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Stopping power in the independent-particle model: Harmonic oscillator results
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Electronic stopping cross sections for atoms and molecules in the gas phase have been evaluated within the
independent-particle model for the range of velocities where the first Born approximation is valid for targets
with Z2<18. It is shown that in this approximation, the electronic stopping power is expressed as a Bragg sum
rule. In the case that the target electron is considered as harmonically bound, the stopping cross section is
obtained in an analytical form depending solely on the frequency of the electron. Using the virial theorem, a
relation is found between the harmonic oscillator frequency and the electronic properties of the target, such that
the stopping power is described in a self-contained way. The results are compared with other theoretical
treatments and with available experimental data. For the case of projectiles with structure, I use the results for
the effective charge~screening effect! of Cabrera-Trujillo, Cruz, Oddershede, and Sabin@Phys. Rev. A55,
2864 ~1997!#. From the analytical expression forSe , one obtains the shell contributions to the electronic
stopping cross section, finding that in this model, shell corrections also come from considering the whole set
of allowed excitations in the target with a dependence on the orbital mean excitation energy and the projectile
mass.@S1050-2947~99!09309-9#
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I. INTRODUCTION

The interaction of swift, massive particles with matter is
field with implications for such diverse studies as astroph
ics, nuclear and atomic physics, ion beam implantation
impurities in solids, and radiation therapy, to mention jus
few. When a particle makes its way through a substance
interaction with surrounding atoms and molecules leads
the transfer of part of its energy to the medium.

In 1930 Bethe@1# established the quantum theory for e
ergy loss of a point charge when it penetrates a medi
According to Bethe’s theory@1#, the electronic stopping
cross section (Se) in the first Born approximation for a swif
stripped ion with chargeZ1 colliding with a target withN2
bound electrons is given by

Se~v !5
4pe4Z1

2N2

mev
2 H lnS 2mev

2

I 0
D2

C~v !

N2
J , ~1.1!

valid for the case when the velocity of the projectile,v, is
higher than the target electron’s velocityve . HereC(v)/N2
are the so-called shell corrections for the system andI 0 is the
mean excitation energy of the target which is defined
terms of the dipole oscillator strength~DOS! f nn0

@2# as

N2 ln I 05(
n

f nn0
ln~En2En0

!, ~1.2!

with En0
andEn denoting the energies of the system in t

initial and final states, respectively.

*Present address: Quantum Theory Project, Department of P
ics, University of Florida, P. O. Box 118435, Gainesville, F
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In order to evaluateI 0, the complete DOS distribution o
the target must be known, so it may be necessary to reso
approximate methods or—most frequently—to obtainI 0 ei-
ther semiempirically or from fits of theory to experiment
data. Theoretically, in the last few years there have b
several approaches to the calculation of stopping pow
shell corrections, and mean excitation energies by emp
ing, in several different forms, a decomposition into separ
orbital contributions.

Pathak @3# decomposed the stopping into contributio
from valence electrons, conduction electrons, and inner-c
electrons. On the other hand, Tung and Watt@4# obtained
contributions toSe from the inner shell electrons, by usin
the local plasma approximation~LPA! of Lindhard and
Scharff@5#, and from valence electrons by using a dielect
response approach. Oddershede and Sabin~OS! @6–9# have
treated shell corrections and mean excitation energies by
ing the kinetic theory~KT! of stopping@10#. OS found that
the KT gives good resultsprovidedit is used on an orbital-
by-orbital basis@6#. This condition includes the use of a
orbitally decomposed form of the Bethe logarithmic form
hence requiring orbital mean excitation energies. To this e
OS used the orbital mean excitation energies obtained
Dehmer et al. @11# and Inokuti et al. @12,13# within the
independent-electron model from the Hartree-Slater calc
tion of the DOS.

On the other hand, Meltzeret al. @14,15# proposed an or-
bital density generalization of the LPA to calculate orbi
mean excitation energies. Within the kinetic theory, they c
culate stopping cross sections, finding that their results
not differ substantially from those of OS although the tw
methods were different.

Up to now many of the efforts, including those previous
cited, have been based on numerical analyses for all the
locities allowed within the first Born approximation. The ai
of this work is to lay the foundation of the use of th
s-
3044 ©1999 The American Physical Society
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PRA 60 3045STOPPING POWER IN THE INDEPENDENT-PARTICLE . . .
independent-particle model in the calculation of electro
stopping power and to obtain an analytical expression fo
In the first place, I show that in this context the stoppi
power is separated into contributions from the target orbi
as a Bragg-like rule. Also, for high velocities~low momen-
tum transfer! we obtain an orbital decomposition of the me
excitation energy.

Since the original work by Bethe@1#, much effort has
been made and several methods have been used in cal
ing analytical and realistic descriptions for the electro
stopping power. One of them has been the quantal harm
oscillator ~HO! model which is widely used in man
branches of physics, such as quantum optics, atomic,
lecular, and solid state physics, first because all the excita
spectra and solutions are well known, and second, becau
first order it represents the potential of a bound electron.

Recent work@16,17# has shown that the electronic sto
ping cross section can be evaluated in terms of serie
integrals on the basis of a quantal harmonic oscillator mo
for the atom. However, as Sigmund and Haagerup sta
@16#, ‘‘in the case of a heavy projectile,M1@me , one comes
closest to an analytical expression.’’ It is within this spi
that I will obtain an analytical expression forSe , and it will
be related to a realistic description of the target.

In Sec. II, I start with a summary of the quantum ele
tronic stopping theory in the first Born approximation. Ne
I show the implementation of the independent-particle mo
and obtain a self-contained analytical result forSe under the
HO approach. In Sec. III, I compare the results of this mo
with experiment and other theories. In order to compare
the experiment, I use the analytical result for the effect
charge~screening effect! of Cabrera-Trujilloet al. @18# and I
compare the results for the electronic stopping cross sec
with those of OS and the experimental data available for
Li, C, and Al. Also, I show the results for the shell corre
tions and compare them with the OS results, finding a g
agreement. Finally, in Sec. IV, I provide some discuss
and conclusions as well as remarks concerning further w

II. THEORY

A. Electronic stopping power

Let us consider a process in which a point charge w
velocity v, massM1, and nuclear chargeZ1e collides with a
stationary gas phase target with massM2 andN2 bound elec-
trons in an initial state denoted byum0&. The projectile is
deflected into the solid angle elementdV along a direction
with polar angleu and azimuthal anglew, measured in the
laboratory frame. Suppose the target undergoes a trans
to final statesum&; then the kinetic energy of the projectile
when electron transfer is not permitted, is thereby reduced
Em2Em0

.
Following Bethe’s classic derivation@2,19#, the electronic

stopping cross section can be written as

Se~v !5
2Z1

2e4

mev
2 (

m.m0

E
qmin

qmax
Fmm0

~q!
dq

q2
, ~2.1!

whereq is the momentum transfer,dq5qdqdw, andFmm0

are the generalized oscillator strengths~GOSs! given by
c
t.
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Fmm0
~q!5

2me

\2q2
~Em2Em0

!uMmm0
~q!u2, ~2.2!

with

Mmm0
~q!5^m0u(

i 51

N2

e2 iq•r ium& ~2.3!

being the atomic form factor@20# of the target.
Note that Eqs.~2.1! and ~2.3! do not include the integra

tion on the azimuthal anglew due to the contribution coming
from the spatial orientation of the target electronic distrib
tion @21#. The limits of theq integration are determined b
the kinematics of the collision process and they are given
@22#

qmax
min

5
M1v

\
F16A12

2~Em2Em0
!

M1v2 G . ~2.4!

Equation~2.1! is a first Born approximation to the electron
stopping power of ions incident on an atomic or molecu
target. The GOS terms in Eq.~2.1! give the contribution to
the stopping cross section from the target transitions;
each GOS term constitutes the probability that the projec
induces a target transition from the initial stateum0& to the
final stateum& with an absorption of energyEm2Em0

.

B. Independent-electron model

The analysis of Eq.~2.1! requires knowledge of the com
plete spectrum of excitations and the corresponding w
functions. This knowledge implies solutions of the unpe
turbed Schro¨dinger equation for the system ofN2 electrons.
However, in reality, this calculation is a difficult task, an
one has to resort to approximate solutions. It is in this sp
that we will reformulate the previous results within th
independent-particle model. In this situation, the system
described by a Hartree-Fock wave function of the form

um&5um1 ,m2 , . . . ,mN2
u, ~2.5!

where umi& is a one-electron eigenfunction. Therefore, t
energy transfer from the ground stateum0& to the excited
stateum& is given by

Em2Em0
5(

i 51

N2

~Emi
2Em0i

!, ~2.6!

where the subindexmi stands for thei th electron in the ex-
cited statem. From this approach, one can see that for
one-electron operatorO5( j 51

N2 Oj , the only way we can ob-
tain an atomic form factor different from zero is that th
wave function for the excited state differs from that of t
ground state by one orbital. Supposing then that the exc
tion occurs for thej th orbital, the atomic form factor~2.3!
becomes

Mmjm0 j

( j ) 5^mj uOj um0 j&. ~2.7!
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Therefore, using these two previous results, one finds tha
this one-electron operator, the GOS can be rewritten as
contributions of each individual orbital, i.e., as

Gmm0
5(

j 51

N2

Gmjm0 j

( j ) , ~2.8!

where

Gmjm0 j

( j ) 5~Emj
2Em0 j

!z^m0 j uOj umj& z2 ~2.9!

is the orbital contribution in the independent-particle mod
In the particular case in which the one-electron operato

given by the plane wave,Oj5e2 iq•r j , the orbital GOS be-
comes

Fmjm0 j

( j ) ~q!5
2me

\2q2
~Emj

2Em0 j
!u^m0 j ze2 iq•r j umj& z2.

~2.10!

From this result and Eq.~2.1! we can observe immedi
ately that the stopping cross section is given by

Se~v !5(
i

Se,i~v !, ~2.11!

where

Se,i~v !5
2e4Z1

2

mev
2 (

mi

E
qmin,i

qmax,i
Fmim0i

( i ) ~q!
dq

q2
~2.12!

is the contribution of thei th orbital. This result resemble
Bragg and Kleeman’s rule@23# for the stopping cross sec
tion, which states that ‘‘the total stopping cross section is
weighted sum of the atomic stopping cross sectionsSe,i ,
where the weight factors are the numbers of atoms of typei ’’
but in this case reformulated orbital by orbital.

Note the limits of integration. From Eq.~2.7! and kine-
matic considerations, the limits on the transferred mom
tum take into account only the energy transferred to t
orbital, i.e.,Emj

2Em0 j
. We will analyze in more detail the

importance of this result in Secs. III and IV. For the mome
we will use the Bethe approximation for high velocities.

C. Bethe approximation

Following the classic derivation of the Bethe formula@2#,
in Eq. ~2.12! one uses the fact that for high velocities t
limits of the q integration are determined by the kinemati
of the binary collision process; therefore for heavy ions@2#

qmax,i5
2mev

\
, qmin,i5

Emi
2Em0i

\v
. ~2.13!

Following Bethe@2#, one exchanges the summation ov
mi in Eq. ~2.12! with the integration, and since the only ter
that depends on the excited state isqmin,i , it is replaced by a
suitably averaged value which is independent of the exc
tion state:
or
he

l.
is

e

-
s

,

r

-

qmin,i AV
5

I 0i

\v
. ~2.14!

Using this approximation and the Bethe sum rule fulfilled
the GOS@1#,

(
mj

Fmjm0 j

( j ) ~q!51, ~2.15!

we obtain the result that

Se,i~v !5
2e4Z1

2

mev
2 Eqmin,i AV

qmax,i dq

q2
5

4pe4Z1
2

mev
2

lnS 2mev
2

I 0i
D ,

~2.16!

which is the standard Bethe result@see Eq.~1.1!#, whereI 0i

is defined through the dipole oscillator strengthf mim0i

( i )

5 limq→0Fmim0i

( i ) (q) as

ln I 0i5(
mi

f mim0i

( i ) ln~Emi
2Em0i

!. ~2.17!

Therefore, from Eq.~2.11!, one sees that in the high
velocity regime

N2 ln I 05(
i 51

ni ln I 0i , ~2.18!

whereni is the occupation number of the orbitali.
This equation is precisely the Bragg-like rule decompo

tion for the mean excitation energy of a complex syst
@24#. Let me note that the meaning ofI 0 has sense only in the
high-velocity region. In the intermediate- to low-velocity re
gion, the orbital mean excitation energyI 0i is the one which
will describe more realistically the stopping as has be
found previously by OS@6#.

D. Harmonic oscillator model implementation

In order to derive an analytical expression for the sto
ping cross sectionSe(v), I will assume that each electron o
the target is bound harmonically@25# with its own force
constant.

For a spherical three-dimensional harmonic oscilla
with a natural frequencyv0i , the wave function is given by

fmi
5Ami

e2a i
2(xi

2
1yi

2
1zi

2)/2 )
x5x,y,z

Hmix
~a ixi !, ~2.19!

whereAmi
is the normalization constant for that orbital, th

Hmix
are the Hermite polynomials,a i

25mev0i /\, and the
unperturbed orbital energy is given by

Emi
5\v0i S mix1miy1miz1

3

2D .

Since the wave function is spherically symmetric, I will su
pose that the momentum transfer takes place along thz
direction, such that the only contributing state ismiz and the
atomic form factor for thej th electron is calculated in a
straightforward way from Eq.~2.7!, resulting in
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Mmjm0 j

( j ) ~q!5
2mj /2

Amj !
S iq

2a j
D mj

e2q2/4a j
2
, ~2.20!

wheremj5mjz . Here, I have assumed that the ground st
is for m0i50. Therefore the GOS for thej th orbital is given
by

Fmjm0 j

( j ) ~q!5
1

~mj21!! S q2

2a j
2D mj 21

e2q2/2a j
2
, ~2.21!

which by direct calculation is seen to satisfy the Bethe s
rule @Eq. ~2.15!#. Inserting Eq.~2.21! into the definition of
the orbital electronic stopping cross section@Eq. ~2.12!#, one
obtains

Se,i~v !5
4pe4Z1

2

mev
2

Li~v !, ~2.22!

whereLi(v) is called the orbital stopping number, given b

Li~v !5
1

2 H Ei~x! U
xmin(1)

xmax(1)

2e2x U
xmin(2)

xmax(2)

2 (
n53

[Ep /I 0i ]

e2xF xn22

~n21!!

1 (
k51

n22
xn2k22

~n21!~n2k22!! GU
xmin(n)

xmax(n)J , ~2.23!

where Ei(x) is the exponential integral function@26#, which
is defined as

Ei~x!5g1 ln x1 (
k51

`
~21!kxk

kk!
.

Hereg50.577 215 66, the Euler constant, and

xmax
min

~n i !5
M1

2v2

2me\v0i
S 16A12

2\v0in i

M1v2 D 2

. ~2.24!

As one sees, this is an analytical and exact result for
stopping cross section, within the first Born approximati
for a quantal harmonic oscillator.

E. High-velocity limit

Let me analyze Eq.~2.22! for the case where the projec
tile collides with a velocity higher than the electron velocit
In this case, from Eq.~2.24!,

xmax~n i !5
2M1

2v2

me\v0i
@1,

xmin~n i !5
\v0in i

2

2mev
2

!1, ~2.25!

such that one can use the asymptotic formulas for the ex
nential integral function@26#,
e

e

o-

Ei~z!; ln z, z!1,

Ei~z!;
e2z

z F12
1

zG , z@1, ~2.26!

which when used in Eq.~2.22! gives

Se,i~v !5
4pe4Z1

mev
2 H lnS 2mev

2

\v0i
D1(

j

e j~\v0i ,M1!

~v2! j J .

~2.27!

Here e j (\v0i ,M1) is the coefficient for the so-called she
corrections which has been given by Sigmund and Haage
@16#. From this result, one sees that the Bethe term com
from the contribution of the first excited state (n51), and
the higher excited states contribute to the so-calledshell cor-
rections. Also, from Eq.~1.1!, one can identify the angula
frequency of revolution of thei th electron times\ as the
mean excitation energy — a result similar to that previou
found by Kramers@27# for a free electron gas. This result ca
be obtained from the definition of the orbital mean excitati
energy@Eq. ~2.17!#, calculating directly the DOS as follows
For the HO model we have

f mim0i

( i ) 5dmi1
, ~2.28!

contributing only the first excited state. ThereforeEi12Ei0
5\v0i , such that the orbital mean excitation energy is giv
by

I 0i5\v0i .

In the next section I will utilize further the above assum
tions in order to find a complete description of the target
means of the harmonic oscillator.

F. Revolution frequency and the mean excitation energy

In order to apply the method proposed in this work a
provide a proper discussion of the previous results, it is n
essary to obtain a realistic description of the angular f
quencyv0i of the target electron and therefore a realis
description of the orbital mean excitation energyI 0i .

Since we are representing the behavior of an electron
means of a harmonic oscillator wave function, from E
~2.19! we see that all the physical information is contained
the parameterv0i . The way we will relate this parameter t
a realistic situation is through the virial theorem.

For one electron represented by a harmonic oscilla
wave function, the potential is given byVHO5mev0i

2 ^r i
2&/2,

where^r i
2& is the expectation value of the mean square

sition in a given realistic basis set.
The virial theorem for a potential of the formr n reads as

^Ti&5
n

2
^Vi&. ~2.29!

Therefore, for the harmonic oscillator potential,^Ti&HO

5^Vi&HO , and therefore,mev0i
2 ^r i

2&/25^Ti&HO . But if the
electron described by a harmonic oscillator wave function
to have Coulombic information, then the expectation va
of its kinetic energy should be the same as the one given
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more realistic description, i.e.,^Ti&HO5^Ti&, where^Ti& is
the expectation value for the electron in a Coulombic pot
tial and described by a realistic basis set. For this Coulom
potential, then, the virial theorem establishes that^Ti&5
2^Vi&/252e0i , wheree0i is the electronic orbital energ
for the i th electron. This last step follows from the use of
independent-oscillator scheme for each atomic level. T
one has

v0i5A2
2e0i

me^r i
2&

, ~2.30!

and therefore, the mean excitation energy for this orbital
comes

I 0i5A2
2\2e0i

me^r i
2&

. ~2.31!

Knowing the expectation value for̂r i
2& and the orbital

energye0i , one can get the mean excitation energy for
i th orbital.

The preceding expression is remarkably simple. It redu
to the classical result since for the Coulombic casee0i5
2me^ve

2&/2 such thatv0i5^ve
2&1/2/^r i

2&1/2. Also, it indicates
that the more compact the orbital, the higher will be t
mean excitation energy, a result previously found for
Gaussian wave function within the orbital local plasma a
proximation~OLPA! model @28#.

III. ANALYSIS AND DISCUSSION

A. Mean excitation energy

Let me analyze briefly the predictions of the orbital me
excitation energy calculated in this work for some atom
cases and compare with other theoretical calculations
Table I, I display the orbital values forI 0i obtained from Eq.
~2.31! for various atomic systems. The expectation values
^r i

2& were obtained by using accurate Hartree-Fock Sla
~HFS! atomic wave functions for neutral atoms in the grou
state~extended basis set! by Clementi and Roetti@29#. The
orbital energies required by Eq.~2.31! have been taken from
the latter reference. In the same table are shown the valu
Meltzer, Sabin, and Trickey@14# ~MST! obtained by means
of the OLPA and local-spin-density approximation densiti
and the corresponding values for the mean excitation en
from the calculation of OS@9#. It is interesting to note the
fair agreement among the three approaches~although the
three methods are different! which reveal some systemat
features. ForZ252, . . . ,5 onesees that the HO results a
intermediate between the MST and OS models. ForZ2.5,
one observes that theK-shell values are higher than those
MST. But as has been pointed out by OS, the valence e
trons are the ones that make the higher contribution toSe .
Furthermore, one can observe differences in the valence
sults, but those are smaller than the core results. On the o
hand, we observe that all the herein calculated orbital m
excitation energies show a monotonically decreasing tr
within the same target in contrast with the correspond
values of MST and OS. This result means that the nat
revolution frequency decreases monotonically for the ou
-
ic
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orbitals, making the valence electrons those which will p
duce the higher contributions toSe .

B. Stopping cross section

Using the quantities given in Table I as input into Eq
~2.11! and ~2.22!, one obtains the contribution toSe as a
function of the energy for projectiles incident on select
gaseous atomic targets.

From Eq.~2.24!, we see that the velocity of the projectil
determines the number of states which will contribute toSe ;
i.e., the maximum number of excitations produced by
projectile will be given by

n5
M1v2

2I k
5

Ep

I k
, ~3.1!

such that for the same velocity of the projectile, orbitals w
larger orbital mean excitation energy~core orbitals! will con-
tribute less.

As examples, I calculate the electronic stopping cross s
tion for proton projectiles incident on He, Li, C, Al, and A
gaseous targets and compare with the results of Odders
and Sabin@9# which are based on an orbital decompositi
description of the stopping power. Also, for completenes
include available experimental data for comparison@30–42#.
In order to compare with the available experimental data
is necessary to consider the effect of the projectile charge
this end, one resorts to the use of theeffective chargede-
scription for the projectile:

Se,i~Z1 ,v !5@Z1* ~v !#2Se,i~Z151,v !. ~3.2!

In doing so it is necessary to take into account a f
points which relate specifically to protons. Effective char
is interpreted as a steady-state average over a large nu
of discrete capture-loss processes@43#. Assuming this, Yarla-
gaddaet al. @44# state that ‘‘statistical models are well just
fied even for the screening of protons . . . The screening
static proton . . . has been studies in quantitative detail
and these studies fully justify use here of a local-dens
approximation and a statistical model.’’ Based on this res
I use the analytical result of Cabrera-Trujilloet al. @18# for
the effective charge, which is based on the Thomas-Fe
description of the atom with the analytical solution of Tie
@45# and the adiabatic criterion due to Bohr@46,47#. In Fig.
1, I show the effective charge for protons as a function of
proton velocity v/v0, where v0 is the Bohr velocity, and
compare with the results of Yarlagaddaet al. @44#.

In Figs. 2–6, I show the electronic stopping cross sect
for protons under three different approaches. I show the
sults obtained using the assumption that the proton charg
unity through all the velocities where this model is val
~solid line!, Eq. ~2.22!. In addition, I show the results ob
tained using the criterion of effective charge@18# for the
stopping cross section~dashed line! calculated by means o
Eqs.~2.22!, ~3.2!, and Eq.~2.23! of Ref. @18#. Also, I show
the stopping cross section obtained using the OS values
the orbital mean excitation energies in Eq.~2.22! ~dotted
line! for comparison with the direct calculation of OS~1!
@9#.

From these figures one observes several characteristi
the behavior of the electronic stopping cross section w
compared to other models and to the experiment. Despite
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TABLE I. Orbital mean excitation energy and electronic ground-state parameters, as required by Eq.~2.31!. The orbital mean excitation
energies are given in eV.

Atom Orb. ^r k
2& ~a.u.! ek ~hartrees! I k I k

MST a
I k

OS b
Atom Orb. ^r k

2& ~a.u.! ek ~hartrees! I k I k
MST a

I k
OS b

H 1s 3.0000 20.5000 15.70 11.25 14.99
He 1s 1.1847 20.9179 33.86 33.66 38.83
Li 1s 0.4468 22.4777 90.58 69.73 109.32

2s 17.7377 20.1963 4.05 3.17 3.29
Be 1s 0.2330 24.7327 173.38 113.91 203.78

2s 8.4264 20.3093 7.37 7.81 7.32
B 1s 0.1434 27.6953 281.83 164.39 320.21

2s 4.7092 20.4947 12.47 12.14 16.33
2p 6.1445 20.3099 8.64 8.07 11.55

C 1s 0.0972 211.3255 415.22 220.78 451.34
2s 3.0517 20.7056 18.50 16.93 27.57
2p 3.7617 20.4333 13.08 17.19 20.97

N 1s 0.0703 215.6291 573.70 283.07 590.00
2s 2.1495 20.9453 25.51 21.82 41.24
2p 2.5471 20.5676 18.16 27.59 32.68

O 1s 0.0531 220.6687 758.58 349.72 729.41
2s 1.5816 21.2443 34.12 27.33 56.86
2p 1.9758 20.6319 21.75 40.82 46.64

F 1s 0.0416 226.3827 968.59 421.58 861.33
2s 1.2162 21.5725 43.74 32.80 74.04
2p 1.5443 20.7300 26.45 54.78 62.86

Ne 1s 0.0335 232.7725 1203.68 497.75 982.68
2s 0.9672 21.9304 54.35 38.35 92.22
2p 1.2291 20.8504 32.00 70.81 81.37

Na 1s 0.0275 240.4785 1476.32 577.82 1110.36
2s 0.7315 22.7970 75.22 47.12 119.24
2p 0.8221 21.5181 52.27 93.51 124.41
3s 20.6995 20.1821 3.61 2.98 2.46

Mg 1s 0.0230 249.0316 1777.74 661.87 1243.15

2s 0.5711 23.7676 98.80 56.77 151.05
2p 0.5977 22.2821 75.17 118.75 169.8
3s 12.3976 20.2530 5.50 6.08 4.45

Al 1s 0.0195 258.5010 2109.15 749.74 1373.0
2s 0.4589 24.9107 125.83 66.87 187.1
2p 0.4553 23.2183 102.26 145.18 221.1
3s 7.8989 20.3934 8.58 8.40 9.01
3p 13.9853 20.2100 4.72 4.48 4.85

Si 1s 0.0167 268.8124 2469.16 841.22 1497.5
2s 0.3773 26.1565 155.39 77.39 226.0
2p 0.3597 24.2560 132.32 172.81 278.6
3s 5.6692 20.5398 11.87 10.75 14.56
3p 8.9838 20.2970 6.99 9.06 8.87

S 1s 0.0127 292.0170 3275.99 1034.70 1733.7
2s 0.2685 29.0156 222.90 100.29 308.2
2p 0.2423 26.6937 202.16 231.89 412.7
3s 3.4288 20.8859 19.55 15.57 29.40
3p 5.1690 20.4153 10.90 20.06 19.37

Cl 1s 0.0112 2104.8847 3722.46 1136.50 1844.4
2s 0.2312 210.6078 260.56 112.49 349.0
2p 0.2043 28.0725 241.79 263.31 489.3
3s 2.8123 21.0731 23.76 17.99 38.91
3p 4.0601 20.5065 13.59 26.46 25.76

Ar 1s 0.0100 2118.6104 4197.87 1241.21 1948.7
2s 0.2012 212.3222 301.02 125.13 388.2
2p 0.1743 29.5715 285.01 295.87 572.5
3s 2.3505 21.2773 28.36 20.53 49.93
3p 3.3110 20.5910 16.25 33.17 32.95

aReference@14#.
bReference@9#.
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the
fact that the approaches followed by OS and the HO mo
are different, we note a close agreement between the re
obtained forSe . This outcome is even more remarkab
when one uses the orbital mean excitation energiesI 0i re-
ported by OS@9# in Eq. ~2.22! and compare with their re
sults. From this result one can argue that the kinetic the
with a resulting Bethe logarithmic form forSe treating scat-
terers at rest, takes into account, in part, the excited st
with the entire transfer momentum, as done by the wh
solution of the harmonic oscillator.

On the other hand, we note a small difference inSe ,
principally in the region around the maximum of the sto
ping curve for the case of the bare proton, for the HO res
when compared with the OS results. This difference is du
the approach used in calculatingI 0i , since in this case, on
obtainsI 0i through the virial theorem for a HO wave func
tion, whereas OS use a procedure based on the nume
Hartree-Slater calculation for the orbital oscillator streng
by Dehmer and co-workers@11–13#.

Also, when one considers the effective charge of the p
ton, one sees the fair agreement between this approach
el
lts

y,

es
le

-
ts
to

cal

-
nd

the experimental data, principally in the region around
maximum of Se and higher energies. This feature can
observed for all the cases shown, except helium. A poss
explanation is due to the high ionization potential for t
helium electrons, since it is more difficult to take out ele
trons from helium which would screen the proton charg
With this approach, one should take into account the eff
tive charge in a more realistic way; i.e., one must consi
the effect of excitations on the projectile and target@18# and
charge exchange since it depends on both target and pr
tile @48#, as well as the Barkas and Bloch corrections a
higher orders in the Born approximation, which are impo
tant for the low-energy region.

C. Shell corrections

Another effect that can be analyzed from this model is
so-called shell corrections. From Eq.~1.1! we see that the
shell corrections can be calculated as
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C~v !

N2
5 lnS 2mev

2

I 0
D2

mev
2

4pe4Z1
2N2

Se~v ! ~3.3!

for the total contribution ofSe or in a similar way for each
orbital contributionSe,i , by means of Eq.~2.22!. In Fig. 7, I
show the shell corrections using Eqs.~2.11! and ~2.22! and
compare them with the results from OS obtained through
kinetic theory implementation of the electronic stoppi
cross section@9#.

As one can see, the results are in reasonable agree
when compared with the results of the OS model. From

FIG. 1. Effective proton charge. Solid line: results obtained
ing the model of Cabrera-Trujilloet al. @18# and compared with the
data taken from Yarlagaddaet al. @44# (h).

FIG. 2. Comparison of the electronic stopping cross sectionSe

for protons on atomic helium. Solid line: harmonic oscillator mod
Eq. ~2.22! and Eq.~2.31!. Dashed line:Se with effective charge, Eq.
~3.2!. Dotted line: HO result using the OS value of Ref.@9#. ~1!
Kinetic theory results of OS@9#. Experimental data of Reynold
et al. (3) @30# and Park and Zimmerman (* ) @31#.
e

ent
is

figure, one observes the effect of the orbital decomposit
for the stopping cross section, since for the case of C
notes the shell contribution onSe .

Analyzing Eq.~2.22!, one observes two important fact
First, the shell corrections are due not only to the fact that
projectile moves with a velocity comparable to the electr
velocity, since this information is included, in part, in th
wave function, but also to the fact of considering the who
set of excitations as can be seen from the contribution of
~2.22! for the excited statesn>3; i.e., shell corrections are
due also to the contribution of the excited states. Second
effect of considering the whole momentum transfer for lo
velocities is important, since its contribution to the shell co
rections would be higher for lower velocities@see Eq.
~2.24!#. Also, since the shell corrections come from the co
tribution of the excited states evaluated with Eq.~2.24!, they
will depend on the orbital mean excitation energyI 0i and on

-

,

FIG. 3. As in Fig. 2, for Li. Experimental results from Eppach
et al. (3) @34# and Baderet al. (*) @35#.

FIG. 4. As in Fig. 2, for C. Experimental results from Merten
and Krist (3 and h) @36,37#, Ophel and Kerr (* ) @51#, Johansen
et al. (n) @38#, and Nyaieshet al. (s) @39#.



s

p
es

ng
r t

th
io
io

ec
n

is
nic
.
ec-

ral

m.
of
is
ing
to

the
h-
e of
, it
ge.
l

ch.

n-
in
en-
an

rk.
orn
c-

ro-
der
ctile

E.
ive

by

ri
l

PRA 60 3051STOPPING POWER IN THE INDEPENDENT-PARTICLE . . .
the projectile mass. This projectile mass feature is discus
in more detail in Ref.@49#.

IV. CONCLUSIONS

In the last few years, several efforts have been done
calculate stopping cross sections by employing a decom
sition into the separate orbital contributions. Some of th
efforts have been discussed in Sec. I.

In this work, I have shown that the electronic stoppi
cross section is decomposed into a Bragg-like sum unde
assumption of describing the target~in the gas phase! as a
collection of independent particles. As a consequence of
method, for high projectile energies the Bethe approximat
leads to a Bragg-like decomposition for the mean excitat
energyI 0.

Using a harmonic oscillator approach for the bound el
trons of the target, an analytical expression for the electro

FIG. 5. As in Fig. 2, for Al. Experimental results from Ishiwa
et al. (3) @40#, Kido and Hioki (* ) @41#, Krist and Mertens (h)
@42#, and Mertens and Krist (s) @36#.

FIG. 6. As in Fig. 2, for Ar. Experimental data of Weyl@52#
(3), Reiteret al. @53# (* ), and Ormrod@54# (h).
ed

to
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n
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stopping cross section in the first Born approximation
found when use is made of the results for the electro
stopping cross section in the independent-particle model

Under this assumption, the electronic stopping cross s
tion is realistic, providing a good description of the natu
revolution frequencyv0i of the harmonic oscillator by
means of realistic wave functions through the virial theore
Within this approach, I compare with the theoretical result
OS and MST for the orbital mean excitation energy. Th
approach allows one to calculate the electronic stopp
cross section in a self-contained way. When comparing
other theoretical models, one finds a good description of
energy loss, principally for the intermediate- and hig
energy regions of the stopping curve. As a consequenc
the charge effect in the intermediate- to low-energy region
is necessary to resort to the inclusion of effective char
This step allows one to compareSe with some experimenta
data, finding a fair agreement.

Also, shell corrections are well described in this approa
One finds that—in contrast to other approaches~see, for ex-
ample, Ref.@50#!—the shell corrections also arise as a co
sequence of taking into account all the allowed excitations
the target and considering the complete transferred mom
tum for the collision. This feature is dependent on the me
excitation energy for the orbital and the projectile mass.

Let me note some important considerations in this wo
The results shown in this work are based on the first B
approximation, without considering Barkas or Bloch corre
tions ~second Born approximation! in the low-energy region.
Also, the method of formulating the charge state of the p
jectile is still inadequate, since it is necessary to consi
excitations and charge exchange in the system of proje
and target. All of this additional work is in progress.
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FIG. 7. Comparison of shell correctionC/N2 in the electronic
stopping cross sectionSe for several atomic targets in this mode
with the kinetic theory results from OS@9# ~1 H, 3 He, * Li, and
h C!.
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