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An implicit algorithm for integration of the three-dimensior{@D) time-dependent Schdinger equation of
an atomic system interacting with intense laser pulses is developed. It is based on a matrix iteration of the
Crank-Nicholson approximant to the short-time propagator usingotiaéHamiltonian(unspli of the system
directly. To test the method, 3D Schiinger wave-packet propagation is carried out, and so-called above-
threshold ionization and high-harmonic generation spectra for atomic hydrogen irradiated by intense laser
pulses are obtained. They are also compared with that obtained using the popular split-operator method. The
present algorithm is shown to provide an alternative to the the split-operator method, and proves to be more
efficient in all the cases studied here. A procedure for optimizing the maximum grid size is also given, and its
usefulness is illustrateddS1050-29479)06409-4

PACS numbse(s): 32.80.Rm, 32.80.Fb, 42.65.Ky

I. INTRODUCTION radial distance and the choice of the gauge of the interac-

tion. Thus, in the length gauge, simulations are most effec-

Interaction of intense aser pulses with atomic systems Nag o \nen the electronic wave packet during the time evolu-
been a subject of much experimental and theoretical mtere%t

since the discovery of such highly nonlinear and yet ubiqui- on does not move too far away from the nucleus at the

tous phenomena as the so-called above-threshold ionizatigp. o €9 when the pulse duration is very short or the laser

(ATI) [1.2] and high-harmonic generatidhiHG) [3.4]. The intensity is moderately weak. For moderately long and strong

ATI orocess is characterized by a sequence of peaks in t fields, electron-field interaction can cause so-called “wave-
P s y d P acket explosion,” i.e., the wave packet propagates very rap-
energy spectrum of ejected electrons, that are separated

o ally away from the nucleus and the computation may fail to
Zzhnetifehgtoencter E?nrgé c():fotr?eeréisterré(;,ivgtlilgnlr;stheemli_:tl_e' S g{??:sjei?:onverge within a managable grid size. This awkward situa-

. P . . S qU€N0n is often avoidable by using the interaction Hamiltonian
cies characterized by odd multiples of the incident laser fre-

quency. In experiments, harmonics well above 100 have! the so-called velocity gaudé4]. Unfortunately, the split-

been observed5,6]. This has stimulated great interest in perator method applied to the interaction in the velocity

) o ) auge can cause the second-order commutation §ooa
view of the possibility of generating a coherent source of ; P
radiation in the vaccum ultraviolet and the soft-x-ray do-9'ven size OfAt) to be large at small radial distancésr

mains[7,8]. Theoretical investigations of such highly nonlin- details see Sec. Il belowNote also that the splitting of the

ear processes require a direct integration of the time—Short't'rne propagator in Eq1) requires in general a triple

- . S matrix product operations per unit time step, and/or it has to
dependent Schdinger equatiof TDSE), that was initiated ; . : .
in the late 198049], and continued vigorously since then Flel]combmed with fast Fourier transfor(RFT) techniques
10]. : . . N ,
[ (])ne of the popular methods for propagating the solution The above considerations suggest that it might be profit-
of the TDSE has been the so-called split-operator metho ble to consider an algorithm which deals directly with the

[11-13, in which the total Hamiltonian operator is separated o'tal Hamiltonian n the short-nmg propagator or its Crapk-
into a sum of two terms: the reference Hamiltontag, and Nicholson approximant, since this might help in reducing

the interaction Hamiltoniai.- the short-time propagation both the noncommutation error and avoid the triple-matrix
o : int» propag product and/or FFT of the short-time propagator in the split-
is given in the form

operator form. The purpose of this paper is to present such a
method and show its usefulness by application to Schro
dinger wave-packet propagation in three dimension. The ef-
ficacy of the method for real problems is shown by applying
The error term in this propagatd®(At)3, is of the third it to the problems of computing the ATl and HHG spectra
order inAt, with coefficients depending on the nonvanishingfor hydrogen atom in intense laser pulses, and for both high
second-order commutator between the unperturbed Hamiknd low carrier frequencies.
tonian and the interaction Hamiltonigof. Eq. (22) below]. The rest of the paper is organized as follows: Sec. Il deals
The method is thus efficient when the error arising from thewith the formal derivation of the algorithm of the present
noncommutation betweed, andH,,; is small. For a given method, referred to below as the “matrix iterative method”
At, this error, however, behaves differently depending on thefor reasons that will be apparent shoytlin Sec. I, using
the simulated wave packets, the spectra of both ATI and
HHG processes are computed. Similar simulations and com-
*Electronic address:ffaisal@physik.uni-bielefeld.de putations of the spectra are carried out using the split-

\I,(r 1+ At) ~ e_iHOAtlze_iHimAtlze_iHOAt/Z\II(r ,t) . (1)
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operator method as well. The results obtained by the twdNext we decompose fiHAt/2 as a sum of diagonal and
methods are compared. Comparisons are made in two r@ondiagonal matrices

gimes of laser frequency, i.e., for frequencies both higher ]

and lower than the Bohr frequency of the target atom. In Sec. 1+iHAt/2=0p+Opp, 9
IV, a method for optimizing the grid size is presented. Fi-
nally, in Sec. V, results are summarized and short remarks o
further prospects of the algorithm are made.

hereOp andOyp are given by

Oé=f S(E)(L+HIHAU2)P(£,)dé,
II. BASIC THEORY AND ALGORITHM &

The Schrdinger equation governing the atom-field inter- =1+iHAL2,
action can be written asve use, unless explicitly given oth-
erwise, Hartree atomic unis=m=#=1 andc~137) oKl = J’g F(E)(L+IHAUR)P (£,)dEy, k#K
2
d .
iEW(r,t):(HOjLHint)\P(r,t), 2 =iHAt/2, k#k', (10

respectively. The explicit solution for eabl(&;,t+ At) can
now be written down by expanding the denominator in a
Taylor series, in the form

whereH, is the unperturbed atomic Hamiltonian, ag is
the interaction Hamiltonian. The solution of Eg) at a time
t+ At is connected to the solution by a short-time propa-

gator that can be written using the full Hamiltonian, in con- N
tradiction to Eq.(1), as bk(gl,t+At)=bE(§1,t+At)+zl Bi(€1,t+AL),
=
W(r,t+At)~e A (r t). (€) (11)
0 i Al
The Crank-Nicholson approximant of the short-time propa-¥herebg andg, i=1,... N are computed recursively:
gator(3) can be expressed 8%5,16| By (£1.1)
0 _ k\S1,
v A _1—iHAt/2\P L iane y bk(§11t+At)_—o|5 ,
(NtHAD= T A v (nO+ 7 (HADS 4
Unfortunately, schemé4) requests an inversion of the ma- — > OKSby (&1,t+AD)
trix representation of (+iHAt/2), which can be very de- BL(E, t+ A = K
manding for a problem involving more than one dimension Kol Q'B '
[11]. In order to avoid such matrix inversions, we introduce
a matrix iterative method below. We may begin by expand- K i1
ing the total wave function in a discrete set of orthonormal —Z ONpByir (€1,1+AL)
basis functiongon which the total Hamiltonian can be given BL(&y t+AD)= Ci=2.... N.
a matrix operator representatjoas of,
(12)
(Y= zk: b(£1,0PW(£2), ) Since schemé&) is unitary, the resulting norm must be equal

to unity. This criterion can be used to choase in such a
whereP,(&,) stands for the basis function in the set of vari- way that the number of terms included in E@1) does not
ables&,, andb,(&;,t) is the corresponding time-dependent €xceed a given maximum number of iteratioNs,
coefficient of expansion in a continuous varialdle The
left-hand side of Eq(4) can now be written as A. Convergence and cost analysis

d(r,t) The condition of convergence of the matrix iterative
bk(gl,t+At)=f dgsz(gz)m, (6) methoc_l can be estimated directly from the expansion of the
&2 +IHAt denominator 1f0p + Oyp) nearOp,

where we have defined 1
Op+Onp

O(r,t)=(1—-iHAt/2)W(r,t)
This is expected to converge provided the ratio of

= P Sk —IH i AtI2)by i/ (€4,1). (7
% k(€2)(Skk kk )b (€1,1).  (7) ‘OND_‘ iHinAU/2 |

“ | 0p | |1T+iHoA2|

<1. (14
Projecting on a basis function on the left, we may write

Note that forAt— 0, the numerator approaches zero and the

D (&, 1)=b(£1,1) =1 > Huebo(&,0)AL2. (8  denominator approaches unity, thus ensuring convergence at
K’ any radial distances, for sufficiently smallAt. Thus, for
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example, for the Schringer equation of interest, the nondi- b A 9
agonal operatoDyp is proportional to the interaction Hamil-  Onp=——{Im| —|I"m ) At/2
tonian times the time increment. Because the leading term of
Op is unity, the criterion of convergence can be expressed as A(t)( o 1"+ n+1I+1) 1
- c E I’ 2 F 1]
E-rAt|<1 for length gauge
| | gfh gaug (15 X At/2, (18)

v |p-AAt/c|<1 for velocity gauge.
whereC;, are the well-known cosine matrix elements

Noting thatAg/c=Ey/w and w=2m/7, where 7 is the Cy»=(1,m|cosé|l"m)
laser period, we may estimale- Ay|/c~Egv 7/27, wherev
is a typical velocity of the electron. In contrad€,-r| \/(I+1—m)(|+1+m)
~Egvn/2 wheren/2 is the number of cycles corresponding - (21+3)(21+1) Sir+1

to the middle of the pulse duratidg~nr. Thus the ratio of

y(velocity gauge)#(length gaugey w/n<1, for all pulses [ (17—m?)
lasting more than say four or more cycles. It should be ex- + mﬁ""‘l' (19
pected, therefore, that in gene(ldr not too short pulseghe
convergence conditiofEqg. (15)], is more readily satisfied in Note that in Eq.(18), the vector potential\(t) of the laser
the velocity gauge, for the same time increméitin the  pulse is assumed to be given in the long-wavelength or di-
respective simulations, than in the length gauge. pole approximation.

We may also estimate the number of operations needed Following the procedure indicated in E¢L2), the first
for each time increment for propagating a coefficibpft),  term of the left-hand side becomes

from Eq.(12). In a typical terms,, OKS b, /O , the number ®
of operations is proportional to the number of discrete basis 0 _ k(€1,1)

: . . : . b(&r, t+A) = ——7—. (20)
functions used in the wave-function expansion; the matrix (0]
inversion is also linear with respect to the number of the grid ) )
points used to discretize the continous variabjebecause The numerator of Eq(20) on the right-hand side can be
the matrix representation @ on the basis of variablé, is evaluated without problem. Moreover, the matrix inversion

k . . . . .

expected to be of the banded type. Thus the total number & Op can also be performed easily, since using the finite-
operations needed for integrating the time-dependent coefffifference formula to approximate the second-order deriva-
cients of the wave function from a timteto t+ At is propor-  tive of ¥(r,t) with respect tor, the inversion problem re-
tional to (number of basis functions used for the matrix rep-duces to a bandedz sy.z,tgm of linear equations. In the case
resentation of the Hamiltonianx (size of the numerical When the operatos/dr< is represented by the three-point

grids used to discretize the radial coordinate (number of ~ scheme, Eq(20) becomes a tridiagonal system of linear
iterations. equations, which can be solved easily by using the standard

LU (lower triangle—upper triangledecomposition method
o [17]. The second and higher terms can be recursively ob-
B. Applications tained from the previous solutiai20) using the same proce-
To test the above procedure and to illustrate the methodiure. For a sufficiently smallt, the number of iterations can
in this section we apply it to the solution of the TDSE for be chosen to ensure that the resulting norm of the wave func-
interaction of a linearly polarized laser pulse with atomiction remains conserved to within a predetermined degree of
hydrogen. The interaction Hamiltonian is chosen in the ve-accuracy.
locity gauge. The wave function is first expanded in the dis-

crete spherical harmonic basis [ll. RESULTS AND DISCUSSIONS
R(r,1) In this section, we present the ATl and HHG spectra cal-
\If(r,t)=2 W(r,0)Yin(6,9), W(r)= r, . culated from the time-dependent wave function obtained
Im

from simulations using both the present method and the well-
(16) known split-operator method. We compare and discuss them
for two different regimes of laser frequencies, i.e., high and
For a linearly polarized laser field we choose the quantizalow frequencies, compared with respect to the binding en-
tion axis along the laser polarization direction, so that theergy of the hydrogen atom, separately.
magnetic quantum numben is conserved.
The diagonal elements of the denominator in E).on A. High-frequency regime

the spherical harmonic basis are given by In the high-frequency regime, we have chosen a typical

w=1(a.u.)=27.21 eV such that absorption of a single pho-
| | 14 1(0+1) z ton can ionize the atonfbut absorption of more than one
Op=1+i| —5——+——>—[At2, (17 photon is, of course, automatically allowed )oThe laser
o 2mr intensity is chosen to ble= 3.5x 10'® W/cn?, corresponding
to one unit of atomic field strength. The pulse is chosen to be
and the nondiagonal matrix elements 15 cycle long, with a five-cycle strturn-on, followed by a
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. S — TABLE I. Comparison of the consumed CPU time for propa-
— Mi(pA gauge) ] gating th_e TDSE using two Qiﬁerent methods_, and gauges. The
— gg Eg}: g:gg:)) ] propagations were started using a variable grid-boundary method

E with accuracy parametar=10"2 (see Sec. Y. Ry(T) is the ra-

> dial boundary reached at the end of the pulse lagg, is the maxi-

g mum value ofl.

s

% Gauge Method bax  RmaT) CPU time

ke (seconds

a
Velocity MI 6 307.4 416.13
Velocity SO 6 648 1062.47
Length SO 50 333.4 6530.25

L T O PIUTE P N 4 (]
0 25 50 75 100 125 150 175 200 225 250 275 300
Electron Energy (eV)

FIG. 1. Comparison of the ATI spectra of atomic hydrogen in antUM Lmaxas high as 50 compared kg,,,=6 in the velocity-
intense laser fieldl = 3.5x 10" W/cm?, w=1 a.u., and the pulse gauge calculations using both Ml and SO methods. This is to

duration is equal to 15 cycles. Spectra are obtained using thbe expected, as indicated earlier, due to the large distances to
matrix-iterative(MI) method(solid ling) and the split-operatdiSO) which the interaction operator remain effective in this gauge,
method(fine dotted ling. The result obtained using the SO method and the fact that the angular momentum is related to the
in the length gaugédotted ling is also shown for comparison. distance(and momentumof the electron by the relatioh
=rXp. We have also found that for longer pulse durations

five-cycle constant and a five-cycle édarn-off. The radial  than in this calculation the length-gauge simulation with
coordinate is discretized iar=0.1 a.u. Since we are inter- evenly,=50 could not provide converged results.

ested in comparing the spectrum of ATl in a rather wide The total ionization probability computed by integrating
range of energy (0—300 eV), the time increment for propathe ATI spectra over the energy distributions for both MI and
gation must be small enough. We have chosah SO spectra in the velocity gauge is found tofg,=0.998,
=0.025 a.u. for the illustrative simulations. The total waveindicating that the atom is almost completely ionized in the
packets are simulated, first, using the present total Hamilpresent case at the end of the pulse. In comparison, the total
tonian matrix-iterationfor MI) method starting with a given ionization probability at the end of the turn-gfive cycles
initial state(here, the ground state of the H atpatt=0 and is found to be about 80%. We may also note that the most
integrating till the end of the pulse duratidnere at the end energetic electrons in this case contribute to the total ioniza-
of 15 cycles. The ATI spectrum is then calculated directly tion probability by less than one part per thousand.

by projecting the simulated wave packet at the end of the We have run all three programs along with a grid-size
pulse on to the field-free continuum eigenfunctiofgsg.,  optimization procedure using a so-called variable-grid
Ref.[18], p. 90 of the hydrogen atom for a large number of boundary condition[19] with an accuracy paramete¢
positive-energy eigenfunctions. Next the simulations are car=10"8 for the ratio of the wave-packet density at the bound-
ried out for the same parameters of the field using the splitary of the grid to the maximum; this procedure is discussed
operator(SO) method, and the corresponding ATI spectrumin Sec. IV below. The maximum size of the grid at the end of
was obtained in the same way as above. For the simulatiorthe pulse duratiofl is shown as ,,,(T) (cf. Table ). Itis to

in general, the velocity gauge has been used. However, fdye noted that in the length gauge, although the wave packet
the split-operator method the length-gauge simulations wereay move to larger angular momenta at intermediate times,
also carried out for the sake of comparison. it can return to smaller ones at the end of the pulse.

In the following figure and table we present typical results  Perhaps the most interesting quantities to be compared are
of calculations using the present matrix-iteration method andhe CPU times consumed by the three programs for the simu-
the split-operator method, and discuss them with respect tlations of the ATI spectra of Fig. 1. We compare the CPU
the computation of the ATI spectrum or the HHG spectrumtimes, along with a few related parameters, in Table I. All
at a high frequency. programs were run on a Digital Alpha 288work station. It

Figure 1 displays the ATI spectra for the field parameterss seen that the present meth@dl) requires significantly
above, obtained from the wave-packet simulations using Mless than half the CPU time compared to that required for the
in the velocity gaugésolid line), SO in the velocity gauge SO method in the velocity gauge, and that both are to be
(fine dotted ling, and SO in the length gaugdotted ling.  preferred compared to the SO method in the length gauge.
One can immediately see that the velocity-gauge MI simula- Another quantity of much physical interest is the spec-
tions agree quite well with the length-gauge SO simulationgrum of the emitted high harmoni¢slHG) in intense fields.
throughout the spectral range, except perhaps near thEne wave packet at shorter distances is expected to influence
minima of the individual ATI “lines.” On the other hand, the HHG spectra quite strongly. Hence the latter spectrum
the velocity-gauge SO simulation agrees with the velocity-might be more sensitive to the quality of the wave function at
gauge MI simulations but up to about 150 eV, and clearlyshorter distances than that of ATI. In view of this, it is inter-
differ significantly for the higher energies. However, to ob-esting to check the simulated wave function for small radial
tain the above length-gauge result required a much more exlistances, i.e., in regions near the origansingular point of
tensive calculation involving a maximum angular momen-the radial Hamiltoniah using the matrix-iteration method
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T T T T Ats
— Mi {p-A gauge) O(At)?’: - ﬂ([HOa[HOvHint]]"'Z[Hinta[HOaHint]])-

— SO (p-A gauge)
______ SO (Er gauge) (22)

Since for smallr the interaction Hamiltonian in the radial
coordinate in the velocity gauge is proportional to the inverse
of r, it can be easily seen by direct calculation that the coef-
ficient of the leading error for small is in proportion to
r—°At® (and in fact is strongly divergent at the origiThis
_ effect is difficult to eliminate in practice, even by setting

\ _ to be very small. Consequently, the simulated wave function,
o MM A with any moderaté\t, at small radial distances is proven to
1 2 3 4 5 6 7 8 9 10 be unstable at short distances.

Harmonic Order This problem does not arise in the matrix-iteration

method, since in the present case the error term in4ds

Power Spectrum

FIG. 2. Comparison of HHGhigh-harmonic generatigrspectra
computed (in velocity gauge from the present matrix-iterative
method(solid line) and from the split-operator methdfine dotted
line). The result obtained using the SO method in the length gauge
is also shown for compariso(dotted ling. All spectra are com-
puted on the basis of the expectation value of the acceleration OF\JN
erator.

O(Atd) = %(HAt)3, (23

hereH is the total Hamiltonian operator. Note that Eg3)
does not contain any commutator and hence, for small
does not increase faster th@{1/r?), and by using a mod-
erate value of the time increment, it can be made to be
"Umall. Note also that for smailin the iteration scheme of the
present methodlEq. (12)], the nondiagonal operator in the
A T o ) numerator iSO(1/r), while the diagonal operator in the de-
=2(t) in the direction of polarization, the corresponding €x- nominator isO(1/r2), and hence the ratio remains bounded
pectation value of the acceleration operator can be written il .0 |t is also worth noting that for a large angular mo-
the form mentuml, the numerator increases proportionall tavhile
the denominator increases proportional {omaking the ra-

and the split-operator method.

The HHG spectrum can be obtained from the expectatio
value of the acceleration operati@0]. Thus, from Heisen-
berg’s equation of motion for the momentum operator p

(Z(O)=(h(r, D]V V([ g(r,1) tio to decrease a®(1/1) with increasing, thereby helping in
thel-convergence of the matrix-iteration method. Finally, the
cosf : X .
:< (1 b) . w(r,t)>. (21 spectrum computed using the split-operator method in the
r velocity gauge in Fig. 2 is clearly of unacceptable quality.

Note that the acceleration operator is proportional to the in-
verse square af. This is the reason why one expects that the )
HHG spectrum would be sensitive to the behavior of the Simulations of the time-dependent Sotlirger wave
wave packet near the nucleus. The spectra of high-harmonigacket for low-frequency4<E,) laser pulses are generally
generation are proportional to the modulo square of the Foumore arduous, particularly when many photons are required
rier transform of the quantum expectation value of the accelto ionize the atom. It is therefore worthwhile to consider the
eration operator. efficacy or otherwise of the present meth@ddl) in this fre-

In Fig. 2 we display and compare the HHG spectra calcugquency domain as well. In the following simulations, the
lated from wave packets simulated using the present Mlaser parameters are chosen todpe 2.04 eV, with a peak
method(solid curve and the SO methotfine dotted curve  intensity | =6x 10" W/cn? and a pulse duratiorm =16
In addition, we show the HHG spectrum calculated using theeycles(a four-cycle sih turn-on, an eight cycle constant, and
SO method in the length gaugeotted curve They are ob-  a four-cycle co$turn-off). The time incremenat is chosen
tained for the same wave-packet simulations from which théo be 0.1 a.u., and the radial coordinate is discretizedrin
ATI spectra are shown in Fig. 1. =0.1 a.u. The computations were conducted in the velocity

From Fig. 2, one can see that the spectrum computedauge, since we have noticed that the length-gauge calcula-
using the SO method in the length gauge agree with thations for parameters above even with,,,=50 do not pro-
calculated by Ml in the velocity gauge with the main peaksvide a converged result.
up to about the fifth harmonic, whereas the spectrum ob- In Fig. 3, we show the ATI spectra obtained as before
tained in this case from the SO method in the velocity gaugeising the wave-packet simulations by Ml and SO methods.
is clearly unacceptable. This comparison appears to confirfihe results are shown both on a linear sdaeand, for a
the expectation that MI can provide a more accurate waveomparison at higher energies, on a logarithmic s@alelt
function at shorter distances than that obtained by the splittan clearly be seen from pan@) that the MI method pro-
operator methodin the velocity gauge vides a much more stable calculation of the spectra through-

This difference is better understood by noting that, in theout the energy range of interest, while calculation by the SO
case of the split-operator method, the error term in(Egis  method becomes unreliable after about the first few peaks.

B. Low-frequency regime
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FIG. 3. Comparison of the ATI spectra, computed using the matrix-iter@Ng method(solid line) and the split-operatdiISO) method
(fine dotted ling. The simulations were carried out using a laser interisitg x 10** W/cn?, a laser frequencw=2.04 eV, and a pulse
duration of 16 cycles. Both ATI spectra are obtained ugipg,=10,Ar=0.1 a.u., and\t=0.1 a.u.

We may check the self-consistency of the simulations by
observing to what extent the theoretical constraint

PionT Pbound= NOrm, (24)

is satisfied, whereP,,, is the energy-integrated ionization
probability obtained by projecting on the continuum states,
andPy.,nqis the converged sum of the probability of finding

the electron in the bound states. In Table Il we show the

results computed at the end of the laser pulse. It can be seer

from this table that the MI method with la,,,, between 10 =
and 15 is consistent with this test to within 2:1000, while the
SO method in this case clearly does poorly. We may also
compare the corresponding simulated wave packets by con-
sidering the evolution of the probability density of finding
the electron along the polarization axis. The results are
shown in Fig. 4, for the MI method in pan@), and for the

SO method in panéb). One can clearly see that the prob-
ability density computed using the Ml method in this case
behaves much more regularly than that computed using the
split-operator method.

We note parenthetically that for the case simulated here
(w=0.075 a.u., and a pulse duration of 16 cytlé® exact
probability of ionization does not follow the tunnel ioniza-
tion probability. This may be seen from the probability,
P(tp) =1—exp(=It,), computed from the tunnel rate for-
mula, I'=4+/3/(mEq)exp(—2/3E,), that turns out to be sig-
nificantly smaller compared to that of the converged simula-
tion, shown in Table Il. Therefore, one should be cautious in
employing tunnel rates in analyzing experimental results for
such laser parameters.

=
f g
]

'
=

g

TABLE II. A table testing the consistency of wave functions
simulated under the same parameters as in Fig. 3 using two differ- ==
ent methods and in two different gauges. SO and Ml stand for the igcf; o
split operator method and the present matrix iterative method, re-
spectively. Note that the theoretical identRy,,+ Pyoung= norm is =
better satisfied in the Ml method. =

GauQG Method ‘nax Pion Pbound Pi0n+ Pbound Norm

Velocity SO 10 0.0089 0.6345 0.6434 0.9157
Velocity SO 20 0.0089 0.6471 0.6560 0.9454  FIG. 4. Portrait of the spatial probability density along the po-
Velocity Mi 10 0.0145 0.9843 0.9988 0.9989 larization axis under the same grid parameters as in Fig. 3, obtained

Velocity Ml 15 0.0145 0.9844 0.9989 0.9989 from the presentMI) method[panel(a)] and that from the split-
operator methodlpanel(b)].
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10° — : : - e , interaction is turned on, the wave packet begins to propagate.
: —MIg 1 Since the current density of the wave packet must obey the
2 P-A gauge) . L ..
107 ¢ -~ 80 {p-A gauge) E continuity law(e.g., Ref[22]), it is unrealistic to expect that

that the wave packet can “spring” too far away from its
earlier position during the propagation. Thus, before the
wave packet travels further, an outer radial point will be
disturbed by a small oscillatiofbefore the bulk of the wave
packet passes this poindue to the interaction occurring at
inner radial distances. A parameter which may suitably char-
acterize the sensitivity of the effect of interaction reaching
the edge of the grid may be introduced to control the succes-
sive shifts of the boundary to a point somewhat further out-
! ward from a previous point. Thus the grid boundary will be

Power Spectrum

1t 3 5 7 9 11 13 15 17 18 allowed to move outward from a few atomic units to the
Harmonic Order maximum value necessary during the time propagation of the

FIG. 5. Comparison of the HHG spectra, obtained using thewave packet, by checking the relative size of the wave

packet, at different times, near a moving boundary with re-
spect to its maxima appearing behind it.

To illustrate, consider the MI simulation as in Sec. Il A.
In this case, the initial grid edge,.(to) is set to be 20 a.u.

In Fig. 5 we compare the corresponding high-harmonicAS th_e interaction is turngd_on, the effect of int_era_c'_[ion
spectra calculated by the matrix-iteration and split-operatof€aching the edge of the grid is measured for each individual
methods, based on the modulo square of the Fourier tran®artial wave packet cgargctenzed by thze valuezpf by
form of the acceleration expectation value. As in the case ofomparing|Ri[r ma,(t).t]|* with max(R(r.H)l* r=0. . .1 may.
the high-frequency regime, the high-harmonic spectrum obP€fine 7 as a parameter of sensitivity,
tained by the split-operator method is clearly unacceptable. IR (T mas )|
Note that the HHG spectrum calculated by the MI method M= 2
shows, as might be expected, a considerably larger number max (Ri(r,t))]
of peaks(e.g., up to the 13th harmonic at a signal level ofthen the wave-packet density at the grid edge may be con-
1019 at this lower frequency, compared to titahly up to  sidered as negligibly small if <e, wheree is a preassigned
the third harmonic, at the same signal lgvigl the high-  accuracy constant which may be varied as a function of the
frequency case shown in Fig. 2. corresponding partial nornilf necessary, the value efmay

As in the case of the high-frequency regime, both pro-be selected in such a way that the wave function can be
grams were started using a variable-grid boundary with durther tested to be convergent with respect to that obtained
precision parametesr=10"2. In the case of the Ml method, by using a fixed large grit When 7> €, r.(t) must be
the boundary was found to move up to 1408 a.u., whereas iaxtended with a fewone or mor¢ steps such that the new
the case of the SO method it moved to more than 2000 a.lpoundary r . {t+At)=r () +nAr for all partial waves,
Finally we note the CPU time needed by the codes for thevheren is the number of steps found to be necessary for
above simulations. The MI program consumed approxi-extension of the grid.
mately 2.3 h, while the SO program consumed more than 6.5 In Figs. §a)—6(c), we show a series of calculated prob-
h, on a digital personal workstation Alpha 58 ability densities on the positiv2 axis at the end of the pulse,
T=15 cycles, by setting the parameter 10 2,10 4, and
108, respectively. It is found that the corresponding grid
boundaryr ,,,(T) is required to be shifted to 225.6, 233.2,

Theoretically the interval of the radial coordinates usedand 307.4 a.u., respectively, to attain these accuracies. As a
for integrating the TDSE ranges from zero to infinity. Sincecomparison of the quality of the above results we show the
in numerical works it is impossible to expand the radial dis-probability density calculated by using a preassigned grid
tances up to infinity, usually a maximum value of the radialboundary af ,,,=500 a.u., in Fig. &l). It can be seen that
distance is introduced at the outset and kept fixed during ththe results obtained by using=10" 2 and the corresponding
integration. If the wave packet reaches this boundary, an algrid-size of about 307.4 a.ypanel (c)] is in very good
sorbing potential or mask function is usually applied to mini-agreement with that in Fig.(6) obtained with a preassigned
mize the effects of reflectiof21]. However, it is difficult to  fixed grid size of 500 a.u.
obtain a quality wave function using masking or absorption The corresponding ATI spectra obtained using the grid-
potential procedures for the computation of the ATI spectravariable boundary method are shown in Fig. 7. It can be seen
However, often the need for presetting a large radial grid fothat the result obtained using=10 * does not provide a
simulating the wave packet for the ATI calculation may besatisfactory spectrum, while that obtained wéth 108 pro-
very time consuming. To reduce this problem, an alternativerides excellent agreemertvirtually indistinguishablg for
procedure, developed and used in this work, is to introduce alectron energies as high as about 190 eV, with the fixed
so-called variable-grid boundary condition. The idea behindarger grid calculation; for very high-energy electrons with
the procedure may be summarized as follows. Assume thatrobabilities less than 16, clearly a smaller value ot
the wave packet is initially located near the core. As thewould be needed.

matrix-iterative(Ml) method(solid line) and the split-operatqiSO)
method(fine dotted ling. The laser parameters used for simulations
are the same as those in Fig. 3.

(29

IV. VARIABLE-GRID BOUNDARY CONDITION
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The usefulness of the variable-grid boundary conditionefficiently integrating the time dependent Satiger equa-
introduced here can be seen by considering the large diffetion of a three-dimensional atom coupled to an intense laser
ence of consumed CPU times involved. In the case of a ﬁXEﬂe|d_ The a|gorithm is based on the short time propagator
large grid with Ry,,=500 a.u., the simulation of the spec- inyolving thetotal Hamiltonian, i.e., without splitting into a
trum required a CPU timéon a Aplha 2,5?’0 work station  gm of a reference Hamiltonian and an interaction Hamil-
of 2}22 sec, while using variable-grid boundary with  (onian and its Crank-NicholsofCN) approximant. Instead
=10"" required 432 sec, nearly a fifth of the former. of a direct matrix inversion of the denominator of the CN

We may note parenthetically that in the present Va”ableépproximant, an efficient matrix iteration based on the Tay-

grid b(_)undary condition approach, i deswgd, an absorbmqor expansion of the denominator matrix around its diagonal
potential or a mask function may also be introduced at or__ " S L . .
art is used. A grid-size optimization procedure is also intro-

beyond the maximum size reached by the time-depende S . .
grid boundaryr ,.(T) for a givene. IEi}uced which is based on a moving boundary of the grid by a

prerequired accuracy criterion for the ratio of the wave
V. SUMMARY AND CONCLUSIONS packet maxima and its value at the boundary for elacit
) o ) different times, that is checked during the propagation.
'I_'o summarize, we have_z develc_)ped a matrix-iteration al- Tq test the efficacy of the algorithm, both Sctirger
gorithm, along with a variable-grid boundary method, for\aye-packet evolutions are simulated using the present

10' . , : — ,, ‘ , method and the well-known split-operator method, for both
100 b —— tred boundary, ., =600 a., | 3 _hlg_h- a_md low-frequency Iaser pulses_. The aboye-threshold
100 b —— variable-grid boundary, e=107, ionization (ATI) and the high-harmonic generatighlHG)

~~~~~~ variable-grid boundary, e=10 3

spectra are constructed for H atom, and the results are com-

107 . o .
Z - pared. It is found that the present matrix-iteratiovdl)
g e method can provide a useful alternative to the popular split-
Ea operator(SO) method, especially when the latter method be-
8 10_6 comes inefficient.
10
£ 107
107°
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