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Quasicontinuum modeling of photoassociation
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We analyze photoassociation theoretically by treating the dissociation continuum of a molecule as a quasi-
continuum(QC) of discrete states. In this manner, free-bound transitions are reduced to a few-level problem.
The correct continuum limit is deduced from an explicit analysis of the density of QC states. Besides giving the
usual photoassociation rate, the QC model facilitates the analysis of the steady-state molecular yield. More-
over, complications such as velocity redistribution and line broadening due to atom-atom collisions may be
treated basically in the same way as in connection with the customary two-level atom. Next we adapt the
standard three-level quantum optics to describe free-bound-bound photoassociation for both continuous-wave
and pulsed two-color excitation. For a quantum degenerate gas of atoms, a proper two-photon resonant scheme
may transform atoms to ground state molecules with near-unit efficiency even in the presence of spontaneous
losses from the intermediate stat€1050-29479)08310-9

PACS numbg(s): 34.50.Rk, 03.75.Fi

[. INTRODUCTION ical machinery of quantum optics and laser spectroscopy to
bear on problems of photoassociation. Second, the average

Theoretical descriptions of photoassociation first emergedver the thermal energy distribution of the colliding atoms is
as an early application of quantum mechanics, and are algmerformed trivially, and the density parameter for photoasso-
among the first direct numerical computations in quantunciation is then unveiled to be essentially the same phase
mechanics. Coolidget al. investigated the continuum of ul- space density that governs BHE]. Third, a hierarchy is
traviolet radiation emitted in the photodissociative transitiongevealed for three-level free-bound-bound schemes, such that
of the H, and D, molecules[1]. Also in the early days of the Rabi frequency for the photoassociation color is negligi-
quantum mechanics, Bose and Einstein predi¢®dhat a  bly small compared to that for the color driving the discrete
gas of integer-spin particles cooled to a sufficiently low tem-molecular transition. Aside from facilitating analytical solu-
perature would undergo a phase transition whereby its cortions, such a hierarchy renders coherent processes such as
stituents would condense into the lowest available state o6TIRAP[12] unimportan{7] in a nondegenerate gas.
the center-of-mass motion. The evolution of lasers and the The purpose of the present paper is twofold. We supple-
associated cooling and trapping techniques led first to the usaent our initial Rapid Communicatidi’] with details on the
of photoassociation as a high-precision tool in moleculaiQC approach to photoassociation for one laser color, and add
spectroscopy3], followed shortly thereafter by the observa- an analysis of two-color photoassociation. In the latter case
tion of Bose-Einstein condensatiéBEC) [4]. The primary we pay particular attention to potential ways of avoiding
connection between these two fields has been the utility of§pontaneous-emission losses from an electronically excited
photoassociation for measuring atomic scattering lendths intermediate molecular state. We suggest that resonant two-
However, this connection is strengthened as of late by th@hoton processes, as opposed to the two-step processes ad-
suggestions that photoassociation might serve as a mechescated earlief6,14], might be the optimal way to reduce
nism for producing a BEC of molecules from an atomic con-spontaneous-emission losses in a dense sample such as a
densatg6,7]. condensate. Also, unlike in treatments based on collision

The bulk of the theoretical work on photoassociation istheory, we may easily discuss pulsed excitation schemes.
founded on collision theory8—10], and continues the nu- One of the practical advantages is that with pulses one may
merical tradition of Refs[1]. However, novel approaches achieve higher intensities for the photoassociating laser than
have surfaced over the last few years. Photoassociation ratgs the typical continuous-wave case. In an atomic sample
can be found by analyzing the equations of motion for thethat is not dense enough to be near-degenerate, increased
density matrix in the perturbative reginiel], or by solving intensity of the photoassociating laser turns out to be the key
the time-dependent Schtimger equatiori12]. to reducing spontaneous-decay losses.

We have taken yet another tafk| by constraining the In Sec. Il we introduce the QC approach in the model
relative motion of the colliding atoms to a large but finite with one stable bound molecular state coupled by a laser to a
volume, so as to convert the continuum of dissociated moeissociation continuum of a molecule. The emphasis is on
lecular states into a quasicontinug@C). The correct physi- the relations of this model to the prototype two-level system
cal results corresponding to the free-atom states are recowf quantum optics and laser spectroscopy. While we have
ered no later than the end of a given calculation by taking thetated the basic ideas befdrg], here we add a wealth of
limit that the QC spacing tends to z€l®3]. There are sev- detail so as to include, e.g., the counting of QC states, thresh-
eral advantages to such an approach beyond its nonperturbeld law of photodissociation rate, atom-atom collisions, and
tive nature. First and foremost, the QC model leads naturallyhe absence of coherent power broadening.
to a few-level description, allowing one to bring the theoret-  Section Ill presents an application of our QC approach to
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(a) with w,=ne. The labeling of the QC states is chosen in such
a way that the transitiofb)«|n=0) is on optical reso-
nance.

The state vector of the system is written

m
[#)=blb)+ 2, ayln), @)
where b and a, are generally time-dependent amplitudes.
Combining Egs.(1) and (2), we have the time dependent
b Schralinger equation
b=ix*>, a,+b(0)s(1), (3a)
n
(b) N
a, iw,a,+1kb+a,(0)5(t). (3b)
. m The delta functions together with the requirement that all
/— amplitudes vanish fot<O impose the initial conditions on
b —_— the system at=0.
— The equations of motior{3) are solved using Fourier
‘6 transform methods. Closed-form analytical solutions are ob-
T tained using the substitution for the self-energy
- . . - 1 1(= 1 i
FIG. 1. (a) Scheme in which a laser drives transitions between a " _f dx——=—-——. (4
dissociatedquasicontinuumstatem and a(stable bound molecu- n=—x w—Netlp &)« w-Xtly €

lar stateb. (b) Quasicontinuum model of the same. o . ) o ]
This is the crucial continuum limit that has to be taken in

two-color free-bound-bound photoassociation. Althoughorder to recover the free-atom results from the QC model. It
continuous-wave excitation may not be of immediate rel-is valid for times short enough that the discreteness of the
evance in experiments, we analyze it in detail as an illustraQC states is unresolved, i.es e~ *. This fact has been con-
tion of the pertinent concepts borrowed from laser spectrosﬁl’med \{\!ith extensive numerical studies of the solutions to
copy, such as two-photon and two-step transitions. We thethe Schrdinger equatiori15]. At any rate, using E¢4), the
proceed to pulsed-laser excitation. The brief summary angfourier solutions for the respective amplitudes are given as
concluding remarks in Sec. IV complete our paper.

i _
bt=—deef""t—. }
Il. FREE-BOUND TRANSITIONS ® 2w w+il'/2
In this section we consider photoassociation and photodis- . an(0)
sociation to and from a bound, stable molecular state. Al- x| K Z o—wtin 77+b(0) : (5a)

though we know of no laser-based experiment on direct one-

color photoassociation to a stable molecular state, one can i '
envisage models in which this is possible at least in prin-  a,(t)= 2—f do e"“"[
ciple. We sketch such a situation in Fig. 1. g

K
(0= w,+i 77)(w+il_'/2)}

an(0)
w—w,tin
(5b)

s a0

iconti X . +
A. Quasicontinuum (QC) model ~ w—wpti

+b(0)
7

As indicated in Fig. 1, we model the dissociation con-
tinuum of a molecule with a QC, an infinite number of states
[n) between which there is an equal energy spadiag In
our model the QC is also “flat,” so that the coupling matrix
element between the bound stéé and any QC statén) 27| k|2
equals the same constank. For dipole coupling to light we I=— (6)
have the Rabi frequency=dE/2A, whereE is the ampli-
tude of the electric field and is the dipole matrix element The terms 7, with =0+, implement the requirement that
between the bound state and any QC state. Within théne amplitudes vanish far<0.
rotating-wave approximation, the Hamiltonian of the system \ye pegin with the analog of photodissociation, in which
IS the system is initially in the bound state and finally in the
o QC. The initial conditions areb(0)=1 and a,(0)=0.
;: D wa|n)(n|— D (k|n)(b|+ x*|b)X(n]), (1) Evaluation of the intggrals in Eq$5a and (5b) gives the

n=—o n=—o time-dependent amplitudes as

where we have defined

o
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b(t)=e 2 (7a  {|/m),|b)}. Moreover, the solution of the QC model, E¢3),
have the feature that in the continuum limitt0,
K ) x—0) all light-induced perturbations vanish.
an()=——7p (e lont—g T12), (7b) To study photoassociation, we therefore write a two-level
" model with the equations of motion

The bound-state population is of course found to decay ex- . : ) .

ponentially at the photodissociation rdfe Upon depletion b=—ybtixay, an=-iomantic*b. (10

of the bound statet>T""1, the population winds up in the , .

QC, and has a Lorentzian profile with the half width at half!t 1S also understood that these equations are always to be

maximum solved_ perturbatively in the Rabi frequeney so that we
write a,,= —iwna,. The solutions obtained in this way

v=T12. (8) from Eq.(10) indeed agree with Eq$9a) and(9¢) to lowest

order ink, i.e., they become exact in the continuum limit.

In the continuum limit, one obtains a nonzero and finite  Whichever formalism we are using to study photoassocia-

value for the photodissociation rate by lettizg~0 and tion, evidently after an initial transient that lasts a time of the

||>—0 in such a way that" remains constant, the photo- orderI' "1, atoms that were initially in the QC stajm) are

dissociation rate as obtained from measurements afansferred to the bound stgte) at the steady rate
molecular-structure calculations for the given light intensity.

In the continuum limit the time=e~* over which our ap- 2y|k|>  ylelmw
proximation(4) remains valid automatically tends to infinity m= 2 yzz w2t
[16]. m m
Mow_ng on to photoassociation, th(_a system is initially Since photodissociation removes molecules at theltfatbe
placed in themth QC state, so that the initial conditions are equilibrium occupation probability of the stafie) is
b(0)=0 anda,(0)=4,,,.- Integrating the Fourier expres-
sions(5) gives the time dependence of the respective ampli-

(11)

tudes as |b(t=w)|2:&=%. (12
I oty
*
b(t)= — (e lomt— g~ T2y (9a) The observation that a certain two-level system may be
@mt 1Y used to model photoassociation is the first of the two essen-
. o oot _tial ipgrgdients in our appr_oach. The other one is also already
Ansm(t)= e : 4 : implicit in Eq. (12), and will be discussed next.
T [(ontiy)(oytiy)  oplontiy)
e iont C. Multiple colliders
omwptiy)|’ (9b) From the expressiofl2), the bound state population is
proportional to the spacing of QC states Hence, in the
yelr _ continuum limit with e—0, the initial statgm) is not de-
ap(t)= - 2{e’Vt—[lJri(meriy)t]e"“’mt} pleted at all, and the population of the bound state tends to
(omtiy) zero. It seems as if photoassociation were impossible in the
e iont (90) context of our QC model.
' We make physical sense of this counterfactual result with
where we use the temporary definitien, = w,— o, . two realizations. The first is that the limit of zero QC spacing

Equation(9¢) possesses a linear time dependence, and gorresponds to the limit of an infinite quantization volume.

appears that the population of the initially occupied statel "€ Second is that we have so far considered the relative
diverges fort— . However, our continuum limit4) is valid ~ motion of only two atoms in either the dissociated or bound

only for t<e L. The continuum-limit expressions have been State of a molecule. That photoassociation fails to occur

compared with direct numerical solutions of the QC Sehro Should then come as no surprise, since two atoms do not
dinger equation$3), and we find an agreement over such acoII|de at all in the limit of an infinite volume. This situation

timescale[15]. Again, this timescale tends to infinity in the IS remedied if we consider all the othbr—1=N atoms as
limit &—0. potential colliders while studying collisions experienced by

any single “spectator” atom.
In the first steps of our argument, we continue to analyze
a pair of atoms. As usual, we consider the relative coordinate
It should be clear from our preceding analysis that in theonly. In collisional calculations it is customary to treat dif-
continuum limit the only effect of the light-induced coupling ferent angular momentaseparately. To prepare for explicit
to the QC on the bound-state amplitude is exponential dampdiscussions, our QC should thus have angular momentum as
ing. This suggests that photoassociation may be modeledl good quantum number. The frequency separation the
with a two-level system consisting of the initial state) and ~ QC model is essentially the inverse of the density of energy
bound statéb), and that the attendant photodissociation is toeigenstates. In order to work out photoassociation, we need
be regarded simply as irreversible decay of the bound state tie density of energy eigenstates for the two colliding atoms
the (unobserved QU states outside the two-level system for a given angular momentum of the relative motion.

B. Equivalent two-level system
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To facilitate our discussion, we quantize the continuum kR 2k2R3 K3V
states by enclosing the relative motion of the atom pair in a D(k)=| dl2+1)D(K)=——=5—73, (17
spherical potential well with radiu®, and use reflecting 0

boundary conditions at the surfacg. Now, the interaction%herevzﬂng/g is the volume of the sphere. The result is
bgtween the atqms change the 'contmuum sta_ltes anq the d e same as the density kfstates obtained by quantizing
sity of energy eigenstates. For instance, the interactions p Fee-particle motion in a cubic box. This is in accord with the
some states down from the continuum, and make discretg,nqarq assumption in quantum mechanics that, in the limit

molecular eigenstates out of them. However, if the interacqt jnfinite volume, the precise geometry of the quantization
tion potential has a finite range, in the linRt— its effect |, J|ime does not matter.

on the density of unbounded states is clearly negligible. All' | o+ o again focus ofhwave collisions. Then we have
tolld, to study the density of states, we consider a free partlclgl(k) as the density ok states,
with reduced masg..

The eigenstates of energy in a spherical box are well dn, dn dk 1
known, of the form e dK d(ER) vallLY (18
— | ;
Unim(T 6 6) = KnimY (0, )] (k). (13 for the density of frequency eigenstates, and
Here K, is a normalization constant{'m is a spherical de v
harmonic, and, is the spherical Bessel function of order g (19

Energy and wave number are related By:#°k?/2. The dn - Di(k)

reflecting boundary conditions give the quantization rule for the spacing of quasicontinuum levels.

i The next step is to introduce al—1=N colliders. We
k|,n=ﬁ’, n=12,..., (14 assume that each collider acts independently on our spectator
atom, so that we simply multiply transitigprobabilities or
artransitionratesdue to one collider by the number of collision
Ipartners. The number of colliders comes with a subtlety,
hough. While we havé\ atoms for the spectator to collide

wherek, , are the possible wave numbers for fixed angul
momentuml, andj, , are the zeros of the spherical Besse

function. A study of the density of states reduces to countin ith, in an isotropic ensemble they are uniformly distributed

these zeros. over all available angular momentum states. The fraction of
Fortunately, good tools are available for the task. Refer- 9 :

ence [17] provides in Egs.(9.3.39, (9.3.43, (9.5.22, atoms available forl-wave collisions is therefore (2

: ; +1)D(k)/D(k). To obtain the total photoassociation rate
(9.5.26, (10.4.94, and (10.4.105 an asymptotic expansion ' : :
for j, , which should be valid in the "%iniw unifl;rmly for the spectator atom, we substitute EDP) for the spacing

for all 1=0,1,2 ... . We have implemented this formula of energy eigenstates in the one-collider rek#), and mul-

Lo : . tiply by N(21+1)D,(k)/D(k).
denote it byj(l,n), numerically. By comparing the results . o
from the asymptotic formula with the actual zeros of the The final phase of the derivation is to take the thermody-

spherical Bessel functions, we have found ft{&tn) gives a n?mtlc “m'ti\l/\jvoc ft;mdN—mc,t mf‘fﬁ? a way_that ]Ehle delnsr[_)t/h
very good approximation foj, , even forl=0, n=1. The ot atomsp= stays constant. The spacing of Ievels wi

v s G ot o ot papase. o 19U et and e rcton of stoms wh sl
the studies of the limiR— . p p '

Notwithstanding the restrictions oh and n in j, , limit for the photoassociation rate of a spectator atom in a

j(I,n) is a continuous function of its variables. We therefore 92> with the density. The rate is
define the density of wavenumber eigenstates for a given

angular momenturh and a given wave numbdérby finding Rp=2m(21+ 1)% _2L2 (20
a solution withn>3/2 to the equatiof(l,n) =kR, and then K™ oty
write We encapsulate our argument into the following prescrip-
R tion: For a given collisional angular momentui the
dn, - - , n>3/2, continuum-limit photoassociation rate for an isotropic many-
Di(k)= g = J(hn+172)=j(l,n=1/2) atom gas with density is obtained by multiplying the QC
0, otherwise. photoassociation rate for one collider by
(15
) ) ) ) 2772pv
The key result from our numerical computations is that in the fi=(21+1) Kz (21
limit R— o this density of states is of the form &
R 12 Thee in the denominator formally cancels the dependence of
ZAf1— _) . |l=kR, the one-atom photoassociation rate on the spacing of QC
Di(k)=9 7 kR (16)  levels, leaving a factor that depends on atom density.
0, otherwise. One might argue that the level density in wave number is

simply D(K) and the density of states in frequency is
Summing over all possible angular momenta, for ldRgee  D(k)/v. This expression in fact agrees with the energy level
find the total density of states density for free particles as quoted in virtually all statistical
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mechanics textbooks. Thus, the simplistic argument contininstance, according to the Wigner threshold law, $avave

ues, the level spacing is=v/D(k), which is to be inserted processed «v. This means that the coupling matrix ele-

into Eq. (11). Finally, multiplying byN, taking into account mentsk must similarly depend on the relative velocity of the

that there are 2+1 angular momentum states for a giien incoming atoms. Without a full-blowriand difficuly exact

and going to the continuum limit, the resyR0) is recov- QC or continuum analysis it is unclear how these depen-

ered. dences should be properly taken into account. Here we ad-
Nonetheless, as neatly as this argument agrees with ellocate the model that in the linewidths that depend on pho-

ementary textbook material and gives the right answer, weodissociation one should use the values corresponding to the

believe that it is in principle wrong. For instance, if the relative velocity of the atoms after photodissociatign

sample were not isotropic and some angular momentum

eigenstates would occur more frequently than others, the rate Y= Yo="y(Vo). (26)

of photoassociation could change. Yet nothing in our second ) . ) )

type of argument would take this into account. We regard th&" the other hand, the photodissociation fate Eq. (11) is

right result from the simplistic reasoning as a pure accident‘?‘Ctzua”y a placeholder for the square of the matrix element
In sum, we have shown how to circumvent the dilemmal <|°> @nd so we write in Eq(20)

of the QC approach that the rate of photoassociation appears

to vanish in the continuum limit. The foundation for our QC I=T(v)= iFO. (27)

method is thus laid. In the remainder of the present Sec. Il Vo

we basically just clean up the rough edges. )
The second equality holds foflow-energy s-wave pro-

cesses, in which cadg, is the photodissociation rate for the

resonance velocity,. All told, for sswave processes the rate
Up to now, we have tacitly assumed that for any twoto be averaged reads

colliders, the initial QC statém) is the same. One sign of

this assumption is the single collision velocityin Eq. (20). pv? Yol'o

Of course, in a thermal gas the atom pairs do not all have the R(V):2”V0k2 [E(v)/h—A]P+ 7(2)'

same collision velocity. Correspondingly, we next adopt a

probability distribution over the QC stat€%,,, and average The integral in Eq(24) may now be written down explic-

the photoassociation rate over the distribution of initialitly, and analyzed numerically for arbitrary values of the pa-

D. Velocity distribution

(28)

states: rameters. However, here we only consider the case when the
linewidth due to photodissociatiop, is the smallest relevant
R=> P.R,. (22) frequency parameter in the problem. In parti_cular, we assume
m that yo<<kgT/%. Then the resonance denominator in E2f)

in effect makes a delta function in energy that peaks with

As an implementation of this idea, we average the ratg=(v)=E(v,), or a delta function in velocity that peaks at
(20) over the distribution of relative collision velocities in a =, One simply has to convert the delta function in en-

thermal Maxwell-Boltzmann gas, which reads ergy properly into a delta function in velocity, and carry out
a2 the integral. The result is
— 24— uv2i2kgT
folv) =4 2kaT) ve ' 23 R=pA\Je "AkeT T, (29)

The task is to calculate where

® 27Tﬁ2 1/2

R=f dv fo(v)R(v), 24 =|—
. o(V)R(V) (24) b (ukBT) (30)

whereR(v) is to be inferred from Eq(20). is the thermal de Broglie wavelength.

A few details must be attended to while carrying out the From Egs.(28) and (29) it is easy to see that our QC
average. First, the resonance denominator in (2. con-  results are in agreement with the standard scattering results
tains the frequency,,. That obviously stands for the detun- [8], and with the latest analytical mod¢lkl,12 as well. The
ing from optical resonance for a collision pair with the rela- photoassociation density paramejex? is essentially the
tive velocity v. Suppose that the laser is tuned so that twosame density parameter as the phase space density for BEC
atoms with the collision velocity, and the corresponding [7]. In a way, the rest of the present paper consists of analy-
collision energyﬁAzE(vo)z,u,vﬁ/Z above the continuum sis of the role of the paramet@m%. The same parameter
threshold are on optical resonance, then we have the replacappears explicitly in, say, Ref11], but other authors do not
ment seem to have realized the significance of this connection be-

tween photoassociation and BEC.
on—E(v)/h—A. (25)
Second, and contrary to our flat-quasicontinuum model, the E. Equilibrium
rate of photodissociatioh' (and hencey=1'/2) depends on Given the rateR as in Eq.(29), namely, the probability
the relative velocity of the atoms after photodissociation. Foper unit time at which any given atom participates in photo-
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association, plus the fact that the photoassociated molecules
also tend to break apart at the photodissociation IFgteve
have an opportunity to discuggjuilibrium photoassociation

) : . . Concerning basic concepts, in the continuum limit the
yield. For the time being we continue to assume that, photo-, _,". . . S
o - o Rabi frequencyk tends to zero while the photodissociation
association or no photoassociation, the velocity distribution . s ;
ate I'y remains constant. Coherent transitions induced by

of the atoms remains thermal, but allow for the depletion o light are thus much slower than the damping, and it is im-

Lhuemgirpgf rrngreiil?:;sinret?e alsr;?nghlel_;cljﬁ) y%iniﬂﬁﬁmjﬁ possible to saturate or power-broaden this twojle_vel system.

ber of atoms, then the rate equation for molecule formatio Tha.lt the physical system may nonetheless exhibit any d|s_tr|-

reads ' 'bution <_)f the population petween thg two states _has nothing

to do with power broadening. Increasing the density of atoms

R enhances the molecular yield, but the time scale for coherent
Nm=§(N—2Nm)—F0Nm. (3)  Rabi flopping remains unaffected.

In addition to illustrating the absence of coherent power

We have the factoR/2 instead ofR becauseR is the prob- broac_iening, the density ”_"'at”x comes in handy for describi_ng

ability per unit time that a given atom participates in photo_colhsmns phenomenologically. Hence, we complete our dis-

association, and it double counts the rate at which molecuIe%u“:'g'cl’nhOf 'ghe }wo—(;e\{el slys.te.m with a rucél_mentaryl col\llllsk:on
are formed. The equilibrium probability of photoassociationrno el that is a'ready implicit in our preceding results. en

p2o=—i(K* po1— Kp12). (330

is given by it is all said and done, we assume that the relative velocity of
the atoms tends to thermalize quickly.
N, R p)\%e*M’kBT Allowing for a distributiqn of atpm—pair velocities, we
p= = = ) (32) have to make those density matrix elements that refer to
N RtDIg 14 pr3e ket atoms, all bup,;, functions of the relative velocity. More-

over, we add several ingredients that are so far missing from

Within the present model, the equilibrium photoassocia-our model. First, the molecules that get photodissociated do
tion yield is largely determined by the paramepers . This  not vanish without a trace, but reemerge as atom pairs with
is basically the same phase phase density that dictates tlseme (normalized distribution of relative velocityZ(v).
absence or presence of the Bose-Einstein condensate. Put3econd, collisions disrupt the coherence in photoassociation.
another way, since the rate of photoassociation scales wittWe model this by adding a collisional broadenipgto the
the density ap? and the rate of the competing photodisso-linewidth of the transitiony,. While at that, we also replace
ciation asp, the equilibrium probability of photoassociation the resonance frequency with the same detuning factor as
must involve a dimensionless parameter proportional to atorbefore, see Eq25). Third, collisions redistribute atoms be-
density—and this parameter just happens to be the phaseeen the velocities, so that there is some collision operator
space density that also governs BEC. We therefore anticipat€ involved. Different collision models correspond to differ-
that a near-unit yield is possible when photoassociating @&nt collision operators. For the sake of illustration we write

condensate. the explicit collision operator for strong collisions. By as-
sumption, one such collision, which takes place at the rate
F. Density matrix, power broadening, and collisions I'., is sufficient to restore the normalized thermal velocity

distribution f5(v), Eq. (23). Fourth, as we are treating pho-
t?dissociation separately and on a different footing from
hotoassociation, to avoid double-counting we have to drop

One of the keys to our QC method is to treat the initial
QC state and the bound state of the molecule as a two-lev

system irreversibly damped by the photodissociation of th Il processes driven by the Rabi frequency whose effect
molecules. So far we have discussed this two-level system iﬂ/ould be to make atomsg,) from molecules 1), i.e., the
terms of probability amplitudes. However, in quantum optics L, term in Eq.(33b). Altogether, the two-level collisional

and optical spectroscopy it is more customary to use th . : ; ! .
density matrix to describe the two-level system. In the pres- odel yields the integrodifferential equations

ence of interactions between the two states and the rest of the
universe, the two-level system need not remain in a pure

p=—T +ifdv*v v)— k(v V)],
state. Then something equivalent to a density matrix descrip- P11 oP11 L7 (V) p2a(v) = (V) pad V)]

tion is a must as a matter of principles. The density matrix (343
formalism also conveys practical advantages, in that one may
illustrate basic concepts and transparently add new phenom- p21(V)=—{i[E(V)/h— AT+ yo+ velt par(V)
ena to the model.
First consider an elementary two-level system consisting —ik(V)paaAV), (34b

of the bound state and one QC stdtd),|m)}={|1),|2)},

for one pair of atoms only. As before, this system is also .

effectively irreversibly coupled to the rest of the QC states at p2a(V)=ToL(V)p11+T¢
the ratel’, so that the density matrix equations read

fo(V)j dv'po V') —paaV)

. —i[e* (V)par(V) = k(V)p1aV) . (349
p11= —Topuati(k* p2—kp12), (339
_ For an illustration of the implications of this model, we
po1=—(ion+ vo)p21— i kK(p2o—p11), (33p  begin with the rate approximation. Whatever the justification
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might be, we just sgt,; equal to zero in Eq(34b), solve for  (2)
p21=p3,, and insert into the remaining equations. This gives
the rate equations

) 2(70+70)|K(V)|2 b
P11~ —FoP11+f dV[E(v)/ﬁ—A]2+(yo+ 702 poo(V),
(353
m
poAV) =T oLV pra Tl fo(v) [ AV podv') = padv) /
2(yot o)l k(V)|?
"B A (ygt y? PAV). (35D

Next we assume that the total atom number for the disso-
ciated system i8l, and reinterpret the quantip;,=P as the
probability of photoassociation of any given spectator atom.
Correspondinglyp,,(v)=f(v) is the probability density for
atoms in a collision pair characterized by relative veloeity  (b)
that have not photoassociated. We also impose the normal
ization

f dv f(v)=1-P. (36)

Finally, as before we simply multiply the photoassociation
rate for two atoms, the terms proportional|t{v)|? in Egs.
(35), by the factor(21). While there are in fact (£ P)N
atoms left, the normalization of the velocity distribution
takes care of the factor-1P, so that our rate equations are

FIG. 2. (8 Scheme in which two lasers drive transitions be-
2f1(yo+ yo) | k(V)? tween a dissociate@uasicontinuumstatem, an intermediate state
5 5 f(v), b, and a stable bound molecular stgtéb) Quasicontinuum model
[E(V)/A—=A]+(yot ve)

P:—FOP+J dv
of the same. As appropriate for a proper rotating frame, level ener-
(378 gies are given by detunings and laser-driven couplings are indepen-
. dent of time.
f(V)=ToL(V)P+T[(1-P)fo(v)—f(v)]
2 First, as needed, one may devise density matrix treatments
_ 2fi(yot o)l (V)] f(v) (37b) for the analysis of photoassociation in close analogy with the
[EW)/A=AP+(yotye)® density matrix approaches that one sees in laser spectros-
] copy. Second, our particular model demonstrates that, given
In the last step of our demonstration we assume that thghe right kind of collisions, the velocity distribution of colli-
rate of strong collisiond’; is the largest rate occurring in  sjon pairs may well remain thermal in spite of photoassocia-
Egs.(37). In steady state we then approximately have tion. The simple model of the preceding sections remains
valid, provided one uses the collision broadened linewidth
L [(1=P)fo(v)—F(v)]=0 (38) =i+ . in lieu of the photoassociation linewidth, in all
the proper places. If the rethermalizing collisions are not fast
enough, collision pairs with the resonance veloacity are
f(v)=(1—P)fo(v). (39) depleted. Qne may deal with this case, e.g., by solving Egs.
(37) numerically.
With this observation, we are back to the same mathematics

or

that was already presented in Sec. Il D. The only difference Ill. ADDITION OF A SECOND COLOR
is that where we used to have the photodissociation linewidth
vo0, We now have the collision-broadened linewidil yq We now turn to the physical model depicted in Figa)2

+v.. If the collision broadened linewidth satisfieg  and to its QC counterpart sketched in Figb)2 Two light
<kgT/#, the steady-state photoassociation yield is the samfrequencies are present, one of which drives photoassociation
as before, Eq(32). to a vibrational state within an electronically excited mani-

It is easy to develop density matrix models with differentfold, and the second that takes the excited molecules to an-
levels of sophistication for various purposes. We will neitherother vibrational state in a stable electronic manifold. The
enter any general discussion of such models, nor even atnotivation for such a scheme could be that the electronically
tempt a comprehensive analytical or numerical solution ofexcited molecule created in ordinary photoassociation is un-
our example case. We merely hope to have made two pointstable, and decays spontaneously at the Fateo either
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bound vibrational states or back to the dissociation con- As before, the coupling to the QC vanishes in the limit

tinuum (radiative escapeWe regard both of these outcomes V—o. It follows immediately thatc<() holds for a large

as undesirable, and use the second laser to guide the malelume. This is exactly the result that prohibits the adiabatic

ecule to the intended vibrational level. The goal is to put azondition from being satisfiedi7] in a free-bound-bound

many molecules as possible into the final stable state. STIRAP procesg12]. Furthermore, while considering the
In the continuum limit precisely the same mathematicsstate triplet{|g),|b),|m)}, we should treat the free-bound

that led us to treat photoassociation using a two-level modatoupling « as a perturbation. In practical terms, we simply

now gives a three-level scheme that is implicit in Figh)2  adopt the reservoir approximation and agt=1 in Eq.(44).

We again denote the initial QC state by the intermediate In later sections, we apply these insights to obtain results for

molecular state by (as in “bound”), and introduce the final both continuous-wave and time dependent couplings.

stable state ag (“ground” ). Two lasers with the frequencies

w; and w, and Rabi frequencies,  drive transitions be- A. Dressed two-level system

tween the respective state paften),|b)} and{|b),|g)}. In . i
the rotating-wave approximation and in a suitable rotating Because we are going to treat transitions from the QC as

e perturbations, the basic system to be considered consists of
frame, we have a Hamiltonian of the form the two bound stateg) and|b) and light with the detuning
Ho 6 and Rabi frequenc{). The exact solution to this system is
== ~Alg)(g|+(5-4)[b)(b]— (Q[b)(g|+ Q*[g)(b]) the familiar dressed atofi18]. For completeness, we briefly
reiterate a few of the pertinent aspects.
— (k|b){m|+ x*|m)(b|). (40 Suppose first that the detuning is largé|>|Q|. In this
case the dressed states) and|—) are close in character to
Here the original stategg) and|b); say,|+)=|g) and|—)=|b).
The dressed states are separated in frequency by an amount
~| 48], and so coupling to the third statm) will show two
resonance$14] separated approximately Hy|. The reso-
nance between statési) and|+) is the two-photon reso-
B@nce[lQ]. In a sense, the system makes its transition di-
jectly from the initial statgm) to the ground statég). The

0= wp— wg— Wy, (419
A=on—wg— (0~ ;) (41b)

are the intermediate detuning that characterizes the degree
being off resonance in the transition between the two boun
molegcular states, and the two-photon detuning that stands f&Iher resonance, between_ stdteg and| —), Po”e_spo_”ds to
the total energy mismatch in the free-bound-bound moleculaVO-Step Processes. The image we have in mind is that the
process. The slightly unusual appearance of the Hamiltonia) ystem primarily makes a transition from th? starg to the
is because here we have chosen the zero of energy in suc re statgb). Whatever population is found in th? bare state
way that the energy of the state corresponding to the initial9) 1S there as a result of a second step, transitions between
QC statelm) equals zero. We have assumed theonfigu- 12 and|g). , _
ration as in Fig. 2. Other types of three-level schemes, such T only the stateb) is damped, the state that has predomi-
as the cascade, can be accommodated with trivial changes figntly the character of the stable stae,), only decays
the notation. because it has a small admixture of the unstable s$tate

In addition to the light-driven couplings, we have to con- 1"€ decay rate is
sider both photodissociation taking place at the iaeand Ik
the potentially harmful spontaneous transitions at the rate I',=—(Ty+Ty). (45)
I's. Since both of these mechanisms take the system outside

of the three 'states under consideration, it is known frorn]_he other staté—) experiences the full force of damping at
guantum optics and laser spectroscopy that such dampl_n[ﬂe ratel_~To+T,. Of course, since the third sta) is

may be incorporated correctly by adding a piece with imagi- . .
nary energy to the HamiltoniaH, coupled directly to the bare staté) only, the coupling

strength to the dressed stdte) is similarly decreased, so
Hy i that the matrix element fronhm) to |+) is of the order
— == 5(To+T9|b)(b. 42 |xQ/3).

In the contrary cases|<|Q|, the dressed statdst),
separated by=2|Q|, are both near fifty-fifty admixtures of

Writing the stat tor in the f
riling fhe state vector in the form the bare statelgy) and|b). Both of them are coupled to the

(1))=g(t)|g)+b(t)|b)+an(t)|m), (43 QC statem) with a comparable strength, and both of t.hem
v®)=0(0lg) 162+ an(t)]m) also decay at a similar rate (I'y+1'5)/2 to states outside
we thus have the time dependent Scfinger equation our three-level system.

g=iAg+iQ*b, (448 B. Continuous-wave transitions

In the continuous-wave case we find the steady state of
b+iQg+ikay, (44p  Egs.(44) with the additional simplifications that, by virtue of
the continuum limit and the reservoir approximatia;»0
. anda,,=1. The result is a two-by-two set of linear equa-
an=ix*b. (440  tions, which may be solved trivially.

. 1
b=[i5—§(l“0+l“s)
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Instead of writing down the general solution, which is not (within the present assumptionis to increase the intensity
particularly transparent, we go directly to the two specialof the photoassociating laser, and thereby enhance the favor-
cases already mentioned in the preceding section on thable branching.
dressed atom. First consider a large intermediate detuning, Let us now take EQ.(46) at face value, ignoring
|8]>|Q],Ty,Ts. If the detuning of the photoassociating la- spontaneous-emission leakage. Just as before, we may take
ser is chosen in such a way that we are operating in théhe continuum limit and average over the thermal distribu-
proximity of the two-photon resonancA~=0, the QC state tion of collider pairs. In so doing, with the assumptiap,
|m) is near resonance with the dressed state that has =1 we in effect ignore depletion of the atoms owing to
predominantly the character of the stable ground digfe  photoassociation. Correspondingly, we regain basically the
Hence, we take the two-photon detuning to be small. Thano-depletion version of the photoassociation yield of Eq.
populations of the two states are (32),

|Q|?| |/ 62 e P:p)\%efh(AHQ\Z/&)/kBT_ (50)
[A+ Q2812+ [(To+ To)| Q22572

lg|?=

Here the physical mechanism leading to steady state involves

b|2 A?|k|?1 82 @n coherent population trapping and is not simply the balance

[A+|Q|2/5]2+[(FO+F5)|Q|2/252]2. betvve_en. photoass_omauon_ a_nd photodissociation, but the
quantitative result is very similar regardless.

Both populations show the two-photon resonance shifted W€ next take up the second dressed-atom case in which
by the usual amount-|Q2|/5 and broadened by the simi- the auxiliary light between the discrete molecular states is

larly expected spontaneous decay rdtg+ T'))|Q|%/ 5% Be- tuned near resonancéﬂ|>|5| . Then both dressed states
sides, the expression fth|? also displays the dark state: for have approxmatgly a 1/2 admixture of the bare excned. state
A=0 there should beo steady-state population at all in the |b), and are subject to nearly the full spontaneous-emission

intermediate stat¢b), and hence no harmful spontaneous'€akage. If there is any such leakage, all atoms will either
leakage through the intermediate state. wind up in bound molecular states as determined by branch-

In reality, the picture is not so rosy. First, one would ing ratios in spontaneous emission, or are lost to radiative

usually photoassociate atoms from a range of energies, &>caPe. To make physical sense of the steady state of the
that the two-photon resonance conditiar-0 cannot hold continuous-wave case we therefore assume that there is no

for all colliders. Second, as a result of phase perturbation8@nching to spontaneous emission at Bl=0.
due to, say, atom-atom collisions, the two-photon coherence 1N€ two dressed states are separated |6} 2which we

that maintains the dark state tends to decay, and the da@SSUme large, and so there are two separate resonances for
state loses molecules. Third, even if the dark state were exRhotoassociation starting from a given QC state. We assume

act, when it is reached, photoassociation ceases as well. THat the photoassociating laser is tuned close to resonance
fraction of atoms converted during the buildup of the darkWith the one thatis higher up in frequency. Correspondingly,
state determines the final photoassociation yield. But, durindf" the same photoassociating laser, the other dressed state is

this initial transient the intermediate stagopulated, and it ON 'esonance with atoms whose energies are abb|0
loses population to spontaneous emission. lower at the onset. If X}| is large enough, this spurious

The first two complications depend on experimental def€sonance is beIO\_/v the continuum threshold and may be ig_—
tails, and we do not undertake any quantitative calculationd}ored. We take this to be the case, and only consider transi-
As a matter of fact, including collisional damping of the ions to the dressed state higher in energy.
two-photon coherence would bring in the entire density ma- All told, with the assumptions thafQ[>|4|, T’y and
trix formalism, and substantially complicate the analysis. 2=/, the steady-state population of the stable molecular

The loss of atoms during the build-up of the dark stateState IS
though, is intrinsic to the physics, and we study it in some
detail. We solve the Schdinger equatior{44) as a function 5 (|x|/2)?
of time, and find the total probability that leaked due to spon- gl :(A_|Q|)2+(,),O/2)2'
taneous emission losses from the intermediate state. For

(51)

A =0 we find Just as twice before, we obtain the photoassociation yield in
o r |:<|2 the assumed absence of atom depletion,
dtTgb(t)[P=o— 1=15. 48
fO S| ( )| FO+FS|Q|2 ( ) 1
P=Sprpe (a7 I0NkeT, (52

But Eq.(46) gives the corresponding steady-state probability
of the ground state as

The second resonance we have ignored carries half of the
transition strength, accordingly we have lost a factor of 2 in
the yield. Another way of thinking about the same factor of 2
is that the state pajg) and|b) is saturated by the laser with

so that the fraction's/(I'y+1T') of the atoms leaked out a large Rabi frequency, and so only half of the atoms in this
through the loss channel. The only way to improve on thisstate pair are in the ground statg.

2
Ig(t:m>lz=%, (49
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C. Transient excitation At this point a digression on level shifts is due. The ele-

Leaving the lasers on continuously is likely to lead to lossment H,; in Eq. (55) is the same shift of the two-photon
of atoms in the form of radiative escape and spontaneoutesonance that we already encountered in the preceding sec-
transitions to unwanted vibrational states. Our three-levetion on the continuous-wave response. This time, however,
model also suggests that increasing the intensity of the phdhe level shift depends on time, which complicates the analy-
toassociating laser could improve the branching betweesis. There is also another level shift present that we have so
photoassociation and spontaneous-emission loss. Both &dr not mentioned. Namely, because the photodissociation
these observations suggest that it might be advantageous tateI’ depends on the final continuum state, analogously to
pulse the photoassociating laser. Accordingly, in this sectioiKramers-Kronig relations it follows from causality that there
we give examples of methods that could be used to treanust be an attendant shift of the continuum with respect to

pulsed excitation, and discuss a few generic results. the statgb). This is akin to an imaginary part of the damp-
N ing ratel’y, and is similarly proportional to the intensity of
1. Two-photon transitions the photoassociating light. Both aab initio theoretical

Given time dependent Rabi frequencies and a dampin palysis and an explicit measurement of this shift appear
rate that also depends on time because the intensity of tHéifficult, but as a rule of thumb one might expect that the
photoassociating laser does, the Sdimger equation(44) shift is of the order of the photodissociation riﬁo].' Fi-
remains valid. However, for later convenience we change th8ally, for the purpose of the argument, we have meticulously
overall zero of the energy, so that the matrix representing théllowed the Rabi frequencies to be time dependent complex

Hamiltonian becomes numbers. A time dependence of the foem ¢ obviously has
precisely the same effect as a shift of the driving laser fre-
0 —Q*(1) 0 guency byé.
Ho The shift of the two-photon resonance|Q|?/ 8, is pro-

o —0m 0 BCAE (53 portional to 15, and appears small within our approxima-
0 —K* (1) A tions. However, it may be seen, e.g., from E4p) that we
may end up comparing this shift with a linewidth that is of

We seek to solve the time dependent response from thig,e o der 152, and so the shift may be cause for concern. As
Hamiltonian using an adiabatic approximation valid in theit comes to the shift of the continuum with respect to the

limit whfan direct two-photon processes are the dominan{itate|b), at the moment we believe that it may instead be
mechanism for transfer of atoms from the QC to the groun onsidered as a shift of the levéh) with respect to the
state. Once more, we therefore hsM§|Q| |Al. We apply continuum, and therefore directly affects the intermediate de-
a (time dependentunitary transformatiorJ that makes the tuning & rather than the two-photon detunidg The change

dressed states out of the two bound states, i.e., diagona[i2ﬁ§the two-photon detuning enters via the shift|% s, and
the two-by-two block on the upper left corner of the matrix is second order in . We have not, however, constructed a

in Eq. (53). This unitary matrix is proof of this assertion. Hence, the possibility that the two-

Q* (1) photon detuning might be affected even in the orde 1¢
1 - 0 not ruled out.
g 1 In what follows, we simply ignore all time dependent
u(t)=| Q) 1 0 +0 ?} (54) level shifts. We have two potential justifications. First, we
5 are going to assume short pulses of light. Obviously, a shift
0 0 1 of the two-photon resonance smaller than the spectral width

of the light pulse cannot have much physical effect. Alterna-
and the corresponding transformed Hamiltonian reads tively, the driving pglse&(t) and/or{}(t) may be Ch"p‘?d to
cancel the level shifts. Since we are talking pulse widths of

= the order of the inverse of the photodissociation time and

0 QUTJF U EUT chirps of the order of photodissociation rdtg, such chirp-
h ot h ing should not be much of a challenge to today’s laser tech-
Q) . K(HO* (1) nology.
S S
2. Transition probabilities
[Q)? R

= 0 + 5 — k(1) As represented schematically in Fig. 3, we have three rel-
evant pools of atoms: atoms available for photoassociation,
K*(1)Q(1) * atoms converted into stable ground state molecules, and at-

- S — (1) A oms lost to radiative escape and branching to wrong molecu-

lar states. We denote the probabilities that an atom belongs
to one of these pools by, , P, andP,, respectively. As with

our continuous-wave case, we assume that no other property
of the pools changes with applied laser pulses except the
Here we have assumed that the time derivative of the Ralmumbers of atoms. For instance, each pulse leaves the re-
frequency ) (t) is formally zeroth order inS. This holds if maining atoms available for photoassociation in the same
Q(t) changes little over the timé 1. (say, thermal velocity distribution, and the two-photon co-

1
+0| =
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atoms Ha%m stable F(t) = FO exg[ - 2|t|/7‘], (608)
available molecules
I'o=2m|ko|s. (60b)
Hm—»a
The probability that an atom is photoassociated after the
Ha%l\ / T pulse is

2 167T 05

~warazy ©Y

M, =2 f_ dt’g(t")

where the factor 2 is because one process of photoassociation
FIG. 3. Pictorial representation of various pools of atoms in theconverts two atoms into a molecule. Again there seemingly
case of two-color excitation, also showing transition probabilitiesis no photoassociation in the continuum limit. To include the
between the pools. contributions from all colliders, we multiply by the factor
(21) as before, assumirig=0. In the process, we must divide
herences are assumed to decay away between successiMg result by two in order to cancel the double-counting of
pulses. Provided such a description is sufficient, a laser pulsgoliision pairs.
causes transitions between the various pools with the prob- we must also contend with the velocity distribution of the
abilitiesII;_;, wherei,j=a,m,l. The probabilities?,,P,P,  atoms. To this end we first assume that the light pulse is so
evolve from pulsen to pulsen+1 according to short that its spectral broadening covers all of the velocity
(1) (4 B — distribution at once. In fact, in our argument we choose a
P =(1-Mpa=Mp )P+ P, (563 pulse lengthr such thatkgT7/A=1. At microkelvin tem-
peratures this allows for pulse durations of the order of mi-
crosecond, which is not particularly short in the standards of
(+1)— o) 1 o) " laser technology. The result is that in all of our expressions
P =P+ PR+ PYVIL, (560  we may setA7=0. Second, the use of Eq1) explicitly
. . . , . ... _brings the collision velocity into the picture. We use the
The immediate task is to find the transition probabilities, ., velocityu=Jkg T/ wherever the velocity ap-

IT;_,;. We proceed under the assumption that for a singl . .
; o - pears. Third, we define the thermal frequerteykgT/#%, so
pulse of light all of these probabilities are small. The pract|—e,f)hat for our pulse duration we haver= fm_ The aet result

cal implication is that while calculating, sayJ, ., one i
may ignore depletion of the atoms.

We first turn toll,_.,,. Using the Hamiltoniar(55) and 3 2
the familiar reservoir approximation that the population of My = ————.
the initial QC state remains a constant unity, i.e, 2\2m5%0
={g,b,e "% we find a version of the Schidinger equation

Pgn+l): (1_ l_[aﬂm_ Haﬁl) P(an)+ P(n)Hmﬁav (56b)

(62

We next consider spontaneous-emission losses during
photoassociation. Given that the excited molecular state de-

N
— _aid
9= Ee Ht (D), (573 cays spontaneously at the rdfg, the corresponding popu-
lation loss during one pulse in a transition from an initially
b=—i[sb+e 1 2t(t)]. (57b) occupied QC state to the ground state is
; » T oe

It should be noted that here the amplitudeand g do not Il :zf dt'Tb(t")]2= Tso 63
refer to the bare ground and bound statgsand|b), but to a~| —o <[b(t")] 78 63

the dresses statés ) and|—). However, with our assump- _ o _
tion of large 8, the ensuing difference in the final results is Including the contributions from all colliders as before, we

negligible. have
We now proceed by imposing the adiabatic condition on
the photoassociation color as well, i.e., we assume #(igt P)\%sto
changes little over the timé~*. Recalling thai §|>|A|, the o= 22m6% (64)

bound state amplitude is then given by

The probability for spontaneous decay now increases propor-

tionally to the BEC phase space density of the gas. But, from

In order to facilitate an easy analytical treatment, the shapeg.qs' (62) and (64)'. we see that the fract!on of populat_lon

of the pulses are specified as iverted to losses in spontaneous decay instead of ending up
as ground state molecules is

b(t)=—e Ak (t)/ 6. (58)

k(t)=rkoexd —|t|/ 7], (59a m, .9

Q) =0gexd —|t|/7]. (59b) T 1, ., T0+02

(65

The rate of photodissociation then varies in time as which is independent of atom density.
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Once molecules begin to accumulate in the ground stateyf large pulse number, all atoms are lost to spontaneous leak-
they may also be depleted through the reverse bound-boundge. Nonetheless, let us consider the case of an ultradegen-
free transitions. Our next assignment is to consider the casgrate atomic sample, so that,  .>II., . Il ., and
where the ground state is initially occupied, and determingoulse numbersi<1/I1,,_,,1/11, ., so that we may ignore
the population gone to photodissociation after one pulse. I@ll transitions that break up ground-state molecules. Under
our solution of the Schidinger equation we simply keep these conditions a quasi-steady state valid forll}/(p,
g=1, and calculate the probability of photodissociation ast1la_;)<n<1/(Il;, ,+II; ) is found from Eqs(56) as

the integral o Mom . 10,/2 -
2 Haﬂm_*'Haﬂl I‘5‘9'|'|QO| .
M= | dijb()[’I(1). (66) _ "
Branching between the transitions from atoms to molecules

In this case, there is only one possible initial state, and there"’—‘nd from atoms 10 spontaneous-emission losses then deter-

fore no need to consider anv velocity distribution. Two Ejlt_mines the photoassociation yield. Interestingly enough, the

| d I %’ i thy ther h d.th ield may be adjusted by tuning the bound-bound Rabi fre-
oms are released per puise, but on the other hand the num rencyQO. Given microkelvin temperatures or lower, a Rabi
of molecules is half the number of atoms. The implicit

; . -~ frequency satisfyind)y>1",0=KkgT/% is nothing unusual
double counting therefore corrects itself, and the probability,"jiscrete atomic and molecular transitions. Efficient con-

IS version of atoms into molecules is feasible for dense atomic
r.02 samples in spite of spontaneous losses.
__0"0o (67) Conversely, suppose that the initial gas is nondegenerate,
meat28%0° so thatll,, .,>1I, . ,.,I1, .. For pulse numbens such that

o ] ) V(T o+ ) <n<U(Il,_,+11,,), a quasisteady
Losses due to spontaneous emission also incur during ph@tate still hasP,~1, and so Eqs(56) give

todissociation. The probability is
Ha—>m Hm—»a FO

2 P= < =1
T3 . Myt Ty, My o400, © & To+al,
melT 520 (72

Unless the gas is degenerate so fwat=1, branching be-

tween photodissociation and spontaneous emission sets a

I(ijmit on photoassociation yield.

Although the scaling in the firgapproximate equality in

%q. (72) actually is such that photoassociation yield is inde-

pendent of intensity, at some level one will always meet with
2T, competition between spontaneous emission and light-

(= T or. (69) induced transitions. The characteristic scale for the effects of
0 s light is the photodissociation raie,, which winds up being

This is almost the self-evident branching ratio. The extracompared with the rate of spontaneous emisdign For a

factors of two are there because photodissociation rate déypica[ dipole transition in a molecule, it tak¢8] a Iager
pends on intensity, and thus on time. intensity of the order of 100 W/cfrto reach a photodisso-

ciation rate such thdfy~1Ts.

which is nothing but the usual scattering ritgﬂ%/éz mul-
tiplied by the duration of the pulse.

From these expressions, the fraction of photodissociate
population that is unavailable for recycling due to the losse
to spontaneous decay is

3. Photoassociation yield . .
D. Discussion of two-color schemes

One may study photoassociation yield as a function of the
number of pulses by iterating Eq&6) numerically. How-
ever, instead of producing numerical data, we bring up a fe
qualitative points.

First suppose that there were no leakage due to spontan
ous emission]I,_,,=1I,,_,;=0. Photoassociation yield may
then be found as the invariant distributi¢@éame forn and

Our focus is on photoassociation of a highly degenerate
tomic sample using two pulsed lasers. Spontaneous losses
rom the intermediate state always set the ultimate limit on
hotoassociation yield. Nonetheless, according to (Ej,
the unwanted branching may be controlled by adjusting the
parameters of the light that drives tléscrete molecular

n+1) of Egs.(56). Using Eqs.(62) and (67), we have transition. Highly effic_ient _prodgction of ground-state mol-
ecules appears possible in spite of losses to spontaneous
emission.
H A3 Since the result of Eq71) is somewhat counterintuitive,
p__ ™ ___PW (70 We will reaffirm it using simple arguments. First, as is obvi-
H " H N2+ p)\% ous from Eq.(58), the population of the bound state during
moa  asm the light pulse is of the ordefxq/d8|2. This population

will last a time of the order of the pulse duratian and
Conversion of a degenerate sample of atoms to ground stateads to spontaneous emission losses proportional to
molecules with near-unit efficiency is possible in principle. Ps~|«q/8]?7T's. On the other hand, according to the Hamil-
Next allow for nonzero spontaneous leakage. Technicallytonian of Eq.(55), the initial QC state is coupled to the
the pooll is what is known as absorbing state for the Markovground state by the familiar two-photon Rabi frequency
chain described by Eq$56). In physical terms, in the limit |xyQ4/4|. In the continuum limit this is small, so that Rabi
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oscillations back and forth between the ground state and thend laser spectroscopy. The decades of experience accumu-
QC state do not occur within our premises. Instead, theéated in these disciplines is thus transferable to problems in-
ground-state amplitude simply grows at a rate proportional tavolving photoassociation. As first illustrations, we have dis-
the Rabi frequency. At the end of the pulse the amplitudecussed the absence of coherent power broadening, and
therefore is of the orddic,(,/ 8| 7. The probability that the sketched a two-level density matrix approach for the studies
system has made a transition to the ground state is the squaséthe effects of atom-atom collisions on photoassociation.

of the latterPy~|koQq/8|?72. The branching ratio between  As a further example of the few-level philosophy, we
spontaneous emission and transitions to the ground state thbhave addressed two-color photoassociation in a free-bound-

is bound scheme. Dressed states, dark state, two-photon reso-
nance, and other standard paraphernalia of theoretical laser

EN I's (73 spectroscopy were found to bear on the problem. Our em-

Py |Qo|zr' phasis was on devising ways to avoid spontaneous-emission

losses of atoms from the intermediate molecular state in two-

This may indeed be made arbitrarily small by increasing thexolor photoassociation. We have discussed the advantages of
Rabi frequencyQ|. two-photon processes, as opposed to two-step processes, and

The reason for such advantageous branching is that, in thef pulsed excitation. In a degenerate sample it is possible to
case of a two-photon resonance with an off-resonant intefachieve a near-unit photoassociation yield even in the pres-
mediate state, the light-dressed ground state of the moleculéhce of severe spontaneous losses from the intermediate-
acquires only a small admixtureQ§/ 52 of the character of state, and the high intensity of pulsed lasers could improve
the excited state that is subject to spontaneous-emissigshotoassociation yield in a nondegenerate sample.
losses. In addition, after the light pulse acting on the discrete We have focused on theoretical concepts related to few-
transition has passed adiabatically, the dressed ground stdtszel modeling of QC systems, and have nonchalantly ig-
has turned into the pure ground state again. This state afored experimental complications. For instance, we have as-
affairs is to be compared with the schemes considered pr&umed that the molecules stay around arbitrarily long, i.e.,
viously [6,14], in which the intermediate state is also on that they are trappd@®1]. We have also taken the continuum
resonance. The relevant dressed states are then fifty-fifty aélmit for the atoms, even though in a tight enough trap the
mixtures of the ground and intermediate states. In the normaklative motion of two atoms should really be treated as a
course of affairs, after the light pulses the molecule will beQC. Our theoretical machinery has its rough spots as well.
left in this same admixture of ground and intermediate statesAs an example, we have used the Maxwell-Boltzmann ve-
Half of the molecules will subsequently branch to spontaneiocity distribution while at the same time discussing degen-
ous emission, and even more are lost if the pulses are longrate gases.
enough so that the molecules may decay substantially during The next logical step in our endeavor is to consider ex-
the pulses. plicitly the quantum degeneracy of both the atoms and the

In a continuous-wave experiment with an electronicallymolecules. Having already included these considerations into
excited intermediate state, the desired ground-state mok description of one-color photoassociation in a Bose-
ecules would eventually be lost to spontaneous decay as th@instein condensatg22], we are currently working on the
cycle back to the intermediate state. For this reason alone, weee-bound-bound analysis. From a theoretical viewpoint, the
expect pulsed schemes to dominate in the experiments. Shartajor change is that in a degenerate sample one winds up
pulses bring additional advantages. First, thanks to spectralealing with a transitionamplitude that characterizes a
broadening, it is possible to influence the entire thermal disflarge number of colliders, while here we add transition
tribution of the atoms at once. Second, by adjusting the dutprobabilities Besides the Maxwell-Boltzmann statistics, the
cycle, one may adjust the overall time scale of atom-field theory approach we are currently developing could cure
molecule conversion. In this way, it might be possible to letalso the other ills we have mentioned in the preceding para-
the atoms thermalize between the pulses, and let the twagraph. Nonetheless, the quantum degenerate methods are still
photon coherences decay away. Third, short pulses may ligased on the QC picture. Our future progress should not
produced at much higher intensities than continuous-waveupersede the present paper, but rather build on it.
light. This is important in the case of a nondegenerate
sample, when branching between spontaneous emission and
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