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Field-dependent relaxation effects in a three-level system driven by a strong coherent field
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We describe the physical effects emerging in three-level atoms as a result of a drastic modification of the
relaxation processes under the action of a strong coherent field when one of two dynamic Stark levels crosses
a nearby atomic state.@S1050-2947~99!05309-3#
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I. INTRODUCTION

Recently much attention has been paid to the analysi
coherent effects in three-level systems driven by a str
resonant field and interacting with a reservoir. Lasing wi
out inversion, electromagnetically induced transparency,
hancement of the refractive index, and other effects h
been widely discussed@1#. The analysis of these effects
traditionally based on the master equations where the in
action of atoms with the reservoir is described by means
relaxation constants which are assumed to be independe
the driving field. However, it is well known that a stron
coherent driving can modify the relaxation processes~see
Refs. @2–9#, and references therein!. This modification was
studied both theoretically and experimentally mainly f
two-level systems, and was supposed to be connected w
violation of the Markov approximation@2–5#.

Recently it was emphasized that field-dependent re
ation effects appear even within the Markov approximat
made for the dressed atom@6–9#. For two-level atoms in free
space, these effects are typically weak, since they are de
by a small parameter which is the Rabi frequency divided
the frequency of the resonant driven transition@9#. However,
they may be strongly enhanced by placing atoms insid
frequency-selective cavity, whose density of modes
sharply changed on the scale of the Rabi frequency@2–9#.
This was demonstrated experimentally@3,4#.

In three-level atoms the drastic modification of the dec
rates by the driving field may occur even in free space@7,10#,
as soon as one dynamic Stark sublevel crosses a neighb
unperturbed atomic energy state~Fig. 1!. Very recently we
predicted the phenomenon of coherent population trappin
atoms into the lower dynamic Stark sublevel in a sche
with ground state splitting@Fig. 1~a!# in the case of very
strong and exactly resonant driving@7#, and studied some
other effects caused by level crossing for that scheme@10#.
The origin of these phenomena is the appearance of spo
neous decay from the former ground state to the lower
namic Stark sublevel, resulting from the crossing betwe
these two states.

In this paper we systematically study field-dependent
laxation effects in driven three-level atoms at arbitrary inte
sity and detuning of the driving field for all possible lev
configurations@Figs. 1~a!–1~d!#. We base our treatment o
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the set of generalized Maxwell-Bloch equations which we
derived recently@6#. We show that the physical origin of th
field-dependent relaxation is a dependence of the relaxa
rates on the dressed atomic frequencies. Both the sign
magnitude of the relaxation rates are drastically modified
the case of level crossing.

We find an analytical solution of the generalized mas
equations at an arbitrary intensity and detuning of the driv
field. On this basis we predict a strong breaking of the sy
metry between the dressed-level populations with respec
the detuning of the driving field from the resonant transiti
caused by field-dependent relaxation, and leading under
tain conditions to a population trapping into one or anoth
dynamic Stark level. We emphasize the possibility of a la
population inversion at the driven transition in the case o
negative detuning, and show that both absorption and dis

FIG. 1. Possible schemes of a three-level atomic sys
strongly driven by the monochromatic field at au2&-u3& atomic
transitionv852v.
3091 ©1999 The American Physical Society
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sion profiles are drastically modified if one of the dynam
Stark levels crosses a nearby atomic state. We also dem
strate a qualitative modification of the Mollow and Autle
Townes spectra in the case of level crossing, and on
basis predict a mechanism for the realization of a high
fractive index and lasing without inversion.

II. GENERALIZED MASTER EQUATIONS
FOR A MULTILEVEL SYSTEM

A. Bare-state description

We base our analysis on a set of generalized master e
tions for the density matrix of a multilevel system driven
a strong coherent field,

E5 1
2 (

m
~EWme2 ivmt1c.c.!,

when at least one level in each pair of levels is either coup
with one component of the field or is not coupled with t
field at all. These equations were derived in Refs.@6# and
@10# in Born-Markov approximations for the dressed ato
and have a form which is similar to that of traditional mas
equations with the field-independent relaxation

d

dt
rm8m1 ivm8mrm8m1

i

\
@V~ t !,r#m8m5(

n8n

Rm8mn8nrn8n ,

~1!

where

V~ t !52
1

2 (
m

~mW m8mEWme2 ivmtum8&^mu1H.c.!

is the Hamiltonian describing the interaction of the ato
with a coherent field in the dipole and rotating-wave appro
mations.mW m8m5^m8umW um& is the matrix element of the di
pole moment of the corresponding atomic transition,

rm8m5^m8urum&,

H0um&5Emum&,

vm8m5~Em82Em!/\,

andH0 is the Hamiltonian of the unperturbed atomic syste
However, the matrix elements of the relaxation superma
Rm8mn8n are functions of the driving field. They are ex
pressed via the well-known relaxation constantsGm8mn8n

(0) of
the unperturbed atomic system:

Rm8mn8n5Gnmm8n81Gn8m8mn
*

2(
k

~dmnGm8kkn81dm8n8Gmkkn* !, ~2!

Gnmm8n85 (
kk8 l l 8

~zm8
k

!* zk8
k

~z l 8
l

!* zn8
l

3Gnmk8 l 8
(0)

~ṽkl2ek8vk81e l 8v l 8!, ~3!
n-

is
-

a-

d

,
r

s
-

.
ix

Gnmm8n8
(0)

~v!5
1

\2E0

`

dt exp~2 ivt!

3TrH Wnm expS 2
i

\
Hrt DWm8n8

3expS i

\
Hrt D r r~0!J . ~4!

Herezn
m5^m̃un& are time-dependent elements of the unita

matrix connecting the bare statesun& and rotating semiclas
sical dressed statesum̃&5Uum̄& where time-independen
dressed statesum̄& diagonalize a time-independent Ham
tonian:

H̄5U21HU2 i\U21
dU

dt
,

H5H01V~ t !,

U5(
k

exp~ i ekvkt !uk&^ku,

H̄um̄&5Ẽmum̄&,

ṽnm5~Ẽn2Ẽm!/\.

ek51 if level k interacts with only one component of th
field, and it is the lower level in a pair of levels coupled
this field component;ek521 if level k interacts with only
one component of the field, and is the upper level in a pai
levels coupled to this component;ek50 otherwise. The trace
in Eq. ~4! is taken over the reservoir variables described
the unperturbed density matrixr r(0) in the Born approxima-
tion, Hr is the reservoir Hamiltonian, andWnm is the matrix
element of the atom-reservoir interaction Hamiltonian.

B. Dressed-state description

In the semiclassical dressed-state basis which is o
helpful for clarifying the physical picture, the set of equ
tions ~1! takes the forms:

d

dt
r̃m8m1 i ṽm8mr̃m8m5(

n8n

R̃m8mn8nr̃n8n ,

r̃m8m5^m̃8urum̃&, ~5!

R̃m8mn8n5G̃nmm8n81G̃n8m8mn
*

2(
k

~dmnG̃m8kkn81dm8n8G̃mkkn* !, ~6!

G̃nmm8n85 (
kk8 l l 8

zk
n~zk8

m
!* z l

m8~z l 8
n8!*

3Gkk8 l l 8
(0)

~ṽm8n82e lv l1e l 8v l 8!. ~7!
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In this picture we get rid of the reversible Hamiltonian term
and deal only with relaxation processes between dressed
els.

The generalized master equations~1! and~5! can be used
for analyzing a wide class of physical problems. We sh
use them below to study the behavior of the three-level s
tem coupled to a field reservoir and driven by a strong mo
chromatic field at one of the atomic transitions.

III. GENERALIZED MASTER EQUATIONS
FOR A THREE-LEVEL SYSTEM

A. Bare-state description

For a three-level system driven by the monochroma
field E5 1

2 (EWe2 ivt1c.c.) at the transitionu3&-u2&, equations
~1! in the general case take the forms

ṙ115(
n

R11nnrnn12 Re~R1121s21!

12 Re~R1131s31!12 Re~R1132s32!,

ṙ2212 Im~b* s32!5(
n

R22nnrnn12 Re~R2221s21!

12 Re~R2231s31!12 Re~R2232s32!,

ṙ3322 Im~b* s32!5(
n

R33nnrnn12 Re~R3321s21!

12 Re~R3331s31!12 Re~R3332s32!,
~8!

ṡ321 ids322 ibn235(
n

R32nnrnn1 (
nÞm

R32nmsnm ,

ṡ311 i ~v211d!s312 ibs215(
n

R31nnrnn

1 (
nÞm

R31nmsnm ,

ṡ211 iv21s212 ib* s315(
n

R21nnrnn1 (
nÞm

R21nmsnm ,
o
t

v-

ll
s-
-

c

where

r325s32e
2 ivt,

r315s31e
2 ivt, r215s21,

~9!
n235r222r33, d5v322v,

b5
mW 32EW
2\

5ubu e2 iw.

We assume here that even in the case of sufficiently str
driving (ubu@v21), the monochromatic field interacts wit
only one transition due, for example, to specific select
rules or polarization properties of the field. For the schem
shown in Fig. 1, both the Rabi frequencyb of the driving
field and its detuningd may be greater than the frequenc
v21. One can calculate elements of the relaxation ma
Rmnm8n8 ~see Appendix A! according to Eqs.~2!–~4!, taking
into account such possibility. CalculatingRm8mn8n , we ne-
glected all the terms above order zero ofuRm8mn8nu/v ~the
secular approximation with respect to the frequencyv of the
driving field!. We consider the interaction of the atomic sy
tem with a field reservoir. Then the unperturbed relaxat
constantsGm8mn8n

(0) in Eq. ~4! are well known@11#. We keep
only the real parts ofGnmk8 l 8

(0) , neglecting by the frequency
shifts of the levels due to the coupling to the reservoir.

In principle, the radiation shifts of atomic levels in th
case of a strongly driven system are the radiation shifts
dressed levels in the same manner as radiation width
atomic levels in case of strong driving are the radiati
widths of the dressed levels~see Sec. IV!. Hence they are
field dependent too. However, in the case of well-resolv
dressed states~when the Rabi frequency of the driving fiel
is greater than the radiation widths of the dressed levels!, one
can neglect by radiation shifts of the dressed levels in
same manner as one can neglect the radiation shifts of
nondegenerate~well-resolved! bare-energy states. Indeed,
can be seen directly from Eqs.~25! and~50! that in this case
one can neglect imaginary parts of field-modified relaxat
rates.

Then the ‘‘perturbed’’ relaxation termsRm8mn8n are ex-
pressed via the generalized transition rates
wmkln~v!5Re„Gmkln
(0) ~v!…5

2

3\c0
3
mW mkmW ln3H v3h~v!N~v!, v.0

~2v3!h~2v!~N~2v!11!, v,0
~10!
and

wmk~v!52wmkkm~v!, ~11!

whereN(v) is a mean number of reservoir photons,h(v) is
a dimensionless parameter characterizing the reservoir m
density@in vacuumh(v)51#, mW mk is the dipole moment a
the um&-uk& transition, andc0 is the light velocity. The
choice of the unitary transformation
de

U5u1&^1u1u2&^2u1e2 ivtu3&^3u ~12!

defines, in Eq.~3!, the coefficientszn
m connecting the bare

and semiclassical dressed states

u1̃&5u1&,

u2̃&5cu2&1se2 i (w1vt)u3&,
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u3̃&52seiwu2&1e2 ivtcu3&,

s5
ubu

Au21ubu2
,

c5
u

Au21ubu2
, ~13!

u5~d1V!/2,

V5Ad214ubu2,

where the dressed leveluñ& has energies

Ẽ15E1 ,

Ẽ25E21\~d2V!/2, ~14!

Ẽ35E21\~d1V!/2.

In general the relaxation matrix given in Appendix A h
quite a complicated form.

The assumption that the driving field is coupled only
the u3&-u2& transition can be valid either when

umW 31u50 or mW 31'mW 32. ~15!

In both cases, as follows from Eqs.~10!, one can neglect by
those cross-relaxation terms which form the~A2! of Appen-
dix A. Then the set of equations~8! is divided into two
independent blocks. The first block consists of three eq
tions for the populations plus one equation for the cohere
s32 of the driven transition. The second block consists o
set of two homogeneous equations for the coherencess31
ands21. Hence the driving field does not excite these coh
ences (s3150 ands2150), and the evolution of the atomi
system is described by the first block of equations~8!, which
takes the following forms:

ṙ115R1111r111R1122r221R1133r3312 Re~R1123s23!,

ṙ2212 Im~b* s32!5R2211r111R2222r221R2233r33

12 Re~R2223s23!,
~16!

ṙ3322 Im~b* s32!5R3311r111R3322r221R3333r33

12 Re~R3323s23!,

ṡ321 ids322 ibn235R3232s321R3223s231R3211r11

1R3222r221R3233r33.

The rotating-wave approximation, which in our case impl

V!uv31u,uv32u, ~17!

allows one to simplify the Eqs.~16!:

ṙ1152~a121w13!r111a21r221w31r33

2~a311a1!Re~s32e
iw!,
a-
e

a

r-

s

ṙ2212 Im~b* s32!5a12r112~a211w23!r221w32r33

1~a12ã32!Re~s32e
iw!,

~18!

ṙ3322 Im~b* s32!5w13r111w23r222~w311w32!r33

1~a311ã32!Re~s32e
iw!,

ṡ321 ids322 ibn2352G32s321e2 iwR/2,

where

R5~a22a13!r111~a311a32
0 !r221~a11a32

0 !r33,

G325~a211w311w321w23!/2,

a3153w31ubu/v31,

a1353w13ubu/v31, ã315a311a13,

a31
0 5a312a13,

a3253w32ubu/v32,
~19!

a2353w23ubu/v32,

ã325a321a23, a32
0 5a322a23,

a215s2w21~ṽ13!1c2w21~ṽ12!,

a125s2w12~ṽ31!1c2w12~ṽ21!,

a15sc„w21~ṽ13!2w21~ṽ12!…,

a25sc„w12~ṽ21!2w12~ṽ31!….

Here wmk is the usual relaxation rate at the transitionum&
→uk&:

wmk5H Amk„N~vmk!11…, vmk.0,

AkmN~vkm!, vmk,0,
~20!

whereAmk5(4/3\c0
3)ummku2vmk

3 h(vmk) is the Einstein co-
efficient of the spontaneous relaxation at the correspond
atomic transitionum&→uk&.

We will show below that, contrary to the traditional ph
nomenological master equations, the structure of the re
ation coefficients in Eqs.~18! reflects the fact that the relax
ation of strongly driven atoms occurs between dynamic St
~dressed! levels which result from the splitting of the atom
energy states. In the limit of a weak field, where this splitti
is negligible, the generalized equations are reduced to tr
tional equations.

The set of equations~18! is valid for all four configura-
tions displayed in Figs. 1~a!–1~d!. However, the explicit
form of the relaxation coefficients depends essentially on
sign of the transition frequencies. We have kept only
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terms of the first order with respect to the small parame
V/uv32u. However, we did not impose any constraint on t
ratio V/uv21u. This allows for a change of sign of eitherṽ31

or ṽ21 depending on the level configuration. This change
sign of the dressed frequency corresponds to the cros
between one dynamic Stark level and an unperturbed ato
state which we always labelu1& in Figs. 1. In the bare-stat
basis this looks like a change of the direction of the spon
neous emission between levelsu1& and u2&.

Let us illustrate this property for the scheme of Fig. 1~a!.
The relaxation coefficients are simplified in case of pu
spontaneous relaxation since thenN(v)50. According to
Eqs.~19! and ~20!, we obtain

w315A31,

w325A32,

a3153A31ubu/v31, a3253A32ubu/v32, ~21!

ã315a31
0 5a31, ã325a32

0 5a32,

a135a235w135w2350.

The relaxation rates at the low-frequency transitionu1&-u2&
are defined by the relative position of the low Stark level a
an uncoupled stateu1&. When level u2̃& is situated above
stateu1&, according to Eqs.~19! we have

a215g1A21,

a15g2A21ubu/v21,

a125a250, ~22!

g1511~31d/v21!ubu2/v21
2 ,

g253~11d/v21!1~d21ubu2!/v21
2 .

But as soon as levelu2̃& follows below levelu1&, we obtain

a215s2A21~ṽ31/v21!
3,

a125c2A21~ṽ12/v21!
3,

~23!

a15scA21~ṽ31/v21!
3,

a25scA21~ṽ12/v21!
3.

The term a12 appearing when levelu2̃& crosses levelu1&
corresponds formally to the spontaneous decay from s
u1& to stateu2&. The appearance of this decay looks rath
artificial because a bare-state basis is not appropriate in
case of strong driving. The structure of the master equat
in the bare-state basis is quite complicated due to the p
ence of cross-relaxation terms, i.e., off-diagonal element
the density matrix in the equations for diagonal elemen
and vice versa.
r

f
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B. Dressed-state description

The dressed-state picture is especially fruitful when
secular approximation with respect to the dressed frequ
cies ṽm8m can be used. This implies in Eq.~5! that

uR̃m8mn8nu!uṽm8mu. ~24!

We use the secular approximation~24! in the dressed-state
basis, neglecting terms which are smaller than the first or
of uR̃m8mn8nu/uṽm8mu. In this case the equations for th
dressed populations do not depend on the equation for
dressed coherencer̃32:

d

dt
r̃115R̃1111r̃111R̃1122r̃221R̃1133r̃33,

d

dt
r̃225R̃2211r̃111R̃2222r̃221R̃2233r̃33,

~25!
d

dt
r̃335R̃3311r̃111R̃3322r̃221R̃3333r̃33,

d

dt
r̃321 i ṽ32r̃325R̃3232r̃321R̃3211r̃111R̃3222r̃221R̃3233r̃33,

where

R̃11225c2w21~ṽ12!1s2w31~ṽ122v!,

R̃11335s2w21~ṽ13!1c2w31~ṽ132v!,

R̃22115c2w12~ṽ21!1s2w13~ṽ211v!,

R̃22335s4w23~ṽ231v!1c4w32~ṽ232v!,

R̃33115s2w12~ṽ31!1c2w13~ṽ311v!,

R̃33225s4w32~ṽ322v!1c4w23~ṽ321v!,

R̃ii i i 52(
j Þ i

R̃j j i i , ~26!

R̃323252 1
2 ~R̃11221R̃11331R̃22331R̃3322!

22s2c2
„w32~2v!1w23~v!…,

R̃32115
1
2 sce2 iw

„w13~ṽ311v!1w13~ṽ211v!

2w12~ṽ31!2w12~ṽ21!…,

R̃32225
1
2 sce2 iw

„w21~ṽ12!2w31~ṽ122v!1w23~v!

2w32~2v!12c2w23~ṽ321v!22s2w32~ṽ322v!…,

R̃32335
1
2 sce2 iw

„w21~ṽ13!2w31~ṽ132v!1w23~v!

2w32~2v!22c2w32~ṽ232v!12s2w23~ṽ231v!….
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It can be shown that dressed coherencesr̃31 and r̃21 vanish
in the case@Eqs.~15!# under consideration. In particular th
is easy to see from the transformation formulas

r̃31e
iw5cs31e

iw2sr21,
~27!

r̃215cr211ss31e
iw,

taking into account thats3150 andr2150. The set of equa-
tions ~25!, like Eqs.~18!, is valid for any level configuration
@Figs. 1~a!–1~d!#. Taking as an example the scheme of F
1~a! let us show that the relaxation terms~26! can be viewed
as the relaxation rates between quantum dressed statesui ,n&
of the total system involving atom and the quantized coh
ent field @12#. These dressed states can be expressed via
statesu i ,n&5u i &un& of the uncoupled atoms and field as

u1,n&5u1,n&,

u2,n&5cu2,n&1se2 iwu3,n21&, ~28!

u3,n&5cu3,n21&2seiwu2,n&,

wheren is the number of photons of the quantized coher
field. The relations between nonzero dipole mome
mW i ,n; j ,m5^ i ,numW u j ,m& andmW m8m5^m8umW um& of the allowed
one-photon transitions in the quantum dressed-state
bare-state bases, respectively, have the forms

mW 3,n21;3,n52sce2 iwmW 23,

mW 2,n21;3,n5c2mW 23,

mW 1,n21;3,n5cmW 13,

mW 3,n21;2,n52s2e2 i2wmW 23,

mW 2,n21;2,n5sce2 iwmW 23,

mW 1,n21;2,n5se2 iwmW 13, ~29!

mW 3,n;1,n52se2 iwmW 21,

mW 2,n;1,n5cmW 21,

mW i ,n; j ,m>mW i ,n21; j ,m21 ,

mW j ,m; i ,n5mW i ,n; j ,m* ,

^ i ,numW u j ,m&5mW i j dmn .

The dressed frequencies corresponding to these qua
transitions are defined as

v3,n;3,n215v2,n;2,n215v1,n;1,n215v,

v3,n;2,n215ṽ321v,

v3,n;1,n215ṽ311v,
.

r-
the

t
s

nd

um

v2,n;3,n215ṽ231v, ~30!

v2,n;1,n215ṽ211v,

v3,n;1,n5ṽ31,

v1,n;2,n5ṽ12,

where it was implied that

v j ,n; i ,m>v j ,n21;i ,m21 ,

v i ,n; j ,m5~Ei ,n2Ej ,m!/\, ~31!

Hu i ,n&5Ei ,nu i ,n&.

Thus, using Eqs.~29! and ~30!, the relaxation rates~26! can
be rewritten in the forms

R̃11225w̄211W̄21,

R̃22115w̄121Q̄12,

R̃11335w̄311W̄31,

R̃33115w̄131Q̄13,

R̃22335W̄321Q̄32,
~32!

R̃33225W̄231Q̄23,

R̃323252 1
2 ~R̃11221R̃11331R̃22331R̃3322!12~W̄22331Q̄2233!,

R̃32115Q̄12311Q̄1321* 1w̄12311w̄1321* ,

R̃32225Q̄22321W̄22321Q̄2322* 1W̄2322* 2w̄3112

2W̄31122Q̄32222W̄32222Q̄33322W̄3332,

R̃32335Q̄32331W̄32331W̄3323* 1Q̄3323* 2w̄2113*

2W̄2113* 2W̄2223* 2Q̄2223* 2W̄2333* 2Q̄2333* .

For convenience, we distinguish generalized rates of the o
photon transitions at the optical dressed frequencies, f
the upper dressed level to the lower dressed level:

W̄ge ji5
2

3\c0
3
mW g,n;e,n21mW j ,n21;i ,nv i ,n; j ,n21

3

3h~v i ,n; j ,n21!@N~v i ,n; j ,n21!11#, ~33!

W̄mn52W̄mnnm, ~34!

and from the lower dressed level to the upper dressed l
~incoherent pumping!:



sed

PRA 60 3097FIELD-DEPENDENT RELAXATION EFFECTS IN A . . .
Q̄ge ji5
2

3\c0
3
mW g,n21;e,nmW j ,n; i ,n21v j ,n; i ,n21

3

3h~v j ,n; i ,n21!N~v j ,n; i ,n21!, ~35!
ng
en
d
r

Q̄mn52Q̄mnnm. ~36!

Generalized relaxation rates at the low-frequency dres
transitions are
w̄ge ji5
2

3\c0
3
mW g,n;e,nmW j ,n; i ,n3H v i ,n; j ,n

3 h~v i ,n; j ,n!@N~v i ,n; j ,n!11#, v i ,n; j ,n.0,

v j ,n; i ,n
3 h~v j ,n; i ,n!N~v j ,n; i ,n!, v i ,n; j ,n,0,

~37!

w̄mn52w̄mnnm. ~38!
tical

e
ssed
d

e
er-
nd
and
spe-

s
en-
All the transitions are depicted in Fig. 2.
In the particular caseN(v)50, i.e., if there is only spon-

taneous decay, the set of equation~25! for the case of level
crossing@Fig. 1~a!#, according to Eqs.~32!–~38!, takes the
most transparent forms

d

dt
r̃1152ā12r̃111Ā21r̃221~ ā311Ā31!r̃33,

d

dt
r̃225ā12r̃112~Ā211Ā23!r̃221Ā32r̃33,

~39!
d

dt
r̃335Ā23r̃222~ ā311Ā311Ā32!r̃33,

d

dt
r̃321 i ṽ32r̃3252Ḡ3232r̃321Ḡ3211r̃11

1Ḡ3222r̃221Ḡ3233r̃33,

FIG. 2. Quantum dressed-state representation of a stro
driven three-level atomic system with a lower-level splitting wh
the Rabi splitting provides a crossing of one ac Stark level an
nearby unperturbed atomic state. Indexn means the photon numbe
of the driving field. Only one link withn@1 of the infinite stair-
case, corresponding to different values ofn, is plotted here.
where

Ḡ32325Ā211Ā311Ā321Ā2322Ā3322,

Ḡ32115~ ā1321!* ,
~40!

Ḡ322252~Ā31121Ā32221Ā3332!1Ā22321~Ā2322!* ,

G32335Ā32331~Ā33232Ā21132ā21132Ā22232Ā2333!*

and

Āge ji5
2

3\c0
3
mg,n;e,n21m j ,n21;i ,nv i ,n; j ,n21

3 h~v i ,n; j ,n21!,

~41!

āge j i5
2

3\c0
3
mg,n;e,nm j ,n; i ,nv i ,n; j ,n

3 h~v i ,n; j ,n! ~42!

are generalized spontaneous relaxation rates at the op
and low-frequency dressed transitions, respectively,Āi j

52Āi j j i and āi j 52āi j j i are the Einstein coefficients of th
spontaneous relaxation at the corresponding optical dre
transition u i ,n&→u j ,n21& and the low-frequency dresse
transitionu i ,n&→u j ,n&:

Āi j 5
4

3\c0
3

um j ,n21;i ,nu2v i ,n; j ,n21
3 h~v i ,n; j ,n21!, ~43!

āi j 5
4

3\c0
3

um j ,n; i ,nu2v i ,n; j ,n
3 h~v i ,n; j ,n!. ~44!

IV. STRUCTURE OF THE FIELD-DEPENDENT
RELAXATION

It follows from Sec. III that the relaxation rates of th
dressed atoms are defined by the traditional Wign
Weisskopf formulas where both bare dipole moments a
bare frequencies are replaced by the dipole moments
frequencies of the dressed quantum transitions. This is e
cially transparent for coefficients~43! and ~44! in the case
N(v)50. In other words, we find that the relaxation term
R̃m8mn8n depend on the dressed dipole moments and frequ

ly

a
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cies in the same way as the bare relaxation termsRm8mn8n
(0)

depend on the bare dipole moments and frequencies. W
this recipe, it is quite simple to obtain the evolution equ
tions of the driven atoms as the rate equations in the dres
state basis by simply looking at Fig. 2.

Using Eqs.~25! with R̃m8mn8n , and going back to the
bare-state basis, we find evolution equations~18! with field-
dependent relaxation rates. Conversely, starting from
usual evolution equations in the Wigner-Weisskopf appro
mation, and making the transformation to the dressed-s
basis leads to equations similar to Eqs.~25! but where the
relaxation terms depend on the bare frequencies instea
the dressed frequencies.

Another way to obtain Eqs.~25! is to use a full quantum
description calculating the relaxation rates between quan
states according to the traditional Wigner-Weisskopf form
with dipole moments and frequencies of the dressed tra
tions instead of the bare ones, and afterward applying
quasiclassical approximation

^ i ,nuru i ,n&>^ i ,n21uru i ,n21&>p0~n!^ ĩ uru ĩ &5p0~n!r̃ i i .

~45!

This implies that the driving field is in a coherent state w
a Poisson distributionp0(n) for the photon number. This
approach was suggested and developed earlier in a nu
of works @12#. It proved to be very efficient and transpare
for analyzing the fluorescence and the probe field absorp
spectra in atomic systems driven by a strong coherent fi
Indeed, dressed frequencies define the position of the
trema in the spectra. However, the dependence of the re
ation rates on the dressed frequencies in this approach
usually ignored. Only the dependence of these constant
the dressed dipole moments was taken into account. In
case the evolution equations derived in that approach in
quasiclassical approximation coincide with those obtain
from the traditional phenomenological equations~with field-
independent relaxation!, resulting from the basis transforma
tion from bare to dressed states. Neglecting the depend
of the relaxation ratesRm8mn8n on the driving field in the
bare-state basis is correct only when the generalized R
frequency is the smallest parameter in the system. Recen
was shown that in a two-level system driven by a monoch
matic field, such a dependence leads to a symmetry brea
of the atomic response with respect to the resonance@9#.
Since the difference between dressed and bare frequenc
this case is always small~of the order ofV/v21, wherev21
is the atomic transition frequency!, the modification of the
relaxation rates and hence atomic response is typically
weak. However, in principle, this can be observed even
free space@9#. Moreover, it can by strongly enhanced b
placing atoms into the cavity or photonic band-gap mater
exploiting the frequency dependence of the mode den
h(v) when it sharply varies on the scale of the Rabi f
quency@2–5,8,9#.

In a three-level system the relaxation rates are drastic
modified even in free space when the Rabi splitting provi
a crossing of the dynamic Stark sublevel and the nearby
perturbed atomic level. This leads to a change of sign of
of the dressed frequencies, and hence to a change of d
tion of the spontaneous emission between these two le
ith
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due to the change of their relative position. For the sche
plotted in Fig. 1~a!, this means the appearance of sponta
ous emission from the former ground state to the lower St
level which falls below the ground state@10#.

It is worth emphasizing that this result implies the sem
classical approximation, when the driving field is charact
ized by a large number of photons. The crossing of a form
ground state and a dynamic Stark level means a crossin
two quantum dressed statesu1,n& and u2,n& of the total dy-
namical system withn@1. There are of course no energ
levels in the full dynamic system, which would fall belo
the ground stateu1,0& ~see Ref.@13# and @10#!.

It follows from Eq. ~3! that if the relaxation rates of the
bare atomic system are frequency independent, then dres
of atoms would not lead to field-dependent relaxation effe
This does not mean, however, that these effects would
eliminated in the case of a flat density of states of the fi
reservoir. Indeed, in this case the atomic relaxation ra
would be proportional to the frequency, due to the fact t
the transition probability between the two states of the s
tem dipole coupled with the electromagnetic field is prop
tional to the frequency.

V. GENERAL SOLUTION OF THE MASTER EQUATIONS

The general solutions of the master equations~18! for
arbitrary intensity and detuning of the driving field have t
forms:

s32e
iw5s328 1 is329 ,

s328 5~R14dubun23/W!/W̃,

s329 52~ ubun232dR/W!/W̃,
~46!

r225~C2A32C1A4!/D,

r335~C1A22C2A1!/D,

D5A1A42A2A3 ,

where the coefficientsAj andCj are given explicitly in Ap-
pendix B. Using transformation~13!, one can also obtain the
steady-state solution in the basis of the dressed states

r̃335s2r221c2r3322scRe~s32e
iw!,

r̃225c2r221s2r3312scRe~s32e
iw!,

~47!

r̃115r11,

r̃32e
iw5sc~r332r22!1c2s32e

iw2s2s23e
2 iw.

In the limit of high intensity, when the secular approximatio
and hence the set of equations~25! are valid, the physical
picture in the dressed-state basis is especially transpa
According to Eqs.~25!, off-diagonal elements do not influ
ence the evolution of dressed populations, and one can e
obtain steady-state solutions for both populations of
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dressed states and dressed coherencer̃32:

r̃225r 2 /D,

r̃335r 3 /D,

r̃3252 i ~R̃3211r̃111R̃3222r̃221R̃3233r̃33!/ṽ32,
~48!

r 25R̃3311R̃22332R̃2211R̃3333,

r 35R̃2211R̃33222R̃3311R̃2222,

D5r 21r 31R̃1133~R̃11221R̃3322!1R̃1122R̃2233.

In particular, atN(v)50, when Eqs.~25! reduce to Eqs.
~39!, we have

r 25ā12~ ā311Ā311Ā32!,

r 35ā12Ā23,
~49!

D5r 21r 31~ ā311Ā31!~Ā211Ā23!1Ā21Ā32,

r̃3252 i ~ G̃3211r̃111G̃3222r̃221G̃3233r̃33!/ṽ32.

In analogy with Eqs.~47!, we can also find steady-state s
lutions for all the elements of the density matrix in the ba
atomic basis:

r115 r̃11,

r225c2r̃221s2r̃33,
~50!

r335s2r̃221c2r̃33,

s32e
iw5sc~ r̃222 r̃33!1 i Im~ r̃32e

iw!.

To derive this result, we took into account that in the secu
approximation@Eq. ~24!, Re(r̃ i j )50 if iÞ j. In the domain of
the parameters Eq.~24!# where the secular approximation
valid, solutions~46! and ~50! coincide. As noticed above
both sets of equations~18! and ~25! are valid for any level
configuration@Figs.1~a!–1~c!#. Only the relaxation rates ar
modified according to definitions~19! and ~26! due to the
change of the relative position of levels.

The effects caused by field-dependent relaxation are
most vivid when the spontaneous decay between levelsu2&
andu1& is the dominant relaxation process. This correspo
to a relatively large frequency interval between these t
levels, \v21@kT, or to a ‘‘cold’’ reservoir, N(v)>0 for
v>v21 ~where k is the Boltzmann constant andT is the
reservoir temperature!.

VI. SCHEMES WITH A LOWER-LEVEL SPLITTING

The difference between the steady-state solutions of
traditional and generalized master equations is most dra
for the scheme plotted in Fig. 1~a!. Indeed, according to the
traditional equations,N(v)>0 implies that all the atoms ar
in a ground state which is not coupled to the field. Since b
r

e

s
o

e
tic

h

levels u2& and u3& are empty, there is no interaction at all
any intensity of the field. However, the steady-state solut
~49! gives an essentially different picture.

A. Resonant driving

Let us first consider the case of resonant driving:d50.
Solutions~49! in this case and in the limitubu@v21 take the
particularly simple forms@7#

r̃335@112~a01A31!~a01A311A32!/a0A32#
21,

r̃225 r̃33@112~a01A31!/A32#, r̃11512 r̃222 r̃33,
~51!

r̃32e
iw5

i

8ubu
„a01 r̃33@a012~3A3112A32!

12~A31
2 2a0

2!/A32#…,

a05A21~ ubu/v21!
3.

In the bare atomic basis, according to Eqs.~50!, we have

r225r335 r̃33@11~a01A31!/A32#,
~52!

s32e
iw5 r̃33~a01A31!/A321 r̃32e

iw.

Solutions~52! correspond to the case when the low dynam
Stark levelu2̃& is much lower than the ground stateu1& ~since
ubu@v21). In this case, according to Eq.~38!, the spontane-
ous relaxation rate between these two levelsā125a0/2 is
proportional to the cube of the Rabi frequency:a0;ubu3.
This relaxation leads to a population in levelu2̃& ~and hence
levels u2& and u3&) which provides the interaction of atom
with the field. If this relaxation is weak, most of the atom
still remain in the ground state due to the fast spontane
decay at the optical transitionA31. However, ifa0@A31 the
situation is changed dramatically. In this case, according
Eqs.~52!,

r̃33>@112~a01A32!/A32#
21. ~53!

If A31!a0!A32, all levels are equally populated, both in th
bare and dressed bases. Ifa0@$A31,A32%, most of atoms are
trapped at the lower Stark level:r̃22>1. This condition im-
plies that the following inequalities are satisfied:

m21
2 h~ ubu!~ ubu/v31!

3/m31
2 h~v31!@1,

~54!
m21

2 h~ ubu!~ ubu/v32!
3/m32

2 h~v32!@1.

These results are quite different from those which would
obtained in the case of a driven two-level system wh
populations of the dressed states at resonance are equ
the bare basis, trapping to the lower Stark level correspo
to a saturation of theu2&-u3& transition,r22>r33>1/2, while
the ground state becomes almost fully depleted@14#. Hence
in the bare atomic basis, the population distribution is sim
to that which would be obtained in a closed two-level syst
u2&-u3& driven by a coherent field. However since the Sta
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level u2̃& is a coherent superposition of the two atomic lev
u2& andu3&, the atomic coherence reaches its maximumva

s32e
iw>1/2.

This is a rather rare example wherein spontaneous de
helps to prepare atoms in an almost pure quantum state
the maximal possible coherence:us32u>Ar22r33. This result
is in opposition to what would take place in a closed tw
level system driven by a coherent field, where the cohere
tends to zero in the limit of high intensity@15#, i.e., satura-
tion is not accompanied by high coherence.

Resonant driving of theu3&-u2& transition provides a
method for depleting the ground state. It is different fro
optical pumping and saturation. This depletion leads t
population inversion both at theu2&-u1& and u3&-u1& transi-
tions. The last result is unexpected since, according to
traditional master equations, coherent driving in a three-le
system cannot produce population inversion at a transi
whose frequency is higher than the frequency of the dri
transition. Apparently the population inversion at theu3&-u1&
transition is possible due to multiphoton absorption of
driving field. The magnitude of Re(s32e

iw), characterizing
the refractive index, tends to 1/2 in the limit of high inte
sity, while in a closed two-level driven system at resonanc
vanishes. It follows from this that the ratio of th
real and imaginary parts of the susceptibility
Re(s32e

iw)/Im(s32e
iw)@1, when ubu@v21, while in a

closed two-level system it is zero.
The absorption power remains at zero until the le

crossing occurs atubu5v21. Then it increases with the driv
ing intensity. In the limit of high intensity (a0@$A31,A32%),
according to Eqs.~46!, we obtain

P52N\v Im~s32b* !ud50

>2N\v
2ubu2~A311A32!

8ubu213a0~A311A32!/4
. ~55!

Comparing this result with the absorption power in
equivalent two-level system,

P252N\v Im~s32b* !ud50>2N\v
2ubu2A

8ubu21A2

~where the spontaneous decay rate is taken to be equal t
sum of the two optical decay rates in a three-level syst
A5A311A32), we conclude thatP is smaller thanP2. The
two absorption powers tend toward the same value for 3A2

!3a0A!32ubu2, i.e., at (A/A21)
1/3v21!ubu!32v21

3 /
(3AA21). Hence trapping of atoms in a dressed state does
lead to a reduction of the absorption power. This result is
to the fact that the absorption power is proportional to
product of the number of absorbing~untrapped! atoms times
their decay rate. Although the number of absorbing ato
NA/a0 decreases, their decay ratea0 increases with an in-
crease of the intensity. As a result, the absorption powe
this limit is the same as in a two-level system (P
5N\vA/2). This result is also quite obvious from the fa
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that the population distribution in a three-level system in t
case is the same (r22>r33>1/2,r11>0) as in a closed two-
level systemu2&-u3&.

Sincea0;ubu3, it seems at first glance that in the limit o
very high intensity, when 32ubu2!3a0A!3a0

2, the absorp-
tion power in a three-level system turns to zero. Howev
this limit implies that the decay rates of the dressed sta
exceed the frequency spacing between them (ā31@v3,n;1,n ,
ā12@v1,n;2,n , see Fig. 2!, and hence violate the Markov ap
proximation. Apparently, in the limitubu@v21 the relative
position of levelsu2& and u1& is not important, and hence
solutions~51! and~52! also remain true for the scheme plo
ted in Fig. 1~b!.

B. Arbitrary detuning

In Fig. 3 we plot Re(s32e
iw), the absorption powerP

52N\v Im(s32b* ), as well as the populations of both ba
and dressed levels as the functions of the normalized de
ing d/ubu for different values of the field intensity, accordin
to solutions~46!, for the first scheme@Fig. 1~a!#. Contrary to
the case of a two-level driven system, all these curves
asymmetric functions of the detuning. This is due to the f
that negative detuning is favorable for the level cross
while positive detuning prevents it. For each value of t
Rabi frequencyubu there exists a critical magnitude of th
detuning corresponding to a crossing between the lo
Stark level and the ground state:

d* 52v21~12ubu2/v21
2 !. ~56!

Depending on the ratioubu/v21, the value ofd* may be
positive or negative. Ford>d* , the field does not interac
with atoms. This would also be the case with traditional m
ter equations with field-independent relaxation. But ford
,d* ~i.e., as soon as the lower Stark level falls below t
ground state! spontaneous relaxation via the channelu1&-u2̃&
provides some population to levelu2̃& @see Fig. 3~d!#. This
leads to the population of the atomic levelsu2& andu3& @Fig.
3~c!# and therefore to the appearance of a nonzero ato
response @Figs. 3~a! and 3~b!#: Re(s32e

iw)Þ0 and
Im(s32e

iw)Þ0. According to the traditional master equ
tions, interaction would still be impossible. It is worth em
phasizing that even a very weak coherent field (ubu→0)
leads to a nontrivial atomic response if the magnitude of
negative detuning is large enough to provide a crossing
the lower Stark level with the ground state (V>udu.v21),
and hence spontaneous decay from the ground state to
Stark level. Increasing the intensity, a nonzero atomic
sponse is produced in a larger and larger domain of posi
detuning@Figs. 3~a! and 3~b!#. For each value of the detun
ing, as in the case of exact resonance, a distribution
dressed populations is defined by the ratio of the spontane
decay ratesāi j @Eq. ~44!# at the low-frequency transition
and the spontaneous decay rates at the dressed optical
sitions Āmn @Eq. ~43!# @Fig. 3~d!#.

In the limit of large negative detuning (d,0, udu/ubu
@1), according to Eqs.~43! and ~44! we have
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FIG. 3. ~a! Re(s32e
iw), which is proportional to the real part of susceptibility;~b! Im(s32b* ), which is proportional to the absorptio

power;~c! populationsr i i of the bare atomic levels; and~d! populationsr̃ i i of the dressed levels for the scheme of lower level splitting@Fig.
1~a!# vs the driving field detainingd in units of resonant Rabi frequencyubu for A21/v2151026, A31/v215A32/v2151022, v31/v21

5v32/v215105, h(v)51, and N(v)50. ~1! ubu/v2155. ~2! ubu/v21530. ~3! ubu/v215180. ~4! ubu/v215500 for ~a! and ~b! and
ubu/v21530 for ~c! and ~d!.
,

d
und

de-

the
ne-

ve
ā12>uduA21ubu2/v21
3 ,

ā31.A21, Ā21.A31,

Ā23.A32, Ā31→0,

Ā32→0.

After substitution of these expressions into Eqs.~49!, we find

r̃22>
A21ubu2udu/v21

3

A311A321~A211A32!ubu2udu/v21
3

,

~57!

r̃33>
A32ubu2udu/v21

3

A311A321~A211A32!ubu2udu/v21
3

.

Below we consider the particular caseA31<A32 since, ac-
cording to the selection rules, if transitionsu1&-u2& and
u3&-u2& are allowed, transitionu3&-u1& typically should be
forbidden (A3150). Then for a weak coherent driving
ubu2udu/v21

3 !1, according to Eqs.~57! r̃22> r̃33>0 and
hence, according to Eqs.~50!, for udu@ubu, we find thatr22

> r̃33>0 andr33> r̃22>0, i.e., atoms remain in the groun
state. Nevertheless spontaneous emission from the gro
state still may be observed in this weak-field limit forudu
.v21, since level crossing takes place due to the large
tuning. As noticed recently@15,10# this weak-field limit also
allows for a transparent interpretation of this process in
bare-state picture via Raman scattering, involving sponta
ous emission of a photon with the frequencyv1>udu2v21
and absorption of a photon of the driving field@Fig. 4~a!#.

At the same time, atubu2udu/v21
3 @1, we obtain, according

to Eqs.~57!,

r̃22→
A21

A211A32
,

~58!

r̃33→
A32

A211A32
.

Note that the last inequality along with the rotating-wa
approximation (udu!v32), implies a sufficiently large driv-
ing field intensity: ubu2@v21

3 /v32. In the most interesting
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and typical situation, when spontaneous decay at the driv
optical transition is much faster than at the unperturbed lo
frequency transition (A32/A21@1), we have

r̃22>
A21

A32
!1,

~59!
r̃33>

A32

A32
51.

Hence atoms are trapped in the upper ac Stark level,
would be the case for the closed two-level systemu2&-u3& at
a large negative detuning. Accordingly, the atomic respon
in this domain ofd ~Fig. 3! looks similar to the atomic re-
sponse of the two-level closed system. In the limit und
consideration,udu/ubu@1, d,0 ~which impliesc→0 ands

→1), trapping in the dressed stateu3̃& is equivalent to trap-
ping in the bare stateu2& @see Eqs.~50!#. At first sight, this
result seems amazing. Indeed, it seems that the interac
with the field should became weaker with an increase of t
detuning, and hence atoms should rather remain in
ground state. However, the distribution of population
among levelsu1& and u2& is defined by the ratio of the tran-
sition rate of the two-photon Raman process@Fig. 4~a!# to the
spontaneous decay rate at theu2&-u1& transition. The first
rate increases with a detuning due to the fact that sponta
ous photons with higher frequencies participate in the pr
cess. It is easy to verify that conditionubu2udu/v21

3 @1 corre-
sponds precisely to prevailing of Raman scattering over t
spontaneous emission at theu2&-u1& transition@10#.

Close to resonance, spontaneous decay~modified by the
weak driving field! at the low-frequency transition remains
sufficiently small compared to both optical transitions, s
that most of the atoms remain almost unaffected by the fie
i.e., they remain in the ground state:r̃115r11>1. With a
further increase of the driving intensity and hence of th
spontaneous decay rate at the low-frequency transition (ā12
.A31,A32) around resonance there appears a domain of
tuning:

d1,d,d2 ,

d1>
ubu

12~A32/A21!
1/3

,

FIG. 4. Raman scattering of the strong driving field in the ca
of the lower-level splitting~a!, and the upper-level splitting~b!.
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d2>
p3ubu

2~3p21A31/A21!
,

p5ubu/v21,

where r̃22.$r̃11,r̃33%. Hence atoms can be trapped in th
lower Stark level@Fig. 3~d!#, contrary to the case of a close
two-level system where populations of both dressed st
would be equal. In the bare atomic basis for the range
negative detuning,

d1,d,0,

population inversion becomes possible both at the dri
u3&-u2& transition and at the adjacentu3&-u1& transition:r33
.$r11,r22%. This is a an interesting effect which is com
pletely due to field-dependent relaxation.

Figures 3~a! and 3~b! illustrate the striking difference be
tween the atomic response of the closed two-level sys
u2&-u3& and the atomic response of our three-level system
the caseā12.A31,A32. For increasing intensity, the dispe
sion curve Re(s32e

iw), as a function ofd/ubu, becomes more
symmetric with respect to the resonant driving, and loo
rather similar to the absorption profile of a two-level syste
meanwhile the absorption curve Im(s32b* ), as a function of
d/ubu, acquires some dispersive features. In particular,
maximum is shifted from resonance to the domain of ne
tive detuning@Fig. 3~b!#, and it may exceed the maximum
value occurring in a two-level case. Let us note that
nonmonotonic behavior of the maxima of these curves w
an increase of intensity is due to our normalization ofd to
the Rabi frequencyubu.

VII. MODIFICATION OF THE PROBE FIELD
ABSORPTION SPECTRA

The distribution of dressed populations allows one to
fine the major characteristics of both fluorescence and pr
field absorption spectra for a probe field coupled with any
three atomic transitions. Drastic modifications of this dist
bution due to field-dependent relaxation provide the appe
ance of qualitatively interesting features in such spectra.
us consider these features for the scheme plotted in Fig. 1~a!.

According to traditional master equations in the case
der consideration (\v21@kT), there should be no fluores
cence at all since the field does not interact with the ato
However, according to generalized equations, if the driv
of the u3&-u2& transition provides a crossing of the lowe
Stark level with the ground atomic state, an interaction w
the coherent field is switched on and the fluorescence
pears, in general, at all the allowed dressed transitions~see
Fig. 2!, including theu1,n21&→u2,n21& transition. Trap-
ping atoms into one of two ac Stark levels leads to an
crease of the fluorescence from this trapped state and a
crease of the fluorescence from another state.

According to traditional master equations, if the pro
field is coupled to theu2&-u3& transition, it does not interac
with the atoms for any intensity of the driving field. How
ever, according to our results, interaction with both drivi

e
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and probe fields is switched on as soon as one ac Stark
crosses a nearby atomic state. Qualitatively the absorp
spectrum looks similar to the well-known Mollow spectru
for a two-level driven system. That is, there are two extre
at the dressed frequenciesv2,n;3,n21 and v3,n;2,n21. For
d,d1,0 @Fig. 3~d!#, there is an absorption peak
v2,n;3,n21 and an amplification peak atv3,n;2,n21 since r̃33

. r̃22. Conversely, ford.d1 there is amplification atv̄23

and absorption atv̄32. Let us note that amplification at on
of the dressed transitions and absorption at another one
occur either with population inversion at the bareu3&-u2&
transition ~at d1,d,0) or without population inversion a
the bareu3&-u2& transition~atd.0 or atd,d1), as shown in
Figs. 3~c! and 3~d!.

If the probe field is coupled to theu1&-u2& transition, two
extremes at the frequenciesv3,n;1,n and v1,n;2,n should be
observed. Whend,d3 @Fig. 3~d!#, the probe field is ampli-
fied at the frequencyv3,n;1,n ~sincer̃33. r̃11) and absorbed a
the frequencyv1,n;2,n ~sincer̃22. r̃11). Whend3,d,d2, the
probe field is absorbed at both dressed transitions. Whed
.d2, the probe field is amplified at the frequencyv1,n;2,n
and absorbed at the frequencyv3,n;1,n .

Finally, when the probe field is coupled with theu1&-u3&
transition, according to traditional master equations o
would obtain the well-known absorption profile described
the Autler-Townes doublet with two maxima in the abso
tion spectrum corresponding to a tuning of the probe field
the dressed transitionsu1,n21&2u3,n& or u1,n21&2u2,n&
~Fig. 2!. According to our analysis, in the domain of drivin
field detuning d,d2 @Fig. 3~d!# we have r̃22. r̃11, and
hence amplification of the probe field tuned to the freque
v2,n;1,n21 of the dressed transitionu2,n&→u1,n21& should
appear. Note that this amplification may occur without pop
lation inversion at the bareu1&-u3& transition (r11.r33) at
d* ,d,d2 @Fig. 3~c!#, whered* corresponds to a crossin
of the r11 line with ther33 line. At d,d* , amplification of
the probe field is accompanied by population inversion at
bare u1&-u3& transition ~which is created by the monochro
matic field!. Moreover, ford3,d,d* @Fig. 3~c!#, absorption
at thev3,n;1,n21 frequency should occur in spite of a stead
state population inversion at the bare transitionu1&-u3&.

In order to analyze the absorption spectra in detail on
basis of the generalized master equations, we need to a
this set of equations dynamical terms describing the inte
tion with the probe field. It is supposed that this field is t
weak to alter the relaxation processes in the system. He
the set of master equations has forms:

ṙ1112 Im~a* s31!52~a121w13!r111a21r221w31r33

2~a311a1!Re~s32e
iw!,

ṙ2212 Im~b* s32!5a12r112~a211w23!r221w32r33

1~a12ã32!Re~s32e
iw!,

ṙ3322 Im~b* s321a* s31!

5w13r111w23r222~w311w32!r33

1~a311ã32!Re~s32e
iw!, ~60!
vel
on

a

an
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e
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ce

ṡ321 ids322 ibn232 ias21* 52G32s321e2 iwR/2,

ṡ311 idas312 ibs212 ian1352G31s31

1e2 iw~a311a32!s21/2,

ṡ211 idcs212 ib* s311 ias32*

52G21s211e2 iw~a12a23!s31/2,

where a5(mW 31EWa)/(2\)5uaue2 iwa is the complex ampli-
tude of the probe weak field, and

G315~a211w311w131w32!/2,

G215~a211a121w131w23!/2,

da5v312va ,

dc5v212~va2v!5da2d.

The absorption coefficient is defined by

Im~s31/a!5
1

uDau2
$@G21n132ubus329 2~a311a32!s328 /2#Da8

1@dcn132ubus328 1~a311a32!s329 /2#Da9%,

~61!

where

Da5Da81 iD a9 ,

Da85G31G212~a311a32!~a12a23!/41ubu22dadc ,

Da95G31dc1G21da2~a311a321a212a23!ubu/2.

This is plotted in Fig. 5 as a function of the probe fie
detuning for two different values of driving field frequenc
In the case of resonant driving@Fig. 5~a!#, the probe field is
absorbed when tuned to theu1,n21&-u3,n& dressed transi-
tion, and it is amplified when it is tuned tou1,n21&-u2,n&
dressed transition in the absence of population inversion
tween bare states. In the case of detuned driving@d>d1 in
Fig. 3~d!#, amplification of the probe field occurs at both th
u1,n21&-u3,n& and u1,n21&-u2,n& dressed transitions. Thi
is in a full agreement with the signs of dressed-state pop
tion differences, as was explained above.

VIII. SCHEMES WITH AN UPPER-LEVEL SPLITTING

For these schemes, the lower operating level is the gro
state. Hence at any intensity of the field there is a fin
atomic response according to both the traditional and ge
alized master equations. In this sense, the modification of
atomic response due to field-dependent relaxation is no
drastic as in the first scheme of Fig. 1, where the atom
response~if there exists only spontaneous relaxation! is sim-
ply zero at any intensity of the field in the frame of th
traditional master equations neglecting field-dependent re
ation. Nevertheless there is still a striking difference betwe
the solutions of the traditional and generalized master eq
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3104 PRA 60KOCHAROVSKAYA, RADEONYCHEV, MANDEL, AND SCULLY
tions in the case of sufficiently high intensity. In fact, th
third scheme of Fig. 1 is the most convenient for a comp
son of these solutions. Indeed, in the case of spontan
decay according to the traditional master equations, the
per level in this scheme is not involved at all in the intera
tion with the field, and hence the atomic response is the s
as in the two-level systemu2&-u3&, whose properties are we
known @15#. In particular, at resonanced50 and in the limit
of high intensityubu@A23, one obtains

r̃225 r̃33>1/2,

r̃11>0,

s̃32>0, r22>r33>1/2,
~62!

Re~s32e
2 iw!50,

Im~s32e
2 iw!>0,

P>N\vA23/2.

According to the generalized equations, as long as the u
Stark level does not cross levelu3& ~which for d50 means
ubu<v12) the atomic response is the same as in a two-le
system. However, as soon as such a crossing occurs, sp
neous decay at the transitionu3̃&→u1& @Fig. 1~c!# involves

FIG. 5. Amplification profile of the probe field at theu3&-u1&
transition~bold line! in comparison with the solution of the trad
tional master equations~dashed line! when the driving field detun-
ing from the u3&-u2& transition is fixed at~a! d50 @in this case,

r̃22. r̃11 and r̃33, r̃11 in Fig. 3~d!#. ~b! d/ubu'd1521.4 @in this

case,r̃33'r̃22. r̃11 in Fig. 3~d!#.
i-
us
p-
-
e

er

el
ta-

the upper atomic state into the interaction process. On re
nance (d50) and in the limit ubu@v12 from Eq. ~48! we
obtain

r̃335A23~a012A13!/D,

r̃225@A13A231~a01A13!~2a01A23!#/D,

r225r335@A13A231~a01A13!~a01A23!#/D, ~63!

s32e
iw5a0~a01A13!/D,

D5A13A231~a01A13!~2a013A23!.

In the limit ubu@v12, the relative position of levelsu1& and
u2& is indifferent, and the same solution holds for the sche
of Fig. 1~d!. According to Eqs.~63!, for a0@A23 but inde-
pendently of the ratioa0 /A13, all atoms are trapped to th
lower Stark levelu2̃&:

r̃22>1,

r̃11> r̃33>0,

in analogy with the schemes with lower level splitting. In th
bare atomic states, trapping to a Stark level, as already
cussed above, corresponds to an equalization of populat
r22>r33>1/2 as in a two-level system. However, oppos
to the case of a two-level system wheres32>0, the excita-
tion of the coherence is maximal (s32e

iw>1/2). Accordingly
Re(s32e

iw)/Im(s32e
iw)@1 ~instead of zero! in the limit of

high intensity, while the absorption power ata0@A23 satu-
rates to its maximal valueP5N\vA23/2.

As in schemes with lower-level splitting, both the dispe
sion profile, given by Re(s32e

iw), and the absorption profile
given by Im(s32e

iw), as well as the populations of bot
dressed and bare states are asymmetric functions of the
tuning ~Fig. 6!. But contrary to the case of lower-level spli
ting, where spontaneous relaxation of the rateā12 at the
dressed transitionu1&→u2̃& @Fig. 1~a!# leads to a depletion o
stateu1& and a population of stateu2&, for the scheme with
upper level splitting spontaneous relaxation of the rateā31 at
the dressed transitionu3̃&-u1& @Fig. 1~c!# depletes levelu3̃&
and populates levelu1&. In the limit of sufficiently large
negative detuning,ud8u@ubu@Av21

3 /ud8u, (d852d), this
means that most of the atoms can be trapped in the u
atomic state:r11>1 @Figs. 6~c! and 6~d!#. This provides a
quite unexpected method for producing fully inverted thre
level atoms at theu3&-u1& transition by driving them at the
lower frequency transitionu3&-u2&. This result is unexpected
from the traditional point of view. Indeed, according to th
traditional master equations, levelu1& is not coupled to the
field, independently of its intensity and detuning, and hen
level u1& should remain empty. The process which leads
pumping of the upper state is a two-photon Stokes scatte
of the driving field @Fig. 4~b!#. Under the condition
ubu2ud8u@v12

3 this process prevails over spontaneous de

from the upper state~since the rateā31 exceeds the rates o
all other transitions!, and hence leads to a trapping of atom
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FIG. 6. ~a! Re(s23e
2 iw), which is proportional to the real part of the susceptibility;~b! Im(s23b), which is proportional to the absorptio

power;~c! populationsr i i of the bare levels;~d! populationsr̃ i i of the dressed levels for the scheme of the upper-level splitting@Fig. 1~c!#
vs the driving field detuningd852d in units of the resonant Rabi frequencyubu for A12/v1251026, A13/v125A23/v1251022,
v13/v125v23/v125105, h(v)51, andN(v)50. ~1! ubu/v1253. ~2! ubu/v12515. ~3! ubu/v12560. ~4! ubu/v125180 for ~a! and~b! and
ubu/v12530 for ~c! and ~d!.
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into the stateu1&. The traditional result follows from ou
treatment only ifubu2ud8u!v12

3 .

IX. CONCLUSIONS

We have shown that coherent driving at one of th
atomic transitions in a three-level system can strongly in
ence relaxation processes. Drastic modifications appea
the case of crossing between one of the ac Stark levels a
nearby unperturbed atomic level. Such crossing results
reversal of the direction of spontaneous emission betw
these levels. Modification of the relaxation scheme induce
very unusual atomic response compared to that which wo
be obtained on the basis of the traditional master equat
~where the decay rates are assumed to be constants ind
dent of driving field!.

Level crossing occurs when the generalized Rabi
quency of the driving field exceeds the frequency of the
jacent transition. Negative detuning favors such cross
and allows for the observation of some interesting effe
even at a low intensity of the driving field. For each value
the driving intensity there is an optimal value of the detun
which provides the most effective absorption of energy fr
e
-
in

d a
a
n
a
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ns
en-

-
-

g,
s
f

the field, and allows one to achieve a large population inv
sion at the driven atomic transition. For a scheme w
lower-level splitting@Fig. 1~a!#, in the case of a large nega
tive detuning, all atoms can be trapped into the upper
Stark level due to two-photon Raman process. For a sch
with upper-level splitting@Fig. 1~c!#, the two-photon Raman
scattering can provide a full population inversion at the hig
est frequency transition.

In the vicinity of the resonance (d>0) atoms can be

trapped into the lower ac Stark levelr̃22>1. Such a trapping
results in the excitation of the maximal atomic coheren
s32>Ar33r22, the maximal value of Re(s32e

iw), and a
maximal ratio Re(s32e

iw)/Im(s32e
iw). For the lower-level

splitting schemes this also provides full depletion of t
ground state and population inversion simultaneously at
u2&-u1& and u3&-u1& bare-state transitions.

The redistribution of the dressed populations leads,
turn, to drastic modifications of both the fluorescence a
probe field absorption spectra. In particular, at a certain
main of detuning of the driving field, a weak-field probin
u1&-u3& transition can be amplified in the absence of popu
tion inversion at this transition in the vicinity of either one
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both of the dressed transitions. Hence field-dependent re
ation provides an interesting mechanism for amplificat
without inversion.

All the field-dependent relaxation effects discussed ab
were considered within the simplest model of a three-le
atomic system with nondegenerate levels coupled to the
reservoir when a strong monochromatic field drives only o
atomic transition. For an experimental realization of this si
plest model in the case of Figs. 1~a! and 1~b!, it would be
appropriate to use the vapors of alkali metals driven on aD1
transition, and placed in a constant magnetic field.

For example, for potassium (39K) vapor in a magnetic
field, sublevels withMJ561/2 of its ground state 4s 2S1/2

and one of the levels withMJ521/2 or MJ511/2 of the
first excited state 4p 2P1/2

0 form a three-level configuration
corresponding to Figs. 1~a! and 1~b! with optical frequencies
v31'v32;2.4531015 s21. When the magnetic-field
strength essentially exceeds some critical valueH;170 G,
the frequencyv21 formed by this magnetic field sufficientl
exceeds hyperfine splittingvh;2.93109 s21 of the ground
state 4s 2S1/2. Hence one can neglect the hyperfine struct
of atomic levels. Radiation of a Ti:sapphire or dye las
which has an appropriate frequency and a sufficiently h
power can be used as the driving field. Due to resonant
ing of the driving field to theD1 transition, it is possible to
neglect the interaction of the field with the 4p 2P3/2

0 atomic
state nearest to levelu3&. Left circular polarization of the
driving field provides its interaction only with theu3&-u2&
transition corresponding to Fig. 1~a! ~where levelu3& has
MJ521/2), whereas a right circularly polarized field inte
acts only with theu3&-u1& transition @Fig. 1~b!# ~where the
level u3& hasMJ511/2).

Because of the small value of the magnetic dipole m
ment of theu1&-u2& transition with respect to values of ele
tric dipole moments of optical transitions (um21u;1.3
310220 cgs,um31u;um32u;1.6310217 cgs! it is meaningful
to look for modifications of the fluorescence spectrum
probe field absorption which have different polarizations
different transitions. For instance, for the scheme of F
1~a!, the fluorescence at rf transitionu1&-u2& of weakly
driven atoms~the lower dynamic Stark level is above th
ground state! is right circularly polarized along the magnet
field. However, as soon as the lower dynamic Stark le
crosses the ground state~for the field resonant to theu3&-u2&
transition, it corresponds to intensityI b;400 W/sm2), rf ra-
diation at theu1̃&-u2̃& transition with left circular polarization
should appear as a direct experimental evidence of fi
induced level crossing and spontaneous relaxation from
ground atomic state. For example, for potassium vapo
volumeV;1 cm3 under a temperatureT;103 K and pres-
surep;1 torr ~concentrationn;1016 sm23) placed in mag-
netic field H;500 G and driven by a field of intensityI b
;160 kW/sm2 resonant to theD1 line, one can expect fluo
rescence with a powerPf;4310215 W at a wavelengthl
;1 sm.

A probe field with an appropriate polarization can te
either optical transitions or the rf transitionu1&-u2&. When a
rf probe field is left circularly polarized and is directed alo
the magnetic field, no interaction with atoms in the sche
of Fig. 1~a! occurs until the driving field provides a leve
x-
n
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crossing. As soon as such a crossing takes place, the rf
is amplified ~without population inversion in a bare atom
system! due to population inversion at the dressed transit
u1̃&-u2̃&. Under the conditions described above, one can
pect a probe field gainGa;1023 sm21. Placing the system
into a resonator withQ;103 and lengthL;1.5 cm provides
a predominance of amplification over losses, and a real
tion of stimulated emission at the rf transition.

Changing the intensity or frequency of the driving field
well as the magnetic-field strength leads to a change of
intensity and frequency of both the fluorescence emiss
and generated rf field. For example, an increase of the d
ing field frequency corresponding to detuning from theD1
line on the valued;160 GHz allows one to obtain fluores
cence with a powerPf;4310215 W at a wavelengthl
;2 mm with a driving field intensityI b;15 kW/sm2. We
would like to stress that observation of the described rf
fects does not require a low temperature of the reservoir

Atoms with a ground state1S0 and nuclear spinI 50
could be chosen for an experimental realization of
schemes of Figs. 1~c! and, 1~d!. For example, for the case o
barium (138Ba), the ground state 6s 1S0 and magnetic sub-
levels withMF521 andMF50 of the excited state 6p 1P1

0

form a three-level configuration corresponding to Fig. 1~c! if
the driving field has a left circular polarization. The groun
state and magnetic sublevels withMF50 andMF511 of
the excited state with a right circularly polarized field form
three-level configuration corresponding to Fig. 1~d!. Radia-
tion of the dye laser can be used as a driving field resonan
the 6s 1S026p 1P1

0 transition with a wavelengthl0

'553.6 nm and a dipole momentm0;1.4310217 cgs. Ex-
perimental conditions similar to conditions for potassiu
lead to rf fluorescence and amplification of the rf probe fie
which are of the same order as described above.

Since barium atoms have no levels close to the 6p 1P1
0

state, one can also drive them by radiation slightly detun
from optical resonance, for instance, by radiation of
Nd:YAG ~yttrium aluminum garnet! laser at wavelengthl
'540 nm. In this case barium vapor of volumeV;1 cm3

under a temperatureT;103 K and pressurep;1 torr driven
by a left circularly polarized field of intensityI b
;50 kW/sm2 can produce a left circularly polarized rf emis
sion corresponding to relaxation at the dressed transi
u3̃&-u1̃& @Fig. 1~c!#, with powerPf;3310215 W at a wave-
lengthl;20 mm.

Finally, let us emphasize that we studied field-depend
relaxation effects in the simplest possible model allowing
both an analytical solution and a clear physical interpre
tion. At the same time, a crossing of the dynamic Stark lev
with some neighboring unperturbed energy states can o
under interaction of the driving field with different multileve
quantum systems coupled to different kinds of reservo
Interesting examples of this include interaction of a stro
laser field with vibrational-rotational transitions of molecul
and semiconductor structures having appropriate ene
spectra. The quantitative analysis of these physical situat
requires a generalization of the above model.
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APPENDIX A: RELAXATION RATES OF THE DRIVEN
THREE-LEVEL ATOM

The elements of the relaxation supermatrix in the set
equations~8! are calculated according to Eqs.~2!–~4!, ~10!,
and~11!. They are grouped into two sets. The first one is
follows:
R111152~R22111R3311!,

R11225c2w21~ṽ12!1s2w21~ṽ13!,

R11335c2w31~ṽ132v!1s2w31~ṽ122v!,

R22115c2w12~ṽ21!1s2w12~ṽ31!,

R222252~R33221R1122!,

R22335c4w32~ṽ232v!1s4w32~ṽ322v!12s2c2w32~2v!,

R33115c2w13~ṽ311v!1s2w13~ṽ211v!,

R33225c4w23~ṽ321v!1s4w23~ṽ231v!12s2c2w23~v!,

R333352~R11331R2233!,

R11325eiw
sc

2
@w31~ṽ122v!2w31~ṽ132v!1w21~ṽ12!2w21~ṽ13!#,

R22325eiw
sc

2
$~c22s2!@w32~2v!1w23~v!#1s2@w32~ṽ322v!1w23~ṽ231v!#

2c2@w32~ṽ232v!1w23~ṽ321v!#1w21~ṽ13!2w21~ṽ12!%,
~A1!

R33325eiw
sc

2
$~s22c2!@w23~v!1w32~2v!#1c2@w32~ṽ232v!1w23~ṽ321v!#

2s2@w32~ṽ322v!1w23~ṽ231v!#2w31~ṽ122v!1w31~ṽ132v!%,

R32115e2 iw
sc

2
@w13~ṽ211v!2w13~ṽ311v!1w12~ṽ21!2w12~ṽ31!#,

R32225e2 iw
sc

2
$~c22s2!@w23~v!2w32~2v!#1s2@w23~ṽ231v!2w32~ṽ322v!#

2c2@w23~ṽ321v!2w32~ṽ232v!#1w31~ṽ132v!2w31~ṽ122v!%,

R32335e2 iw
sc

2
$~s22c2!@w32~2v!2w23~v!#1s2@w23~ṽ231v!2w32~ṽ322v!#

1c2@w32~ṽ232v!2w23~ṽ321v!#1w21~ṽ13!2w21~ṽ12!%,
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R32325~R22221R3333!/2,

R322350,

R31315~R11111R3333!/2,

R311350,

R312152e2 iw@~c3s2s3c!w32~2v!2c3sw32~ṽ232v!1s3cw32~ṽ322v!#/2,

R31125sce2 iw@w2121~ṽ21!2w2121~ṽ31!#,

R21215~R11111R2222!/2,

R21125c2w2121~ṽ21!1s2w2121~ṽ31!1c2w1212* ~ṽ12!1s2w1212* ~ṽ13!,

R21315eiw
sc

2
@~c22s2!w23~v!1s2w23~ṽ231v!2c2w23~ṽ321v!1w21~ṽ13!2w21~ṽ12!#,

R21135e2 iwsc@w1212* ~ṽ12!2w1212* ~ṽ13!#.

For the second set, one obtains

R1121522s2c2w1332~v!2s4w1332~ṽ231v!2c4w1332~ṽ321v!,

R11315eiw@~c3s2s3c!w1332~v!2c3sw1332~ṽ321v!1s3cw1332~ṽ231v!#,

R222152s2w2331* ~ṽ211v!2c2w2331* ~ṽ311v!,

R223150,

R332152s2c2w1332~v!1s4w1332~ṽ231v!1c4w1332~ṽ321v!,

R333152eiw@~c3s2s3c!w1332~v!2c3sw1332~ṽ321v!1s3cw1332~ṽ231v!#,

R32215sce2 iw@w2331* ~ṽ211v!2w2331* ~ṽ311v!1c2w2321* ~ṽ21!1s2w2321* ~ṽ31!#,

R32125e2 iw@~c3s2s3c!w1332* ~v!2c3sw1332* ~ṽ321v!1s3cw1332* ~ṽ231v!#,

R323152s2w2331* ~ṽ211v!2c2w2331* ~ṽ311v!,
~A2!

R32135e2 i2ws2c2@2w1332* ~v!2w1332* ~ṽ231v!2w1332* ~ṽ321v!#,

R311150,

R312250,

R31335e2 iw$~c3s2s3c!@w1332* ~v!2w3123~2v!#2c3s@w1332* ~ṽ321v!2w3123~ṽ232v!#

1s3c@w1332* ~ṽ231v!2w3123~ṽ322v!#%,

R3132522s2c2w1332* ~v!2s4w1332* ~ṽ231v!2c4w1332* ~ṽ321v!,

R31235e2 i2ws2c2@2w3123~2v!2w3123~ṽ232v!2w3123~ṽ322v!#,

R211152s2w2331~ṽ211v!2c2w2331~ṽ311v!,

R2122522s2c2w1332* ~v!2s4w1332* ~ṽ231v!2c4w1332* ~ṽ321v!,
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R213352s2c2w3123~2v!1c4w3123~ṽ232v!1s4w3123~ṽ322v!1s2w3213* ~ṽ122v!1c2w3213* ~ṽ132v!,

R21325sceiw@w3213* ~ṽ122v!2w3213* ~ṽ132v!#,

R21235e2 iw$~c3s2s3c!@w3123~2v!1w1332* ~v!#2c3s@w1332* ~ṽ321v!1w3123~ṽ232v!#

1s3c@w3123~ṽ322v!1w1332* ~ṽ231v!#%.

APPENDIX B: COEFFICIENTS OF THE GENERAL SOLUTION „45…

A15a11b1dubu24ubu2/W̃,

A25a22b2dubu14ubu2/W̃,

A35a31b3dubu14ubu2/W̃,

A45a42b4dubu24ubu2/W̃,

C15a121~a22a13!~a12ã32!/W̃1hdubu,

C25w131~a22a13!~a311ã32!/W̃2hdubu,

h54~a22a13!/~WW̃!,

a15~a12ã32!~ ã311a32
0 2a2!/W̃2a212a122w23,

b154~a12a21ã3122a23!/~WW̃!,

a25~a311ã32!~ ã311a32
0 2a2!/W̃1w232w13,

b254~a1322a232a2!/~WW̃!,

a35~a12ã32!~a12a21a131a32
0 !/W̃1w322a12,

b354~2a321a132a2!/~WW̃!,

a45~a311ã32!~a12a21a131a32
0 !/W̃2w312w132w32,

b454~ ã3112a321a12a2!/~WW̃!,

W̃5W~114d2/W2!,

W52G32.
e
,
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