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Finite-element Z-matrix method: Application to electron-molecule collisions

Winifred M. Huo
NASA Ames Research Center, Moffett Field, California 94035-1000

David Brown
NASA Goddard Space Flight Center, Institute for Space Studies, New York, New York 10025
(Received 11 December 1998

The Z-matrix formulation of Brown and LighfJ. Chem. Phys101, 3723 (1994)], based on a Kohn
variational principle for a general class of finite-range scattering functionals, is applied to electron-molecule
collisions employing a mixed basis of Gaussians and finite-element interpolation polynéimials spherical
harmonicg. The local nature of the finite elements is particularly well suited for finite-range calculations, and
all integrals involved are energy independent. The implementation of the method is designed to make use of
sophisticated target functions. Numerical examples for both elastic collision of H and inelastic collisign of H
illustrate the applicability of this approach. The results are compared with data obtained using other theoretical
methods as well as experimental d4&1050-294®9)00407-2

PACS numbse(s): 34.80.Bm, 34.80.Gs, 02.70.Dh

I. INTRODUCTION pending on the choice of parameters.
Since the introduction of thB-matrix method to the study

Treatment of collision problems using space-partitioningof e-atom and e-molecule collisions by Burke and co-
technigues has been in practice since the introduction of thevorkers[7,8] and by Schneidd9], it has become an impor-
R-matrix method by Wigner and Eisenbyd]. Computa- tant research tool in this area. The extension to include
tional efficiency is maximized by defining regions of spacenuclear dynamics ire-molecule collisions was first investi-
according to the nature of the interaction potential. For ex-gated in Ref[10]. However, up to the present md¥matrix
ample, in electron-atom or electron-molecule collisions, thestudies in this area employed basis functions which obeyed a
common practice is to treat the internal region, where thdixed boundary condition as originally formulated by Wigner
short-range, nonlocal nature of the electron-target interactioand Eisenbud, instead of the fully variational formulation.
must be accounted for, by employing well-established methThe discontinuity of the wave function at the sectorial
ods for bound states. In the external region, the interactioboundary is then corrected by using the Buttle correction
potential is long range and multipolar in nature, and the col{11]. Among earlier studies, the onrmolecule calculation
lision is reduced to a one-body, potential scattering problembased on the fully variationdR matrix is thee-H, elastic
Other well-established properties of space-partitioning treateollision study of Nesbetet al. [12] using an energy-
ments include the fact that only real matrices are involved ifdependent numerical basis. In contrast, the log-derivative
a real basis is used, and tl&matrix so deduced is both matrix method, which was introduced in the fully variational
unitary and symmetric. form without restrictive boundary conditiori§], led to a

Another advantage of these approaches is that the externighly efficient algorithm which is popular in the study of
region, or any regions in which the potential is local, can beatom-molecule and molecule-molecule collisions. So far,
subdivided into smaller sectors, and a sepaRateatrix can  neither theZ-matrix method nor the log-derivative matrix
be constructed for each sector. The sedomatrices can method has been applied ¢eatom ore-molecule collisions.
then be assembled into a glolkamatrix for the entire region The practice of employing fixed boundary conditions in-
[2]. Since the computational requirements are directly prostead of the fully variationalR-matrix formalism in
portional to the sector size, this procedure can potentiallye-molecule collisions is mostly related to the lack of a suit-
result in substantial savings in computer resources. able energy-independent basis which allows flexible bound-

Both theR matrix and its inverse, the log derivative ma- ary conditions and is amenable to efficient algorithms for
trix, can be formulated using the Kohn variational principle evaluating the necessary matrix elements with polyatomic
[3-5]. Recently, Brown and Ligh{6] applied the Kohn targets. The variational calculation of Neske¢fl. [12] em-
variational principle to a general class of finite-range variaployed energy-dependent numerical asymptotic functions in
tional functionals, and derived a parametric relationship fortheir basis, so that the integrals had to be recomputed at each
which the functional is stationary to first-order variations in electron energy. This procedure eliminates one of the advan-
the trial wave function. This formulation, called tEematrix ~ tages of theR-matrix method, namely, that it requires the
method, reduces to the log-derivative matrix method at aalculations of sectorial energies and eigenfunctions only
specific choice of parameters. Another choice of parametersnce. To take advantage of energy-independent matrix ele-
reduces it to théR matrix, although it is slightly different in ments, the numerical basis used in the UK molecular
form from what is commonly used in the literature. Thus theR-matrix packagd13] are chosen to satisfy fixed boundary
Z-matrix formulation allows us to solve collision problems conditions. Another approach is to use a Gaussian basis to
employing any of an infinite number of matrix relations de- represent the continuum electron in the first region. The
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Gaussian basis was employed in the early calculations by Section Il presents the working equations of #eatrix
Schneider and co-workef®,10], the more recent selected method, and summarizes some relevant properties of finite
stateR-matrix approacti14] as well as the UKR matrix for  elements. The implementation is discussed in Sec. Ill, and
polyatomic moleculegl5]. A Gaussian basis is energy inde- numerical examples are presented in Sec. IV. Section V dis-
pendent. It also eliminates the need of imposing fixed boundeusses our results.

ary conditions. However, Gaussian basis tends to be less

flexible than the piecemeal polynomials in a local basis and Il. THEORY
also more readily gives rise to linear dependency problems. _
Finite elements have been successfully applied to many A. Z-matrix method
atomic and molecular physics problems. In particular, Let the wave function of theN+ 1)-electron system be
Shertzer and Boter{d 6] carried out accurate calculations of (7, 7,, ... ,7y.1;R) where the electronic coordinateis

e-H scattering using finite elements for the radial coordinateshe product of the spatial coordinatend spin coordinater,
of both electrons, thus demonstrating their utility in electronand R represents the tota"ty of the nuclear coordinates. In
collisions. Because of their local character, finite elementshis paper we neglect nuclear motion. The nuclei are as-
are well suited for sectorial calculations. A finite elementsymed to be in a fixed configuratid®, which will not be

basis permits variable boundary conditions and allows fullritten out explicitly. The Schdinger equations for the sys-
flexibility in optimizing the wave function, an important tem are

property in implementing th&-matrix method. In our imple-

mentation, a mixed basis of finite elements times spherical (H-BE)¥(n)=0, (2.1
harmonics and nuclei-centered Gaussians is used to represent

the orbital of one of the electrons. The use of Gaussians 5 N
provides an efficient representation of the multicentered na- H=Hmo— 2VrN+1+E
ture of a molecular problem where the subregions at and near

Zi

the nuclei require careful treatment, a result of the nuclear 1N N 1 N M 7
cusps and the high charge density there. Without using Gaus- H, - E V2 + _ 2 2 k
sians, a large number of elements and high angular momen- 2 iSTln-rl S EL IR
tum functions would be required to represent the scattering M
electron near the nuclei. So far as we know, this is the first ZZ,

U : ; . . + E (2.2
collision calculation using mixed local and global functions. STt |Rk R

In the first sector, we solve theN@1)-electron problem.

Since most accurate molecular wave functions determined bijere the labeN+ 1 denotes the continuum electron. Due to
current quantum chemistry codes are expressed in terms ofthe indistinguishability of electrons, this labeling is purely
Gaussian basis, we have developed an efficient algorithm tarbitrary. Also, atomic units are used throughout.

evaluate the Hamiltonian matrix element between Gaussians Equation (2.1) is solved using space-partitioning tech-
and finite elements. All matrix elements involved are energyniques, to be described briefly below. The present treatment
independent, another attractive aspect of a finite element baliffers slightly from that of Brown and Light6], but the

sis. The present approach is different from the work of Refworking equations are essentially the same. It is assumed
[17] who reduced the-molecule collision problem to a one- that only one of theN+ 1 electrons, the incident or scattered
body potential scattering problem and computed theelectron, will be found at infinite distances from the center of
R-matrix using finite elements. Similarly, the two- mass of the molecule. As in tH@matrix treatment of elec-
dimensional finite-element calculation of RE18] for elec-  tron collisions, the first sector is chosen such that all short-
tron scattering from a model Hpotential solves an one- range, nonlocal interactions between the scattering electron

electron, not N+ 1)-electron problem. and target are negligibly small outside its boundary. Let
|
¢mn(rN+1):f dry- - drydins o én(, -t P 1 0N D) W Ta, - TN T D) 2.3
|
The indicesm and n are collective indices comprising all At the boundary between sectors, defined as a hypersur-

electronic, angular momentum, and spin quantum numbergce ofr ., ;=s, the trial function¥,, and its variations¥,
needed to describe the system at fixgd ;. The spin-space are defined by the boundary conditions

functions ¢, form a complete set on the hypersurface of

constantry ;. Typically &, is expressed by a product of - 5

target eigenfunctions, spherical harmonics jy ;, and spin a Ymn(S) +0 ¢i(S)=Cin,

functions for the scattering electrof., is a scattering eigen- (2.9
function whose only incoming wave component at large - -

rns1 IS associated withf, . a 6mn(S) +b S¢(8)=0,
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where), (s) is the outer normal derivative f(s). Note Z[aW(s)+bW'(s)]=dW¥(s)+e¥'(s). (2.8
that the matrixc with elementsc,,, must be invertible.
Note that Eq(2.4) only requires the existence of,,. Its  Here W (s) denotes the eigenfunction evaluated gt ;=s.

value is not fixeda priori. Consider the functional It is easy to show that while the quantitigs,, depend on the
) - - specific boundary conditions the Z matrix does nofThus,
imn=(¥m/H-E|V,), (2.9 thez matrix computed fronany choice ofc will affect trans-

ormation(2.8) for any other linear combination of degener-

with the inner product evaluated over the entire range of al te scattering eigenfunctions at enegyThe importance of

variables excepty. 1, the Iatt_er cover_ing only the range s point will be seen below.

(09). OPV'OUSIV’ it is nonstationary with respect to varia- There is an infinite number of choices of the parameters

tions in¢. However, it can be show] that a related func- g b d, and e which satisfy Eq.(2.7). Let a=e=0 andb

tional =d=1; Eq.(2.9) is reduced to the familiaR-matrix expres-

sion

Imn:[CTZC]mn: - [ 2imnt E (a Ypmt b wp,)m)
P RY'(s)=Z[a=e=0b=d=1]¥'(s)=V¥(s). (2.9

X(d¢gpate ‘/’F,Jn)} (2.6 Note that theR matrix derived here has a slightly different
form from other variational derivationg}]. The choice of
a=—e=1 and b=d=0 reduces EQ.(2.8) to the log-

is stationary with respect to first-order variationsimif the R ' ) -
derivative matrix equation, apart from a sign change

parameters,b,d, ande satisfy the relationship

ae—bd=-1. 2.7 YW¥(s)=—2Z[a=—e=1b=d=0]¥(s)=V¥'(s).

2.1
Strictly speaking, the summation in E(.6) should go to (210

infinity. In practice, of course, only enough surface states t
describe the wave functions g}, ;=S5 need be included. In
addition, in order forc to be invertible, states with incoming
wave components in closed channels need to be defined ev
though they are not labeled explicitly in the formalism.

When the functionsP' are the exact eigenfunctions sub-

%he log-derivative matrix obtained this way is identical with
the result of Manolopoulos, D'Mello, and Wyd#], except
é%r the change in sign.

1. Basis set expansion

ject to the boundary conditions E.4), theZ matrix obeys Let the trial functionys be represented by a badig!.
the equation ThusW for the collision system is written as
W(ry, . 7y :TN+1):% LA (TN D) Em( 10 - TG TN O D) - (2.1
|
The antisymmetrized permutes theN + 1)th electron with vl = xP(s)+exP'(5)dmp. (2.14

electrons 1. .. ,N. It is assumed that the target wave func-

tion contained infy, is already antisymmetrized. The re- and thepth column of matrixU just the vectouP. Note that
quirement that the variational functional be stable with re-the appearance of the Kronecker deltas in @dl4) assumes
spect to first-order variations in the expansion coefficignts that the surface functions are orthogonal; if they are not,

and subject to the boundary conditions in E2j4) as well as  the Kronecker deltas must be replaced with the overlaps of
orthogonality constraints gives the following expression forgm and¢, .

the Z matrix [6],
2. Z-matrix propagation

Zyn=—2[(UMg*U) g (2.12 , o
The propagation of th& matrix is analogous to that of the
where R matrix [2]. Assume aZ matrix on (0, s;) has been con-
structed using the foregoing procedure which affects the
Ms=L(H—E+HT—ET) =1 (uPvP +vPuP') mapping
P
(2.13 Z[aW(s;))+bW¥'(s)]=dW¥(s)+eV'(sy). (2.15
2.1

with vectorsuP andvP defined to have elements
0 o o Similarly we can construct on the rangs; (s,) a 2X2 Z
Uim= @ X7 (S) +b X7 (S)) Smp, matrix to perform the mapping,
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\If(sl)) (‘I”(sl)) [ (qf(sl)) V' (sy) contrast, theR matrix and log-derivative matrix calculations
Z5la +b| =|d +el ., . would require the use of a different energy.
4N w(sy) Plwi(sy) vis)) T\ s | ¥

2.1

B. Finite elements

By invoking the continuity of¥" and its derivative as;, In finite-element analysis, the coordinate space is dis-
W (s;) and¥’(s,) can be eliminated, yielding an expression ¢etized into small regions called elemeftt§]. For the one-
for the Z matrix on the range (8;) in terms ofZ; andZ,.  gimensional case considered here, the local coordigate-
. _ fined only inside the element, is related to the global
3. Z matrix and S matrix coordinater and the boundaries of the elemegtandr,, by
The relationship between ttEematrix and theS matrix is
obtained using outgoing scattering wave boundary condi- - 2r—(rp+ra) 2.19
tions [6]. Let s, be the distance where the wave function y—ra '
reaches its asymptotic form. Tt&matrix is given by
The value ofx ranges from—1 to 1. Interpolation polyno-
S=[Z(aO+bO')—(dO+eO')] mials in terms of the local coordinates serve as a basis to
, , represent the function of interest. By decreasing the element
X[Z(al+bl")=(dI+el)], (2.17) size, or by increasing the degree of the interpolation polyno-
mials, it is possible to improve the accuracy of the represen-
tation systematically. In this paper, fifth degree Hermite in-
terpolation polynomial$20] are used. Thus three nodes are
assigned to each element, at the local coordinates- 1,0,

with the matrix elements of and O given by

Im”:\/Te o S, and 1. Fifth degree Hermite interpolation polynomiglg(x)
m (2.18 have the following values at nodes=1-3:
Omn:ieikmsoamn, B 1, m=2n-1
Vi Pm(X)=1 otherwise,
(2.20
wherek,,= \/2(E_— €m), andey, is themth (_aigenvalue of the dpy(X) [1' m=2n
N-electron(atomic or moleculgrHamiltonian. = .
Since theZ matrix has components which couple closed dx 0 otherwise.

channels to open channels, and closed channels to one an- o ] ) o
other, theS matrix defined in Eq(2.17) shares this charac- The continuity of the function and its derivative across ele-
teristic, as is the case with tHR matrix. The open-open Ment boundaries is achieved by requiring the expansion co-

subblock is the physica matrix, and is unitary as long &  efficients associated with the last two Hermite polynomials
is real symmetric. in an element, representing the function and its derivative at

In the actual computer code, the inverseZois used to  the boundary, to have the same values as those associated
computeS By insertingZZ ! between the two bracketed with the first two polynomials of the next element.

matrices in Eq(2.17), theSmatrix can be expressed in terms ~ 1he Hermite interpolation polynomials belonging to the
of Z~! instead ofZ. In this manner the matrix inversion step Sa@me element are nonorthogonal. Those of different elements

in the expression oZ in Eq. (2.12) can be avoided. naturally are orthogonal to each other, since their space do
not overlap. Thus the Hamiltonian matrix represented by fi-
4. Choice of parameters nite elements is a sparse matrix if the potential is local.

) When exchange interaction is involved, the Hamiltonian ma-
The values of the parameteasb,d, ande which reduce iy js no longer sparse, but still block diagonal dominant.
the Z matrix to theR matrix and log-derivative matrix are pye to its local nature, finite elements are well suited for

given in Egs.(2.9 and(2.10. There are of course infinite geciorial calculations. For example, at the outer suréarfea
other choices of the parameters which satisfy &47) and  gector, the vecton® in Eq. (2.14), represented by finite ele-
give variationally stable soluthns. This flexibility offer:s_ ad- ments, will have only two nonvanishing components; those
ditional advantages to thematrix method over th&matrix  asgociated with the last and next to last Hermite polynomials.
and log-derivative matrix methods. Calculations using differ- gecause the Hermite polynomials form a nonorthogonal
ent choices of parameters should converge to the same res%tdsis, when a mixed finite element and Gaussian basis is
thus providing an internal check on basis set convergencgseq no attempt is made to orthogonalize these two basis
An example of this was given in Reff6], and another ex-  ggts. This choice is made because imposing the orthogonality
ample will be given in Sec. IV of this paper. In addition, itis ¢onstraint will remove the block-diagonal dominant feature
noted that the eigenvalues of(H-+HT)—33,(uPv? of the Hamiltonian matrix represented by elements.

+vpupT) in Eq. (2.12 depend on the value of the param-
eters. When the energy used in the calculation accidentally
coincides with one of the eigenvalues, causing the inversion
of the matrix Mg to fail, it is always possible to shift the The following trial function is wused for the
eigenvalues by using a different choice of parameters. IfN+1)-electron system,

Ill. IMPLEMENTATION
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p{®(x), with « labeling the element aricthe polynomial in

the element, is written in terms of the local coordinate
instead of the global coordinatg,, ;. The origin of the co-
dinater for the finite element expansion is chosen to
+ 2 NgOy(T, ..., . 3y O N+1 o
zd: aOal7s ™N+1) @D be the center of mass. The boundary conditiorf gfry 1)

atry. ;=0 requires the coefficients®),, to satisfy the re-
The fixed-nuclei target functiond,(7y,...,7n) IS €X-  |ationships '
pressed in terms of a Gaussian basis and the quality of the
wave function varies from simple self-consistent field func-

wT):g M@ (71, ) Fo(Tns )}

tions to large configuration-interaction functions. If the first =0, §§,f?|mzo if a=1, i=1,

sum in Eq.(3.1) is over the complete set of target functions (3.5
including the continuum, then the second sum is unnecessary

and we have a close-coupling wave function. In practice, the 1>0, ¢{,=0 if @=1, i=1 and 2.

first sum almost always has to be truncaf@d]. Thus the
second sum in Ed3.1), consisting of N+ 1)-electron func- ) _ )
tions ® represented by a pure Gaussian basis, is introduced Th? function; is a_one-electron fo_‘Ct'On pomposed of
to account approximately for the role of the missing terms innuclei-centered Gaussians. At the legtis obtained from a
the first summation. Two types @ are included. One is to linear combination of Gaussians, so it has the correct pom.t
describe the polarization and correlation effects between thgroup symmetry of the system under study. In most cases, it
target and the continuum electron, and the other is to reprecomes from the set of one-electron orbitals obtained in the
sent the high-angular-momentum part of the continuum orcourse of determining the target function. As in the case of
bital important in the region near the nuclei. In otray  target functions, it is also supposed to vanish at the boundary
initio methods® is also used to relax the orthogonality con- Of the internal region. Note also that the Gaussians and the
straint between the bound and continuum functions. In thélermite polynomials are not orthogonal to each other.
present case, the use of a nonorthogonal basis eliminates this Because the interaction potential in the internal region
need. Since both types 6f result from short-range interac- (first sectoy and the external regiofnth sector,n>1) are
tions, they are important only in the internal region. Consedifferent, the evaluation of the Hamiltonian matrix elements
quently, it is sufficient to represefit by a Gaussian basis. It IS also different. In the following, the two regions are dis-
is worthwhile pointing out that finite elements can represenfussed separately.
both bound and continuum functions, and a mixed finite-
element and Gaussian basis can also be adopted to represent
®. However, such representations are less compact. Hence a
pure Gaussian basis is employed. Except for the fact@hat Here the N+ 1)-electron interaction has to be explicitly
is not used to relax the orthogonality constraint, its role isaccounted for. The calculation of the Hamiltonian matrix el-
analogous to the “square integrable functions” employed inements,H;; , in a mixed finite-element and Gaussian basis
the UK R-matrix packagg13] and theQ-space configura- requires the integrals between hermite polynomials and
tions used in the complex Kohn methf2P]. Gaussians. All integrals are evaluated numerically. Two-
The continuum electron is represented by a mixed basiglectron integrals are done using a two-step procedure:
consisting of Gaussians and products of finite elements anevaluation of the potential due to the charge distribution of
spherical harmonics. The one-electron spin orbital for theelectron 1 by solving Poisson’s equation, and numerical in-

A. Internal region

continuum electrong,,, is given by, tegration of the charge distribution of electron 2 over the
potential. Except when the angular integrals are analytic, nu-
In(7n+1) = Fa(7nsn) + ¥n(Tnsa), (3.2  merical integration in the angular coordinates are also done

using finite elements. Details of the integral calculation are

with given elsewher¢23].
1 While the Gaussian orbitals used to represent the target
fo(Tne1)= E §§ﬁ’|m PX)Ym(Tns1)@(oysq),  functions and the closed channel spécéorm an orthogonal
N+1 @i Tm set, a nonorthogonal basis is used to expand the one-electron

3.3 orbital for the continuum electron, resulting in a nonorthogo-
nal representation o¥. Thus the overlap matrix is main-
im0~ oy ilrneolonn). (24 Lnedinal calculatons, and Wematrxin q.(2.13 s the
The evaluation oH;; over a nonorthogonal basis is not in
Note thatf,(7y+1) iS associated with the first term in Eq. the standard quantum chemistry codes. Thus the calculation
(3.1, whereas), (7 1) is obtained from the second term by of Hj; is separated into two steps. The matrix elements in-
projecting out the target wave functich,(7, ...,7)- In  volving pure Gaussian orbitals are evaluated using the
the above¢; is a Gaussian orbitaly is the spin function, conventional-configuration-interactidi€l) matrix generator
andY,,, are real spherical harmonics. If complex sphericalcodebvDcI in the quantum-chemistry cod®VvEDEN[24]. A
harmonics are used, the integral betwagn and Gaussians new matrix generator code is written to handle the matrix
is complex. It has the disadvantage of doubling the storagelements involving a nonorthogonal basis, i.e., between
requirements for the integrals. The interpolation polynomialA®;(7y, . ..,7)fi(7n+1) and A®(7q, ..., 7\)fj(7n1)
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and betweend®d;(ry, ...,7y)fi(7y+1) and O;. Because expressed by a nonorthogonal basis. Making use of the fact
only one orbital in the I+ 1)-orbital function is represented thatH;; vanishes unles®; and®; differ by at most two spin

by a nonorthogonal basis, the expressionHgf is signifi-  orbitals, it can be expressed in terms of the two-electron
cantly simpler than the case when the Ml 1 orbitals are  (transition) spin densityDi(jz)(rl 75| 71 Tp1) Of ®F ®; [25]:

() N(N—-1) x/ 1
Dif(7my To| Ty Tor) = — drz- - - dr\ @] (717273, . . . TN Pi( 717273, .. . TN). (3.9

The two-electron spin-density matiX”(pq|p’q’) is obtained by representir®?)( 7, 75| 7. 75/) in terms of a complete set
of Gaussian orbitalg, , ¢,

DIP(ry ol 7y )= 2 PIR(PAIP' Q") dpl(72) bl 72) by (71) o (72). (3.7
p.p a.q

In terms ofPi(jz)(pqlp’q’), the expectation of a two-electron operakors given by

<q)j|F|q)i>: E Pi(jz)(pq|p,q,)<¢p¢q|,f|¢p’¢q’>,

pap’q’
F= 2 ?Mlﬂz' (3.8
H1< i
Hjj can be rewritten as
Hi= 3 PE(palp'a') (Asthy (1) b (72T (s 1) Al Asdhy( 1) (72 i 7 ). 3.9

rt

Here A; permutes electrons 1, 2, aihtt 1, andh, analogous td, is a Hamiltonian operator for three electrons:

M
o 2 1 z N
h=hmo|+—_{— vz - X ]

= - +
N(IN=1) | 2 "™+ & ryer— R [rner—ral
M M
N 2 1 Zy ZZ, 1
h — _ _VZ _ S — =+ . 3.1
m N_l[ e g1|rl_Rk| k;:1N|Rk_RI| r—rsl (319
|
Hi; betweenA®;(y, ... ,m)fi(7n+1), and®; can also be straightforward manner. A pure finite-element basis is used

rewritten in a similar manner. Thus the calculationtef  to represent the radial function. As in tRematrix approach,
reduces to the evaluation of a three-electron Hamiltoniarthe solution of the external region is obtained by further
matrix element, regardless of the valueMfThere are two ~ partitioning into as many sectors as necessary, and theh the
advantages to this approach. Because the target wave funatrices are reassembled into a gloBahatrix.
tion ®;(7y, ...,7y) is used in the generation d@;;, the
phase relationship is kept intact. There is no need to carry IV. NUMERICAL EXAMPLES
out a pseudoN + 1)-electron calculation to circumvent the . o ) o
phase consistency problem, which can be encountered whefy €-H elastic scattering in the static-exchange approximation
the configuration-state-function generator in quantum- The hydrogen-atom wave function is represented by a ba-
chemistry codes is directly used in electron-molecule colli-sjs of seven Gaussians. Due to the spherical symmetry of the
sion calculation$26,13,27. Also, in the future publicly dis-  system, a pure finite-element basis is used to represent the
electron-spin densities in the package. This approach enablggtic-exchange potential requires only three sectors to reach
us to employ the quantum chemistry calculation directlyan asymptotic behavior. Each sector uses 24 elements. In the
wi_thout having to han_dle Cl wave functions with hundreds offjrst sector(inner region, the element boundaries are 0, 0.1,
millions of configurations. 0.2,0.4,06,08,1,1.25,15,1.75,2,25,3,4,5,6,7,8,9,
10, 11, 12, 13, 14, and 15. At the boundary of the first sector,
the most diffuse Gaussian function has a vatu@0 8. At

In the external region, the problem reduces to a onethe two outer sectors they are evenly spaced at 1-a.u. inter-
electron, coupled-channel problem, and can be handled inals. To test the invariance of the result using different

B. External region
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TABLE |. Eigenphase sunradiang of e-H elastic scattering in the static-exchange approximati@n.

FINITE-ELEMENT Z-MATRIX METHQOD: . ..

channel.

Energy(a.u) Log derivative R z1 Z2 Mott and Masséey
0.005 2.39532216 2.395322 16 2.39532216 2.39532216 2.396
0.025 1.869 31562 1.869 31562 1.869 31562 1.869 31562 1.871
0.045 1.507 46251 1.507 46251 1.507 46251 1.507 46251 1.508
0.080 1.239077 38 1.239077 38 1.239077 38 1.239077 38 1.239
0.125 1.031067 02 1.031067 02 1.031 067 02 1.031067 02 1.031
0.180 0.868732440 0.868732440 0.868732440 0.868 732440 0.869
0.245 0.743820304 0.743820304 0.743820304 0.743820304 0.744
0.320 0.650973501 0.650973501 0.650973501 0.650973501 0.651

301

3 rom Ref.[28].

and co-workerd29] whereas thead function is taken from
their cc-pVTZ basis. All calculations were done &
=1.401534 a.u. Using this basis, the ground-state CI energy
=e=0, theR matrix; (3) a=b=1, d=8, ande=7, desig- equals —1.17325368 a.u., and the state Cl energy is
nated as th&Zl matrix; and(4) a=5, b=3, d=7, ande  —0.781956 00. All CI calculations used full CI. The results
=4, designated as tt&2 matrix. Tables | and Il present the @re to be compared with the James-Coolidge-type correlated
eigenphase sum computed for ths and 3S channels, re- calculation of Kolos and WolniewicgKW) [30]. Interpola-
spectively. Also presented are the static-exchange resuifon Of their potential-energy curves gives a ground-state en-

- ; f—1.174474 6 and h-state energy of-0.784 569 at
tabulated in Mott and Mass€8]. For the 1S calculations, ergy o T
the four sets of parameters give identical results to nine sig}ﬂg Rr\éeslgjr?t \(I:V:Icﬂ?:t?c.)nTir]sbingg27%Xgl\t/aSgPslﬂgrisvr\]/?sldlg%%gs
nificant figures. The agreement with Mott and Massey is als%v pAIso the ground-state qﬁadrupole moment inHcai-

good. Calculations ofS scattering using the same four sets culated to be 0.444 991 a.u. versus KW's value of 0.457 448
of parameters agree with each other to seven significant figgy p_1 4. Usiﬁg this bas.is. the self-consistent ﬁéB@ICH
ures except at the Iov_vest electron energy, 0.005 a.u. In th%tnergy for the ground staté i51.133427 72, and the im-
case the agrgement is only to S|x_f|gures. The largest d'sproved virtual orbital(IVO) energy[31] of the b state is
agreement with Mott and Massey is also at the lowest en- g 765656 14. Thus the SCF excitation threshold, 10.0076
ergy. We believe that the difference between our result andy is approximately 0.5 eV lower than the CI threshold. The
that of Mott and Massey is mainly due to the use of a Gaussground-state SCF quadrupole moment is 0.484 818.
ian representation for the H atom in our case instead of a The Z-matrix calculation is separated into 250 sectors,
hydrogenic wave function. with 24 elements in each sector. In the first sedta., the
inner region, the continuum electron is represented by both
elements and Gaussians. The spherical harmonics associated
with the elements are limited to<6 and|m|<2. The dis-
. . ibution of elements in the first sector is identical with the
This example is chosen because all _cgrrently employed 1y cajculation. At the boundary of the first sector, the most
computational methods faemolecule collisions have been jiffuse Gaussian function has a valsel0~ 8. In all remain-
used for its calculation, thus providing a good test case tohg sectors, the elements are evenly placed at 1.0-a.u. inter-
compare theZ matrix result with other approaches. The yals. The convergence of the calculation with respect to the
Gaussian basis used i§ @s3p1d|4s3p1d] basis with thes  number and placement of elements has been tested. It is be-
andp functions taken from the correlation consistent polar-lieved that the calculated cross sections have converged to at
ization valence quadruple-zetec-pVQ2) basis of Dunning least five significant figures.

choices of parameter sets satisfying E217), the calculation
was repeated using four sets of parametétsia=—e=1
andb=d=0, the log-derivative matrix(2) b=d=1 anda

B. Two-channel calculation ofX %5 —b 3% of H,
by electron impact

TABLE Il. Eigenphase sunfradiang of e-H elastic scattering in the static-exchange approximatién,

channel.

Energy(a.u) Log derivative R Z1 Z2 Mott and Masséey
0.005 2.905998 49 2.90599749 2.90599754  2.905997 83 2.908
0.025 2.677 92546 2.67792529 2.67792537 2.67792538 2.679
0.045 2.460509 66 2.46050952 2.46050944  2.46050953 2.461
0.080 2.256 69512 2.25669489 2.25669497  2.256 69500 2.257
0.125 2.069 614 04 2.06961404 2.06961398 2.06961402 2.070
0.180 1.90018142 1.90018124 1.90018124  1.90018129 1.901
0.245 1.748 476 84 1.74847684  1.74847684  1.74847685 1.749
0.320 1.613809 27 1.61380917 1.61380910 1.61380917 1.614

8 rom Ref.[28].
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TABLE lll. Eigenphase sunfradiang of e-H, X 'S —b 33 two-channel calculatior’S; symmetry.

Energy(eV) Log derivative R Z1 Z2
10.75 1.625025 17 1.625025 16 1.625025 16 1.625025 19
12.50 1.32172473 1.321724 69 1.321724 69 1.32172470
15.00 1.009 459 55 1.009 459 45 1.009 459 45 1.009 459 45
17.50 0.787 108 46 0.787 108 23 0.787 108 23 0.787 108 23
20.00 0.677 99401 0.677 993 54 0.677 993 54 0.677 993 54
25.00 0.590 129 84 0.590 128 22 0.590 128 22 0.590128 22
30.00 0.559 404 93 0.559400 41 0.559 400 41 0.559 400 40

Table Il presents thézg channel eigenphase sum at se-Gaussian basis used, we also carried out calculation using
lected energies calculated using ClI target functions. Here wihe ccp-VDZ basis of Dunning and co-workers
find the results calculated using the four different parameterp4s1p|2slp]. We found that the change of Gaussian basis
sets agree with each other to at least five significant figuredas very little effect on the cross sections. This is consistent
This is consistent with the estimated accuracy of the croswith the findings of Schneider and Collifi32] in their linear
section by changing the element basis. The agreement is betlgebraic(LA) calculation of this system. In addition, we
ter at low energies, indicating that the elements chosen dfound the CSF's #rylo’ and loilo,, normally used to
not describe the high-energy part of the calculation as wellrelax the orthogonality constraints, have very little effect on
We also find that the agreement among Remnatrix, Z1  the result. The cross sections with and without those terms
matrix, andZ2 matrix is consistently better than with the differ at most at the third significant figure. This is a reflec-
log-derivative matrix. For example, at 30 eV, the agreemention of the use of a nonorthogonality basis. The need for the
among the former three is to seven figures, whereas theyrthogonality relaxation terms no longer exists in our ap-
agree with the log-derivative result only to five figures. Thisproach.
behavior is not fully understood at present. It is seen from the figures that our results are consistently

Figures 1-4 compare th¥'X —b33 [ partial cross in good agreement with the Schwinger multichan{&\1C)
sections of’S, 2%, 2I1,y, and °Il4, symmetries with ~calculation of Limaet al. [33] and the LA calculation of
other theoretical calculations. Because almost all previou$chneider and Collins, confirming the validity of the
calculations used single configuration target wave functionsZ-matrix calculation. The agreement with tRematrix cal-
the Z-matrix results presented there also were calculated usulation of Ref.[34] is less good, even though tfematrix
ing SCF target functions. To test the dependence on thiormulation is a subset of th&-matrix method. One source

0.8 1.5
—— FEMZMX calc, basis set | —— FEMZMX calc, Basis set [
----- FEMZMX calc, basis set II ---- FEMZMX calc, Basis set II
o Baluja et al. R—matrix calc (Ref. 34) © Balyja et al. R—matrix calc (Ref. 34)
o Lima et al. SMC calc (Ref. 33) 0 Lima et al. SMC cale (Ref. 33)
2 Schneider and Collins, LA cale (Ref. 32) o & Schneider and Collins, LA cale (Ref.32)
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FIG. 1. Electron-impact excitation cross sections for the

X'3,—b33] transition of H. 23 symmetry.

Electron Energy (V)

X3 —b3s transition of H. 23 symmetry.

FIG. 2. Electron-impact excitation cross sections for the
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o Lima et al. SMC calc (Ref. 33) 3r
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FIG. 3. Electron-impact excitation cross sections for the

X129+—>b 33 ! transition of H. 2II,, symmetry. FIG. 5. Total electron-impact excitation cross sections for the

X3 —b "3 transition of H.

for the difference is the closed-channel polarization functionspected the pseudoresonances are basis set dependent. The

included in R-matrix calculations. Thus thB-matrix treat- fact thait no pseudoresonance was reported in [26f.prob- '

rﬁzgten?fatherogﬁﬁ';za\?vgﬁl agr?ﬁéegmlé g;}fgete:ts{lzzrigsth\?vably is due to the particular target basis used. In view of the

Eave carrFi)gd outZ-matrix calculations includin closed- ﬁresence of the pseudoresonances, we choose to present the
o . 9 results without polarization functions. It should also be

channel polarization functions, and found pseudoresonanc%%inted out that, comparing with Fig. 2 in Ré84], which

at the high-energy end of the cross-section curve. AS e, jes their’s, and ®% ] partial cross sections without

polarization, we find the remaining discrepancies with the

0.4 : : . ; :
R-matrix result are still larger than our discrepancies with the

Cross Section (units of aoz)

e
v

0.0

—— FEMZMX calc, Basis set I
----- FEMZMX calc, Basis set II
o Baluja et al. R—-matrix calc (Ref. 34)
o Lima et al. SMC calc (Ref. 33)
a Schneider and Collins, LA calc (Ref. 32)

10 15 20 25 30

Electron Energy (&V)

SMC and LA results.

Figure 5 presents the total excitation cross section for the
X132+ b33 transition calculated aR, (~1.4 a.u.) us-
ing the larger basis and with both Cl and SCF targets. Other
theoretical results are also presented. Besides the SMC, LA,
and R-matrix calculations cited above, Rescigno and
Schneidel35] reported a complex Kohn calculation over a
range of internuclear distances using a two-configuration ClI
function for the ground state and an IVO function for the
excited state. Their result &=1.4 a.u. is included in the
figure. Also, Tennyson and co-workers carried out seven-
stateR-matrix calculations of electronic excitations of, ldt
R=1.4[36,37 and over a range dR values[38,39 using
full ClI target wave functions and a complete set of closed-
channel function. Due to the use of closed-channel functions,
their result is not directly comparable to ours, and thus not
included in the figure.

As in the case of partial cross sections, thematrix,
SMC, and LA results using SCF target functions are in close
agreement. Th&-matrix result using full Cl target functions
stands somewhat apart, being lower than the SCF result in
the low-energy region, and becomes higher at the high-
energy end. Perhaps not surprisingly, the complex Kohn

FIG. 4. Electron-impact excitation cross sections for thecross sections fall into the group using SCF targets. A major
X3 —b 33 transition of H. 2IT4, symmetry.

source for the difference between using Cl and SCF targets
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comes from the shift of the excitation threshold. The incom- V. DISCUSSIONS
plete correlation treatment of the target in the complex Kohn
calculation gives an excitation threshold Rt=1.4 a.u. of
10.11 eV, a value closer to our SCF thresh@l@.0076 eV

The Z-matrix method, implemented using a mixed finite-
element and Gaussian basis, has been found to provide a

than the CI value of 10.6478 eV. Thus it is not surprisingrObUSt computational method fermolecule collisions. The

that their CI result is close to the SCF result. Note that the o e of variational stability in th&-matrix formulation is

R-matrix result using SCF target stands somewhat apart fromdemonstrated by the internal agreement of the eigenphase

; sums calculated using different sets of parameters.
other results. In fact, they are closer to thenatrix result ; . .
. The Z-matrix formulation can readily be extended to a
using full CI rather than SCF targets.

While fixed-nuclei calculations cannot be directly COm_two—dlmensmnal case. This will include nonadiabatic treat-

pared with experiment, it may still be useful to present ex-ment of nuclear motion, such as vibrational excitation or
dissociation of a diatomic molecule by electron impact, the

perimental data as a qualitative guide. For this purpose, Fig. S

5 also presents the experimental cross sections of Hall ar%o?’ze) problem for a molecular target,_and e_Iectron coII!S|on

Andric [40], Nishimura[41], and Khakoo and co-workers of a Rydberg molecule. Such a two-dimensional code is un-

[42.43. Note that a calculation including nuclear motion der development. Because both sectorial calculations and the

suc'h és that of Stibbe and Tenn SM%] would have " use of finite elements are well suited for massively parallel
Y computers, the high demand for computing resources in a

sampled the portion of vibrational wave function wikh ; . ) ) :
. ... two-dimensionalZ-matrix calculation may be alleviated by
>R.. Because thd-state energy rapidly decreases with in- . L
the use of massive parallelization.

creasingR nearR., the experimental threshold will be lower
than the threshold value determinedRyt. Since the SCF
threshold is lower than the CI threshold, this fortuitously
causes the fixed-nuclei cross sections determined using SCF

target functions to agree better with experiment near thresh- W.M.H. would like to thank Professor Janine Shertzer for
old than the CI result. In spite of these qualifications, allher helpful advice in the use of finite elements. She is also
calculated cross sections fall within the experimental uncergrateful to Professor Jonathan Tennyson and Dr. Barry
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