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Stopping power in the independent-particle model: Harmonic oscillator results
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Electronic stopping cross sections for atoms and molecules in the gas phase have been evaluated within the
independent-particle model for the range of velocities where the first Born approximation is valid for targets
with Z,=<18. It is shown that in this approximation, the electronic stopping power is expressed as a Bragg sum
rule. In the case that the target electron is considered as harmonically bound, the stopping cross section is
obtained in an analytical form depending solely on the frequency of the electron. Using the virial theorem, a
relation is found between the harmonic oscillator frequency and the electronic properties of the target, such that
the stopping power is described in a self-contained way. The results are compared with other theoretical
treatments and with available experimental data. For the case of projectiles with structure, | use the results for
the effective chargéscreening effegtof Cabrera-Truijillo, Cruz, Oddershede, and Safidmys. Rev. A55,

2864 (1997)]. From the analytical expression f&,, one obtains the shell contributions to the electronic
stopping cross section, finding that in this model, shell corrections also come from considering the whole set
of allowed excitations in the target with a dependence on the orbital mean excitation energy and the projectile
mass[S1050-29479)09309-9

PACS numbsd(s): 34.50.Bw

[. INTRODUCTION In order to evaluaté,, the complete DOS distribution of
the target must be known, so it may be necessary to resort to

The interaction of swift, massive particles with matter is aapproximate methods or—most frequently—to obthjrei-
field with implications for such diverse studies as astrophysther semiempirically or from fits of theory to experimental
ics, nuclear and atomic physics, ion beam implantation ofjata. Theoretically, in the last few years there have been
impurities in solids, and radiation therapy, to mention just aseveral approaches to the calculation of stopping power,
few. When a particle makes its way through a substance, itshell corrections, and mean excitation energies by employ-
interaction with surrounding atoms and molecules leads teng, in several different forms, a decomposition into separate
the transfer of part of its energy to the medium. orbital contributions.

In 1930 Bethe 1] established the quantum theory for en-  pathak[3] decomposed the stopping into contributions
ergy loss of a point charge when it penetrates a mediunfrom valence electrons, conduction electrons, and inner-core
According to Bethe’s theory1], the electronic stopping electrons. On the other hand, Tung and W4it obtained
cross sectionge) in the first Born approximation for a swift contributions toS, from the inner shell electrons, by using
stripped ion with chargé&; colliding with a target withN,  the local plasma approximatiofLPA) of Lindhard and
bound electrons is given by Scharff[5], and from valence electrons by using a dielectric

response approach. Oddershede and S@Eb#) [6—-9] have
treated shell corrections and mean excitation energies by us-
], (1.)  ing the kinetic theoryKT) of stopping[10]. OS found that
the KT gives good resultprovidedit is used on an orbital-
by-orbital basis[6]. This condition includes the use of an
valid for the case when the velocity of the projectile,is  orbitally decomposed form of the Bethe logarithmic form,
higher than the target electron’s velocity. HereC(v)/N>  hence requiring orbital mean excitation energies. To this end,
are the so-called shell corrections for the systemlgrsithe  OS used the orbital mean excitation energies obtained by
mean excitation energy of the target which is defined inDehmer et al. [11] and Inokuti et al. [12,13 within the
terms of the dipole oscillator strengt®OS) f,, [2] as independent-electron model from the Hartree-Slater calcula-
tion of the DOS.
On the other hand, Meltzeat al.[14,15 proposed an or-
NpInlo=2> fany IN(En—Epy), (1.2 bital density generalization of the LPA to calculate orbital
A mean excitation energies. Within the kinetic theory, they cal-
_ ) ) ) culate stopping cross sections, finding that their results do
with E,  andE, denoting the energies of the system in thepot giffer substantially from those of OS although the two
initial and final states, respectively. methods were different.
Up to now many of the efforts, including those previously
cited, have been based on numerical analyses for all the ve-
*Present address: Quantum Theory Project, Department of Physocities allowed within the first Born approximation. The aim
ics, University of Florida, P. O. Box 118435, Gainesville, FL of this work is to lay the foundation of the use of the
32611-8435.
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independent-particle model in the calculation of electronic 2m,

stopping power and to obtain an analytical expression for it. Frm() = —— (Em— Em0)|Mmrrb(q)|2, (2.2

In the first place, | show that in this context the stopping heq

power is separated into contributions from the target orbitals

as a Bragg-like rule. Also, for high velocitigbow momen- with

tum transfey we obtain an orbital decomposition of the mean

excitation energy. .
Since the original work by Bethgl], much effort has Mmmo(q):<m0|i21 e '4"im) 2.3

been made and several methods have been used in calculat-

ing analytical and realistic descriptions for the electronicheing the atomic form factdi20] of the target.

stopping power. One of them has been the quantal harmonic Note that Eqs(2.1) and (2.3 do not include the integra-

oscillator (HO) model which is widely used in many ion on the azimuthal angle due to the contribution coming

branches of physics, such as quantum optics, atomic, MGrom the spatial orientation of the target electronic distribu-

lecular, and solid state physics, first because all the excitatiogg, [21]. The limits of theq integration are determined by

spectra and solutions are well known, and second, because §Qe kinematics of the collision process and they are given by
first order it represents the potential of a bound electron. [22]

Recent work{16,17] has shown that the electronic stop-

No

ping cross section can be evaluated in terms of series or 2(E—E.)
integrals on the basis of a quantal harmonic oscillator model max— Myv 1+ \/1_ (Em~Em, 2.4
for the atom. However, as Sigmund and Haagerup stated Gmin~ "7 - M V2 '

[16], “in the case of a heavy projectil®];>m,, one comes
closest to an analytical expression.” It is within this spirit Equation(2.1) is a first Born approximation to the electronic

that | will obtain an analytical expression f&, and it will  stopping power of ions incident on an atomic or molecular
be related to a realistic description of the target. target. The GOS terms in E¢2.1) give the contribution to
In Sec. Il, | start with a summary of the quantum elec-the stopping cross section from the target transitions; i.e.,

tronic stopping theory in the first Born approximation. Next, each GOS term constitutes the probability that the projectile
I show the implementation of the independent-particle modejnduces a target transition from the initial stais,) to the

and obtain a self-contained analytical result runder the  fina| state|m) with an absorption of energi,,— Eqn, .
HO approach. In Sec. lll, | compare the results of this model 0

with experiment and other theories. In order to compare to
the experiment, | use the analytical result for the effective
charge(screening effegtof Cabrera-Truijilloet al.[18] and | The analysis of Eq(2.1) requires knowledge of the com-
compare the results for the electronic stopping cross sectioplete spectrum of excitations and the corresponding wave
with those of OS and the experimental data available for Hefunctions. This knowledge implies solutions of the unper-
Li, C, and Al. Also, | show the results for the shell correc- turbed Schrdinger equation for the system b, electrons.
tions and compare them with the OS results, finding a gootHowever, in reality, this calculation is a difficult task, and
agreement. Finally, in Sec. IV, | provide some discussiorone has to resort to approximate solutions. It is in this spirit
and conclusions as well as remarks concerning further workhat we will reformulate the previous results within the

independent-particle model. In this situation, the system is

Il. THEORY described by a Hartree-Fock wave function of the form

B. Independent-electron model

A. Electronic stopping power [m)y=|my,m,, ... ,mN2|, (2.5

Let us consider a process in which a point charge with
velocity v, massM, and nuclear chargg; e collides with a where |m;) is a one-electron eigenfunction. Therefore, the
stationary gas phase target with mdbsandN, bound elec-  €nergy transfer from the ground stgtm,) to the excited
trons in an initial state denoted Hyn). The projectile is ~ State|m) is given by
deflected into the solid angle elemeati® along a direction
with polar angled and azimuthal angle, measured in the
laboratory frame. Suppose the target undergoes a transition Em— Emo:; (Em— Emm)’
to final stategmy; then the kinetic energy of the projectile,

when electron transfer is not permitted, is thereby reduced byyhere the subinder; stands for theth electron in the ex-

Na

(2.6

Em—Em,- cited statem. From this approach, one can see that for a
Following Bethe’s classic derivatidr2,19], the electronic  gne-electron operath:Eijle , the only way we can ob-
stopping cross section can be written as tain an atomic form factor different from zero is that the
2 4 wave function for the excited state differs from that of the
Su(v)= 2Z5€ 2 fqmaxF (q)d_q 2.1) ground state by one orbital. Supposing then that the excita-
¢ mev2 memo Jamn 0 g2 ' tion occurs for thejth orbital, the atomic form factof2.3)
becomes
whereq is the momentum transfedg=qgdqde, andF .

are the generalized oscillator streng{&0Ssg given by m; Mo
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Therefore, using these two previous results, one finds that for
this one-electron operator, the GOS can be rewritten as the

contributions of each individual orbital, i.e., as

N2
— (i)
Gm”b ].21 ijmoj ) (2.9
where
G%)moj_(Emj_ Ermg,)[(moj | O;|my)[? (2.9

is the orbital contribution in the independent-particle model.
In the particular case in which the one-electron operator is

given by the plane waveD;=e'%"i, the orbital GOS be-
comes

FU)

m mol

(Q)—

m, ~ Emg, )| (Mojle ™11 my) 2.
(2.10

From this result and Eg.2.1) we can observe immedi-
ately that the stopping cross section is given by

ﬁZqZ

se<v>=2 Sei(V), (2.11
where
28422 maxi
0l $,;>m0(q> (212

is the contribution of theth orbital. This result resembles
Bragg and Kleeman'’s rulg23] for the stopping cross sec-
tion, which states that “the total stopping cross section is th
weighted sum of the atomic stopping cross secti®gs,
where the weight factors are the numbers of atoms of itype
but in this case reformulated orbital by orbital.

Note the limits of integration. From Ed2.7) and kine-
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v (2.19

qmin,iAv_

Using this approximation and the Bethe sum rule fulfilled by
the GOS[1],

2 Fln (=1, (2.19
fT'IJ ]
we obtain the result that
2e*7? famaxi dq  4me*Z? [ 2mgv2
Se,i(V) = 2 = > In ™ ,
meV qmin,iAV q meV Qi
(2.16

which is the standard Bethe res[dee Eq.(1.1)], wherel,
is defined through the dipole oscillator strengtf),

=limq_oF () as

Intoi= 2

£()

m;mq

IN(Ep,~En,,). (2.17)

Therefore, from Eq.(2.11), one sees that in the high-
velocity regime

N,Inly=>, nilnlg;, (2.18
i=1

wheren; is the occupation number of the orbital

This equation is precisely the Bragg-like rule decomposi-
tion for the mean excitation energy of a complex system
[24]. Let me note that the meaning lgf has sense only in the
high-velocity region. In the intermediate- to low-velocity re-
gion, the orbital mean excitation enerty is the one which
will describe more realistically the stopping as has been

%ound previously by O$6].

D. Harmonic oscillator model implementation

In order to derive an analytical expression for the stop-

matic considerations, the limits on the transferred momenping cross sectios.(v), | will assume that each electron of
tum take into account only the energy transferred to thighe target is bound harmonicalf25] with its own force

orbital, i.e.,Emj—E . We will analyze in more detail the

importance of this result in Secs. lll and IV. For the moment,

we will use the Bethe approximation for high velocities.

C. Bethe approximation

Following the classic derivation of the Bethe form{if,

in Eq. (2.12 one uses the fact that for high velocities the whereA,
limits of the g integration are determined by the kinematicsy

of the binary collision process; therefore for heavy ip2k

Enm—E

i Moi

hv

2mgyv

T! Amin,i = (2-13)

Omaxi=

constant.
For a spherical three-dimensional harmonic oscillator
'with a natural frequencyy; , the wave function is given by

2,2 2,2
¢m_ :Am_e_ af (X7 +yi+7)/2 H
i i

X=XY,Z

Hm (@iX), (2.19

i is the normalization constant for that orbital, the
m, are the Hermite ponnomiaIsai2=mew0i /#, and the
unperturbed orbital energy is given by

3

E”h:iinirnw‘Fn}y+rnu*‘§'.

Following Bethe[2], one exchanges the summation overSince the wave function is spherically symmetric, | will sup-

m; in Eq. (2.12 with the integration, and since the only term
that depends on the excited stat@jg,; , it is replaced by a

pose that the momentum transfer takes place alongzthe
direction, such that the only contributing stateris and the

suitably averaged value which is independent of the excitaatomic form factor for thejth electron is calculated in a

tion state:

straightforward way from Eq2.7), resulting in
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( q) el (2.20

(i) — -
Mt/ mg, (9) ot | 2,

wherem;=m;,. Here, | have assumed that the ground state

is for mg;=0. Therefore the GOS for thigh orbital is given
by

2242
Iy

(2.20)

q2 mj—l
efq

() - - |2
Fmimo (D= (m — 1)1 (2aj2
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Ei(z)~Inz, z<1,
_, 1
EI(Z)NT 1- E ,  z>1, (226)
which when used in Eq2.22 gives
Ame’z 2mev? €i(hwgi ,M
Se,i (V)= 21 In( S §(fiwo .My Z' : )
’ RY hwo i (v?)]
(2.27

which by direct calculation is seen to satisfy the Bethe sumyere €j(hwei M) is the coefficient for the so-called shell

rule [Eq. (2.15)]. Inserting Eq.(2.21) into the definition of
the orbital electronic stopping cross sect[@&y. (2.12)], one
obtains

4me*z2
Sei(V)= ——Li(v),
megVv

e

(2.22

corrections which has been given by Sigmund and Haagerup
[16]. From this result, one sees that the Bethe term comes
from the contribution of the first excited state<1), and

the higher excited states contribute to the so-callesll cor-
rections Also, from Eq.(1.1), one can identify the angular
frequency of revolution of théth electron timesi as the
mean excitation energy — a result similar to that previously

whereL;(v) is called the orbital stopping number, given by found by Kramer$27] for a free electron gas. This result can

Xmax(1)
_e7X
Xmin(l)

Xmax(z)

1
Li(V)=§[ Ei(x)
Xmin(z)
[Ep/loil

_E e X

v=3

XV*Z

(v—1)!

Xmax(¥)

v=2 Xv—k—2 }

2 k= D)

] . (223

Xmin(¥)

where Eik) is the exponential integral functidi26], which
is defined as

Z(—1)kxk
Ei(X)=y+Inx+ >, (=D
=1 kk!

Here y=0.577 215 66, the Euler constant, and

Min Zﬁwoﬂli 2
Xmax( ;) = /1= =2 L (2.24
M v

min Zmethi 1

be obtained from the definition of the orbital mean excitation
energy[Eq. (2.17)], calculating directly the DOS as follows.
For the HO model we have

0]

MMy — 6mi1’ (228
contributing only the first excited state. Therefdtg — E;q

=hwg, such that the orbital mean excitation energy is given
by

IOi:ﬁwOi .

In the next section | will utilize further the above assump-
tions in order to find a complete description of the target by
means of the harmonic oscillator.

F. Revolution frequency and the mean excitation energy

In order to apply the method proposed in this work and
provide a proper discussion of the previous results, it is nec-
essary to obtain a realistic description of the angular fre-
quency wq; of the target electron and therefore a realistic
description of the orbital mean excitation eneigy.

Since we are representing the behavior of an electron by

As one sees, this is an analytical and exact result for theneans of a harmonic oscillator wave function, from Eq.
stopping cross section, within the first Born approximation(2.19 we see that all the physical information is contained in

for a quantal harmonic oscillator.

E. High-velocity limit

Let me analyze Eq2.22 for the case where the projec-
tile collides with a velocity higher than the electron velocity.

In this case, from Eq(2.24),

2M2y2
Xmax( Vi) = m>1,
e I
hwo Vi2
Xmin( Vi) = > <1, (2.29
2mgv

the parametew,; . The way we will relate this parameter to
a realistic situation is through the virial theorem.

For one electron represented by a harmonic oscillator
wave function, the potential is given Bjj;0=mewa (r?)/2,
where(r?) is the expectation value of the mean square po-
sition in a given realistic basis set.

The virial theorem for a potential of the forn reads as

n
<Ti>:§<Vi>- (2.29
Therefore, for the harmonic oscillator potentidlT;)no
=(Vi)no, and thereforemwd (r2)/2=(T;)o. But if the
electron described by a harmonic oscillator wave function is

such that one can use the asymptotic formulas for the expde have Coulombic information, then the expectation value

nential integral functiori26],

of its kinetic energy should be the same as the one given by
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more realistic description, i.e{T)nyo=(T;), where(T;) is  orbitals, making the valence electrons those which will pro-
the expectation value for the electron in a Coulombic potenduce the higher contributions &, .

tial and described by a realistic basis set. For this Coulombic

potential, then, the virial theorem establishes thi&f)= B. Stopping cross section

—(Vi)/2=— &5, wheree; is the electronic orbital energy —jging the quantities given in Table | as input into Egs.
for theith electron. This last step follows from the use of an(2 119 and (2.22, one obtains the contribution 16, as a

independent-oscillator scheme for each atomic level. Theg,nction of the energy for projectiles incident on selected

one has gaseous atomic targets.
From Eq.(2.24), we see that the velocity of the projectile
_ 2€oi determines the number of states which will contribut&go
woi = B m <rz>' (2.30 i.e., the maximum number of excitations produced by the
e projectile will be given by
and therefore, the mean excitation energy for this orbital be- M.v2 E
comes y=— = (3.1
2l Iy
| B 212 ey, 2.31) such that for the same velocity of the projectile, orbitals with
0i m (r-2 ' ' larger orbital mean excitation energgyore orbital$ will con-
el tribute less.
Knowing the expectation value fc(rriz) and the orbital As examples, | calculate the electronic stopping cross sec-

, - tion for proton projectiles incident on He, Li, C, Al, and Ar
ﬁﬂeé?gifg'l’ one can get the mean excitation energy for thegaseous targets and compare with the results of Oddershede

The preceding expression is remarkably simple. It reduceand Sabir{9] which are based on an orbital decomposition

he classical It i for the Coulombi 8escription of the stopping power. Also, for completeness, |
to the classical result since for the Coulombic cage= include available experimental data for comparigdd—42.

2 — /[ g2\1/21/.2\1/2 H H . . . .
—M(Ve)/2 such thatwg =(ve)/(ri)™* Also, it indicates | order to compare with the available experimental data, it
that the more compact the orbital, the higher will be thejs necessary to consider the effect of the projectile charge. To

mean excitation energy, a result previously found for athis end, one resorts to the use of tbiéective chargele-
Gaussian wave function within the orbital local plasma ap-scription for the projectile:

proximation(OLPA) model[28]. . )
Sei(Z1,V)=[Z7(V)]Sei(Z1=1V). (3.2

. ANALYSIS AND DISCUSSION In doing so it is necessary to take into account a few
points which relate specifically to protons. Effective charge
is interpreted as a steady-state average over a large number
Let me analyze briefly the predictions of the orbital meanof discrete capture-loss proces§43]. Assuming this, Yarla-
excitation energy calculated in this work for some atomicgaddaet al. [44] state that “statistical models are well justi-
cases and compare with other theoretical calculations. Ified even for the screening of protons ... The screening of a
Table |, | display the orbital values fop; obtained from Eq.  static proton ... has been studies in quantitative detail ...
(2.31) for various atomic systems. The expectation values ofnd these studies fully justify use here of a local-density
(r?) were obtained by using accurate Hartree-Fock Slateapproximation and a statistical model.” Based on this result,
(HFS) atomic wave functions for neutral atoms in the ground| use the analytical result of Cabrera-Trujilt al. [18] for
state(extended basis 9eby Clementi and Roet{i29]. The the effective charge, which is based on the Thomas-Fermi
orbital energies required by E(2.31) have been taken from description of the atom with the analytical solution of Tietz
the latter reference. In the same table are shown the values pf5] and the adiabatic criterion due to Bd##6,47. In Fig.
Meltzer, Sabin, and Trickej14] (MST) obtained by means 1, | show the effective charge for protons as a function of the
of the OLPA and local-spin-density approximation densities proton velocity v/v,, wherev, is the Bohr velocity, and
and the corresponding values for the mean excitation energyompare with the results of Yarlagaddaal. [44].
from the calculation of O$9]. It is interesting to note the In Figs. 2—6, | show the electronic stopping cross section
fair agreement among the three approactathough the for protons under three different approaches. | show the re-
three methods are differgnivhich reveal some systematic sults obtained using the assumption that the proton charge is
features. FoZ,=2,...,5 onesees that the HO results are unity through all the velocities where this model is valid
intermediate between the MST and OS models. Egr5,  (solid line), Eq. (2.22. In addition, | show the results ob-
one observes that tHe-shell values are higher than those of tained using the criterion of effective char§g8] for the
MST. But as has been pointed out by OS, the valence eleastopping cross sectiofdashed ling calculated by means of
trons are the ones that make the higher contributioBgto  Eqgs.(2.22), (3.2), and Eq.(2.23 of Ref.[18]. Also, | show
Furthermore, one can observe differences in the valence réhe stopping cross section obtained using the OS values for
sults, but those are smaller than the core results. On the othéte orbital mean excitation energies in E.22 (dotted
hand, we observe that all the herein calculated orbital mealine) for comparison with the direct calculation of %)
excitation energies show a monotonically decreasing tren{d].
within the same target in contrast with the corresponding From these figures one observes several characteristics in
values of MST and OS. This result means that the naturathe behavior of the electronic stopping cross section when
revolution frequency decreases monotonically for the outecompared to other models and to the experiment. Despite the

A. Mean excitation energy
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TABLE I. Orbital mean excitation energy and electronic ground-state parameters, as required D3 BqThe orbital mean excitation
energies are given in eV.

Atom Orb. (r2) (a.u) e (hartrees I, IMST® - 10S®  Atom Orb. (r2) (au) e (hartrees Iy jMsT® - josP
H 1s  3.0000 —0.5000 15.70 11.25 14.99 2s 0.5711 —3.7676 98.80 56.77  151.05
He 1s 1.1847 —0.9179 33.86 33.66 38.83 2p 05977 —2.2821 75.17 118.75 169.86
Li 1s 0.4468 —2.4777 90.58 69.73  109.32 3s 12.3976 —0.2530 5.50 6.08 4.45
2s 17.7377 —0.1963 4.05 3.17 3.29 Al 1s 0.0195 —58.5010 2109.15 749.74 1373.04
Be 1s  0.2330 —4.7327 173.38 11391 203.78 2s  0.4589 —4.9107 125.83 66.87 187.14
2s  8.4264 —0.3093 7.37 7.81 7.32 2p  0.4553 —3.2183 102.26 145.18 221.15
B 1s 0.1434 —7.6953 281.83 164.39 320.21 3s  7.8989 —0.3934 8.58 8.40 9.01
2s  4.7092 —0.4947 12.47 12.14 16.33 3p 13.9853 —0.2100 4.72 4.48 4.85
2p  6.1445 —0.3099 8.64 8.07 1155 Si 1s 0.0167 —68.8124 2469.16 841.22 1497.54
C 1s 0.0972 —11.3255 415.22 220.78 451.34 2s  0.3773 —6.1565 155.39 77.39 226.08
2s  3.0517 —0.7056 18.50 16.93 27.57 2p 0.3597 —4.2560 132.32 172.81 278.63
2p 3.7617 —0.4333 13.08 17.19 20.97 3s  5.6692 —0.5398 11.87 10.75 14.56
N 1s 0.0703 —15.6291 573.70 283.07 590.00 3p 8.9838 —0.2970 6.99 9.06 8.87
2s  2.1495 —0.9453 2551 21.82 41.24 S 1s 0.0127 —92.0170 3275.99 1034.70 1733.73
2p 25471 —0.5676 18.16  27.59 32.68 2s  0.2685 —9.0156 222.90 100.29  308.23
o 1s 0.0531 —20.6687 75858 349.72 729.41 2p 0.2423 —6.6937 202.16 231.89 412.71
2s 1.5816 —1.2443 34.12 27.33 56.86 3s  3.4288 —0.8859 19.55 15.57 29.40
2p 1.9758 —0.6319 21.75 40.82 46.64 3p 5.1690 —0.4153 10.90 20.06 19.37
F 1s 0.0416 —26.3827 968.59 42158 861.33 CI 1s 0.0112 -—104.8847 3722.46 1136.50 1844.43
2s 1.2162 —1.5725 43.74  32.80 74.04 2s 0.2312 —10.6078 260.56 112.49  349.09
2p 1.5443 —0.7300 26.45 54.78 62.86 2p  0.2043 —8.0725 241.79 263.31 489.36
Ne Is 0.0335 —32.7725 1203.68 497.75 982.68 3s 2.8123 —1.0731 23.76  17.99 38.91
2s  0.9672 —1.9304 5435 38.35 92.22 3p 4.0601 —0.5065 13.59 26.46 25.76
2p 1.2291 —0.8504 32.00 70.81 81.37 Ar 1s 0.0100 -—118.6104 4197.87 1241.21 1948.72
Na 1s 0.0275 —40.4785 1476.32 577.82 1110.36 2s 0.2012 —12.3222 301.02 125.13 388.29
2s  0.7315 —2.7970 75.22 47.12 119.24 2p 0.1743 —9.5715 285.01 295.87 572.56
2p 0.8221 —1.5181 52.27 9351 12441 3s  2.3505 —1.2773 28.36  20.53 49.93
3s 20.6995 —0.1821 3.61 2.98 2.46 3p 3.3110 —0.5910 16.25 33.17 32.95
Mg 1s 0.0230 —49.0316 1777.74 661.87 1243.15
8Referencd 14].
bReferencd9].

fact that the approaches followed by OS and the HO modethe experimental data, principally in the region around the
are different, we note a close agreement between the resulisaximum of S, and higher energies. This feature can be
obtained forS,. This outcome is even more remarkable ohserved for all the cases shown, except helium. A possible
when one uses the orbital mean excitation eneriiese-  explanation is due to the high ionization potential for the

ported by OS9] in Eq. (2.22 and compare with their re- pajium electrons, since it is more difficult to take out elec-

sqlts. From t.h's result one can argue that the k|_net|c theoryt’rons from helium which would screen the proton charge.
with a resulting Bethe logarithmic form fd3, treating scat-

terers at rest, takes into account, in part, the excited stat \émh this approach, one should take into account the effec-

with the entire transfer momentum, as done by the wholdV® charge in a more realistic way; i.e., one must consider
solution of the harmonic oscillator. the effect of excitations on the projectile and targks] and

On the other hand, we note a small differenceSin charge exchange since it depends on both target and projec-
principally in the region around the maximum of the stop-tile [48], as well as the Barkas and Bloch corrections and
ping curve for the case of the bare proton, for the HO result§ligher orders in the Born approximation, which are impor-
when compared with the OS results. This difference is due téant for the low-energy region.
the approach used in calculatihg , since in this case, one
obtainsl y; through the virial theorem for a HO wave func-

tion, whereas OS use a procedure based on the numerical C. Shell corrections
Hartree-Slater calculation for the orbital oscillator strength ) )
by Dehmer and co-workefd1-13. Another effect that can be analyzed from this model is the

Also, when one considers the effective charge of the proso-called shell corrections. From E@.1) we see that the
ton, one sees the fair agreement between this approach affiell corrections can be calculated as
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FIG. 1. Effective proton charge. Solid line: results obtained us- "'C- 3 As inFig. 2, for Li. Efperimental results from Eppacher
ing the model of Cabrera-Trujillet al.[18] and compared with the €t @l- (X) [34] and Badeet al. (*) [35].
data taken from Yarlagaddgt al.[44] (O).

figure, one observes the effect of the orbital decomposition
for the stopping cross section, since for the case of C one
notes the shell contribution o8, .

Analyzing Eq.(2.22), one observes two important facts.
First, the shell corrections are due not only to the fact that the
projectile moves with a velocity comparable to the electron
velocity, since this information is included, in part, in the
wave function, but also to the fact of considering the whole
set of excitations as can be seen from the contribution of Eq.
%2.22) for the excited states=3; i.e., shell corrections are
due also to the contribution of the excited states. Second, the
effect of considering the whole momentum transfer for low

locities is important, since its contribution to the shell cor-
ections would be higher for lower velocitiessee Eq.
(2.24)]. Also, since the shell corrections come from the con-
tribution of the excited states evaluated with E2j24), they

mev?

e
4me*Z2N,

C(v) (Zmev2
=In Se(v) (3.3

N

lo

for the total contribution ofS, or in a similar way for each
orbital contributionS, ;, by means of Eq(2.22. In Fig. 7, |
show the shell corrections using Eq2.11) and (2.22 and
compare them with the results from OS obtained through th
kinetic theory implementation of the electronic stopping
cross section9].

As one can see, the results are in reasonable agreem
when compared with the results of the OS model. From thi§

8 ; - will depend on the orbital mean excitation enetgyand on
T H - He
€ 30 .
=]
S
Ng _ 25 L
:
© R 20
E ;
o > 15
%) ﬁo
= 10
= L
0 : : n
100 1000 10000 5
Ep(keV/amu)
0 : ' o
100 1000 10000
FIG. 2. Comparison of the electronic stopping cross secion E,(keV/amu)

for protons on atomic helium. Solid line: harmonic oscillator model,

Eg.(2.22 and Eq.(2.3)). Dashed lineS, with effective charge, Eq.

(3.2). Dotted line: HO result using the OS value of RE]. (+) FIG. 4. As in Fig. 2, for C. Experimental results from Mertens
Kinetic theory results of O$9]. Experimental data of Reynolds and Krist (x and () [36,37), Ophel and Kerr {) [51], Johansen
et al. (X) [30] and Park and Zimmermart ) [31]. et al. (A) [38], and Nyaiestet al. (O) [39].
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FIG. 7. Comparison of shell correctid®/N, in the electronic
stopping cross sectio8, for several atomic targets in this model
with the kinetic theory results from O] (+ H, X He,* Li, and
a C).

FIG. 5. As in Fig. 2, for Al. Experimental results from Ishiwari
et al. (X) [40], Kido and Hioki (*) [41], Krist and Mertens [(J)
[42], and Mertens and Krist®) [36].

o _ o o stopping cross section in the first Born approximation is
the projectile mass. This projectile mass feature is discusseidund when use is made of the results for the electronic

in more detail in Ref[49]. stopping cross section in the independent-particle model.
Under this assumption, the electronic stopping cross sec-
IV. CONCLUSIONS tion is realistic, providing a good description of the natural

revolution frequencywy of the harmonic oscillator by

In the last few years, several efforts have been done tg,eans of realistic wave functions through the virial theorem.
calculate stopping cross sections by employing a decompayjithin this approach, | compare with the theoretical result of
sition into the separate orbital contributions. Some of thesgyg and MST for the orbital mean excitation energy. This
efforts have been discussed in Sec. . _ _approach allows one to calculate the electronic stopping

In this work, | have shown that the electronic stoppingcross section in a self-contained way. When comparing to
cross section is decomposed into a Bragg-like sum under thgher theoretical models, one finds a good description of the
assumption of describing the targ@ét the gas phaseas & gnergy loss, principally for the intermediate- and high-
collection of independent particles. As a consequence of th'énergy regions of the stopping curve. As a consequence of
method, for high projectile energies the Bethe approximationne charge effect in the intermediate- to low-energy region, it
leads to a Bragg-like decomposition for the mean excitations necessary to resort to the inclusion of effective charge.

energyl,. . . This step allows one to compa8 with some experimental
Using a harmonic oscillator approach for the bound elecyata, finding a fair agreement.

trons of the target, an analytical expression for the electronic Also, shell corrections are well described in this approach.
One finds that—in contrast to other approactsee, for ex-

50 . ample, Ref[50])—the shell corrections also arise as a con-
sequence of taking into account all the allowed excitations in
the target and considering the complete transferred momen-
tum for the collision. This feature is dependent on the mean
excitation energy for the orbital and the projectile mass.

Let me note some important considerations in this work.
The results shown in this work are based on the first Born
approximation, without considering Barkas or Bloch correc-
tions (second Born approximatipin the low-energy region.
Also, the method of formulating the charge state of the pro-
jectile is still inadequate, since it is necessary to consider
excitations and charge exchange in the system of projectile
and target. All of this additional work is in progress.
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