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High-order harmonic generation in magnetic and parallel magnetic and electric fields

Dejan B. Milošević* and Anthony F. Starace
Department of Physics and Astronomy, The University of Nebraska, 116 Brace Laboratory, Lincoln, Nebraska 68588-011

~Received 1 April 1999!

We demonstrate control of high-harmonic generation~HHG! by a linearly polarized laser field using uniform
static magnetic and electric fields parallel to the laser polarization. We show that the harmonic intensity can be
considerably increased for particular values of the magnetic field. The maximum values of the harmonic
intensity correspond to such values of magnetic induction for which an integer multiple of the classical
cyclotron period of the electron’s motion perpendicular to the magnetic field is equal to the return time of the
ionized electron wave packet to the nucleus under the influence of the laser field~and static electric field, if
present!. While a static magnetic field~for the strengths we are considering! only affects the cutoff position
slightly, a static electric field can introduce additional plateaus and cutoffs. A properly chosen combination of
the static electric and magnetic fields can increase both the harmonic intensity and the harmonic order. For the
case of a magnetic field only, the present work expands upon a brief account recently given elsewhere@D. B.
Milošević and A. F. Starace, Phys. Rev. Lett.82, 2653~1999!#. For both a staticB field and for parallel static
B and E fields, the present work provides further confirmation of the so called ‘‘three-step’’ model for
interpreting quantum-mechanical predictions of HHG.@S1050-2947~99!06110-7#

PACS number~s!: 32.80.Qk, 42.65.Ky, 42.50.Hz, 32.80.Wr
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I. INTRODUCTION

Atomic processes in the presence of strong fields are p
ently attracting considerable attention, as indicated by
merous books@1–3# and conference proceedings@4–7#, as
well as by recent review articles devoted to a number
particular areas of multiphoton physics, such as ionizat
dynamics in strong laser fields@8#, two- and three-step mod
els for intense-field, laser-atom physics@9#, atomic physics
with high-intensity lasers@10#, R-matrix-Floquet theory of
multiphoton processes@11#, laser-assisted electron-ato
scattering@12#, and two-electron atoms in strong fields@13#.
In the present paper we consider another process requiri
strong laser field: high-harmonic generation~HHG!
@4–10,14–16#. The main features of this process, namely
extended plateau, comprising many harmonics with com
rable intensities, and a sharp, high-frequency cutoff, are
plained using a ‘‘three-step’’ physical model@17,18# ~for a
review see, e.g., Ref.@9#!. According to this model, the ‘‘first
step’’ is ionization, the ‘‘second step’’ is laser-driven prop
gation of the free electron, and the ‘‘third step’’ is the col
sion of the electron~or, more precisely, its wave packet! with
the atomic core under the driving influence of the laser fie
During this collision the electron can recombine with t
core and emit a harmonic photon. This model predicts
maximum energy (Nmax\v) of the harmonics at the cutoff to
be equal toI p13.17Up , where I p is the atomic ionization
potential and Up is the ponderomotive energy,Up

5e2EL
2/(4mev

2), where2e andme are the electron charg
and mass, andEL andv are the laser electric field amplitud
and frequency, respectively. Besides the position of the
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off, another important characteristic of the HHG process
its efficiency, which is determined by the intensities of t
harmonics on the plateau.

Many efforts have been made to control HHG. This co
trol can be achieved by adding a second component to
laser field or by adding a static electric or magnetic field. T
analyses of HHG in a bichromatic laser field~Refs.@19,20#,
and references therein! have shown that such control is po
sible: in both the (v,3v) and the (v,2v) cases the efficiency
of odd harmonic generation can be increased by order
magnitude, while in the (v,2v) case the generation of eve
harmonics, in addition to odd ones, is possible. In both ca
there is an additional parameter — the relative phase
tween the laser field components — which enables cohe
phase control. Even for a monochromatic laser field, in
case of ultrashort laser field pulses, the initial laser fi
phase has a significant influence on the HHG process@21#.
HHG also strongly depends on the polarization of the la
field @20,22#. The best efficiency can be achieved with li
early polarized laser fields. Recently, HHG from an initia
coherent superposition of atomic states has been expl
theoretically@23#. Addition of a static electric field to contro
the HHG process has also been explored theoretically@24–
26#. In this latter case even harmonics can be generated
more important, it is possible to generate harmonics bey
the cutoff in the absence of the static field@25,26#. Coherent
control of HHG by a static magnetic field was proposed
Bandrauk and co-workers@27–29#. They have considered
two cases:~i! the H2

1 molecular ion in both a linearly polar
ized laser field and an ultrastrong, static magnetic field alo
the laser polarization axis and~ii ! a two-dimensional mode
of the hydrogen atom in both a circularly polarized laser fie
and a magnetic field perpendicular to the laser field polar
tion plane. In Refs.@27–29# results are presented for onl
one value of the magnetic induction,B50.2B0547 000 T,
where B05\/(ea0

2)52.35053105 T. This value of B is
much larger than the maximum presently achievable labo
tory magnetic field~see below!. Connerade and Keitel@30#
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also investigated theoretically HHG in a static magne
field. They considered relativistically strong laser fields a
concentrated on the influence of a strong constant magn
field on free electrons in such laser fields using a class
treatment. A similar problem was considered more rece
by Salamin and Faisal@31#. They presented exact analyt
solutions for fully relativistic electron trajectories in the pre
ence of a superintense laser field and a strong uniform m
netic field. Using these solutions they analyzed the li
emission spectrum along various directions of observa
and as functions of the intensity and frequency of the lase
well as the strength of the magnetic field.

The study of atomic processes in a magnetic field i
long established area of atomic physics, dating from old d
coveries by Zeeman and Lorentz@32#. Under normal labora-
tory conditions the energy changes caused by the magn
interaction are usually small compared with the characteri
energies of the system. However, in experiments with hig
excited atoms~in which the bound-state energyEn is small
for large n), in solid state physics~in which the effective
mass is much smaller than the electron massme and the
dielectric constant can be much larger than 1!, and in astro-
physics~where the magnetic induction in white dwarfs, pu
sars, and neutron stars can reach 103–108 T) this energy
change can be important. For reviews see, for example, R
@32–36#. The maximum reproducible laboratory magne
fields which have been reported have an inductionB
'1000 T @37#. In the experiment presented in Ref.@37# the
useful volume having this maximum magnetic field consi
of a cylinder approximately 1 cm in diameter and 10 c
long. The duration of such strong magnetic pulses is a
ms, which is much larger than the laser field pulse durati
so that we can consider the magnetic field as constant. W
the recent development of ultrastrong laser pulses~with in-
tensities of order 1020 W/cm2, developed in connection with
such applications as a fast ignition scheme for inertial c
finement fusion! it becomes possible to generate magne
fields up to 104 T by propagation of relativistically intens
laser pulses through preionized plasmas@38#. ~See also Ref.
@39# concerning magnetic fields generated in a plasma b
short, circularly polarized laser pulse.!

In this paper we demonstrate control of HHG using
strong, uniform static magnetic field directed along the p
larization axis of a linearly polarized laser field. We expla
here also the physical mechanism which enables this con
and the optimal experimental parameters for maximizing
intensities of high harmonics. Our presentation here expa
upon a brief account we have recently given elsewhere@40#.
In particular, in Ref.@40# we have shown that maxima in th
intensities of harmonics generated in a strong magnetic fi
may be understood on the basis of the classical ‘‘three-st
model@9,17,18#, i.e., by considering the Newtonian traject
ries of an intermediate-state electron moving under the in
ence of the laser field along thez axis. Because for experi
mentally obtainable fields one hasB!B0, the magnetic
field’s influence on the atomic ground state can be negle
@41#. In this approximation the ‘‘first’’ and the ‘‘third step’’
of the above-mentioned ‘‘three-step’’ model are not affec
by the magnetic field. Therefore, the main influence of
magnetic field is on the ‘‘second step,’’ i.e., on the electro
propagation, which mainly determines the harmonic sp
c
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trum. One of the reasons for the decrease of harmonic
ciency is the spreading~in the transverse direction! of the
electron wave packet during the propagation in the linea
polarized laser field. The addition of the magnetic field alo
the laser field polarization axis~chosen in thez direction!
suppresses this spreading. It acts as a transverse para
barrier in ther direction @see the term proportional tor2

5x21y2 in Eq. ~A7!#, which can be considered as a ma
netic bottle confining the ionized electron wave packet tra
verse to the magnetic field axis. Therefore, we expect that
addition of a strong magnetic field can increase the efficie
of HHG. We demonstrate that maxima in the intensities
the generated harmonics occur when the classical period
electronic motion perpendicular and parallel to thez axis
have a rational ratio. The case of HHG in parallel staticE
andB fields provides a more stringent test of the utility of th
‘‘three-step’’ model for interpreting the results of quantu
mechanical calculations. For the case of a staticB field alone,
the classical time required for the intermediate-state elec
to return to the nucleus, whereupon it may rescatter from
atomic core and emit a harmonic photon, is invariant to
change of phase ofp of the driving laser field. For the cas
of parallel staticE andB fields, however, the periods of th
classical trajectories which return to the origin are sensit
to the initial orientation of the laser polarization with respe
to the static electric field. We find, remarkably, a one-to-o
correspondence between detailed features of our quan
mechanically calculated harmonic intensities and the var
of classical trajectories that occur in the parallel static fie
case. These results, presented below, thus represent a fu
confirmation of the validity of the ‘‘three-step’’ classica
model.

Besides the increase of the HHG efficiency, the cut
energy in the magnetic field is increased by the Landau
ergy Enm @42# @See also Eq.~A8!.# Because this energy i
proportional toB/B0, the cutoff energy remains almost un
changed for the field values we are considering. Contrar
this, the addition of a static electric field can change cons
erably the cutoff energy, and can even introduce additio
plateaus with their own cutoffs@24–26#. This is because a
parallel static electric field comes into the stationary act
on the same footing as the laser field@see Eqs.~5! and~A6!
below#, and also gives a term proportional toES

2t3, which
can be large for long return timest @43#. We thus find that in
parallel staticB and E fields, the static magnetic field in
creases the HHG efficiency and the static electric field
creases the cutoff energy.

In Sec. II we present briefly the theory of HHG in th
presence of static fields. Details of the theory presented
this section are relegated to the Appendices. Our numer
results are presented in Sec. III, while in Sec. IV we interp
these results using a classical analysis. Section V pres
our conclusions.

II. THEORY

We obtain harmonic spectra by computing the quantu
mechanical dipole momentDN , which is defined as the Fou
rier transform of the time-dependent dipole matrix elem
d(t)5^F(t)uer uF(t)&, where uF(t)& is the solution of the
Schrödinger equation for the system~atom 1 laser field1
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static fields!. Using the strong-field approximation and n
glecting continuum-continuum coupling, the time-depend
dipole can be written as@15#

d~ t !5E
t0

t

dt8^u~ t !uerGL~ t,t8!eEL~ t8!•r uu~ t8!&1c.c.,

~1!

whereGL(t,t8) is the Volkov-type Green’s operator for th
electron in the presence of the laser field and the static fie
andeEL(t8)•r is the interaction of the electron with the las
field in the length gauge~see Appendix A!. We assume tha
the static fields are not strong enough to modify the ato
ground stateuu(t)&5uu0&exp(iI pt/\). However, they are in-
cluded inGL(t,t8) and thus have an influence on the ele
tron’s intermediate states. In the case of parallel linearly
larized fields we have to compute the dipole moment

DN5E
0

Tdt

T
d~ t !exp~ iNvt !, ~2!

where the laser field periodT equals 2p/v and where, ac-
cording to Eq.~1! and the results of Appendix A,

d~ t !5
2 ie2

\ E
2`

t

dt8EL~ t8!E
2`

`

dq

3(
n,m

^u0uzunmQ~ t !&^nmQ~ t8!uzuu0&

3expF2
i

\
Snm~q;t,t8!G1c.c., ~3!

where

Q~ t !5q1
e

\
@AL~ t !1AS~ t !#, ~4!

Snm~q;t,t8!5E
t8

t

dt9
\2

2me
H q1

e

\
@AL~ t9!1AS~ t9!#J 2

1~ I p1Enm!~ t2t8!

5\q@a~ t !2a~ t8!#1U~ t !2U~ t8!

1S \2q2

2me
1I p1EnmD ~ t2t8!, ~5!

and a(t), U(t) and Enm are defined in Appendix A. The
method of computation of the matrix elements with t
wavefunctionŝ rfzunmq&[Cnmq(r,f,z,0) is given in the
appendices. The integral over thez-component of the inter-
mediate electron momentum\q is computed using the
saddle-point method, as in Refs.@15,20#. This method gives
the factor @2pme\/( i t)#1/2exp@2iSs(t,t)/\#, where Ss(t,t)
[Snm(qs ;t,t2t) is the stationary action, and\qs is the sta-
tionary momentum
t

s,

ic

-
-

\qs~ t,t!52
e

tEt2t

t

dt9@AL~ t9!1AS~ t9!#

5
me

t
@a~ t2t!2a~ t !#, t5t2t8. ~6!

The final result for the time-dependent dipole moment is

d~ t !52 ie2S 2pme

i\3 D 1/2E
0

` dt

t1/2
EL~ t2t!

3(
n,m

^u0uzunmQs~ t !&^nmQs~ t2t!uzuu0&

3expF2
i

\
Ss~ t,t!G1c.c. ~7!

An analysis of this result is presented in the appendices.
summation over the quantum numbersn andm can be per-
formed analytically; the result for the summed product of t
matrix elements in Eq.~7! is a single integral over exponen
tial integral functions. This integral can be efficiently com
puted by the method described in Appendix C. It should
mentioned that in the absence of the magnetic field one m
compute the time-dependent dipole in a different way.
stead of the summation over the quantum numbersn andm
one has infinite integrals over thex andy components of the
intermediate electron momentum~i.e., qx and qy). One can
evaluate these integrals by similarly applying the sadd
point method, as was done with the integration over thz
component. As a result one obtains a term with the fac
t23/2, instead oft21/2, in Eq. ~7!, and the integrand of Eq
~7! has a simple analytic form@15,20#. This simplicity is
important because the integration overt in Eq. ~7! can cause
problems in the case of only a static electric field.~The upper
limit of the integral overt should be large because in th
presence of a static electric field the terms with large ret
time can give significant contributions.!

III. RESULTS

A. Harmonic intensity revivals in a magnetic field

We first present our results for the case of a magnetic fi
only. In Fig. 1 we present the harmonic intensities~i.e., the
harmonic generation efficiencies, defined asuDNu2) as func-
tions of the harmonic orderN for different values of the
magnetic induction:B50 T ~squares!, 2000 T~circles!, and
4000 T ~triangles!. The laser field intensity and photon en
ergy areI 5531010 W/cm2 and \v50.1165 eV (CO2 la-
ser!, respectively. For the H2 ion I p50.754 eV and the
ground state wave function has the form of Eq.~B4! with
a50 andb51. We observe immediately that in general t
harmonic intensities forN>5 are one or more orders o
magnitude greater in the presence of theB field than for the
caseB50, although there are exceptions~e.g.,N59 or 21!.
Only the odd harmonics are generated because the pa
magnetic field preserves axial symmetry. The cutoff of t
plateau forB50 T should be~according to the ‘‘three-step’’
model! at 3.17Up1I p514.4\v16.5\v520.9\v, so that
Nmax'21, which agrees with the results presented in Fig
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In the presence of the magnetic field the cutoff energies
increased by the ground-state Landau level energy\vB/2
5e\B/(2me), which, for B54000 T and a CO2 laser, is
\vB/251.987\v, giving a plateau cutoff of'22.9\v. For
B52000 T the maximum harmonic intensity on the plate
occurs forN515, while forB54000 T the maximum occur
for N513. One can observe also sharp variations of inten
asB is varied for particular harmonics~e.g.,N59, 15, and
21!. In order to explore the dependence of the harmonic
tensity on the strength of the magnetic field, in Fig. 2
present a 3D plot of the harmonic intensities~expressed in
1025 a.u. on a linear scale! as functions of the harmoni
order N and the magnetic inductionB. The pronounced
maxima for particular values ofB are more clearly visible in
Fig. 2. For fixedN, one can also notice a periodicity of th

FIG. 1. Harmonic intensities as functions of the harmonic or
N for the H2 ion in a CO2 laser with the intensityI 55
31010 W/cm2. The magnetic field induction is:B50 T ~squares!,
2000 T ~circles!, and 4000 T~triangles!.

FIG. 2. Harmonic intensities~in units of 1025 a.u.) as functions
of the harmonic orderN and the magnetic field inductionB. The
laser field and the H2 ion parameters are as in Fig. 1.
re

u

ty

-

appearance of these maxima atB'2000, 4000, 6000, 8000
T, . . . . We will refer to this periodicity as revivals of the
harmonic intensity. There thus appears to be an optim
value of the magnetic induction for which the harmonic i
tensity of a fixed harmonic has a maximum. In the next s
tion we connect these values with particular classical e
tron trajectories.

In order to test the ‘‘three-step’’ model for a very diffe
ent set of parameters, we have also carried out quant
mechanical calculations of HHG for argon atoms@having
I p515.76 eV, and using a hydrogenic ground state wa
function given by Eq.~B4! with a51 andb50] in the pres-
ence of a Nd:YAG laser (\v51.165 eV) having intensity
I 5331013 W/cm2. In this case the cutoff forB50 is at I p
13.17Up522.2\v and I p , I, and v are all much larger.
Hence in order to have a cyclotron period comparable to
laser field period,B must be increased.~Similarly, if we were
to consider a laser having a much smaller frequencyv, then
much smaller values of the static magnetic fieldB are needed
in order that the cyclotron period is comparable to the cl
sical period of motion of the electron under the driving i
fluence of the laser field.! In Fig. 3 we present the harmoni
intensities as functions of the harmonic order forB520,
7600, and 15 000 T. In general one sees that the higher
value ofB, the higher is the harmonic intensity. Indeed, f
some values ofB the harmonic intensity is increased by a
most four orders of magnitude. In Fig. 4 we present the h
monic intensities for the 13th, 15th, 17th, and 19th harm
ics as functions of the magnetic inductionB. The harmonic
intensities have maxima for values ofB close to 13 000 T,
with the largest intensities for these four harmonics occur
in the range 10 000 T<B<16 000 T. Within this region the
harmonic intensities are many orders of magnitude gre
than forB50.

B. Additional plateaus and cutoffs in parallel static electric
and magnetic fields

In Fig. 5 we present HHG results for the H2 ion for the
case of a CO2 laser and parallel static electric and magne

r
FIG. 3. The same as in Fig. 1, but for argon atoms in the pr

ence of a Nd:YAG laser having intensityI 5331013 W/cm2. Re-
sults for three values of the magnetic field induction are shownB
520 T ~squares!, 7600 T~triangles!, and 15 000 T~circles!.
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3164 PRA 60DEJAN B. MILOŠEVIĆ AND ANTHONY F. STARACE
fields. For numerical convenience, we have selected a s
electric field having strengthES51 MV/cm. Such strong
static fields can be achieved in experiments using relativi
H2 atom beams to convert a modest transverse labora
magnetic field into a static electric field in the atom’s re
frame@44#. However, such an approach is not appropriate
one wants to have simultaneously a strong parallel magn
field. Currently static fields of the order of 0.1 MV/cm hav
been achieved in the design of particle accelerators@45#.
However, since our primary purpose in considering the c
of HHG in parallel staticE andB fields is to provide a more
stringent test of the ‘‘three-step’’ model of HHG, the stro
ger the fields, the more clear are the theoretical results. N
ertheless, we expect our theoretical predictions to ap
qualitatively to experiments involving smaller values of t
static fields.

The static electric field breaks the symmetry so that
now observe both odd and even harmonics, and Fig. 5 sh

FIG. 4. Harmonic intensities as functions of the magnetic fi
induction B for fixed harmonic order:N513 ~dotted line!, 15
~dashed line!, 17 ~solid line!, and 19~dot-dashed line!. The atomic
and the laser field parameters are as in Fig. 3.

FIG. 5. The same as in Fig. 1, but in the presence of a par
static electric field having strengthES51 MV/cm, for three values
of the magnetic field induction:B51 T ~squares!, 1000 T ~tri-
angles!, and 3000 T~circles!.
tic
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that the intensities of the even and odd harmonics are of
same order of magnitude. Figure 5 shows also that the
monic spectrum is extended to higher harmonics: We n
have two additional cutoffs, one at the 31st harmonic, a
the other at the 43rd harmonic. The positions of these cut
may be explained using a classical analysis, as we sho
the next section. As in Fig. 1, the intensities of particu
harmonics are increased by more than two orders of ma
tude as the magnetic field is increased from 1 to 103 T. Thus
by choosing appropriate particular values of both fields, i
possible to generate high-intensity, high-order harmon
For example, the harmonics forN531, 32, and 33 shown in
Fig. 5 all have higher efficiencies than harmonicsN.21
beyond the cutoff harmonics in the absence of both fields~cf.
Fig. 1!.

Figure 6 shows theB-field dependence of the harmon
intensities for different groups of harmonics:~a! 12–15
@which are located in the plateau region in the absence
both static fields~cf. Fig. 1!#, ~b! 21–24~which are located
in the cutoff region forB50 andES50), ~c! 30–33~which
are located in the region of the second cutoff, i.e., the fi
additional cutoff, which appears owing to the static elect
field!, and~d! 41–44~which are located in the region of th
third cutoff, i.e., the second additional cutoff, which appea
owing to the static electric field!. Figure 6 shows that theB
dependence of the harmonic intensity is more complex in
presence of the static electric field than in its absence~cf.
Fig. 2!. We still have maxima for particular values ofB, but
they are broader, and interference structures are pre
~These interference structures occur even forB50 in the
presence of a strong static field@24–26#.! Second, the highes
maxima appear forB,5000 T. We see also in Fig. 6 that fo
a fixed value of the static electric field, maxima in the inte
sity of particular harmonics occur for a number of values
the static magnetic field. In the next section, using a class
analysis, we explain many of the features shown in Fig.

IV. CLASSICAL ANALYSIS

A. Solutions of the classical equations of motion

As is well known, the cutoff of the plateau in HHG in th
absence of the static fields, i.e.,Nmax\v5Ip13.17Up , can be
obtained both classically@17,18# and quantum mechanicall
@15,20#, based on the ‘‘three-step’’ model, which was d
scribed in the Introduction. According to the classical ve
sion of this model, the electron is born at timet0 at the origin
@r (t0)50# with zero initial momentum. It then moves unde
the influence of the laser field, and, in our present case,
static fields. Solving Newton’s equation for the electro
mer̈52e@EL(t)1ES1 ṙ3B#, one obtains the electron ki
netic energyEk at the timet1 when the electron returns to th
origin. The maximum of this energy, and, therefore, the c
off energy Nmax\v5Ip1Ek,max, is determined by the two
conditions:r (t1)50 and]Ek /]t050. The first condition im-
plies that the electron, after the return timet5t12t0, comes
back to the atomic core, while the second condition op
mizes the timet0 at which the electron is ‘‘born’’~i.e., ex-
cited to the continuum! to be that for whichEk is maximal.
In the case of a linearly polarized laser field and para
static fields, Newton’s equation separates, a

el
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FIG. 6. Harmonic intensities as functions of the magnetic-field inductionB for fixed harmonic order:~a! N512–15,~b! 21–24,~c!
30–33, and~d! 41–44. Results are for the H2 ion in a CO2 laser with intensityI 5531010 W/cm2 and in a static electric fieldES51
MV/cm.
iod
e
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e.

by

a-

-

for zero initial momentum, we havemeẋ5eBy, meẏ

52eBx, and meż5e@AL(t)1AS(t)2AL(t0)2AS(t0)#, so
that Ek5meṙ

2(t)/25e2$@AL(t)1AS(t)2AL(t0)2AS(t0)#2

1B2(x21y2)%/(2me). The electron rotates@46# in the plane
perpendicular to the magnetic field with the cyclotron per
tB52p/vB , while its parallel motion is determined by th
laser field and the static electric field. The electron is bac
the nucleus at timet15t01tB , t012tB , . . . , if the condi-
tion z(t1)50 is fulfilled.

The solution of the equationz(t1)50, with the condition
that the electron is born with zero initial momentum, i.
ż(t0)50, leads to@see also Eqs.~A1!, ~A4!, and ~A6!, and
Refs.@25,43# for nonzero initial momentum#

E
t0

t1
dt@AL~ t !1AS~ t !#5@AL~ t0!1AS~ t0!#~ t12t0!. ~8!

For a laser fieldEL(t)5EL sinvtẑ, introducing the notations

w5vt1 , s5
vt

2
, a~s!5sins,
at

,

b~s!5coss2
sins

s
, c~s!52

ES

EL
s, ~9!

we can rewrite Eq.~8! as @43#

a~s!sin~w2s!1b~s!cos~w2s!5c~s!. ~10!

In these variables, the electron’s kinetic energy is given

Ek58Up@a~s!sin~w2s!2c~s!#2. ~11!

Equation~10! can be further rewritten as a quadratic equ
tion in the variableX[sin(w2s), and, therefore, for eacht
one has two solutions forX:

X~s!5
1

a21b2
@ac6b~a21b22c2!1/2#. ~12!

Introducing these solutions into Eq.~11!, we obtain the har-
monic orderN as a function of the return time, i.e.,N(vt)
5@ I p1Ek(t)#/\v. The two solutions in Eq.~12! correspond
to positive and negative values ofEL(t) at the moment of
ionization. For one solution,EL(t0) is parallel to the static
electric fieldES ; for the other, it is antiparallel. In the ab
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sence of the static electric field these two solutions coinc
Since for this latter casec(s)50, Eqs.~11! and ~12! show
that there is only one solution forEk , which gives

N\v5I p1
8a2b2

a21b2
Up . ~13!

The maximum value of the coefficient ofUp in Eq. ~13! is
3.17, which corresponds toNmax, the well-known cutoff of
the HHG plateau@15,17,18#.

B. Classical interpretation of quantum-mechanical HHG
intensity revivals in a static B field

Useful information about the HHG process can be o
tained by presentingEk as a function of the return timet
5t12t0 @15#. In Fig. 7 we present the harmonic orderN
5(Ek1Ip)/(\v) as a function ofvt for the H2 ion, a CO2
laser with intensityI 5531010 W/cm2, and no static electric
field ~the same parameters as for Figs. 1 and 2!. The oscilla-
tory functionN5N(vt) @see Eqs.~13! and~9!# has a maxi-
mum atNmax'21 in the first optical cycle (vt<2p), fol-
lowed by infinitely many lower maxima@we presentN(vt)
up to vt525]. The intersections of the dashed horizon
lines N57, 9, . . . , 19,with this oscillatory curve give the
values of the return timet of the ionized electron, which
returns to the nucleus with the energies 7\v2I p , 9\v
2I p , . . . , 19\v2I p , and which, therefore, can recombin
with the atom emitting the 7th, 9th,. . . , 19th harmonic,
respectively. In the same figure~using the right-hand-side
ordinateB and the dotted curve!, we present the magneti
induction B as a function ofvt for t5tB , where tB
52p/vB52pme /(eB) is the classical period for motion
perpendicular to the magnetic field. From such a presenta
one can find the value of the magnetic field which cor
sponds to the process in which the ionized electron is bac
the nucleus both in the parallel and in the perpendicular

FIG. 7. Harmonic orderN as an oscillatory function of the di
mensionless variablevt, wheret is the classical electron retur
time to the origin under the influence of the laser field@see Eqs.~9!
and ~13!#. The laser field and the H2 ion parameters are as in Fig
1. The monotonically decreasing curve, measured by the ri
hand-side ordinate, represents the magnetic inductionB as a func-
tion of vt for t5tB , wheretB52p/vB52pme /(eB) is the clas-
sical period for motion perpendicular to the magnetic field.
e.

-

l

on
-
at
i-

rection at the same time, having an energy sufficient to e
theNth harmonic. As we will show below, these values ofB
correspond to the maximum values of the harmonic inten
ties. For example, for the 15th harmonic the shortest ret
time is for vt152.8718, which corresponds toB'2200 T.
The next~second! return timet2 for the 15th harmonic is for
vt255.1276, which corresponds toB'1230 T. Longer and
longer return times correspond to one cyclotron periodtB for
smaller and smaller values of the magnetic inductionB.

Let us now relate our quantum-mechanical results, p
sented in Figs. 1 and 2, to our classical orbit calculatio
i.e., to the results presented in Fig. 7. For each harmonicN,
11<N<19, we first calculated the corresponding classi
return timest i(N), i 51, . . . ,6, where i is defined below.
For N.13 there are no intersections of the horizontal lin
N515, 17, and 19, with the curveN(vt) in the first part of
the second optical cycle (2p,vt,3p). In this case, we
have chosen both fort3 andt4 the value which correspond
to the second maximum~we do not have classical orbit so
lutions which return to the nucleus, but quantum mecha
cally the electronic wave packet amplitudes can still contr
ute to the process!. Next, in the corresponding subplots
Fig. 8, we present ourquantum-mechanicalresults for the
harmonic intensity vsB in terms of thei th classical return
time, t i(N)/tB[@et i(N)/(2pme)#B, i 51, . . . ,6.Note that
t i(N) does not depend onB because the classical motio
along thez axis does not depend on it; thust i(N)/tB has a
linear dependence onB, which stems from division bytB .
The dimensionless variablet i(N)/tB measures the period
t i(N) for the i th return of the electron under the influence
the laser field in units oftB . Whenevert i(N) is close to an
integer multiple oftB , there is a revival of intensity in the
Nth harmonic; moreover the interval between revivals is
proximatelytB . For example, all presented harmonics~ex-
cept the 13th! have their largest intensity maximum close
t15tB ~upper leftmost subplot in Fig. 8!. The 11th harmonic
maximum ~solid curve! also has contributions fromt2
'2tB , t4'3tB , andt6'4tB . For the 13th harmonic ou
calculations show contributions to the maximum fromt2
'3tB , t4'5tB , t5'6tB , andt6'7tB , implying that the

t-

FIG. 8. Harmonic intensities for 11<N<19 plotted in dimen-
sionless unitst i(N)/tB , i 51, . . . ,6, where t i is the classically
calculated period for thei th return of the electron to the origin
under the influence of the laser field, andtB is the cyclotron period.
The laser field and the H2 ion parameters are as in Fig. 1.
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high intensity of the 13th harmonic may stem from constr
tive interference of contributions associated with a la
number of classical orbits along thez-axis with return times
t that are multiples oftB .

Similarly to Fig. 7, in Fig. 9 we present classical orb
calculations for the case of the Ar atom and a Nd:YAG la
with the same parameters as in Figs. 3 and 4. The maxim
harmonic order is slightly larger than in Fig. 7 and interse
tions of the curveN5N(vt) with the horizontal dashed
lines appear for 15<N<21. The corresponding magnet
fields@B5v 2pme /(e vt) for t5tB] are one order of mag
nitude larger than those presented in Fig. 7 in order that
cyclotron period for motion perpendicular to theB-field axis
is comparable to the classical orbit periodt. Figure 10
shows, similarly to Fig. 8, the results of our quantum
mechanical calculations for the harmonic intensity vsB in
terms oft2(N)/tB , for 15<N<21. We see that the maxim
for all harmonic intensities correspond tot2'tB , which
means that, in this case, the main contribution to the h
monic revivals in the presence of the magnetic field occ
when the time for the second return of the ionized electron
the nucleus is equal to one cyclotron period. There are

FIG. 9. The same as in Fig. 7, but for the laser field and
atomic parameters as in Fig. 3.

FIG. 10. The same as in Fig. 8, but for the laser field and
atomic parameters as in Fig. 3, for harmonic orders 15<N<21, but
for only one value ofi 52.
-
e

r
m
-

e

-

r-
s
o
of

course, othert i for this case which are equal integer mu
tiples of tB , but we have presented in Fig. 10 what appe
to us to be the most important classical orbit.

Generally, the intensity of harmonics peaks whenever
wave packet amplitudes for motion perpendicular to a
along thez axis coincide. The exact coincidence of the po
tions of harmonic intensity maxima, presented in Figs. 8 a
10, with t i(N)5 j tB , wherej is an integer, is not expected
for two reasons. First, quantum wave packets have a sp
width. Second, there are interferences between contribut
associated with a large number of classical orbits along
z-axis with return timest that are multiples oftB .

C. Classical interpretation of quantum-mechanical HHG
features for parallel static B and E fields

In the presence of a static electric field there are two
lutions for the harmonic orderN as a function of the param
etervt @see Eqs.~9!–~12!#, which correspond toEL(t0) par-
allel or antiparallel toES . The existence of these tw
classical solutions forESÞ0 enables a more detailed test
the ‘‘three-step’’ model of HHG, which is one of the mot
vations for our consideration of the parallel static fields ca
In Fig. 11 we present the two solutions forN for the cases of
parallel orientation~solid curve! and antiparallel orientation
~dot-dashed curve!. ~See Figs. 7 and 9 which show only
single curve whenES50.) For a long enough return tim
(vt.12.41 in the present case!, the laser field cannot return
the electron back to the nucleus because the influence o
static electric field, which is proportional to the return tim
becomes too large. The maxima of the curves presente
Fig. 11 explain why the cutoffs in the harmonic spectru
which we obtained in our quantum-mechanical calculatio
~see Fig. 5! appear atN531 and 43. In addition, as in Figs
7 and 9, the monotonically decreasing curve using the rig
hand-side ordinate presents theB field corresponding tovt
5vtB .

Our quantum-mechanical results, presented in Fig. 6,
be related to the classical calculations of Fig. 11 in a w
similar to what we have presented for HHG in aB field
alone. We consider four particular harmonics:N512, which
lies on the plateau, andN525, 34, and 40, which are locate
at the first, second, and third cutoffs, respectively~cf. Fig. 6!.

e

e

FIG. 11. The same as in Fig. 7, but in the presence of an a
tional parallel static electric field having strengthES51 MV/cm.
The two solutions of Eqs.~9!–~12! are denoted by solid and dot
dashed lines.
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FIG. 12. The same as in Fig. 8, but in the presence of an additional parallel static electric field having strengthES51 MV/cm, and for
the harmonic orders:~a! N512, ~b! 25, ~c! 34, and~d! 40. For a given harmonic the quantum-mechanically calculated intensity is plotte
the magnetic inductionB several times using the dimensionless variablest i /tB for i 51,2, . . . , wheret i is the i th classical return time.
Harmonic intensity maxima occuring fort i(N)5 j tB are denoted in the figure, wherei andj are integers, andtB is the cyclotron period. One
sees from the figure how each feature in theNth harmonic intensity curve may be associated with a particular classical orbiti.
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For these harmonics we present the harmonic intensity
function of the variablet i(N)/tB , where the return times
t i(N) are obtained as those values oft at which our results
for the electron kinetic energy at the nucleus,Ek(t), corre-
sponds to the energy of theNth harmonic, according to Eq
~11!. This occurs when theNth harmonic’s horizontal line in
Fig. 11 intersects the oscillating curves representing@ I p
1Ek(t)#/\v. For N512 we have 8 points of intersection
i.e., t i(12), i 51, . . . ,8,while for N525 there are 6 such
points. ForN534 we have only two intersections, atvt3
511.14 andvt4512.11, but there are also two maxima~at
vt154.65 andvt257.07) which are lower than 34, bu
which should also be taken into account because of the
fuse nature of electron wave packets as opposed to the
cise nature of classical trajectories. Finally, forN540, con-
tributions of these maxima can be neglected, and only
return times contribute:vt1511.57 andvt2512.3. From
Fig. 6~a! we see that, according to our quantum-mechan
calculations, the 12th harmonic has 8 maxima~although two
of these are not fully developed: the curve exhibits o
shoulder features!. In Fig. 12~a! we present our quantum
mechanical results for the 12th harmonic’s intensity a
a

if-
re-

o

al

a

function of the magnetic field inductionB but plotted 8 dif-
ferent ways, as functions oft i /tB , i 51, . . . ,8. Our aim is
to determine whether each of the 8 maximum in t
quantum-mechanical intensity results may be associated
integer values oft i /tB for one or more values ofi. As ex-
pected, the main maximum is fort15tB , i.e., for such val-
ues of theB field for which the shortest return time of th
electron under the driving influence of both the laser a
static electric fields, is equal to one cyclotron period. T
dashedi 53 curve shows that the second maximum@to the
left of the highest one in Fig. 12~a!# comes from the third
return time, i.e., fromt35tB . In Fig. 12~a! we have also
denoted some other characteristic points. For example,
seventh return time also gives a contribution to the larg
maximum~see curve 7, for which the maximum occurs at t
point t754tB), while the main contributions to the two low
est maxima at 550 and 720 T in Fig. 6~a! come fromt8
5tB and t65tB , respectively. The results of a simila
analysis for the 25th, 34th, and 40th harmonics are prese
in Figs. 12~b!, 12~c!, and 12~d!, respectively. We observe
that some pronounced maxima appear to involve a const
tive interference of electron wave packets with different
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turn times. For example, forN534, in Fig. 12~c!, the highest
maximum has contributions fromt152tB , t253tB , and
t355tB . This maximum is even higher than the maximu
for the shortest return timet15tB , perhaps because of thes
multiple contributions. For the cutoff harmonic of the thi
plateau@cf. N540 in Fig. 12~d!#, the major contributions
come from two return times (vt1511.57 andvt2512.3).
We have thus demonstrated that maxima in the quant
mechanically calculated harmonic intensities appear wh
ever one of the classically-calculated return times is equa
an integer multiple of the cyclotron period, i.e.,t i5 j tB , i
51,2, j 51,2, . . . . These results provide strong addition
support for the validity of the ‘‘three-step’’ model of HHG

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a more detailed ana
of the possibility of controlling high-harmonic generation
a strong magnetic field than was presented in Ref.@40#. In
order to confirm that our analysis is not specific to the C2
laser frequency or the H2 target considered in Ref.@40#, we
have considered here also the case of an Ar atom an
Nd:YAG laser field. Finally, in order to verify that our clas
sical analysis based on the ‘‘three-step’’ model@17,18# is
valid even when the degeneracy of the classical orbits dri
either parallel or antiparallel to thez axis by the laser field is
removed, we have considered also the case of HHG in
allel E andB fields. In our calculations the harmonic inte
sity is computed using the strong-field approximation co
bined with the saddle-point method. Also, the summat
over intermediate Landau states is performed exactly.

We have shown that a strong magnetic field can incre
the harmonic intensity considerably and that there are o
mum values of the magnetic induction for which a particu
harmonic is emitted with maximal efficiency. Using a CO2
laser and the H2 ion, for example, we have shown that th
maximum can be reached with experimentally availa
magnetic field strengths. We have also explained for all ca
considered, using the classical ‘‘three-step’’ model, that
positions of these maxima correspond to such values of
magnetic induction for which an integer multiple of the cla
sical period for motion perpendicular to the magnetic field
equal to the return time of the ionized electron wave pac
to the nucleus under the driving influence of the laser and
present, the static electric field. We interpret this fact to m
that the harmonic intensity has a maximum if the electro
wave packet is at the nucleus both in the parallel and in
perpendicular directions at the same time. While the st
magnetic field~for the magnetic field inductions we are co
sidering! does not affect the position of the HHG plate
cutoff significantly, the static electric field can introduce ne
plateaus with their own cutoffs, as has been shown theo
cally for the case of HHG in only a static electric fie
@25,26#. Therefore, a properly chosen combination of t
static electric and magnetic fields can increase both the
monic intensity and the harmonic order. In the presence
the static electric field there are two solutions of the class
equations~one for parallel and the other for antiparallel o
entations of the laser field and the static field at the mom
of ionization!, and the classical orbit analysis is more co
plicated. Nevertheless, using it we were able to explain b
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the cutoff positions and essentially each feature of the beh
ior of particular harmonics as a function of the magnetic fie
induction, B. Our results thus constitute strong addition
support for the validity of the ‘‘three-step’’ model for HHG
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APPENDIX A

In this appendix we consider the solution of the Sch¨-
dinger equation for an electron~with massme and charge
2e, where e.0) in the simultaneous presence of a las
field EL(t), a static electric fieldES , and a static magnetic
field B. ~SI units are used.! The total vector potentialA(t) is
given by

A~ t !5AL~ t !1AS~ t !1AB ,

AL~ t !52E t

dt8EL~ t8!,

AS~ t !52ESt, AB5 1
2 B3r . ~A1!

The Hamiltonian of this system in the radiation gauge
H(t)5@p1eA(t)#2/(2me). The high-harmonic generatio
problem is formulated so that the interaction with the la
field is in the length gauge. Therefore, we make the follo
ing unitary transformation:

eiea•r /\H~ t !e2 iea•r /\5
1

2me
$p1e@A~ t !2a#%25HL~ t !,

a5AL~ t !1AS~ t !. ~A2!

The obtained gauge is a mixture of the length gauge and
radiation gauge~for the magnetic field!. The Schro¨dinger
equation in this gauge has the form

F i\
]

]t
2HL~ t !G uC~ t !&50,

HL~ t !5er•~EL1ES!1
1

2me
S p1

e

2
B3r D 2

. ~A3!

The HamiltonianHL(t) can be written asHL(t)5p2/(2me)
1HED1HMD1HNL , where HED5er•(EL1ES) is the
electric-dipole interaction, HMD5eB•L /(2me), with
L5r3p, is the magnetic-dipole interaction, an
HNL5e2(B3r )2/(8me) is the nonlinear diamagnetic term
@47#. The solution of the above Schro¨dinger equation, in the
special case of parallel fields

EL~ t !5EL~ t !ẑ, ES5ESẑ, B5Bẑ, AB5
B

2
~2y,x,0!,

~A4!

can be written, in cylindrical coordinates (r,f,z) in the form
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Cqnm~r,f,z,t !5~2p!21/2expF i S q1
e

\
@AL~ t !1AS~ t !# D zG

3exp$2 i @qa~ t !1U~ t !/\1\q2t/~2me!#%

3Fnm~r,f!exp~2 iEnmt/\!, ~A5!

whereq is thez component of the electron momentum,

a~ t !5
e

me
E t

dt8@AL~ t8!1AS~ t8!#,

U~ t !5
e

2me
E t

dt8@AL~ t8!1AS~ t8!#2, ~A6!

andFnm(r,f) satisfies the stationary Schro¨dinger equation

H 2
\2

2me
F1

r

]

]r S r
]

]r D1
1

r2

]2

]f2G1
eB

2me
Lz

1
e2B2

8me
r2J Fnm~r,f!5EnmFnm~r,f!. ~A7!

The wave functionsFnm(r,f) are solutions of the Schro¨-
dinger equation for an electron in the magnetic field o
~i.e., the so-called Landau states@42#!

Fnm~r,f!5Cnm exp~ imf!g umu/2r umuLn
umu~gr2!

3exp~2 1
2 gr2!,

Cnm
2 5

gn!

p~n1umu!!
,

Enm5@n1 1
2 ~ umu1m11!#\vB ,

vB5
eB

me
, g5

eB

2\
. ~A8!

In Eq. ~A8! the functionsLn
umu(gr2) are associated Laguerr

polynomials@48,49#, n is the radial quantum number,m is
the azimuthal component of the angular momentum,vB is
the cyclotron frequency, and the wave functions are
thonormalized according tôCnmquCn8m8q8&5dnn8dmm8d(q
2q8). The time-dependent Green’s function which cor
sponds to the solution~A5!, is

GL~r ,t;r 8,t8!

52
i

\
u~ t2t8!E

2`

`

dq(
n50

`

(
m52`

`

Cnmq~r,f,z,t !

3Cnmq* ~r8,f8,z8,t8!. ~A9!

APPENDIX B

The time-dependent dipole matrix element, introduced
Sec. II, contains the following matrix elements between
wavefunction given in Appendix A and the atomic grou
stateuu0&,
r-

-

n
e

dnmq5^u0uzunmq&

5E
2`

`

dzE
0

`

dr rE
0

2p

df u0* ~r,f,z!z Cnmq~r,f,z,0!.

~B1!

We will consider ground states which do not depend on
polar anglef. In this case, the integration overf gives:
*0

2pdf exp(imf)52pdm,0 , so that, according to Eqs.~A5!
and ~A8!, dnmq5dm,0 f n(q), where

f n~q!5~2g!1/2E
2`

`

dzE
0

`

dr ru0* ~r,z!z

3exp~ iqz!Ln~gr2!exp~2 1
2 gr2!. ~B2!

For spherically symmetric ground states,u0(r,2z)
5u0(r,z)5u0(Ar21z2), so that

f n~q!5~2g!1/22i E
0

`

dz zE
0

`

dr ru0* ~Ar21z2!Ln~gr2!

3sinqzexp~2 1
2 gr2!. ~B3!

We consider ground states of the form

u0~r !5S a1
b

r Dexp~2cr !5S b2a
]

]cD exp~2cr !

r
.

~B4!

For b50 this state corresponds to the hydrogen atom gro
state, while fora50 it describes the ground state of the H2

ion. Using the formula~3.961! from Ref. @48#, the integral
over z in Eq. ~B3! can be carried out explicitly, with the
result

E
0

`

dz z
exp~2cAr21z2!

Ar21z2
sinqz5

qr

Aq21c2
K1~rAq21c2!.

~B5!

Using the relation @48#: (]/]c)K0(rAq21c2)
52rcK1(rAq21c2)/Aq21c2, we obtain

f n~q!5~2g!1/22iqS b2a
]

]cD S 2
1

c

]

]cD
3E

0

`

dr rLn~gr2!K0~rAq21c2!

3exp~2 1
2 gr2!. ~B6!

The Laguerre polynomialLn can be expressed as a finite su
@48,49#

Ln~x!5 (
k50

n

~21!kS n

n2kD xk

k!
, ~B7!

so that Eq.~B6! can be written as
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f n~q!5~2g!1/22iqS b2a
]

]cD S 2
1

c

]

]cD
3 (

k50

n
~21!k

k! S n

n2kD gkFk~c!, ~B8!

where the integralFk(c) can be solved using formul
~6.631.3! from Ref. @48#,

Fk~c!5E
0

`

dx x2k11K0~bx!exp~2 1
2 gx2!

5
~k! !2

2b S 2

g D k11/2

W2k21/2,0S b2

2g DexpS b2

4g D ,

~B9!

whereb5Aq21c2. Using the following connection betwee
the Whittaker confluent hypergeometric functionWm,n(z)
and the Tricomi confluent hypergeometric functio
C(a,c;z) @48,49#,

z21/2ez/2W2k21/2,0~z!5C~k11,1;z!, ~B10!

we obtain

f n~q!5~2g!1/2
iq

g S b2a
]

]cD S 2
1

c

]

]cD
3 (

k50

n
~22!kn!

~n2k!!
C~k11,1;z!, z5

q21c2

2g
.

~B11!

The derivatives overc in the above equation can be carrie
out explicitly using the following property of theC function
@49#:

dn

dzn
C~a,b;z!5~21!n~a!nC~a1n,b1n;z!,

~a!n5a~a11!•••~a1n21!5
G~a1n!

G~a!
. ~B12!

The final result is therefore

f n~q!5~2g!1/2
iq

g2 (
k50

n S n

kD ~22!k~k11!! FbC~k12,2;z!

1
2ac

q21c2
~k12!zC~k13,3;z!G , ~B13!

where the parameterz5(q21c2)/(2g)}(B/B0)21, where
B052.35053105 T. For the current experimentally availab
values ofB, one has thatB!B0, so thatz@1. In this case we
can simplify Eq.~B13! using the following asymptotic ex
pansion of theC function @Eq. ~13.5.2! in Ref. @49##:
C~k1s,s;z!5z2k2sH (
r 50

R21
~k1s!r~k11!r

r !
~2z!2r

1O~ uzu2R!J , s52,3. ~B14!

APPENDIX C

In order to obtain the time-dependent dipole matrix e
ment, we have to compute the infinite sum

G~q1 ,q2!5 (
n50

`

f n~q1! f n~q2!exp~2 invBt!, ~C1!

where the functionsf n are linear combinations@see Eq.
~B13!# of the confluent hypergeometric function of the se
ond type, or the Tricomi psi functionC(a,b;z). For small
values of the magnetic inductionB one should take into ac
count a large number of Landau statesn, which causes prob-
lems in the numerical calculations. Therefore, we pres
here a different approach in which the summation overn is
performed analytically. Using the following integral repr
sentation of the functionC(a,b;z) @Eq. ~13.2.5! in Ref.
@49##:

G~a!C~a,b;z!5E
0

`

dt e2ztta21~11t !b2a21,

Re~a!.0, Re~z!.0, ~C2!

we obtain

b~k11!! C~k12,2;z!1
2ac

q21c2
~k12!! z C~k13,3;z!

5E
0

`

dt e2ztS t

11t D
k11S b1

2ac

q21c2
ztD . ~C3!

Using the binomial expansion formula we get

(
k50

n S n

kD S 22t

11t D
k

5S 12t

11t D
n

, ~C4!

so that

f n~q!5~2g!1/2
iq

g2E0

`

dt e2zt
t

12t S 12t

11t D
nS b1

ac

g
t D .

~C5!

Introducing Eq.~C5! into Eq. ~C1!, and taking into accoun
the formula(n50

` zn51/(12z), uzu,1, we obtain

G~q1 ,q2!5
2q1q2

g3 E
0

`

dx e2z1x
x

11x S b1
ac

g
xD

3E
0

`

dy e2z2y
y

11y

b1~ac/g!y

12z
,
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zj5
qj

21c2

2g
, z5

12x

11x

12y

11y
exp~2 ivBt!. ~C6!

The conditionuzu,1 is fulfilled for xÞ0 or yÞ0. For x
5y50 one must take into account thatt in Eq. ~C1! occurs
as a part of the Green’s function~A9! and should be replace
by t2 i«, «→01, so thatuexp(2ivBt)u5exp(2«vB),1. Af-
ter the substitutionz1x→y, z2y→x, and using the notation

b j5
2ac

pj
, pj5qj

21c2, b5
12exp~2 ivBt!

2g
,

~C7!

we obtain from Eq.~C6!

G~q1 ,q2!5
8q1q2

p1p2
E

0

`

dy
ye2y~b1b1y!

p12gb~p122gy!

3E
0

`

dx
xe2x~b1b2x!

x1z
, ~C8!

where now
w,

-
ch
In

ic

g

.

z5
p2

2

2y1b~p122gy!

p12gb~p122gy!
. ~C9!

Because of the presence of the factorsy exp(2y) and
x exp(2x), it is convinient to compute the integrals in E
~C8! using the generalized Gauss-Laguerre quadrature.
thermore, using one of the definitions of the exponential
tegral of a complex argumentz and integer ordern @49,50#

En~z!5
e2z

G~n!
E

0

`

dt
e2ttn21

z1t
, uargzu,p, n51,2, . . . ,

~C10!

the integral overx in Eq. ~C8! gives

E
0

`

dx
xe2x~b1b2x!

x1z
5bezE2~z!12b2ezE3~z!.

~C11!

The exponential integralEn(z) can be efficiently computed
using the subroutineZEXINT from Ref. @50#, while the re-
maining integral overy can be computed using a generaliz
Gauss-Laguerre quadrature with the weight functionye2y.
.
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