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High-order harmonic generation in magnetic and parallel magnetic and electric fields
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We demonstrate control of high-harmonic generatidHG) by a linearly polarized laser field using uniform
static magnetic and electric fields parallel to the laser polarization. We show that the harmonic intensity can be
considerably increased for particular values of the magnetic field. The maximum values of the harmonic
intensity correspond to such values of magnetic induction for which an integer multiple of the classical
cyclotron period of the electron’s motion perpendicular to the magnetic field is equal to the return time of the
ionized electron wave packet to the nucleus under the influence of the lasefafieldtatic electric field, if
present While a static magnetic fielfor the strengths we are considerimonly affects the cutoff position
slightly, a static electric field can introduce additional plateaus and cutoffs. A properly chosen combination of
the static electric and magnetic fields can increase both the harmonic intensity and the harmonic order. For the
case of a magnetic field only, the present work expands upon a brief account recently given el§BwBere
Milosevic and A. F. Starace, Phys. Rev. L&R, 2653(1999]. For both a stati® field and for parallel static
B and E fields, the present work provides further confirmation of the so called “three-step” model for
interpreting quantum-mechanical predictions of HH&1050-29479)06110-7

PACS numbgs): 32.80.Qk, 42.65.Ky, 42.50.Hz, 32.80.Wr

[. INTRODUCTION off, another important characteristic of the HHG process is
its efficiency, which is determined by the intensities of the
Atomic processes in the presence of strong fields are pre§armonics on the plateau.
ently attracting considerable attention, as indicated by nu- Many efforts have been made to control HHG. This con-
merous bookil_g] and conference proceedin%_?], as trol Ca.n be aChieVe.d by add|ng a S.econd Comppnent to the
well as by recent review articles devoted to a number ofaser field or by ad.dlng a static e[ectnc or magnetic field. The
particular areas of multiphoton physics, such as ionizatiorfn@lyses of HHG in a bichromatic laser figlgefs.[19,20,

. : ferences thergihave shown that such control is pos-
dynamics in strong laser field8], two- and three-step mod- &nd re -
els for intense-field, laser-atom physigj, atomic physics sible: in both the {,3w) and the @,2w) cases the efficiency

with high-intensity laserg10], R-matrix-Floquet theory of of Od(.jt k:jarmor?.llc _gepheratlgn can b?hlncreasec:. by c:(rders of
multiphoton processeg1l], laser-assisted electron-atom magnitude, while in the¢,2w) case the generation of even

scattering12], and two-electron atoms in strong fieldkS]. harmonics, in addition to odd ones, is possible. In both cases

x .. there is an additional parameter — the relative phase be-
In the present paper we .COI’]SIdeI’ another Process requinngidean the laser field components — which enables coherent
strong laser field: high-harmonic generatiofHHG)

. ) phase control. Even for a monochromatic laser field, in the
[4-10,14-1& The main features of this process, namely angcase of ultrashort laser field pulses, the initial laser field

extended plateau, comprising many harmonics with compaphase has a significant influence on the HHG pro§ats
rable intensities, and a sharp, high-frequency cutoff, are exqHG also strongly depends on the polarization of the laser
plained using a “three-step” physical model7,18 (for a  field [20,22. The best efficiency can be achieved with lin-
review see, e.g., Reff9]). According to this model, the “first  early polarized laser fields. Recently, HHG from an initial,
step” is ionization, the “second step” is laser-driven propa- coherent superposition of atomic states has been explored
gation of the free electron, and the “third step” is the colli- theoretically{23]. Addition of a static electric field to control
sion of the electroifor, more precisely, its wave packetith  the HHG process has also been explored theoretifaly-
the atomic core under the driving influence of the laser field26]. In this latter case even harmonics can be generated and,
During this collision the electron can recombine with themore important, it is possible to generate harmonics beyond
core and emit a harmonic photon. This model predicts thehe cutoff in the absence of the static fi¢kb,26. Coherent
maximum energy N .#iw) of the harmonics at the cutoff to control of HHG by a static magnetic field was proposed by
be equal tol ,+3.1J,,, wherel is the atomic ionization Bandrauk and co-workerf27-29. They have considered
potential and U, is the ponderomotive energyl, two casesli) the rg molecular ion in both a linearly polar-
= eZE'f/(4mew2), where—e andm, are the electron charge ized laser field and an ultrastrong, static magnetic field along
and mass, anf, andw are the laser electric field amplitude the laser polarization axis arld) a two-dimensional model
and frequency, respectively. Besides the position of the cutef the hydrogen atom in both a circularly polarized laser field
and a magnetic field perpendicular to the laser field polariza-
tion plane. In Refs[27-29 results are presented for only
*On leave from: Faculty of Science and Mathematics, Departmenone value of the magnetic inductioB,=0.2B,=47 000 T,
of Physics, University of Sarajevo, Zmaja od Bosne 35, 71000 Sawhere Bozﬁ/(eaé) =2.3505< 10° T. This value ofB is
rajevo, Bosnia and Herzegovina. Present address: Max-Borrmuch larger than the maximum presently achievable labora-
Institut, Max-Born-Str. 2A, 12489 Berlin, Germany. tory magnetic field(see below. Connerade and Keit¢BO0]
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also investigated theoretically HHG in a static magnetictrum. One of the reasons for the decrease of harmonic effi-
field. They considered relativistically strong laser fields andciency is the spreadingn the transverse directigrof the
concentrated on the influence of a strong constant magnetilectron wave packet during the propagation in the linearly
field on free electrons in such laser fields using a classicabolarized laser field. The addition of the magnetic field along
treatment. A similar problem was considered more recentljhe laser field polarization axi&chosen in thez direction

by Salamin and FaisdB1]. They presented exact analytic Suppresses this spreading. It acts as a transverse pgrabolic
solutions for fully relativistic electron trajectories in the pres-barrier in thep direction [see the term proportional to

ence of a superintense laser field and a strong uniform mag=X>+Y? in Eq. (A7)], which can be considered as a mag-
netic field. Using these solutions they analyzed the lighth€tic bottle confining the ionized electron wave packet trans-
emission spectrum along various directions of observatioerse to the magnetic field axis. Therefore, we expect that the

and as functions of the intensity and frequency of the laser adddition of a strong magnetic field can increase the efficiency
well as the strength of the magnetic field. of HHG. We demonstrate that maxima in the intensities of

The study of atomic processes in a magnetic field is ghe generated harmonics occur when the classical periods for

long established area of atomic physics, dating from old dis€lectronic motion perpendicular and parallel to thexis
coveries by Zeeman and Lorerf&2). Under normal labora- have a rational ratio. The case of HHG in parallel stétic
tory conditions the energy changes caused by the magnet@dB fields provides a more stringent test of the utility of the
interaction are usually small compared with the characteristicthree-step” model for interpreting the results of quantum
energies of the system. However, in experiments with highlynechanical calculations. For the case of a s@field alone,
excited atomgin which the bound-state enerd, is small the classical time required for the mt_ermedlate-state electron
for large n), in solid state physicgin which the effective tO return to the nucleus, whereupon it may rescatter from the
mass is much smaller than the electron magsand the &tomic core and emit a harmqmc photo.n, is invariant to a
dielectric constant can be much larger thanand in astro-  change of phase of of the driving laser field. For the case
physics(where the magnetic induction in white dwarfs, pul- Of parallel static andB fields, however, the periods of the
sars, and neutron stars can reac-10P T) this energy classical trajectories which return to the origin are sensitive
change can be important. For reviews see, for example, ReftQ the initial orientation of the laser polarization with respect
[32-36. The maximum reproducible laboratory magnetic o the static electric field. We find, remarkably, a one-to-one
fields which have been reported have an inductn corréspondence between detailed features of our quantum-
~1000 T[37]. In the experiment presented in RE37] the ~ Mechanically calculated harmonic intensities and the variety
useful volume having this maximum magnetic field consistOf classical trajectories that occur in the parallel static fields
of a cylinder approximately 1 cm in diameter and 10 cm¢@Ss€. These results, presented below, thus represent a further

long. The duration of such strong magnetic pulses is a feygonfirmation of the validity of the “three-step” classical
us, which is much larger than the laser field pulse duration,mOdel'_ ) -

so that we can consider the magnetic field as constant. with Besides the increase of the HHG efficiency, the cutoff
the recent development of ultrastrong laser pulseth in-  €nergy in the magnetic field is increased by the Landau_ en-
tensities of order 19 Wicr?, developed in connection with €'9Y Enm [42] [See also Eq(A8).] Because this energy is
such applications as a fast ignition scheme for inertial conProportional toB/By, the cutoff energy remains almost un-
finement fusioh it becomes possible to generate magneticchanged for the field values we are considering. Contrary to
fields up to 18 T by propagation of relativistically intense this, the addition of a static electric field can change cc_)(15|d—
laser pulses through preionized plasrfiag]. (See also Ref. erably the cutoff energy, and can even introduce additional

[39] concerning magnetic fields generated in a plasma by Rlatéaus with their own cutofff24—2§. This is because a
short, circularly polarized laser pulge. parallel static electric field comes into the stationary action

In this paper we demonstrate control of HHG using aO" the same footing as the laser figtte Eqs(5) %nd(A@
strong, uniform static magnetic field directed along the pobelowl, and also gives a term proportional E&r®, which
larization axis of a linearly polarized laser field. We explaincan be large for long return times[43]. We thus find that in
here also the physical mechanism which enables this contrgiarallel staticB and E fields, the static magnetic field in-
and the optimal experimental parameters for maximizing thé&reases the HHG efficiency and the static electric field in-
intensities of high harmonics. Our presentation here expandgeases the cutoff energy.
upon a brief account we have recently given elsewhéog In Sec. Il we present briefly the theory of HHG in the
In particular, in Ref[40] we have shown that maxima in the Presence of static fields. Details of the theory presented in
intensities of harmonics generated in a strong magnetic fielhis section are relegated to the Appendices. Our numerical
may be understood on the basis of the classical “three-steptesults are presented in Sec. Ill, while in Sec. IV we interpret
model[9,17,1§, i.e., by considering the Newtonian trajecto- these result_s using a classical analysis. Section V presents
ries of an intermediate-state electron moving under the influour conclusions.
ence of the laser field along tteaxis. Because for experi-

mentally obtainable fields one ha<B,, the magnetic Il. THEORY
field’s influence on the atomic ground state can be neglected '
[41]. In this approximation the “first” and the “third step” We obtain harmonic spectra by computing the quantum-

of the above-mentioned “three-step” model are not affectednechanical dipole momeity, which is defined as the Fou-
by the magnetic field. Therefore, the main influence of therier transform of the time-dependent dipole matrix element
magnetic field is on the “second step,” i.e., on the electron’sd(t) =(®(t)|er|®(t)), where|®(t)) is the solution of the
propagation, which mainly determines the harmonic specSchralinger equation for the systefatom + laser field +
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static field$. Using the strong-field approximation and ne- et
glecting continuum-continuum coupling, the time-dependent fiqs(t,7)=— ;J dt"[AL(t")+Ag(t")]
dipole can be written afL5] T

t I%[a(t—f)—a(t)], T=t—t'. (6)
d(t)=ft dt’(u(t)|erG (t,t")eE.(t")-r|u(t’))+c.c.,
0

(1) The final result for the time-dependent dipole moment is

112
whereG (t,t") is the Volkov-type Green’s operator for the d(t)=—ie? 2mMe fxﬁ E (t—7)
electron in the presence of the laser field and the static fields, in3 0o 712

andeE, (t")-r is the interaction of the electron with the laser

field in the length gaugésee Appendix A We assume that _

the static fields are not strong enough to modify the atomic X;m (UolZInmQ(O)NMQ(t=7)[z]uo)
ground statdu(t))=|uo)exp(l ,t/%). However, they are in- i
cluded inG(t,t") and thus have an influence on the elec- Xexp{— I—Ss(t 7
tron’s intermediate states. In the case of parallel linearly po-

larized fields we have to compute the dipole moment

+c.c. W)

An analysis of this result is presented in the appendices. The
Tdt summation over the quantum numberand m can be per-
Dy= f —d(t)exp(iNwt), 2) formed analytically; the result for the summed product of the
oT matrix elements in Eq(7) is a single integral over exponen-
tial integral functions. This integral can be efficiently com-
where the laser field perio@l equals 2r/w and where, ac- Puted by the method described in Appendix C. It should be
cording to Eq.(1) and the results of Appendix A, mentioned that in the absence of the magnetic field one must
compute the time-dependent dipole in a different way. In-
. stead of the summation over the quantum numieasd m
L(t,)f dq one has infinite integrals over tlxeandy components of the
o intermediate electron momentufie., g, andg,). One can
evaluate these integrals by similarly applying the saddle-

d(t)= —

x> (UolzInmQt)}{nmQt")|Z]ug) point method, as was done with the integration over zhe
nm component. As a result one obtains a term with the factor
732 instead ofr~ %2, in Eq. (7), and the integrand of Eq.

‘e, 3) (7) has a simple analytic forrh15,20. This simplicity is
important because the integration owven Eqg. (7) can cause
problems in the case of only a static electric fidlthe upper

where limit of the integral overr should be large because in the

presence of a static electric field the terms with large return
time can give significant contributions.

xexr{— St t)

e
Q(t)y=q+ %[AL(t)"_AS(t)]u 4
IIl. RESULTS
2 A. Harmonic intensity revivals in a magnetic field
m(q;t,t") J dt" CH‘ [AL(t") +A5(t”)]] We first present our results for the case of a magnetic field
only. In Fig. 1 we present the harmonic intensit{es., the
I+ Epm)(t—t") harmonic generation efficiencies, defined Bg|?) as func-

tions of the harmonic ordeN for different values of the
magnetic inductionB=0 T (squareg 2000 T (circles, and
72q? 4000 T (triangles. The laser field intensity and photon en-
TN Enm)(t—t’), (5) ergy arel=5x10"Y W/cn? and Aw=0.1165 eV (CQ la-
Me sen, respectively. For the H ion 1,=0.754 eV and the
ground state wave function has the form of EB4) with
and «(t), U(t) and E,,, are defined in Appendix A. The a=0 andb=1. We observe immediately that in general the
method of computation of the matrix elements with theharmonic intensities foN=5 are one or more orders of
wavefunctions(ppzlnmay=V .. {p,#,2,0) is given in the magnitude greater in the presence of Béield than for the
appendices. The integral over teeomponent of the inter- caseB=0, although there are exceptiofesg.,N=9 or 21).
mediate electron momenturfiq is computed using the Only the odd harmonics are generated because the parallel
saddle-point method, as in Refd5,20. This method gives magnetic field preserves axial symmetry. The cutoff of the
the factor[2mmgh/(i 7)]¥%exd —iS(t,N/t], where Sy(t,7) plateau forB=0 T should bgaccording to the “three-step”
=S,m(ds;t,t—7) is the stationary action, anftljs is the sta- mode) at 3.1U,+1,=14.410+6.50=20.% w, so that
tionary momentum Nmaxy=21, which agrees with the results presented in Fig. 1.

=fqla(t) —a(t’)]+U) - U(t")

J’_
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L " . ) FIG. 3. The same as in Fig. 1, but for argon atoms in the pres-
FIG. 1. Harmonic intensities as functions of the harmonic orderence of a Nd:YAG laser having intensity=3x 10" W/cr?. Re-

N fog the H ion in a CQ laser with the intensityl=5 g5 for three values of the magnetic field induction are shdvn:
X 10" W/cr?. The magnetic field induction i8=0 T (square} =20 T (squarey 7600 T (triangles, and 15 000 Tcircles.
2000 T(circles, and 4000 T(triangles.

In the presence of the magnetic field the cutoff energies arappearance of these maximaBat2000, 4000, 6000, 8000
increased by the ground-state Landau level endrgg/2 T,.... Wewill refer to this periodicity as revivals of the
=ehB/(2my), which, for B=4000 T and a C@laser, is harmonic intensity. There thus appears to be an optimum
hwgl2=1.98Tw, giving a plateau cutoff 0~22.% w. For ~ value of the magnetic induction for which the harmonic in-
B=2000 T the maximum harmonic intensity on the plateautensity of a fixed harmonic has a maximum. In the next sec-
occurs forN= 15, while forB=4000 T the maximum occurs tion we connect these values with particular classical elec-
for N=13. One can observe also sharp variations of intensit§fon trajectories.

asB is varied for particular harmonio®.g.,N=9, 15, and In order to test the “three-step” model for a very differ-
21). In order to explore the dependence of the harmonic inent set of parameters, we have also carried out quantum-
tensity on the strength of the magnetic field, in Fig. 2 wemechanical calculations of HHG for argon atoififeaving
present a 3D plot of the harmonic intensitiexpressed in 1p=15.76 eV, and using a hydrogenic ground state wave
107° a.u. on a linear scaleas functions of the harmonic function given by Eq(B4) with a=1 andb=0] in the pres-
order N and the magnetic inductiol. The pronounced ence of a Nd:YAG laserf{w=1.165 eV) having intensity
maxima for particular values @ are more clearly visible in | =3x 10" W/cn?. In this case the cutoff foB=0 is atl

Fig. 2. For fixedN, one can also notice a periodicity of the +3.1U,=22.2%w andl,, |, and » are all much larger.
Hence in order to have a cyclotron period comparable to the

laser field periodB must be increasedSimilarly, if we were

to consider a laser having a much smaller frequancyhen
much smaller values of the static magnetic fiBldre needed

in order that the cyclotron period is comparable to the clas-

sical period of motion of the electron under the driving in-
fluence of the laser fielgdIn Fig. 3 we present the harmonic

© 0 0 0 © 0 0 o
.o 000003888

intensities as functions of the harmonic order ¢ 20,
7600, and 15000 T. In general one sees that the higher the

J o \’ value ofB, the higher is the harmonic intensity. Indeed, for
§ some values oB the harmonic intensity is increased by al-
most four orders of magnitude. In Fig. 4 we present the har-
monic intensities for the 13th, 15th, 17th, and 19th harmon-
ics as functions of the magnetic inducti& The harmonic
1000 intensities have maxima for values Bfclose to 13000 T,

2000 with the largest intensities for these four harmonics occuring
in the range 10000 £B=<16 000 T. Within this region the
harmonic intensities are many orders of magnitude greater
than forB=0.

o
4

22 . . . .
8000 B. Additional plateaus and cutoffs in parallel static electric

and magnetic fields
FIG. 2. Harmonic intensitiegin units of 10°° a.u.) as functions g

of the harmonic ordeN and the magnetic field inductioB. The In Fig. 5 we present HHG results for the Hon for the
laser field and the H ion parameters are as in Fig. 1. case of a CQlaser and parallel static electric and magnetic
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that the intensities of the even and odd harmonics are of the
same order of magnitude. Figure 5 shows also that the har-
monic spectrum is extended to higher harmonics: We now
have two additional cutoffs, one at the 31st harmonic, and
the other at the 43rd harmonic. The positions of these cutoffs
may be explained using a classical analysis, as we show in
the next section. As in Fig. 1, the intensities of particular
harmonics are increased by more than two orders of magni-
tude as the magnetic field is increased from 1 t& TOThus
by choosing appropriate particular values of both fields, it is
possible to generate high-intensity, high-order harmonics.
For example, the harmonics fof=31, 32, and 33 shown in
Fig. 5 all have higher efficiencies than harmonis-21
beyond the cutoff harmonics in the absence of both figdtls
Fig. 1.

Figure 6 shows th@&-field dependence of the harmonic

FIG. 4. Harmonic intensities as functions of the magnetic fieldintensities for different groups of harmonicéa) 12-15
induction B for fixed harmonic orderN=13 (dotted ling, 15  [which are located in the plateau region in the absence of
(dashed ling 17 (solid ling), and 19(dot-dashed ling The atomic  hoth static fieldgcf. Fig. 1)], (b) 21—-24(which are located
and the laser field parameters are as in Fig. 3. in the cutoff region foB=0 andEs=0), (c) 30—33(which

are located in the region of the second cutoff, i.e., the first

fields. For numerical convenience, we have selected a statedditional cutoff, which appears owing to the static electric
electric field having strengtlEs=1 MV/cm. Such strong field), and(d) 41-44(which are located in the region of the
static fields can be achieved in experiments using relativistithird cutoff, i.e., the second additional cutoff, which appears
H™ atom beams to convert a modest transverse laboratorgwing to the static electric fie)d Figure 6 shows that thB
magnetic field into a static electric field in the atom’s restdependence of the harmonic intensity is more complex in the
frame[44]. However, such an approach is not appropriate ifpresence of the static electric field than in its absefte
one wants to have simultaneously a strong parallel magneti€ig. 2). We still have maxima for particular values Bf but
field. Currently static fields of the order of 0.1 MV/cm have they are broader, and interference structures are present.
been achieved in the design of particle accelerafdf. (These interference structures occur evenBetO in the
However, since our primary purpose in considering the caspresence of a strong static figl4—26.) Second, the highest
of HHG in parallel staticE andB fields is to provide a more maxima appear foB<<5000 T. We see also in Fig. 6 that for
stringent test of the “three-step” model of HHG, the stron- a fixed value of the static electric field, maxima in the inten-
ger the fields, the more clear are the theoretical results. Nesity of particular harmonics occur for a number of values of
ertheless, we expect our theoretical predictions to applyhe static magnetic field. In the next section, using a classical

qualitatively to experiments involving smaller values of theanalysis, we explain many of the features shown in Fig. 6.
static fields.

The static electric field breaks the symmetry so that we IV. CLASSICAL ANALYSIS
now observe both odd and even harmonics, and Fig. 5 shows

a.u.)

~11

Harmonic Intensity (10

B(T

A. Solutions of the classical equations of motion

As is well known, the cutoff of the plateau in HHG in the
absence of the static fields, i.8l,,io=1,+3.14J,, can be
obtained both classicallyl7,18 and quantum mechanically
[15,20, based on the “three-step” model, which was de-
scribed in the Introduction. According to the classical ver-
sion of this model, the electron is born at tifgeat the origin
[r(tg) =0] with zero initial momentum. It then moves under
the influence of the laser field, and, in our present case, the
static fields. Solving Newton’s equation for the electron,

me'r'z—e[EL(t)+ES+f><B], one obtains the electron ki-
netic energyE, at the timet; when the electron returns to the
origin. The maximum of this energy, and, therefore, the cut-
u off energy Npfiwo=1,+Exmax, iS determined by the two
‘ . ‘ . conditions:r(t;) =0 anddE/dty=0. The first condition im-
0 10 20 30 40 50 plies that the electron, after the return timet; —t,, comes
Harmonic Order ¥ back to the atomic core, while the second condition opti-
FIG. 5. The same as in Fig. 1, but in the presence of a paralléMizes the timet, at which the electron is “born’(i.e., ex-
static electric field having strengfs=1 MV/cm, for three values ~ Cited to the continuuinto be that for whichE, is maximal.
of the magnetic field inductionB=1 T (squarey 1000 T (tri- In the case of a linearly polarized laser field and parallel
angles, and 3000 T(circles. static fields, Newton’s equation separates, and,

Harmonic Intensity (a.u.)

10
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FIG. 6. Harmonic intensities as functions of the magnetic-field induddor fixed harmonic order(a) N=12-15,(b) 21-24,(c)
30-33, and(d) 41-44. Results are for the Hion in a CQ laser with intensityl =5x 10'° W/cn? and in a static electric fiel€Eg=1

MV/cm.

for zero initial momentum, we havenx=eBy, myy
=—eBx and mz=e[A_(t) +Ag(t) — AL (to) — As(ty)], SO
that Ey=mer*(t)/2=e{[AL(t) + As(t) — AL (to) —As(to) |
+B?(x?>+y?)}/(2m,). The electron rotatefgt6] in the plane

perpendicular to the magnetic field with the cyclotron period

S|n0' ES
b(o)=coso— — —o0, 9

c(o)=— E,

we can rewrite Eq(8) as[43]

a(o)sin(¢—o)+b(og)cofe—o)=c(o).

(10

=27/ wg, While its parallel motion is determined by the

laser field and th_e static electric field. The el(_ectron is bgck afy these variables, the electron’s kinetic energy is given by

the nucleus at timeé,=ty+ 75, tg+27g, ..., if the condi-

tion z(t;) =0 is fulfilled. Ek=8Up[a(0')Sin(qo*U)*C(O’)]z.
The solution of the equation(t;) =0, with the condition

that the electron is born with zero initial momentum, i.e.,Equation(10) can be further rewritten as a quadratic equa-

2(to) =0, leads tdsee also EqgAl), (A4), and(A6), and  tionin the variable_)(ssin(cp—o), and, therefore, for each

Refs.[25,43 for nonzero initial momentuin one has two solutions foX:

(11)

ty
Jt dif A (1) +As(t) ]=[AL(to) + As(to) J(t1—tg). (8) X(o)= [ac+b(a’+b%—c?)12. (12)
0

a’+b?
Introducing these solutions into E(L1), we obtain the har-
monic orderN as a function of the return time, i.N(w7)
=[l,+Ex(7)])/fiw. The two solutions in E¢(12) correspond
to positive and negative values &f (t) at the moment of

o=2T  a(o)=sine ionization. For one solutiong (ty) is parallel to the static
2’ ' electric fieldEg; for the other, it is antiparallel. In the ab-

For a laser fielcg (1) =E sin wtz, introducing the notations

p=wtq,
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FIG. 8. Harmonic intensities for EN<19 plotted in dimen-
sionless unitsr(N)/7g, i=1,...,6,where 7; is the classically

calculated period for théth return of the electron to the origin
under the influence of the laser field, anglis the cyclotron period.

1. The monotonically decreasing curve, measured by the right]Ne laser field and the Hion parameters are as in Fig. 1.

hand-side ordinate, represents the magnetic indu@ias a func-
tion of w7 for 7= 75, whererg=27/wg=2mm./(eB) is the clas-
sical period for motion perpendicular to the magnetic field.

rection at the same time, having an energy sufficient to emit
the Nth harmonic. As we will show below, these valuesBof
correspond to the maximum values of the harmonic intensi-

sence of the static electric field these two solutions coincideges For example, for the 15th harmonic the shortest return

Since for this latter case(o)=0, Egs.(11) and (12) show
that there is only one solution fd, , which gives

8ab?

—-U
a?+h?

Nhw=1,+ (13)

p-

The maximum value of the coefficient &f, in Eq. (13) is

3.17, which corresponds td,,,, the well-known cutoff of

the HHG platea15,17,18.

B. Classical interpretation of quantum-mechanical HHG
intensity revivals in a static B field

time is for w71 =2.8718, which corresponds ®~2200 T.
The next(second return timer, for the 15th harmonic is for
wT,=5.1276, which corresponds B~1230 T. Longer and
longer return times correspond to one cyclotron petigdor
smaller and smaller values of the magnetic inducton

Let us now relate our quantum-mechanical results, pre-
sented in Figs. 1 and 2, to our classical orbit calculations,
i.e., to the results presented in Fig. 7. For each harminic
11=<N=19, we first calculated the corresponding classical
return times7;(N), i=1,...,6,wherei is defined below.
For N>13 there are no intersections of the horizontal lines
N=15, 17, and 19, with the curvd(w7) in the first part of
the second optical cycle (2<w7<3m). In this case, we

Useful information about the HHG process can be ob-have chosen both for; and 7, the value which corresponds

tained by presenting, as a function of the return time
=t;—tg [15]. In Fig. 7 we present the harmonic orddr
=(Ext1p)/(fiw) as a function ofw for the H™ ion, a CQ

laser with intensityl =5x 10'° W/cn?, and no static electric

field (the same parameters as for Figs. 1 apdi2e oscilla-

tory functionN=N(w7) [see Eqs(13) and(9)] has a maxi-

mum atN,5,~21 in the first optical cycle ¢7<2), fol-
lowed by infinitely many lower maximpwe preseniN(w7)

to the second maximurtwe do not have classical orbit so-
lutions which return to the nucleus, but quantum mechani-
cally the electronic wave packet amplitudes can still contrib-
ute to the procegsNext, in the corresponding subplots in
Fig. 8, we present ouguantum-mechanicalesults for the
harmonic intensity v in terms of theith classical return
time, 7;(N)/rg=[er;(N)/(27m)]B, i=1, ...,6.Note that
7i(N) does not depend oB because the classical motion

up to w7=25]. The intersections of the dashed horizontalalong thez axis does not depend on it; thugN)/ 7z has a

linesN=7, 9, ..., 19,with this oscillatory curve give the

linear dependence oB, which stems from division byg.

values of the return time of the ionized electron, which The dimensionless variable (N)/ 7 measures the period

returns to the nucleus with the energiear—1,, 9% w
—lp, ..
p!

with the atom emitting the 7th, 9th, .., 19th harmonic,

7;(N) for theith return of the electron under the influence of

., 1% w—1,, and which, therefore, can recombine the laser field in units ofg. Wheneverr;(N) is close to an

integer multiple ofrg, there is a revival of intensity in the

respectively. In the same figur@sing the right-hand-side Nth harmonic; moreover the interval between revivals is ap-
ordinateB and the dotted curyewe present the magnetic proximately 75 . For example, all presented harmoniex-

induction B as a function ofwr for =75, where 7

cept the 13thhave their largest intensity maximum close to

=2mlwg=2mm./(eB) is the classical period for motion ;=75 (upper leftmost subplot in Fig.)8The 11th harmonic
perpendicular to the magnetic field. From such a presentatiomaximum (solid curvg also has contributions fromr,
one can find the value of the magnetic field which corre-~27g, 74~371z, andrg~4rg. For the 13th harmonic our
sponds to the process in which the ionized electron is back afalculations show contributions to the maximum fram
the nucleus both in the parallel and in the perpendicular di=37g, 74~57g, 75~675, andrg=~77g, implying that the
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FIG. 9. The same as in Fig. 7, but for the laser field and the

FIG. 11. The same as in Fig. 7, but in the presence of an addi-
atomic parameters as in Fig. 3.

tional parallel static electric field having strend#ig=1 MV/cm.

The two solutions of Eqs(9)—(12) are denoted by solid and dot-

high intensity of the 13th harmonic may stem from construc-dashed lines.

tive interference of contributions associated with a large
. . oo . (o

number of classical orbits along tlzeaxis with return times

7 that are multiples ofrg. _ _ to us to be the most important classical orbit.

Similarly to Fig. 7, in Fig. 9 we present classical orbit — Generally, the intensity of harmonics peaks whenever the
calculations for the case of the Ar atom and a Nd:YAG lasekyaye packet amplitudes for motion perpendicular to and
with the same parameters as in Figs. 3 and 4. The maximujiong thez axis coincide. The exact coincidence of the posi-
harmonic order is slightly larger than in Fig. 7 and intersec+jons of harmonic intensity maxima, presented in Figs. 8 and
tions of the curveN=N(w7) with the horizontal dashed 10, with 7;(N)=jrg, wherej is an integer, is not expected,
lines appear for 18N=<21. The corresponding magnetic for two reasons. First, quantum wave packets have a spatial
fields[B=w 27mm./(e wT) for 7= 7] are one order of mag- width. Second, there are interferences between contributions
nitude larger than those presented in Fig. 7 in order that thessociated with a large number of classical orbits along the
cyclotron period for motion perpendicular to tBefield axis ~ z-axis with return timesr that are multiples ofg .
is comparable to the classical orbit periad Figure 10

ourse, otherr; for this case which are equal integer mul-
tiples of 75, but we have presented in Fig. 10 what appears

shows, similarly to Fig. 8, the results of our quantum-

mechanical calculations for the harmonic intensityBrén

terms ofr,(N)/ g, for 15<N=<21. We see that the maxima
for all harmonic intensities correspond tg~ 1z, which
means that, in this case, the main contribution to the har,
monic revivals in the presence of the magnetic field occur
when the time for the second return of the ionized electron t
the nucleus is equal to one cyclotron period. There are,

8

a.u.)
[}
T

-12

IS
T

Harmonic Intensity (10

n
T

FIG.

atomic parameters as in Fig. 3, for harmonic orders N5<21, but

for only one value of =2.

C. Classical interpretation of quantum-mechanical HHG
features for parallel static B and E fields

In the presence of a static electric field there are two so-
lutions for the harmonic ordeM as a function of the param-
etero 7 [see Eqs(9)—(12)], which correspond t&, (ty) par-
Jllel or antiparallel toEg. The existence of these two

lassical solutions foEg# 0 enables a more detailed test of
he “three-step” model of HHG, which is one of the moti-
vations for our consideration of the parallel static fields case.
In Fig. 11 we present the two solutions fdrfor the cases of
parallel orientationsolid curve and antiparallel orientation
(dot-dashed curye (See Figs. 7 and 9 which show only a
single curve wherEg=0.) For a long enough return time
(w7>12.41 in the present case¢he laser field cannot return
the electron back to the nucleus because the influence of the
static electric field, which is proportional to the return time,
becomes too large. The maxima of the curves presented in
Fig. 11 explain why the cutoffs in the harmonic spectrum
which we obtained in our quantum-mechanical calculations
(see Fig. b appear alN=31 and 43. In addition, as in Figs.
7 and 9, the monotonically decreasing curve using the right-
hand-side ordinate presents tBdield corresponding tar
=wTg.

Our quantum-mechanical results, presented in Fig. 6, can
be related to the classical calculations of Fig. 11 in a way
similar to what we have presented for HHG inBafield

10. The same as in Fig. 8, but for the laser field and thealone. We consider four particular harmonibs=12, which

lies on the plateau, and=25, 34, and 40, which are located
at the first, second, and third cutoffs, respectively Fig. 6).
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FIG. 12. The same as in Fig. 8, but in the presence of an additional parallel static electric field having &genbtMV/cm, and for
the harmonic orderga) N=12, (b) 25, (c) 34, and(d) 40. For a given harmonic the quantum-mechanically calculated intensity is plotted vs
the magnetic inductio several times using the dimensionless variabidsy for i=1,2, ..., vherer, is theith classical return time.
Harmonic intensity maxima occuring far(N) =j 7z are denoted in the figure, wherandj are integers, andg is the cyclotron period. One
sees from the figure how each feature in M harmonic intensity curve may be associated with a particular classicali orbit

For these harmonics we present the harmonic intensity asfanction of the magnetic field inductioB but plotted 8 dif-
function of the variabler;(N)/rg, where the return times ferent ways, as functions af /75, i=1,...,8. Our aim is
7i(N) are obtained as those valuesmoat which our results to determine whether each of the 8 maximum in the
for the electron kinetic energy at the nucle&g(7), corre-  quantum-mechanical intensity results may be associated with
sponds to the energy of thdth harmonic, according to Eq. integer values ofr;/ 7z for one or more values df As ex-

(11). This occurs when thBlth harmonic’s horizontal line in  pected, the main maximum is fey, = g, i.e., for such val-

Fig. 11 intersects the oscillating curves represenfihg  ues of theB field for which the shortest return time of the
+E(7)]/hw. For N=12 we have 8 points of intersection, electron under the driving influence of both the laser and
i.e., 7(12),i=1,...,8,while for N=25 there are 6 such static electric fields, is equal to one cyclotron period. The
points. ForN=34 we have only two intersections, atr; ~ dashed =3 curve shows that the second maximiim the
=11.14 andwt,=12.11, but there are also two maxirtet left of the highest one in Fig. 18] comes from the third
wt,=4.65 andw7,=7.07) which are lower than 34, but return time, i.e., fromr;=75. In Fig. 12a) we have also
which should also be taken into account because of the difdenoted some other characteristic points. For example, the
fuse nature of electron wave packets as opposed to the preeventh return time also gives a contribution to the largest
cise nature of classical trajectories. Finally, fbe=40, con- maximum(see curve 7, for which the maximum occurs at the
tributions of these maxima can be neglected, and only twgoint 7,=47g), while the main contributions to the two low-
return times contributewr;=11.57 andw7,=12.3. From est maxima at 550 and 720 T in Fig(a come from g

Fig. 6(a) we see that, according to our quantum-mechanical 75 and 7s=7g, respectively. The results of a similar
calculations, the 12th harmonic has 8 maxifalthough two  analysis for the 25th, 34th, and 40th harmonics are presented
of these are not fully developed: the curve exhibits onlyin Figs. 12b), 12(c), and 12d), respectively. We observe
shoulder featurés In Fig. 12a) we present our quantum- that some pronounced maxima appear to involve a construc-
mechanical results for the 12th harmonic’s intensity as dive interference of electron wave packets with different re-
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turn times. For example, fod= 34, in Fig. 12c), the highest the cutoff positions and essentially each feature of the behav-
maximum has contributions from;,=2r5, 7,=37g, and ior of particular harmonics as a function of the magnetic field
73=57g. This maximum is even higher than the maximum induction, B. Our results thus constitute strong additional
for the shortest return time, = 7z, perhaps because of these support for the validity of the “three-step” model for HHG.
multiple contributions. For the cutoff harmonic of the third

plateau[cf. N=40 in Fig. 12d)], the major contributions ACKNOWLEDGMENTS

come from two return timese{7;=11.57 andw7,=12.3).

We have thus demonstrated that maxima in the quantumgC
mechanically calculated harmonic intensities appear when-
ever one of the classically-calculated return times is equal to
an integer multiple of the cyclotron period, i.e;=j g, i

=1,2,j=1.2,.... These results provide strong additional |n this appendix we consider the solution of the Sehro
support for the validity of the “three-step” model of HHG. dinger equation for an electrofith massm, and charge
—e, wheree>0) in the simultaneous presence of a laser
V. SUMMARY AND CONCLUSIONS field E_(t), a static electric fieldeg, and a static magnetic

In this paper we have presented a more detailed analysgsillgan;SI units are usegiThe total vector potentigh(t) is

of the possibility of controlling high-harmonic generation in
a strong magnetic field than was presented in R&f]. In
order to confirm that our analysis is not specific to the,CO
laser frequency or the Htarget considered in Reff40], we .
have considered here also the case of an Ar atom and a AL(t):_f dt’E (1),

Nd:YAG laser field. Finally, in order to verify that our clas-

sical analysis based on the “three-step” mod&V,1§ is

valid even when the degeneracy of the classical orbits driven Ag(t)=—Egt, Ag=3BXr. (A1)
either parallel or antiparallel to theaxis by the laser field is

removed, we have considered also the case of HHG in palthe Hamiltonian of this system in the radiation gauge is
allel E and B fields. In our calculations the harmonic inten- H(t)=[p+eA(t)]?/(2m,). The high-harmonic generation
Sity is Computed using the Strong-fie|d approxima’[ion Com.problem is formulated so that the interaction with the laser
bined with the saddle-point method. Also, the summatiorfield is in the length gauge. Therefore, we make the follow-
over intermediate Landau states is performed exactly. ing unitary transformation:

We have shown that a strong magnetic field can increase
the harmonic intensity considerably and that there are opti-
mum values of the magnetic induction for which a particular
harmonic is emitted with maximal efficiency. Using a £0
laser and the H ion, for example, we have shown that this a=AL(t)+Agt). (A2)
maximum can be reached with experimentally available
magnetic field strengths. We have also explained for all casephe obtained gauge is a mixture of the length gauge and the
considered, using the classical “three-step” model, that theadiation gauge(for the magnetic field The Schrdinger
positions of these maxima correspond to such values of thequation in this gauge has the form
magnetic induction for which an integer multiple of the clas-
sical period for motion perpendicular to the magnetic field is 9
equal to the return time of the ionized electron wave packet [lﬁﬁ— HL(t)h\P(t)):O,
to the nucleus under the driving influence of the laser and, if
present, the static electric field. We interpret this fact to mean 1
that the harmonic intensity has a maximum if the electronic H (t)=er-(E +Eg)+ =—
wave packet is at the nucleus both in the parallel and in the 2me
perpendicular directions at the same time. While the static
magnetic field(for the magnetic field inductions we are con- The HamiltonianH  (t) can be written ast, (t)=p®/(2m)
sidering does not affect the position of the HHG plateau *Hep+Hup+Hye, where Hep=er-(EL+Eg) is the
cutoff significantly, the static electric field can introduce newelectric-dipole  interaction, Hyp=eB-L/(2m,), with
plateaus with their own cutoffs, as has been shown theoretl- =rxp, is the magnetic-dipole interaction, and
cally for the case of HHG in only a static electric field Hni=€%(BXxr)%(8m,) is the nonlinear diamagnetic term
[25,26. Therefore, a properly chosen combination of the[47]. The solution of the above Scltimger equation, in the
static electric and magnetic fields can increase both the happecial case of parallel fields
monic intensity and the harmonic order. In the presence of 5
the static electric field there are two solutions of the classical A - A
equationgone for parallel and the other for antiparallel ori- E()=E(Vz, Es=Esz B=Bz, AB:E(_y’X’O)’
entations of the laser field and the static field at the moment (A4)
of ionization, and the classical orbit analysis is more com-
plicated. Nevertheless, using it we were able to explain botltan be written, in cylindrical coordinatep,$,z) in the form

This work has been supported in part by the National
ience Foundation under Grant No. PHY-9722110.

APPENDIX A

A(t)=A (1) +Agt)+Ag,

eiea~ r/hH (t)efiea- rifh — 1

z—me{p+ e[A(t)—al}?=H (1),

2
(A3)

e
p+ Eer
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dnmq: <UO|Z| nmq>

qum<p,¢,z,t)=<2w>mexr{i q+§[AL<t>+As<t>])z

s S 2
xexpl —i[qa(t)+U(t)/A+ g2t/ (2m) ]} :Lodzfo dop |~ déuo(p.$:2)2¥amdp. 4,20

X P (p, p)exp —iEpnt/h), (A5) (BY)

whereq is thez component of the electron momentum, We will consider ground states which do not depend on the
polar angle¢. In this case, the integration ovef gives:

e [t 274 exp(me) =23, so that, according to EqgA5)
- ! ! ! 0 m,0» ’
()= mJ dUIA () +AL()], and(A8), dymq= mo fn(d), where
e [t o[ "
V0= g [ GUIA) AR (a0 @)= 29[ dz| "o put(p.2)2
e —c0
and®,,(p,¢) satisfies the stationary Scliager equation X exp(iqz)La(yp?)exp—3yp%). (B2
211 9 J 1 92 eB For spherically symmetric ground statesjy(p,—2)
AT %(P%) + ? (9752 + Z_meLZ =Uy(p,2) = Uo(\/p?+Z?), so that
2B? _ 1/2 -foo fw * 2152 2
+ 2V d. (p,d)=Enn®@um(psd). (A7) fa(q)=(2y)~2i . dzz . dp pug (Np“+2°)Ln(yp°)
e

. X sinqzexp — 3 yp?). B3
The wave functionsb,(p,¢) are solutions of the Schro azexp(—2yp?) (B3)
dinger equation for an electron in the magnetic field only

(i.e.. the so-called Landau stafet?)) We consider ground states of the form

® (P, 4) = Comexplime) Y™ 2pI LM (p?) Ug(r) = a+$ exp—cr) = b-a M_
X exp(—3yp?), (B4)
c2 — yn! Forb=0 this state corresponds to the hydrogen atom ground
M (n+|m))! state, while fora=0 it describes the ground state of the H
ion. Using the formula3.961 from Ref.[48], the integral
Enm=[n+2(|m+m+1)]Awg, over z in Eq. (B3) can be carried out explicitly, with the
result
eB eB AB
8" m. YT 24 (A8) = _exp—cyp®+z%) qp —
dz z sinqz= ——=K(pvq-+c9).
. ml, 2 i 0 Jp?+ 22 Vo +c?
In Eq. (A8) the functionsL"(yp®) are associated Laguerre (B5)

polynomials[48,49, n is the radial quantum numbem is

the azimuthal component of the angular momenturg,is Using  the relation  [48]: (919¢) K o( p G2+ C?)

the cyclotron frequency, and the wave functions are or-_ _ cK 02+ 2/ Jo?T c2. we obtain
thonormalized according t0¥ nd ¥ n/mg') = Snn Smmr 8(0 peKa(pVa NG ’

—q’'). The time-dependent Green’s function which corre- 19
sponds to the solutiofA5), is f.(q)=(2y)Y2iq b—a% _E%)

G (r,t;r',t") .
X JO dp pLa(¥p*)Ko(p Vg +c?)

=— ;—lo(t—t')f:dqzo m;_m Vomd(p, ¢,2,t)

xexp(— L yp?). (B6)
X\P:mq(pl'gi’/ 2z, (A9 The Laguerre polynomidl, can be expressed as a finite sum
(48,49
APPENDIX B
n k
The time-dependent dipole matrix element, introduced in La(x)= >, (_1)k( n ) X_' (B7)
Sec. Il, contains the following matrix elements between the k=0 n—k/ k!

wavefunction given in Appendix A and the atomic ground
state|ug), so that Eq(B6) can be written as
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p) 10 Rl (k+s),(k+1)
fo(q)=(2y)Y2iq| b— a—c _E%> ‘If(k+s,s;z)=zk3{rzo +(—z)fr
n
(=D¢ n |
szo ki ln—k) ¥ Fe©) (B8) +O(IZI‘R)], s=2,3. (B14)
where the integralF,(c) can be solved using formula APPENDIX C

(6.631.3 from Ref.[48],

In order to obtain the time-dependent dipole matrix ele-
ment, we have to compute the infinite sum

Fi(c)= f:dx XK o( BRI exXp(— 3 7X7)

(k)2 2| K+ B\ B G(d1,82)= 2, fn(dr)n(@z)eXp ~inwp7),  (C)
28 \y —k—1/2 Z_Yexﬂ’
(89) Where the functionsf, are linear combinationgsee Eq.
(B13)] of the confluent hypergeometric function of the sec-

whereB=\g?+ c2. Using the following connection between ©nd type, or the Tricomi psi functiot¥’(a,b;z). For small

the Whittaker confluent hypergeometric functioh, ,(z) values of the magnetic inductidd one sho_uld take into ac-
and the Tricomi confluent hypergeometric ~function COUNt @ large number of Landau statesvhich causes prob-

W (a,c:z) [48,49 lems in the numerical calculations. Therefore, we present
here a different approach in which the summation avés
performed analytically. Using the following integral repre-

—1/2,2/2 _ .
Z W12 d2) =W (kT 1,12), (B0 sentation of the function? (a,b;z) [Eq. (13.2.5 in Ref.

49]]:
we obtain [49]]
12! d 19 F(a)\I’(a,b;z)=f dte 2 (1 +t)P-a 1
Py - oA 0
fo(@)=(29)"°— | b-a__ ac)
n Re(a)>0, Rez)>0, 2
- )k ! q’+c?
Z‘ (n—k)! nowr Yk+llz), z= 2y we obtain
(B11)

2ac
b(k+1)! ¥(k+2,2;2)+ 5 2(k+ 2)! zW¥(k+3,3;2)
The derivatives ovec in the above equation can be carried g +c

out explicitly using the following property of th#& function

[49] " k+1 ac
. — —Zt]
fo dte 11 b+ q2+022t . (C3
n
F‘I’(a,b;z)z(— 1)"(a),¥(a+n,b+n;z), Using the binomial expansion formula we get
z
n
—2t\k [1-t\"
T'(a+n 2 ( (— , (eZ)
(a),=a(a+1)-- -(a+n—1)=¥ (B12) k=0 1t/ |1+t
I'(a)
so that
The final result is therefore
t [1-t\" ac
fo(@)=(2y )1’2 2 ( )( 2)(k+1)!| bW (k+2,22) -
2ac Introducing Eq.(C5) into Eqg.(C1), and taking into account
+ q2+C2(k+2)z\If(k+3,3;z) ) (B13  the formulas?_,z"=1/(1-2), |z|<1, we obtain
where the parametezr=(q2+c?)/(2y)x(B/B,) 1, where G(Qy,05) = qlqu dxe 22— | b+ E:X
Bo=2.3505x 10° T. For the current experimentally available % 1+x Y

values ofB, one has thaB<B, so thatz>1. In this case we . b y
can simplify Eq.(B13) using the following asymptotic ex- XJ dy e % y b+(aclyly
pansion of thel function[Eg. (13.5.2 in Ref.[49]]: 0 1+y 1-z
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zj= 2y z= 1o x 1+yexn iwgT). (CH)

The condition|z|<1 is fulfilled for x#0 or y#0. For x
=y=0 one must take into account thain Eq. (C1) occurs
as a part of the Green’s functigA9) and should be replaced
by 7—ie, e—07, so thatlexp(—iwg7)|=exp(—swg)<1. Af-
ter the substitutiorz;x—Yy, z,y—X, and using the notation

2ac l-exp(—iwgT)
IBJ pJ 1 p] qj +C H B 27 1]
(C7
we obtain from Eq(C6)
SQ1Q2J°° ye Y(b+ B1y)
G(qy1,9-)= d
(A1.92= 5 0, Jo Y= 7B(pi—27y)
= xe X(b+ ByX)
>(J; dx____;ZIE;____' (C8
where now
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, P2 2y+B(p1—27vy)
2 p1—yB(p1—2yy)’

Because of the presence of the factgrexp(~y) and

x exp(=x), it is convinient to compute the integrals in Eq.
(C9Y) using the generalized Gauss-Laguerre quadrature. Fur-
thermore, using one of the definitions of the exponential in-
tegral of a complex argumentand integer orden [49,5(

(C9

e Z (= e—%n—l
E.(2)= F(n)jo dt S largz|<m, n=1.2,...,
(C10
the integral ovex in Eg. (C8) gives
© xe X(b+ By%)
fo dXTZbeZEZ(Z)+2,BZGZE3(Z).
(C1)

The exponential integré, (z) can be efficiently computed
using the subroutingexiNT from Ref. [50], while the re-
maining integral ovey can be computed using a generalized
Gauss-Laguerre quadrature with the weight functien?.
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