently developing could c
also the other ills we have mentioned in the preceding pa
graph. Nonetheless, the quantum degenerate methods ar
based on the QC picture. Our future progress should
supersede the present paper, but rather build on it.
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