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Finite-element Z-matrix method: Application to electron-molecule collisions
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The Z-matrix formulation of Brown and Light@J. Chem. Phys.101, 3723 ~1994!#, based on a Kohn
variational principle for a general class of finite-range scattering functionals, is applied to electron-molecule
collisions employing a mixed basis of Gaussians and finite-element interpolation polynomials~times spherical
harmonics!. The local nature of the finite elements is particularly well suited for finite-range calculations, and
all integrals involved are energy independent. The implementation of the method is designed to make use of
sophisticated target functions. Numerical examples for both elastic collision of H and inelastic collision of H2

illustrate the applicability of this approach. The results are compared with data obtained using other theoretical
methods as well as experimental data.@S1050-2947~99!00407-2#

PACS number~s!: 34.80.Bm, 34.80.Gs, 02.70.Dh
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I. INTRODUCTION

Treatment of collision problems using space-partition
techniques has been in practice since the introduction of
R-matrix method by Wigner and Eisenbud@1#. Computa-
tional efficiency is maximized by defining regions of spa
according to the nature of the interaction potential. For
ample, in electron-atom or electron-molecule collisions,
common practice is to treat the internal region, where
short-range, nonlocal nature of the electron-target interac
must be accounted for, by employing well-established me
ods for bound states. In the external region, the interac
potential is long range and multipolar in nature, and the c
lision is reduced to a one-body, potential scattering probl
Other well-established properties of space-partitioning tre
ments include the fact that only real matrices are involve
a real basis is used, and theS matrix so deduced is both
unitary and symmetric.

Another advantage of these approaches is that the exte
region, or any regions in which the potential is local, can
subdivided into smaller sectors, and a separateR matrix can
be constructed for each sector. The sectorR matrices can
then be assembled into a globalR matrix for the entire region
@2#. Since the computational requirements are directly p
portional to the sector size, this procedure can potenti
result in substantial savings in computer resources.

Both theR matrix and its inverse, the log derivative m
trix, can be formulated using the Kohn variational princip
@3–5#. Recently, Brown and Light@6# applied the Kohn
variational principle to a general class of finite-range var
tional functionals, and derived a parametric relationship
which the functional is stationary to first-order variations
the trial wave function. This formulation, called theZ-matrix
method, reduces to the log-derivative matrix method a
specific choice of parameters. Another choice of parame
reduces it to theR matrix, although it is slightly different in
form from what is commonly used in the literature. Thus t
Z-matrix formulation allows us to solve collision problem
employing any of an infinite number of matrix relations d
PRA 601050-2947/99/60~1!/295~11!/$15.00
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pending on the choice of parameters.
Since the introduction of theR-matrix method to the study

of e-atom and e-molecule collisions by Burke and co
workers@7,8# and by Schneider@9#, it has become an impor
tant research tool in this area. The extension to inclu
nuclear dynamics ine-molecule collisions was first investi
gated in Ref.@10#. However, up to the present mostR-matrix
studies in this area employed basis functions which obeye
fixed boundary condition as originally formulated by Wign
and Eisenbud, instead of the fully variational formulatio
The discontinuity of the wave function at the sector
boundary is then corrected by using the Buttle correct
@11#. Among earlier studies, the onlye-molecule calculation
based on the fully variationalR matrix is thee-H2 elastic
collision study of Nesbetet al. @12# using an energy-
dependent numerical basis. In contrast, the log-deriva
matrix method, which was introduced in the fully variation
form without restrictive boundary conditions@5#, led to a
highly efficient algorithm which is popular in the study o
atom-molecule and molecule-molecule collisions. So f
neither theZ-matrix method nor the log-derivative matri
method has been applied toe-atom ore-molecule collisions.

The practice of employing fixed boundary conditions i
stead of the fully variationalR-matrix formalism in
e-molecule collisions is mostly related to the lack of a su
able energy-independent basis which allows flexible bou
ary conditions and is amenable to efficient algorithms
evaluating the necessary matrix elements with polyato
targets. The variational calculation of Nesbetet al. @12# em-
ployed energy-dependent numerical asymptotic functions
their basis, so that the integrals had to be recomputed at
electron energy. This procedure eliminates one of the adv
tages of theR-matrix method, namely, that it requires th
calculations of sectorial energies and eigenfunctions o
once. To take advantage of energy-independent matrix
ments, the numerical basis used in the UK molecu
R-matrix package@13# are chosen to satisfy fixed bounda
conditions. Another approach is to use a Gaussian bas
represent the continuum electron in the first region. T
295 ©1999 The American Physical Society
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Gaussian basis was employed in the early calculations
Schneider and co-workers@9,10#, the more recent selecte
stateR-matrix approach@14# as well as the UKR matrix for
polyatomic molecules@15#. A Gaussian basis is energy ind
pendent. It also eliminates the need of imposing fixed bou
ary conditions. However, Gaussian basis tends to be
flexible than the piecemeal polynomials in a local basis a
also more readily gives rise to linear dependency proble

Finite elements have been successfully applied to m
atomic and molecular physics problems. In particul
Shertzer and Botero@16# carried out accurate calculations
e-H scattering using finite elements for the radial coordina
of both electrons, thus demonstrating their utility in electr
collisions. Because of their local character, finite eleme
are well suited for sectorial calculations. A finite eleme
basis permits variable boundary conditions and allows
flexibility in optimizing the wave function, an importan
property in implementing theZ-matrix method. In our imple-
mentation, a mixed basis of finite elements times spher
harmonics and nuclei-centered Gaussians is used to repr
the orbital of one of the electrons. The use of Gaussi
provides an efficient representation of the multicentered
ture of a molecular problem where the subregions at and
the nuclei require careful treatment, a result of the nucl
cusps and the high charge density there. Without using G
sians, a large number of elements and high angular mom
tum functions would be required to represent the scatte
electron near the nuclei. So far as we know, this is the fi
collision calculation using mixed local and global function
In the first sector, we solve the (N11)-electron problem.
Since most accurate molecular wave functions determine
current quantum chemistry codes are expressed in terms
Gaussian basis, we have developed an efficient algorithm
evaluate the Hamiltonian matrix element between Gauss
and finite elements. All matrix elements involved are ene
independent, another attractive aspect of a finite elemen
sis. The present approach is different from the work of R
@17# who reduced thee-molecule collision problem to a one
body potential scattering problem and computed
R-matrix using finite elements. Similarly, the two
dimensional finite-element calculation of Ref.@18# for elec-
tron scattering from a model H2 potential solves an one
electron, not (N11)-electron problem.
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Section II presents the working equations of theZ-matrix
method, and summarizes some relevant properties of fi
elements. The implementation is discussed in Sec. III,
numerical examples are presented in Sec. IV. Section V
cusses our results.

II. THEORY

A. Z-matrix method

Let the wave function of the (N11)-electron system be
C(t1 ,t2 , . . . ,tN11 ;R) where the electronic coordinatet is
the product of the spatial coordinater and spin coordinates,
and R represents the totality of the nuclear coordinates.
this paper we neglect nuclear motion. The nuclei are
sumed to be in a fixed configurationRo which will not be
written out explicitly. The Schro¨dinger equations for the sys
tem are

~H2E!C~t!50, ~2.1!

H5Hmol2
1

2
¹ rN11

2 1(
i 51

N
1

urN112r i u
2 (

k51
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urN112Rku
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i 51

N

(
k51

M
Zk

ur i2Rku

1 (
k. l 51

M
ZkZl

uRk2Rl u
. ~2.2!

Here the labelN11 denotes the continuum electron. Due
the indistinguishability of electrons, this labeling is pure
arbitrary. Also, atomic units are used throughout.

Equation ~2.1! is solved using space-partitioning tec
niques, to be described briefly below. The present treatm
differs slightly from that of Brown and Light@6#, but the
working equations are essentially the same. It is assum
that only one of theN11 electrons, the incident or scattere
electron, will be found at infinite distances from the center
mass of the molecule. As in theR-matrix treatment of elec-
tron collisions, the first sector is chosen such that all sh
range, nonlocal interactions between the scattering elec
and target are negligibly small outside its boundary. Let
cmn~r N11!5E dt1•••dtNdr̂N11dsN11jm
† ~t1 , . . . ,tN , r̂N11 ,sN11!Cn~t1 , . . . ,tN ,tN11!. ~2.3!
sur-
The indicesm and n are collective indices comprising all
electronic, angular momentum, and spin quantum numb
needed to describe the system at fixedr N11. The spin-space
functions jm form a complete set on the hypersurface
constantr N11. Typically jm is expressed by a product o

target eigenfunctions, spherical harmonics inr̂N11, and spin
functions for the scattering electron.Cn is a scattering eigen
function whose only incoming wave component at lar
r N11 is associated withjn .
rs

f

At the boundary between sectors, defined as a hyper
face ofr N115s, the trial functionC̃n and its variationdC̃n
are defined by the boundary conditions

a c̃mn~s!1b c̃mn8 ~s!5cmn ,
~2.4!

a dc̃mn~s!1b dc̃mn8 ~s!50,
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wherec̃mn8 (s) is the outer normal derivative ofc̃mn(s). Note
that the matrixc with elementscmn must be invertible.

Note that Eq.~2.4! only requires the existence ofcmn . Its
value is not fixeda priori. Consider the functional

i mn5^C̃muH2EuC̃n&, ~2.5!

with the inner product evaluated over the entire range of
variables exceptr N11, the latter covering only the rang
(0,s). Obviously, it is nonstationary with respect to vari
tions in c̃. However, it can be shown@6# that a related func-
tional

I mn5@c†Zc#mn52H 2i mn1(
p

~a c̃pm1b c̃pm8 !

3~d c̃pn1e c̃pn8 !J ~2.6!

is stationary with respect to first-order variations inC̃ if the
parametersa,b,d, ande satisfy the relationship

ae2bd521. ~2.7!

Strictly speaking, the summation in Eq.~2.6! should go to
infinity. In practice, of course, only enough surface states
describe the wave functions atr N115s need be included. In
addition, in order forc to be invertible, states with incomin
wave components in closed channels need to be defined
though they are not labeled explicitly in the formalism.

When the functionsC̃ are the exact eigenfunctions su
ject to the boundary conditions Eq.~2.4!, theZ matrix obeys
the equation
c-
-

re
s

fo
ll

o

en

Z@a C~s!1b C8~s!#5d C~s!1eC8~s!. ~2.8!

HereC(s) denotes the eigenfunction evaluated atr N115s.
It is easy to show that while the quantitiesI mn depend on the
specific boundary conditionsc, the Z matrix does not. Thus,
theZ matrix computed fromanychoice ofc will affect trans-
formation~2.8! for any other linear combination of degene
ate scattering eigenfunctions at energyE. The importance of
this point will be seen below.

There is an infinite number of choices of the paramet
a,b,d, and e which satisfy Eq.~2.7!. Let a5e50 and b
5d51; Eq.~2.8! is reduced to the familiarR-matrix expres-
sion

R C8~s!5Z@a5e50,b5d51#C8~s!5C~s!. ~2.9!

Note that theR matrix derived here has a slightly differen
form from other variational derivations@4#. The choice of
a52e51 and b5d50 reduces Eq.~2.8! to the log-
derivative matrix equation, apart from a sign change

Y C~s!52Z@a52e51,b5d50#C~s!5C8~s!.
~2.10!

The log-derivative matrix obtained this way is identical wi
the result of Manolopoulos, D’Mello, and Wyatt@5#, except
for the change in sign.

1. Basis set expansion

Let the trial functionc̃ be represented by a basis$x%.
ThusC for the collision system is written as
C~t1 , . . . ,tN ,tN11!5(
mi

zmiA$x i
m~r N11!jm~t1 , . . . ,tN , r̂ N11 ,sN11!%. ~2.11!
,
of

e

the
The antisymmetrizerA permutes the (N11)th electron with
electrons 1, . . . ,N. It is assumed that the target wave fun
tion contained inzmi is already antisymmetrized. The re
quirement that the variational functional be stable with
spect to first-order variations in the expansion coefficientz
and subject to the boundary conditions in Eq.~2.4! as well as
orthogonality constraints gives the following expression
the Z matrix @6#,

Zmn522@~UTMS
21U !21#mn ~2.12!

where

MS5 1
2 ~H2E1HT2ET!2 1

4 (
p

~upvpT
1vpupT

!

~2.13!

with vectorsup andvp defined to have elements

uim
p 5„a x i

p~s!1b x i
p8~s!…dmp ,
-

r

v im
p 5„d x i

p~s!1e x i
p8~s!…dmp , ~2.14!

and thepth column of matrixU just the vectorup. Note that
the appearance of the Kronecker deltas in Eq.~2.14! assumes
that the surface functionsj are orthogonal; if they are not
the Kronecker deltas must be replaced with the overlaps
jm andjp .

2. Z-matrix propagation

The propagation of theZ matrix is analogous to that of th
R matrix @2#. Assume aZ matrix on ~0, s1! has been con-
structed using the foregoing procedure which affects
mapping

Z1@a C~s1!1b C8~s1!#5d C~s1!1eC8~s1!.
~2.15!

Similarly we can construct on the range (s1 , s2) a 232 Z
matrix to perform the mapping,
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Z2FaS C~s1!

C~s2!
D 1bS C8~s1!

C8~s2!
D G5FdS C~s1!

C~s2!
D 1eS C8~s1!

C8~s2!
D G .

~2.16!

By invoking the continuity ofC and its derivative ats1 ,
C(s1) andC8(s1) can be eliminated, yielding an expressio
for the Z matrix on the range (0,s2) in terms ofZ1 andZ2.

3. Z matrix and S matrix

The relationship between theZ matrix and theSmatrix is
obtained using outgoing scattering wave boundary con
tions @6#. Let so be the distance where the wave functi
reaches its asymptotic form. TheS matrix is given by

S5@Z~a O1b O8!2~d O1e O8!#21

3@Z~a I1b I8!2~d I1e I8!#, ~2.17!

with the matrix elements ofI andO given by

I mn5
1

Akm

e2 ikmsodmn ,

~2.18!

Omn5
1

Akm

eikmsodmn ,

wherekm5A2(E2em), andem is themth eigenvalue of the
N-electron~atomic or molecular! Hamiltonian.

Since theZ matrix has components which couple clos
channels to open channels, and closed channels to one
other, theS matrix defined in Eq.~2.17! shares this charac
teristic, as is the case with theR matrix. The open-open
subblock is the physicalSmatrix, and is unitary as long asZ
is real symmetric.

In the actual computer code, the inverse ofZ is used to
computeS. By insertingZZ21 between the two brackete
matrices in Eq.~2.17!, theSmatrix can be expressed in term
of Z21 instead ofZ. In this manner the matrix inversion ste
in the expression ofZ in Eq. ~2.12! can be avoided.

4. Choice of parameters

The values of the parametersa,b,d, ande which reduce
the Z matrix to theR matrix and log-derivative matrix are
given in Eqs.~2.9! and ~2.10!. There are of course infinite
other choices of the parameters which satisfy Eq.~2.7! and
give variationally stable solutions. This flexibility offers ad
ditional advantages to theZ-matrix method over theR-matrix
and log-derivative matrix methods. Calculations using diff
ent choices of parameters should converge to the same re
thus providing an internal check on basis set converge
An example of this was given in Ref.@6#, and another ex-
ample will be given in Sec. IV of this paper. In addition, it
noted that the eigenvalues of12 (H1HT)2 1

4 (p(upvpT

1vpupT
) in Eq. ~2.12! depend on the value of the param

eters. When the energy used in the calculation acciden
coincides with one of the eigenvalues, causing the invers
of the matrix MS to fail, it is always possible to shift the
eigenvalues by using a different choice of parameters
i-

an-

-
ult,
e.

lly
n

In

contrast, theR matrix and log-derivative matrix calculation
would require the use of a different energy.

B. Finite elements

In finite-element analysis, the coordinate space is d
cretized into small regions called elements@19#. For the one-
dimensional case considered here, the local coordinatex, de-
fined only inside the element, is related to the glob
coordinater and the boundaries of the elementr a andr b by

x5
2r 2~r b1r a!

r b2r a
. ~2.19!

The value ofx ranges from21 to 1. Interpolation polyno-
mials in terms of the local coordinates serve as a basi
represent the function of interest. By decreasing the elem
size, or by increasing the degree of the interpolation poly
mials, it is possible to improve the accuracy of the repres
tation systematically. In this paper, fifth degree Hermite
terpolation polynomials@20# are used. Thus three nodes a
assigned to each element, at the local coordinatesx521,0,
and 1. Fifth degree Hermite interpolation polynomialspm(x)
have the following values at nodesn51 –3:

pm~x!5H 1, m52n21

0 otherwise,
~2.20!

dpm~x!

dx
5H 1, m52n

0 otherwise.

The continuity of the function and its derivative across e
ment boundaries is achieved by requiring the expansion
efficients associated with the last two Hermite polynomi
in an element, representing the function and its derivative
the boundary, to have the same values as those assoc
with the first two polynomials of the next element.

The Hermite interpolation polynomials belonging to th
same element are nonorthogonal. Those of different elem
naturally are orthogonal to each other, since their space
not overlap. Thus the Hamiltonian matrix represented by
nite elements is a sparse matrix if the potential is loc
When exchange interaction is involved, the Hamiltonian m
trix is no longer sparse, but still block diagonal domina
Due to its local nature, finite elements are well suited
sectorial calculations. For example, at the outer surfaces of a
sector, the vectorup in Eq. ~2.14!, represented by finite ele
ments, will have only two nonvanishing components; tho
associated with the last and next to last Hermite polynomi

Because the Hermite polynomials form a nonorthogo
basis, when a mixed finite element and Gaussian bas
used, no attempt is made to orthogonalize these two b
sets. This choice is made because imposing the orthogon
constraint will remove the block-diagonal dominant featu
of the Hamiltonian matrix represented by elements.

III. IMPLEMENTATION

The following trial function is used for the
(N11)-electron system,
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C~t!5(
n
A$Fn~t1 , . . . ,tN! f n~tN11!%

1(
d

ldQd~t1 , . . . ,tN11!. ~3.1!

The fixed-nuclei target functionFn(t1 , . . . ,tN) is ex-
pressed in terms of a Gaussian basis and the quality of
wave function varies from simple self-consistent field fun
tions to large configuration-interaction functions. If the fir
sum in Eq.~3.1! is over the complete set of target functio
including the continuum, then the second sum is unneces
and we have a close-coupling wave function. In practice,
first sum almost always has to be truncated@21#. Thus the
second sum in Eq.~3.1!, consisting of (N11)-electron func-
tions Q represented by a pure Gaussian basis, is introdu
to account approximately for the role of the missing terms
the first summation. Two types ofQ are included. One is to
describe the polarization and correlation effects between
target and the continuum electron, and the other is to re
sent the high-angular-momentum part of the continuum
bital important in the region near the nuclei. In otherab
initio methods,Q is also used to relax the orthogonality co
straint between the bound and continuum functions. In
present case, the use of a nonorthogonal basis eliminates
need. Since both types ofQ result from short-range interac
tions, they are important only in the internal region. Con
quently, it is sufficient to representQ by a Gaussian basis. I
is worthwhile pointing out that finite elements can repres
both bound and continuum functions, and a mixed fini
element and Gaussian basis can also be adopted to repr
Q. However, such representations are less compact. Hen
pure Gaussian basis is employed. Except for the fact thaQ
is not used to relax the orthogonality constraint, its role
analogous to the ‘‘square integrable functions’’ employed
the UK R-matrix package@13# and theQ-space configura-
tions used in the complex Kohn method@22#.

The continuum electron is represented by a mixed b
consisting of Gaussians and products of finite elements
spherical harmonics. The one-electron spin orbital for
continuum electron,gn , is given by,

gn~tN11!5 f n~tN11!1cn~tN11!, ~3.2!

with

f n~tN11!5
1

r N11
(
a,i

(
l ,m

zn,i lm
(a) pi

(a)~x!Ylm~ r̂ N11!v~sN11!,

~3.3!

cn~tN11!5(
j

zn, j f j~rN11!v~sN11!. ~3.4!

Note that f n(tN11) is associated with the first term in Eq
~3.1!, whereascn(tN11) is obtained from the second term b
projecting out the target wave functionFn(t1 , . . . ,tN). In
the abovef j is a Gaussian orbital,v is the spin function,
and Ylm are real spherical harmonics. If complex spheri
harmonics are used, the integral betweenYlm and Gaussians
is complex. It has the disadvantage of doubling the stor
requirements for the integrals. The interpolation polynom
he
-
t

ry
e

ed
n

he
e-
r-

e
his
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-
ent

e a

s

is
nd
e

l

e
l

pi
(a)(x), with a labeling the element andi the polynomial in

the element, is written in terms of the local coordinatex
instead of the global coordinater N11. The origin of the co-
ordinaterN11 for the finite element expansion is chosen
be the center of mass. The boundary condition off n(tN11)
at r N1150 requires the coefficientszn,i lm

(a) to satisfy the re-
lationships

l 50, zn,i lm
(a) 50 if a51, i 51,

~3.5!

l .0, zn,i lm
(a) 50 if a51, i 51 and 2.

The functionf j is a one-electron function composed
nuclei-centered Gaussians. At the least,f j is obtained from a
linear combination of Gaussians, so it has the correct p
group symmetry of the system under study. In most case
comes from the set of one-electron orbitals obtained in
course of determining the target function. As in the case
target functions, it is also supposed to vanish at the bound
of the internal region. Note also that the Gaussians and
Hermite polynomials are not orthogonal to each other.

Because the interaction potential in the internal reg
~first sector! and the external region~nth sector,n.1) are
different, the evaluation of the Hamiltonian matrix elemen
is also different. In the following, the two regions are di
cussed separately.

A. Internal region

Here the (N11)-electron interaction has to be explicitl
accounted for. The calculation of the Hamiltonian matrix
ements,Hi j , in a mixed finite-element and Gaussian ba
requires the integrals between hermite polynomials a
Gaussians. All integrals are evaluated numerically. Tw
electron integrals are done using a two-step proced
evaluation of the potential due to the charge distribution
electron 1 by solving Poisson’s equation, and numerical
tegration of the charge distribution of electron 2 over t
potential. Except when the angular integrals are analytic,
merical integration in the angular coordinates are also d
using finite elements. Details of the integral calculation a
given elsewhere@23#.

While the Gaussian orbitals used to represent the ta
functions and the closed channel spaceQ form an orthogonal
set, a nonorthogonal basis is used to expand the one-ele
orbital for the continuum electron, resulting in a nonorthog
nal representation ofC. Thus the overlap matrix is main
tained in all calculations, and theE matrix in Eq.~2.13! is the
energyE times an overlap matrix.

The evaluation ofHi j over a nonorthogonal basis is not
the standard quantum chemistry codes. Thus the calcula
of Hi j is separated into two steps. The matrix elements
volving pure Gaussian orbitals are evaluated using
conventional-configuration-interaction~CI! matrix generator
codeDVDCI in the quantum-chemistry codeSWEDEN @24#. A
new matrix generator code is written to handle the ma
elements involving a nonorthogonal basis, i.e., betwe
AF i(t1 , . . . ,tN) f i(tN11) and AF j (t1 , . . . ,tN) f j (tN11)
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and betweenAF i(t1 , . . . ,tN) f i(tN11) and Q j . Because
only one orbital in the (N11)-orbital function is represente
by a nonorthogonal basis, the expression ofHi j is signifi-
cantly simpler than the case when the fullN11 orbitals are
ia

fu

ar
e
h
m
lli

o
b
tly
o

ne
in
expressed by a nonorthogonal basis. Making use of the
thatHi j vanishes unlessF i andF j differ by at most two spin
orbitals, it can be expressed in terms of the two-elect
~transition! spin densityDi j

(2)(t1 t2ut18 t28) of F j* F i @25#:
t

Di j
(2)~t1 t2ut18 t28!5

N~N21!

2 E dt3•••dtNF j* ~t18t28t3 , . . . ,tN!F i~t1t2t3 , . . . ,tN!. ~3.6!

The two-electron spin-density matrixPi j
(2)(pqup8q8) is obtained by representingDi j

(2)(t1 t2ut18 t28) in terms of a complete se
of Gaussian orbitalsfp ,fq ,

Di j
(2)~t1 t2ut18 t28!5 (

p,p8q,q8
Pi j

(2)~pqup8q8!fp~t1!fq~t2!fp8~t18!fq8~t28!. ~3.7!

In terms ofPi j
(2)(pqup8q8), the expectation of a two-electron operatorF is given by

^F j uFuF i&5 (
pqp8q8

Pi j
(2)~pqup8q8!^fpfqu f̂ ufp8fq8&,

F5 (
m1,m2

f̂ m1m2
. ~3.8!

Hi j can be rewritten as

Hi j 5 (
pqp8q8

Pi j
(2)~pqup8q8!^A3fp8~t1!fq8~t2! f j~tN11!uĥuA3fp~t1!fq~t2! f i~tN11!&. ~3.9!

HereA3 permutes electrons 1, 2, andN11, andĥ, analogous tof̂ , is a Hamiltonian operator for three electrons:

ĥ5ĥmol1
2

N~N21! H 2
1

2
¹ rN11

2 2 (
k51

M
Zk

urN112Rku
1

N

urN112r1uJ ,

ĥmol5
2

N21 H 2
1

2
¹ r 1

2 2 (
k51

M
Zk

ur12Rku
1 (

k. l 51

M
ZkZl

N uRk2Rl u
J 1

1

ur12r2u
. ~3.10!
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Hi j betweenAF i(t1 , . . . ,tN) f i(tN11), andQ j can also be
rewritten in a similar manner. Thus the calculation ofHi j
reduces to the evaluation of a three-electron Hamilton
matrix element, regardless of the value ofN. There are two
advantages to this approach. Because the target wave
tion F i(t1 , . . . ,tN) is used in the generation ofDi j , the
phase relationship is kept intact. There is no need to c
out a pseudo-(N11)-electron calculation to circumvent th
phase consistency problem, which can be encountered w
the configuration-state-function generator in quantu
chemistry codes is directly used in electron-molecule co
sion calculations@26,13,27#. Also, in the future publicly dis-
tributed quantum-chemistry codes are likely to include tw
electron-spin densities in the package. This approach ena
us to employ the quantum chemistry calculation direc
without having to handle CI wave functions with hundreds
millions of configurations.

B. External region

In the external region, the problem reduces to a o
electron, coupled-channel problem, and can be handled
n

nc-

ry

en
-
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-
les

f

-
a

straightforward manner. A pure finite-element basis is u
to represent the radial function. As in theR matrix approach,
the solution of the external region is obtained by furth
partitioning into as many sectors as necessary, and then tZ
matrices are reassembled into a globalZ matrix.

IV. NUMERICAL EXAMPLES

A. e-H elastic scattering in the static-exchange approximation

The hydrogen-atom wave function is represented by a
sis of seven Gaussians. Due to the spherical symmetry o
system, a pure finite-element basis is used to represen
continuum electron. Also, the short-range nature of thee-H
static-exchange potential requires only three sectors to re
an asymptotic behavior. Each sector uses 24 elements. In
first sector~inner region!, the element boundaries are 0, 0.
0.2, 0.4, 0.6, 0.8, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5, 6, 7, 8
10, 11, 12, 13, 14, and 15. At the boundary of the first sec
the most diffuse Gaussian function has a value'1028. At
the two outer sectors they are evenly spaced at 1-a.u. in
vals. To test the invariance of the result using differe
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TABLE I. Eigenphase sum~radians! of e-H elastic scattering in the static-exchange approximation.1S
channel.

Energy~a.u.! Log derivative R Z1 Z2 Mott and Masseya

0.005 2.395 322 16 2.395 322 16 2.395 322 16 2.395 322 16 2.396
0.025 1.869 315 62 1.869 315 62 1.869 315 62 1.869 315 62 1.871
0.045 1.507 462 51 1.507 462 51 1.507 462 51 1.507 462 51 1.508
0.080 1.239 077 38 1.239 077 38 1.239 077 38 1.239 077 38 1.239
0.125 1.031 067 02 1.031 067 02 1.031 067 02 1.031 067 02 1.031
0.180 0.868 732 440 0.868 732 440 0.868 732 440 0.868 732 440 0.869
0.245 0.743 820 304 0.743 820 304 0.743 820 304 0.743 820 304 0.744
0.320 0.650 973 501 0.650 973 501 0.650 973 501 0.650 973 501 0.651

aFrom Ref.@28#.
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choices of parameter sets satisfying Eq.~2.7!, the calculation
was repeated using four sets of parameters:~1! a52e51
andb5d50, the log-derivative matrix;~2! b5d51 anda
5e50, theR matrix; ~3! a5b51, d58, ande57, desig-
nated as theZ1 matrix; and~4! a55, b53, d57, ande
54, designated as theZ2 matrix. Tables I and II present th
eigenphase sum computed for the1S and 3S channels, re-
spectively. Also presented are the static-exchange re
tabulated in Mott and Massey@28#. For the 1S calculations,
the four sets of parameters give identical results to nine
nificant figures. The agreement with Mott and Massey is a
good. Calculations of3S scattering using the same four se
of parameters agree with each other to seven significant
ures except at the lowest electron energy, 0.005 a.u. In
case the agreement is only to six figures. The largest
agreement with Mott and Massey is also at the lowest
ergy. We believe that the difference between our result
that of Mott and Massey is mainly due to the use of a Gau
ian representation for the H atom in our case instead o
hydrogenic wave function.

B. Two-channel calculation ofX 1Sg
1
˜b 3Su

1 of H2

by electron impact

This example is chosen because all currently emplo
computational methods fore-molecule collisions have bee
used for its calculation, thus providing a good test case
compare theZ matrix result with other approaches. Th
Gaussian basis used is a@6s3p1du4s3p1d# basis with thes
andp functions taken from the correlation consistent pol
ization valence quadruple-zeta~cc-pVQZ! basis of Dunning
ult
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and co-workers@29# whereas thed function is taken from
their cc-pVTZ basis. All calculations were done atR
51.401 534 a.u. Using this basis, the ground-state CI ene
equals 21.173 253 68 a.u., and theb state CI energy is
20.781 956 00. All CI calculations used full CI. The resu
are to be compared with the James-Coolidge-type correl
calculation of Kolos and Wolniewicz~KW! @30#. Interpola-
tion of their potential-energy curves gives a ground-state
ergy of 21.174 474 6 and ab-state energy of20.784 569 at
the R value we used. Theb-state excitation threshold from
the present calculation is 10.6478 eV versus KW’s 10.60
eV. Also, the ground-state quadrupole moment of H2 is cal-
culated to be 0.444 991 a.u. versus KW’s value of 0.457 4
at R51.4. Using this basis, the self-consistent field~SCF!
energy for the ground state is21.133 427 72, and the im
proved virtual orbital~IVO! energy@31# of the b state is
20.765 656 14. Thus the SCF excitation threshold, 10.0
eV, is approximately 0.5 eV lower than the CI threshold. T
ground-state SCF quadrupole moment is 0.484 818.

The Z-matrix calculation is separated into 250 secto
with 24 elements in each sector. In the first sector~i.e., the
inner region!, the continuum electron is represented by bo
elements and Gaussians. The spherical harmonics assoc
with the elements are limited tol<6 and umu<2. The dis-
tribution of elements in the first sector is identical with th
e-H calculation. At the boundary of the first sector, the mo
diffuse Gaussian function has a value'1028. In all remain-
ing sectors, the elements are evenly placed at 1.0-a.u. in
vals. The convergence of the calculation with respect to
number and placement of elements has been tested. It is
lieved that the calculated cross sections have converged
least five significant figures.
TABLE II. Eigenphase sum~radians! of e-H elastic scattering in the static-exchange approximation,3S
channel.

Energy~a.u.! Log derivative R Z1 Z2 Mott and Masseya

0.005 2.905 998 49 2.905 997 49 2.905 997 54 2.905 997 83 2.908
0.025 2.677 925 46 2.677 925 29 2.677 925 37 2.677 925 38 2.679
0.045 2.460 509 66 2.460 509 52 2.460 509 44 2.460 509 53 2.461
0.080 2.256 695 12 2.256 694 89 2.256 694 97 2.256 695 00 2.257
0.125 2.069 614 04 2.069 614 04 2.069 613 98 2.069 614 02 2.070
0.180 1.900 181 42 1.900 181 24 1.900 181 24 1.900 181 29 1.901
0.245 1.748 476 84 1.748 476 84 1.748 476 84 1.748 476 85 1.749
0.320 1.613 809 27 1.613 809 17 1.613 809 10 1.613 809 17 1.614

aFrom Ref.@28#.
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TABLE III. Eigenphase sum~radians! of e-H2 X 1Sg
1→b 3Su

1 two-channel calculation,2Sg
1 symmetry.

Energy~eV! Log derivative R Z1 Z2

10.75 1.625 025 17 1.625 025 16 1.625 025 16 1.625 025 19
12.50 1.321 724 73 1.321 724 69 1.321 724 69 1.321 724 70
15.00 1.009 459 55 1.009 459 45 1.009 459 45 1.009 459 45
17.50 0.787 108 46 0.787 108 23 0.787 108 23 0.787 108 23
20.00 0.677 994 01 0.677 993 54 0.677 993 54 0.677 993 54
25.00 0.590 129 84 0.590 128 22 0.590 128 22 0.590 128 22
30.00 0.559 404 93 0.559 400 41 0.559 400 41 0.559 400 40
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Table III presents the2Sg channel eigenphase sum at s
lected energies calculated using CI target functions. Here
find the results calculated using the four different parame
sets agree with each other to at least five significant figu
This is consistent with the estimated accuracy of the cr
section by changing the element basis. The agreement is
ter at low energies, indicating that the elements chosen
not describe the high-energy part of the calculation as w
We also find that the agreement among theR matrix, Z1
matrix, andZ2 matrix is consistently better than with th
log-derivative matrix. For example, at 30 eV, the agreem
among the former three is to seven figures, whereas
agree with the log-derivative result only to five figures. Th
behavior is not fully understood at present.

Figures 1–4 compare theX 1Sg
1→b 3Su

1 partial cross
sections of2Sg

1 , 2Su
1 , 2Pux , and 2Pgx symmetries with

other theoretical calculations. Because almost all previ
calculations used single configuration target wave functio
the Z-matrix results presented there also were calculated
ing SCF target functions. To test the dependence on

FIG. 1. Electron-impact excitation cross sections for t
X 1Sg

1→b 3Su
1 transition of H2 . 2Sg

1 symmetry.
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Gaussian basis used, we also carried out calculation u
the ccp-VDZ basis of Dunning and co-worke
@4s1pu2s1p#. We found that the change of Gaussian ba
has very little effect on the cross sections. This is consis
with the findings of Schneider and Collins@32# in their linear
algebraic~LA ! calculation of this system. In addition, w
found the CSF’s 1sg1su

2 and 1sg
21su , normally used to

relax the orthogonality constraints, have very little effect
the result. The cross sections with and without those te
differ at most at the third significant figure. This is a refle
tion of the use of a nonorthogonality basis. The need for
orthogonality relaxation terms no longer exists in our a
proach.

It is seen from the figures that our results are consiste
in good agreement with the Schwinger multichannal~SMC!
calculation of Limaet al. @33# and the LA calculation of
Schneider and Collins, confirming the validity of th
Z-matrix calculation. The agreement with theR-matrix cal-
culation of Ref.@34# is less good, even though theR-matrix
formulation is a subset of theZ-matrix method. One source

FIG. 2. Electron-impact excitation cross sections for t
X 1Sg

1→b 3Su
1 transition of H2 . 2Su

1 symmetry.
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for the difference is the closed-channel polarization functio
included inR-matrix calculations. Thus theR-matrix treat-
ment of the two-channel problem is different from th
present approach as well as the SMC and LA studies.
have carried outZ-matrix calculations including closed
channel polarization functions, and found pseudoresona
at the high-energy end of the cross-section curve. As

FIG. 3. Electron-impact excitation cross sections for t
X 1Sg

1→b 3Su
1 transition of H2 . 2Pux symmetry.

FIG. 4. Electron-impact excitation cross sections for t
X 1Sg

1→b 3Su
1 transition of H2 . 2Pgx symmetry.
s

e

es
x-

pected, the pseudoresonances are basis set dependen
fact that no pseudoresonance was reported in Ref.@34# prob-
ably is due to the particular target basis used. In view of
presence of the pseudoresonances, we choose to prese
results without polarization functions. It should also
pointed out that, comparing with Fig. 2 in Ref.@34#, which
includes their2Sg

1 and 2Su
1 partial cross sections withou

polarization, we find the remaining discrepancies with t
R-matrix result are still larger than our discrepancies with
SMC and LA results.

Figure 5 presents the total excitation cross section for
X 1Sg

1→b 3Su
1 transition calculated atRe ('1.4 a.u.) us-

ing the larger basis and with both CI and SCF targets. Ot
theoretical results are also presented. Besides the SMC,
and R-matrix calculations cited above, Rescigno a
Schneider@35# reported a complex Kohn calculation over
range of internuclear distances using a two-configuration
function for the ground state and an IVO function for th
excited state. Their result atR51.4 a.u. is included in the
figure. Also, Tennyson and co-workers carried out sev
stateR-matrix calculations of electronic excitations of H2 at
R51.4 @36,37# and over a range ofR values@38,39# using
full CI target wave functions and a complete set of close
channel function. Due to the use of closed-channel functio
their result is not directly comparable to ours, and thus
included in the figure.

As in the case of partial cross sections, theZ matrix,
SMC, and LA results using SCF target functions are in clo
agreement. TheZ-matrix result using full CI target functions
stands somewhat apart, being lower than the SCF resu
the low-energy region, and becomes higher at the hi
energy end. Perhaps not surprisingly, the complex Ko
cross sections fall into the group using SCF targets. A ma
source for the difference between using CI and SCF targ

FIG. 5. Total electron-impact excitation cross sections for
X 1Sg

1→b 1Su
1 transition of H2.
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comes from the shift of the excitation threshold. The inco
plete correlation treatment of the target in the complex Ko
calculation gives an excitation threshold atR51.4 a.u. of
10.11 eV, a value closer to our SCF threshold~10.0076 eV!
than the CI value of 10.6478 eV. Thus it is not surprisi
that their CI result is close to the SCF result. Note that
R-matrix result using SCF target stands somewhat apart f
other results. In fact, they are closer to theZ-matrix result
using full CI rather than SCF targets.

While fixed-nuclei calculations cannot be directly com
pared with experiment, it may still be useful to present e
perimental data as a qualitative guide. For this purpose,
5 also presents the experimental cross sections of Hall
Andrić @40#, Nishimura @41#, and Khakoo and co-worker
@42,43#. Note that a calculation including nuclear motio
such as that of Stibbe and Tennyson@44# would have
sampled the portion of vibrational wave function withR
.Re . Because theb-state energy rapidly decreases with i
creasingR nearRe , the experimental threshold will be lowe
than the threshold value determined atRe . Since the SCF
threshold is lower than the CI threshold, this fortuitous
causes the fixed-nuclei cross sections determined using
target functions to agree better with experiment near thre
old than the CI result. In spite of these qualifications,
calculated cross sections fall within the experimental unc
tainties.
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V. DISCUSSIONS

The Z-matrix method, implemented using a mixed finit
element and Gaussian basis, has been found to provi
robust computational method fore-molecule collisions. The
power of variational stability in theZ-matrix formulation is
demonstrated by the internal agreement of the eigenph
sums calculated using different sets of parameters.

The Z-matrix formulation can readily be extended to
two-dimensional case. This will include nonadiabatic tre
ment of nuclear motion, such as vibrational excitation
dissociation of a diatomic molecule by electron impact, t
(e,2e) problem for a molecular target, and electron collisi
of a Rydberg molecule. Such a two-dimensional code is
der development. Because both sectorial calculations and
use of finite elements are well suited for massively para
computers, the high demand for computing resources i
two-dimensionalZ-matrix calculation may be alleviated b
the use of massive parallelization.
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