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Numerical solution of time-dependent Schro¨dinger equation for multiphoton processes:
A matrix iterative method

M. Nurhuda1,2 and F. H. M. Faisal1,*
1Fakultät für Physik, Universita¨t Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

2Physics Department, Brawijaya University, Malang 65144, Indonesia
~Received 30 March 1999!

An implicit algorithm for integration of the three-dimensional~3D! time-dependent Schro¨dinger equation of
an atomic system interacting with intense laser pulses is developed. It is based on a matrix iteration of the
Crank-Nicholson approximant to the short-time propagator using thetotal Hamiltonian~unsplit! of the system
directly. To test the method, 3D Schro¨dinger wave-packet propagation is carried out, and so-called above-
threshold ionization and high-harmonic generation spectra for atomic hydrogen irradiated by intense laser
pulses are obtained. They are also compared with that obtained using the popular split-operator method. The
present algorithm is shown to provide an alternative to the the split-operator method, and proves to be more
efficient in all the cases studied here. A procedure for optimizing the maximum grid size is also given, and its
usefulness is illustrated.@S1050-2947~99!06409-4#

PACS number~s!: 32.80.Rm, 32.80.Fb, 42.65.Ky
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I. INTRODUCTION

Interaction of intense laser pulses with atomic systems
been a subject of much experimental and theoretical inte
since the discovery of such highly nonlinear and yet ubiq
tous phenomena as the so-called above-threshold ioniza
~ATI ! @1,2# and high-harmonic generation~HHG! @3,4#. The
ATI process is characterized by a sequence of peaks in
energy spectrum of ejected electrons, that are separate
the photon energy of the laser, while in the HHG process
entire spectrum of coherent radiation is emitted at frequ
cies characterized by odd multiples of the incident laser
quency. In experiments, harmonics well above 100 h
been observed@5,6#. This has stimulated great interest
view of the possibility of generating a coherent source
radiation in the vaccum ultraviolet and the soft-x-ray d
mains@7,8#. Theoretical investigations of such highly nonlin
ear processes require a direct integration of the tim
dependent Schro¨dinger equation~TDSE!, that was initiated
in the late 1980s@9#, and continued vigorously since the
@10#.

One of the popular methods for propagating the solut
of the TDSE has been the so-called split-operator met
@11–13#, in which the total Hamiltonian operator is separat
into a sum of two terms; the reference HamiltonianH0, and
the interaction HamiltonianH int ; the short-time propagation
is given in the form

C~r ,t1Dt !'e2 iH 0Dt/2e2 iH intDt/2e2 iH 0Dt/2C~r ,t !. ~1!

The error term in this propagator,O(Dt)3, is of the third
order inDt, with coefficients depending on the nonvanishi
second-order commutator between the unperturbed Ha
tonian and the interaction Hamiltonian@cf. Eq. ~22! below#.
The method is thus efficient when the error arising from
noncommutation betweenH0 andH int is small. For a given
Dt, this error, however, behaves differently depending on
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radial distancer and the choice of the gauge of the intera
tion. Thus, in the length gauge, simulations are most eff
tive when the electronic wave packet during the time evo
tion does not move too far away from the nucleus at
origin, e.g., when the pulse duration is very short or the la
intensity is moderately weak. For moderately long and stro
fields, electron-field interaction can cause so-called ‘‘wa
packet explosion,’’ i.e., the wave packet propagates very r
idly away from the nucleus and the computation may fail
converge within a managable grid size. This awkward sit
tion is often avoidable by using the interaction Hamiltoni
in the so-called velocity gauge@14#. Unfortunately, the split-
operator method applied to the interaction in the veloc
gauge can cause the second-order commutation error~for a
given size ofDt) to be large at small radial distances~for
details see Sec. III below!. Note also that the splitting of the
short-time propagator in Eq.~1! requires in general a triple
matrix product operations per unit time step, and/or it has
be combined with fast Fourier transform~FFT! techniques
@11#.

The above considerations suggest that it might be pro
able to consider an algorithm which deals directly with t
total Hamiltonian in the short-time propagator or its Cran
Nicholson approximant, since this might help in reduci
both the noncommutation error and avoid the triple-mat
product and/or FFT of the short-time propagator in the sp
operator form. The purpose of this paper is to present su
method and show its usefulness by application to Sch¨-
dinger wave-packet propagation in three dimension. The
ficacy of the method for real problems is shown by applyi
it to the problems of computing the ATI and HHG spect
for hydrogen atom in intense laser pulses, and for both h
and low carrier frequencies.

The rest of the paper is organized as follows: Sec. II de
with the formal derivation of the algorithm of the prese
method, referred to below as the ‘‘matrix iterative method
~for reasons that will be apparent shortly!. In Sec. III, using
the simulated wave packets, the spectra of both ATI a
HHG processes are computed. Similar simulations and c
putations of the spectra are carried out using the sp
3125 ©1999 The American Physical Society
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3126 PRA 60M. NURHUDA AND F. H. M. FAISAL
operator method as well. The results obtained by the
methods are compared. Comparisons are made in two
gimes of laser frequency, i.e., for frequencies both hig
and lower than the Bohr frequency of the target atom. In S
IV, a method for optimizing the grid size is presented.
nally, in Sec. V, results are summarized and short remark
further prospects of the algorithm are made.

II. BASIC THEORY AND ALGORITHM

The Schro¨dinger equation governing the atom-field inte
action can be written as~we use, unless explicitly given oth
erwise, Hartree atomic unitse5m5\51 andc'137)

i
]

]t
C~r ,t !5~H01H int!C~r ,t !, ~2!

whereH0 is the unperturbed atomic Hamiltonian, andH int is
the interaction Hamiltonian. The solution of Eq.~2! at a time
t1Dt is connected to the solution att by a short-time propa-
gator that can be written using the full Hamiltonian, in co
tradiction to Eq.~1!, as

C~r ,t1Dt !'e2 iHDtC~r ,t !. ~3!

The Crank-Nicholson approximant of the short-time prop
gator ~3! can be expressed as@15,16#

C~r ,t1Dt !5
12 iHDt/2

11 iHDt/2
C~r ,t !1

1

4
~HDt !3. ~4!

Unfortunately, scheme~4! requests an inversion of the ma
trix representation of (11 iHDt/2), which can be very de
manding for a problem involving more than one dimens
@11#. In order to avoid such matrix inversions, we introdu
a matrix iterative method below. We may begin by expan
ing the total wave function in a discrete set of orthonorm
basis functions~on which the total Hamiltonian can be give
a matrix operator representation! as

C~r ,t !5(
k

bk~j1 ,t !Pk~j2!, ~5!

wherePk(j2) stands for the basis function in the set of va
ablesj2, andbk(j1 ,t) is the corresponding time-depende
coefficient of expansion in a continuous variablej1. The
left-hand side of Eq.~4! can now be written as

bk~j1 ,t1Dt !5E
j2

dj2Pk~j2!
F~r ,t !

11 iHDt/2
, ~6!

where we have defined

F~r ,t !5~12 iHDt/2!C~r ,t !

5(
kk8

Pk~j2!~dkk82 iH kk8Dt/2!bk8~j1 ,t !. ~7!

Projecting on a basis function on the left, we may write

Fk~j1 ,t !5bk~j1 ,t !2 i(
k8

Hkk8bk8~j1 ,t !Dt/2. ~8!
o
re-
r
c.
-
on

-

-

-
l

Next we decompose 11 iHDt/2 as a sum of diagonal an
nondiagonal matrices

11 iHDt/25OD1OND , ~9!

whereOD andOND are given by

OD
k 5E

j2

Pk* ~j2!~11 iHDt/2!Pk~j2!dj2

511 iH kkDt/2,

OND
kk85E

j2

Pk* ~j2!~11 iHDt/2!Pk8~j2!dj2, kÞk8

5 iH kk8Dt/2, kÞk8, ~10!

respectively. The explicit solution for eachbk(j1 ,t1Dt) can
now be written down by expanding the denominator in
Taylor series, in the form

bk~j1 ,t1Dt !5bk
0~j1 ,t1Dt !1(

i 51

N

bk
i ~j1 ,t1Dt !,

~11!

wherebk
0 andbk

i , i 51, . . . ,N are computed recursively:

bk
0~j1 ,t1Dt !5

Fk~j1 ,t !

OD
k

,

bk
1~j1 ,t1Dt !5

2(
k8

OND
kk8bk8

0
~j1 ,t1Dt !

OD
k

,

bk
i ~j1 ,t1Dt !5

2(
k8

OND
kk8bk8

i 21
~j1 ,t1Dt !

OD
k

, i 52, . . . ,N.

~12!

Since scheme~4! is unitary, the resulting norm must be equ
to unity. This criterion can be used to chooseDt in such a
way that the number of terms included in Eq.~11! does not
exceed a given maximum number of iterations,N.

A. Convergence and cost analysis

The condition of convergence of the matrix iterativ
method can be estimated directly from the expansion of
denominator 1/(OD1OND) nearOD ,

1

OD1OND
5S •••1

OND

OD

OND

OD
2

OND

OD
11D 1

OD
. ~13!

This is expected to converge provided the ratio of

g5UOND

OD
U5U iH intDt/2

11 iH 0Dt/2U,1. ~14!

Note that forDt→0, the numerator approaches zero and
denominator approaches unity, thus ensuring convergenc
any radial distancesr, for sufficiently smallDt. Thus, for
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PRA 60 3127NUMERICAL SOLUTION OF THE TIME-DEPENDENT . . .
example, for the Schro¨dinger equation of interest, the nond
agonal operatorOND is proportional to the interaction Hamil
tonian times the time increment. Because the leading term
OD is unity, the criterion of convergence can be expresse

g.H uE•rDtu,1 for length gauge

up•ADt/cu,1 for velocity gauge.
~15!

Noting that A0 /c5E0 /v and v52p/t, wheret is the
laser period, we may estimateup•A0u/c'E0vt/2p, wherev
is a typical velocity of the electron. In contrast,uE0•r u
'E0vtn/2 wheren/2 is the number of cycles correspondin
to the middle of the pulse durationtp'nt. Thus the ratio of
g(velocity gauge)/g(length gauge)'p/n,1, for all pulses
lasting more than say four or more cycles. It should be
pected, therefore, that in general~for not too short pulses! the
convergence condition@Eq. ~15!#, is more readily satisfied in
the velocity gauge, for the same time incrementDt in the
respective simulations, than in the length gauge.

We may also estimate the number of operations nee
for each time increment for propagating a coefficientbk(t),

from Eq.~12!. In a typical term(k8OND
kk8bk8 /OD

k , the number
of operations is proportional to the number of discrete ba
functions used in the wave-function expansion; the ma
inversion is also linear with respect to the number of the g
points used to discretize the continous variablej1, because
the matrix representation ofOD

k on the basis of variablej1 is
expected to be of the banded type. Thus the total numbe
operations needed for integrating the time-dependent co
cients of the wave function from a timet to t1Dt is propor-
tional to ~number of basis functions used for the matrix re
resentation of the Hamiltonian! 3 ~size of the numerica
grids used to discretize the radial coordinate! 3 ~number of
iterations!.

B. Applications

To test the above procedure and to illustrate the meth
in this section we apply it to the solution of the TDSE f
interaction of a linearly polarized laser pulse with atom
hydrogen. The interaction Hamiltonian is chosen in the
locity gauge. The wave function is first expanded in the d
crete spherical harmonic basis

C~r ,t !5(
lm

C l~r ,t !Ylm~u,q!, C l~r !5
Rl~r ,t !

r
.

~16!

For a linearly polarized laser field we choose the quant
tion axis along the laser polarization direction, so that
magnetic quantum numberm is conserved.

The diagonal elements of the denominator in Eq.~9! on
the spherical harmonic basis are given by

OD
l 511 i S 2

1

2

]2

]r 2
1

l ~ l 11!

2mr2
2

z

r D Dt/2, ~17!

and the nondiagonal matrix elements
of
as

-

ed
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x
d
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-
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-
-

-
e

OND
l l 8 5

A~ t !

c K lmU ]

]zU l 8mL Dt/2

5
A~ t !

c S ]

]r
Cll 81

„2 l 8~ l 811!1 l ~ l 11!…

2

1

r
Cll 8D ,

3Dt/2, ~18!

whereCll 8 are the well-known cosine matrix elements

Cll 85^ l ,mucosuu l 8m&

5A~ l 112m!~ l 111m!

~2l 13!~2l 11!
d l 8,l 11

1A ~ l 22m2!

~2l 11!~2l 21!
d l 8,l 21 . ~19!

Note that in Eq.~18!, the vector potentialA(t) of the laser
pulse is assumed to be given in the long-wavelength or
pole approximation.

Following the procedure indicated in Eq.~12!, the first
term of the left-hand side becomes

bk
0~j1 ,t1Dt !5

Fk~j1 ,t !

OD
k

. ~20!

The numerator of Eq.~20! on the right-hand side can b
evaluated without problem. Moreover, the matrix inversi
of OD

k can also be performed easily, since using the fin
difference formula to approximate the second-order deri
tive of C(r ,t) with respect tor, the inversion problem re-
duces to a banded system of linear equations. In the c
when the operator]2/]r 2 is represented by the three-poi
scheme, Eq.~20! becomes a tridiagonal system of line
equations, which can be solved easily by using the stand
LU ~lower triangle–upper triangle! decomposition method
@17#. The second and higher terms can be recursively
tained from the previous solution~20! using the same proce
dure. For a sufficiently smallDt, the number of iterations can
be chosen to ensure that the resulting norm of the wave fu
tion remains conserved to within a predetermined degre
accuracy.

III. RESULTS AND DISCUSSIONS

In this section, we present the ATI and HHG spectra c
culated from the time-dependent wave function obtain
from simulations using both the present method and the w
known split-operator method. We compare and discuss th
for two different regimes of laser frequencies, i.e., high a
low frequencies, compared with respect to the binding
ergy of the hydrogen atom, separately.

A. High-frequency regime

In the high-frequency regime, we have chosen a typi
v51(a.u.)527.21 eV such that absorption of a single ph
ton can ionize the atom~but absorption of more than on
photon is, of course, automatically allowed for!. The laser
intensity is chosen to beI 53.531016 W/cm2, corresponding
to one unit of atomic field strength. The pulse is chosen to
15 cycle long, with a five-cycle sin2 turn-on, followed by a
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3128 PRA 60M. NURHUDA AND F. H. M. FAISAL
five-cycle constant and a five-cycle cos2 turn-off. The radial
coordinate is discretized inDr 50.1 a.u. Since we are inter
ested in comparing the spectrum of ATI in a rather wi
range of energy (0 –300 eV), the time increment for pro
gation must be small enough. We have chosenDt
50.025 a.u. for the illustrative simulations. The total wa
packets are simulated, first, using the present total Ha
tonian matrix-iteration~or MI! method starting with a given
initial state~here, the ground state of the H atom! at t50 and
integrating till the end of the pulse duration~here at the end
of 15 cycles!. The ATI spectrum is then calculated direct
by projecting the simulated wave packet at the end of
pulse on to the field-free continuum eigenfunctions~e.g.,
Ref. @18#, p. 90! of the hydrogen atom for a large number
positive-energy eigenfunctions. Next the simulations are c
ried out for the same parameters of the field using the s
operator~SO! method, and the corresponding ATI spectru
was obtained in the same way as above. For the simulat
in general, the velocity gauge has been used. However
the split-operator method the length-gauge simulations w
also carried out for the sake of comparison.

In the following figure and table we present typical resu
of calculations using the present matrix-iteration method
the split-operator method, and discuss them with respec
the computation of the ATI spectrum or the HHG spectru
at a high frequency.

Figure 1 displays the ATI spectra for the field paramet
above, obtained from the wave-packet simulations using
in the velocity gauge~solid line!, SO in the velocity gauge
~fine dotted line!, and SO in the length gauge~dotted line!.
One can immediately see that the velocity-gauge MI simu
tions agree quite well with the length-gauge SO simulatio
throughout the spectral range, except perhaps near
minima of the individual ATI ‘‘lines.’’ On the other hand
the velocity-gauge SO simulation agrees with the veloc
gauge MI simulations but up to about 150 eV, and clea
differ significantly for the higher energies. However, to o
tain the above length-gauge result required a much more
tensive calculation involving a maximum angular mome

FIG. 1. Comparison of the ATI spectra of atomic hydrogen in
intense laser field:I 53.531016 W/cm2, v51 a.u., and the pulse
duration is equal to 15 cycles. Spectra are obtained using
matrix-iterative~MI ! method~solid line! and the split-operator~SO!
method~fine dotted line!. The result obtained using the SO meth
in the length gauge~dotted line! is also shown for comparison.
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tum Lmax as high as 50 compared toLmax56 in the velocity-
gauge calculations using both MI and SO methods. This i
be expected, as indicated earlier, due to the large distanc
which the interaction operator remain effective in this gau
and the fact that the angular momentum is related to
distance~and momentum! of the electron by the relationl
5r3p. We have also found that for longer pulse duratio
than in this calculation the length-gauge simulation w
evenLmax550 could not provide converged results.

The total ionization probability computed by integratin
the ATI spectra over the energy distributions for both MI a
SO spectra in the velocity gauge is found to bePion50.998,
indicating that the atom is almost completely ionized in t
present case at the end of the pulse. In comparison, the
ionization probability at the end of the turn-on~five cycles!
is found to be about 80%. We may also note that the m
energetic electrons in this case contribute to the total ion
tion probability by less than one part per thousand.

We have run all three programs along with a grid-s
optimization procedure using a so-called variable-g
boundary condition@19# with an accuracy parametere
51028 for the ratio of the wave-packet density at the boun
ary of the grid to the maximum; this procedure is discuss
in Sec. IV below. The maximum size of the grid at the end
the pulse durationT is shown asr max(T) ~cf. Table I!. It is to
be noted that in the length gauge, although the wave pa
may move to larger angular momenta at intermediate tim
it can return to smaller ones at the end of the pulse.

Perhaps the most interesting quantities to be compared
the CPU times consumed by the three programs for the si
lations of the ATI spectra of Fig. 1. We compare the CP
times, along with a few related parameters, in Table I.
programs were run on a Digital Alpha 255300 work station. It
is seen that the present method~MI ! requires significantly
less than half the CPU time compared to that required for
SO method in the velocity gauge, and that both are to
preferred compared to the SO method in the length gaug

Another quantity of much physical interest is the spe
trum of the emitted high harmonics~HHG! in intense fields.
The wave packet at shorter distances is expected to influe
the HHG spectra quite strongly. Hence the latter spectr
might be more sensitive to the quality of the wave function
shorter distances than that of ATI. In view of this, it is inte
esting to check the simulated wave function for small rad
distances, i.e., in regions near the origin~a singular point of
the radial Hamiltonian! using the matrix-iteration method

e

TABLE I. Comparison of the consumed CPU time for prop
gating the TDSE using two different methods and gauges.
propagations were started using a variable grid-boundary me
with accuracy parametere51028 ~see Sec. IV!. Rmax(T) is the ra-
dial boundary reached at the end of the pulse andLmax is the maxi-
mum value ofl.

Gauge Method Lmax Rmax(T) CPU time
~seconds!

Velocity MI 6 307.4 416.13
Velocity SO 6 648 1062.47
Length SO 50 333.4 6530.25
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and the split-operator method.
The HHG spectrum can be obtained from the expecta

value of the acceleration operator@20#. Thus, from Heisen-
berg’s equation of motion for the momentum operatorz

5 ż(t) in the direction of polarization, the corresponding e
pectation value of the acceleration operator can be writte
the form

^z̈~ t !&5^c~r ,t !u¹z•V~r !uc~r ,t !&

5K c~r ,t !U cosu

r 2 Uc~r ,t !L . ~21!

Note that the acceleration operator is proportional to the
verse square ofr. This is the reason why one expects that t
HHG spectrum would be sensitive to the behavior of
wave packet near the nucleus. The spectra of high-harm
generation are proportional to the modulo square of the F
rier transform of the quantum expectation value of the ac
eration operator.

In Fig. 2 we display and compare the HHG spectra cal
lated from wave packets simulated using the present
method~solid curve! and the SO method~fine dotted curve!.
In addition, we show the HHG spectrum calculated using
SO method in the length gauge~dotted curve!. They are ob-
tained for the same wave-packet simulations from which
ATI spectra are shown in Fig. 1.

From Fig. 2, one can see that the spectrum compu
using the SO method in the length gauge agree with
calculated by MI in the velocity gauge with the main pea
up to about the fifth harmonic, whereas the spectrum
tained in this case from the SO method in the velocity ga
is clearly unacceptable. This comparison appears to con
the expectation that MI can provide a more accurate w
function at shorter distances than that obtained by the s
operator method~in the velocity gauge!.

This difference is better understood by noting that, in
case of the split-operator method, the error term in Eq.~1! is

FIG. 2. Comparison of HHG~high-harmonic generation! spectra
computed ~in velocity gauge! from the present matrix-iterative
method~solid line! and from the split-operator method~fine dotted
line!. The result obtained using the SO method in the length ga
is also shown for comparison~dotted line!. All spectra are com-
puted on the basis of the expectation value of the acceleration
erator.
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O~Dt !352
Dt3

24
~†H0 ,@H0 ,H int#‡12†H int ,@H0 ,H int#‡!.

~22!

Since for smallr the interaction Hamiltonian in the radia
coordinate in the velocity gauge is proportional to the inve
of r, it can be easily seen by direct calculation that the co
ficient of the leading error forr small is in proportion to
r 25Dt3 ~and in fact is strongly divergent at the origin!. This
effect is difficult to eliminate in practice, even by settingDt
to be very small. Consequently, the simulated wave functi
with any moderateDt, at small radial distances is proven
be unstable at short distances.

This problem does not arise in the matrix-iteratio
method, since in the present case the error term in Eq.~4! is

O~Dt3!5
1

4
~HDt !3, ~23!

whereH is the total Hamiltonian operator. Note that Eq.~23!
does not contain any commutator and hence, for smar,
does not increase faster thanO(1/r 2), and by using a mod-
erate value of the time incrementDt, it can be made to be
small. Note also that for smallr in the iteration scheme of the
present method@Eq. ~12!#, the nondiagonal operator in th
numerator isO(1/r ), while the diagonal operator in the de
nominator isO(1/r 2), and hence the ratio remains bound
as r→0. It is also worth noting that for a large angular m
mentum l, the numerator increases proportional tol, while
the denominator increases proportional tol 2, making the ra-
tio to decrease asO(1/l ) with increasingl, thereby helping in
the l-convergence of the matrix-iteration method. Finally, t
spectrum computed using the split-operator method in
velocity gauge in Fig. 2 is clearly of unacceptable quality

B. Low-frequency regime

Simulations of the time-dependent Schro¨dinger wave
packet for low-frequency (v,Eb) laser pulses are generall
more arduous, particularly when many photons are requ
to ionize the atom. It is therefore worthwhile to consider t
efficacy or otherwise of the present method~MI ! in this fre-
quency domain as well. In the following simulations, th
laser parameters are chosen to bev52.04 eV, with a peak
intensity I 5631013 W/cm2 and a pulse durationT516
cycles~a four-cycle sin2 turn-on, an eight cycle constant, an
a four-cycle cos2 turn-off!. The time incrementDt is chosen
to be 0.1 a.u., and the radial coordinate is discretized inDr
50.1 a.u. The computations were conducted in the velo
gauge, since we have noticed that the length-gauge calc
tions for parameters above even withLmax550 do not pro-
vide a converged result.

In Fig. 3, we show the ATI spectra obtained as befo
using the wave-packet simulations by MI and SO metho
The results are shown both on a linear scale~a! and, for a
comparison at higher energies, on a logarithmic scale~b!. It
can clearly be seen from panel~b! that the MI method pro-
vides a much more stable calculation of the spectra throu
out the energy range of interest, while calculation by the
method becomes unreliable after about the first few peak

e

p-
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FIG. 3. Comparison of the ATI spectra, computed using the matrix-iterative~MI ! method~solid line! and the split-operator~SO! method
~fine dotted line!. The simulations were carried out using a laser intensityI 5631013 W/cm2, a laser frequencyv52.04 eV, and a pulse
duration of 16 cycles. Both ATI spectra are obtained usingLmax510,Dr 50.1 a.u., andDt50.1 a.u.
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We may check the self-consistency of the simulations
observing to what extent the theoretical constraint

Pion1Pbound5norm, ~24!

is satisfied, wherePion is the energy-integrated ionizatio
probability obtained by projecting on the continuum stat
andPboundis the converged sum of the probability of findin
the electron in the bound states. In Table II we show
results computed at the end of the laser pulse. It can be
from this table that the MI method with aLmax between 10
and 15 is consistent with this test to within 2:1000, while t
SO method in this case clearly does poorly. We may a
compare the corresponding simulated wave packets by
sidering the evolution of the probability density of findin
the electron along the polarization axis. The results
shown in Fig. 4, for the MI method in panel~a!, and for the
SO method in panel~b!. One can clearly see that the pro
ability density computed using the MI method in this ca
behaves much more regularly than that computed using
split-operator method.

We note parenthetically that for the case simulated h
(v50.075 a.u., and a pulse duration of 16 cycles! the exact
probability of ionization does not follow the tunnel ioniza
tion probability. This may be seen from the probabilit
P(tp)512exp(2Gtp), computed from the tunnel rate for
mula, G54A3/(pE0)exp(22/3E0), that turns out to be sig
nificantly smaller compared to that of the converged simu
tion, shown in Table II. Therefore, one should be cautious
employing tunnel rates in analyzing experimental results
such laser parameters.

TABLE II. A table testing the consistency of wave function
simulated under the same parameters as in Fig. 3 using two di
ent methods and in two different gauges. SO and MI stand for
split operator method and the present matrix iterative method,
spectively. Note that the theoretical identityPion1Pbound5 norm is
better satisfied in the MI method.

Gauge Method Lmax Pion Pbound Pion1Pbound Norm

Velocity SO 10 0.0089 0.6345 0.6434 0.915
Velocity SO 20 0.0089 0.6471 0.6560 0.945
Velocity MI 10 0.0145 0.9843 0.9988 0.998
Velocity MI 15 0.0145 0.9844 0.9989 0.998
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FIG. 4. Portrait of the spatial probability density along the p
larization axis under the same grid parameters as in Fig. 3, obta
from the present~MI ! method@panel ~a!# and that from the split-
operator method@panel~b!#.
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In Fig. 5 we compare the corresponding high-harmo
spectra calculated by the matrix-iteration and split-opera
methods, based on the modulo square of the Fourier tr
form of the acceleration expectation value. As in the case
the high-frequency regime, the high-harmonic spectrum
tained by the split-operator method is clearly unaccepta
Note that the HHG spectrum calculated by the MI meth
shows, as might be expected, a considerably larger num
of peaks~e.g., up to the 13th harmonic at a signal level
10210) at this lower frequency, compared to that~only up to
the third harmonic, at the same signal level! in the high-
frequency case shown in Fig. 2.

As in the case of the high-frequency regime, both p
grams were started using a variable-grid boundary wit
precision parametere51028. In the case of the MI method
the boundary was found to move up to 1408 a.u., wherea
the case of the SO method it moved to more than 2000
Finally we note the CPU time needed by the codes for
above simulations. The MI program consumed appro
mately 2.3 h, while the SO program consumed more than
h, on a digital personal workstation Alpha 500433.

IV. VARIABLE-GRID BOUNDARY CONDITION

Theoretically the interval of the radial coordinates us
for integrating the TDSE ranges from zero to infinity. Sin
in numerical works it is impossible to expand the radial d
tances up to infinity, usually a maximum value of the rad
distance is introduced at the outset and kept fixed during
integration. If the wave packet reaches this boundary, an
sorbing potential or mask function is usually applied to mi
mize the effects of reflection@21#. However, it is difficult to
obtain a quality wave function using masking or absorpt
potential procedures for the computation of the ATI spec
However, often the need for presetting a large radial grid
simulating the wave packet for the ATI calculation may
very time consuming. To reduce this problem, an alterna
procedure, developed and used in this work, is to introduc
so-called variable-grid boundary condition. The idea beh
the procedure may be summarized as follows. Assume
the wave packet is initially located near the core. As

FIG. 5. Comparison of the HHG spectra, obtained using
matrix-iterative~MI ! method~solid line! and the split-operator~SO!
method~fine dotted line!. The laser parameters used for simulatio
are the same as those in Fig. 3.
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interaction is turned on, the wave packet begins to propag
Since the current density of the wave packet must obey
continuity law~e.g., Ref.@22#!, it is unrealistic to expect tha
that the wave packet can ‘‘spring’’ too far away from i
earlier position during the propagation. Thus, before
wave packet travels further, an outer radial point will
disturbed by a small oscillation~before the bulk of the wave
packet passes this point! due to the interaction occurring a
inner radial distances. A parameter which may suitably ch
acterize the sensitivity of the effect of interaction reachi
the edge of the grid may be introduced to control the succ
sive shifts of the boundary to a point somewhat further o
ward from a previous point. Thus the grid boundary will b
allowed to move outward from a few atomic units to th
maximum value necessary during the time propagation of
wave packet, by checking the relative size of the wa
packet, at different times, near a moving boundary with
spect to its maxima appearing behind it.

To illustrate, consider the MI simulation as in Sec. III A
In this case, the initial grid edger max(t0) is set to be 20 a.u
As the interaction is turned on, the effect of interacti
reaching the edge of the grid is measured for each individ
partial wave packet characterized by the value ofh l , by
comparinguRl@r max(t),t#u2 with max(uRl(r,t)u2, r50 . . . r max).
Defineh l as a parameter of sensitivity,

h l5
uRl~r max,t !u2

maxu~Rl~r ,t !!u2
, ~25!

then the wave-packet density at the grid edge may be c
sidered as negligibly small ifh l,e, wheree is a preassigned
accuracy constant which may be varied as a function of
corresponding partial norm.~If necessary, the value ofe may
be selected in such a way that the wave function can
further tested to be convergent with respect to that obtai
by using a fixed large grid.! When h l.e, r max(t) must be
extended with a few~one or more! steps such that the new
boundary r max(t1Dt)5rmax(t)1nDr for all partial waves,
where n is the number of steps found to be necessary
extension of the grid.

In Figs. 6~a!–6~c!, we show a series of calculated pro
ability densities on the positiveZ axis at the end of the pulse
T515 cycles, by setting the parametere51022,1024, and
1028, respectively. It is found that the corresponding g
boundaryr max(T) is required to be shifted to 225.6, 233.
and 307.4 a.u., respectively, to attain these accuracies.
comparison of the quality of the above results we show
probability density calculated by using a preassigned g
boundary atr max5500 a.u., in Fig. 6~d!. It can be seen tha
the results obtained by usinge51028 and the corresponding
grid-size of about 307.4 a.u.@panel ~c!# is in very good
agreement with that in Fig. 6~d! obtained with a preassigne
fixed grid size of 500 a.u.

The corresponding ATI spectra obtained using the gr
variable boundary method are shown in Fig. 7. It can be s
that the result obtained usinge51024 does not provide a
satisfactory spectrum, while that obtained withe51028 pro-
vides excellent agreement~virtually indistinguishable! for
electron energies as high as about 190 eV, with the fi
larger grid calculation; for very high-energy electrons w
probabilities less than 1028, clearly a smaller value ofe
would be needed.

e
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FIG. 6. Evolution of the projected densities o
a hydrogen atom initially in a 1s state on the
positivez axis, subject to an intense laser puls
with peak intensityI 51 a.u. andv51 a.u., at
the end of the laser pulses~15 cycles!. The den-
sities@panels~a!–~c!# are obtained by using vari
ous values of the accuracy parametere used for
moving the grid boundary:e51022 @panel ~a!#,
1024 @panel ~b!#, and 1028 @panel ~c!#. A refer-
ence radial density computed with a preassign
grid size of 500 a.u. is shown in panel~d!.
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The usefulness of the variable-grid boundary condit
introduced here can be seen by considering the large di
ence of consumed CPU times involved. In the case of a fi
large grid withRmax5500 a.u., the simulation of the spe
trum required a CPU time~on a Aplha 255300 work station!
of 2102 sec, while using variable-grid boundary withe
51028 required 432 sec, nearly a fifth of the former.

We may note parenthetically that in the present variab
grid boundary condition approach, if desired, an absorb
potential or a mask function may also be introduced at
beyond the maximum size reached by the time-depen
grid boundaryr max(T) for a givene.

V. SUMMARY AND CONCLUSIONS

To summarize, we have developed a matrix-iteration
gorithm, along with a variable-grid boundary method, f

FIG. 7. Comparison of the ATI spectrum obtained using
variable-grid boundary method~the fine dotted line and the dotte
line! with respect to that of a fixed large boundary (Rmax

5500 a.u.). The fine dotted line is obtained usinge51028, and the
dotted line withe51024.
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efficiently integrating the time dependent Schro¨diger equa-
tion of a three-dimensional atom coupled to an intense la
field. The algorithm is based on the short time propaga
involving the total Hamiltonian, i.e., without splitting into a
sum of a reference Hamiltonian and an interaction Ham
tonian, and its Crank-Nicholson~CN! approximant. Instead
of a direct matrix inversion of the denominator of the C
approximant, an efficient matrix iteration based on the T
lor expansion of the denominator matrix around its diago
part is used. A grid-size optimization procedure is also int
duced which is based on a moving boundary of the grid b
prerequired accuracy criterion for the ratio of the wa
packet maxima and its value at the boundary for eachl, at
different times, that is checked during the propagation.

To test the efficacy of the algorithm, both Schro¨dinger
wave-packet evolutions are simulated using the pres
method and the well-known split-operator method, for bo
high- and low-frequency laser pulses. The above-thresh
ionization ~ATI ! and the high-harmonic generation~HHG!
spectra are constructed for H atom, and the results are c
pared. It is found that the present matrix-iteration~MI !
method can provide a useful alternative to the popular sp
operator~SO! method, especially when the latter method b
comes inefficient.
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