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Rotational relaxation matrix for fast non-Markovian collisions

Alexandre P. Kouzov*
Institute of Physics, Saint Petersburg University, Peterhof, Saint Petersburg 198904, Russia

~Received 15 March 1999!

By using the Zwanzig-Mori theory, the rotational relaxationG matrix of the sudden approximation is
corrected for rotational adiabaticity, off-energy shell scattering, and initial bath-molecule correlations. Expres-
sions derived for the case of a linear rotator perturbed by fast binary collisions are shown to satisfy all known
fundamental relations; in addition, theG matrix is symmetric and positive definite in line space. The general
case of non-Markovian relaxation of an arbitrary molecularr th rank tensor is treated, which substantially
expands the scopes of the impact scalar (r 50) relaxation. A model ofG is developed compatible with the
known data on theN22N2 potential and is shown to fit well a variety of different relaxation characteristics
(r 50,1,2) measured in compressed room-temperature nitrogen.@S1050-2947~99!09509-8#

PACS number~s!: 34.10.1x, 33.70.Jg
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I. INTRODUCTION

Apart from the academic interest, collisional mixing
rotovibrational lines is required for a number of spect
scopic applications, including gas diagnostics and the ph
ics of planetary atmospheres. The main achievements in

field are due to the concept of the relaxation matrixĜ that
accounts for collisional correlation between different rad
tive transitions. Concurrent with theoretical advances, m

models ofĜ have been developed~see book@1# and reviews
@2,3#! exploiting the scattering approach. Among them,
infinite-order sudden approximation~IOSA! and its exten-
sions hold much promise as a basis for modeling. To tr
the inelastic rotationalJ→J8 transitions, the IOSA assume
that both the collision durationt0 and the associated Masse
parameterh[t0vJJ8 are negligible. This oversimplification
results in broadening coefficients of the isotropic Ram
Q1(J) lines of linear molecules@4# calculated using the
IOSA not decreasing withJ ~except for the very lowest tran
sitions! and diverging increasingly from the experimen
data; allowance for finiteh is thus required. It was with suc
an intent that De Pristoet al. @5# developed the energy
corrected sudden approximation~ECSA!, which generated
much interest among spectroscopists@1–3#. However, their
proposed correction@5# is semiempirical, and its form wa
postulated rather than rigourously derived. For this reas
ECSA interaction lengths deduced from experiment by us
different models are scattered@6# and are difficult to corre-
late with intermolecular potential parameters. Moreover,
optical transitions induced by nonscalar (rÞ0) photon-
molecule coupling, the sudden approximations are feas
only for the off-diagonal elements of the rotational relaxati
matrix Ĝ @7#, and their accuracy for diagonal elements
questionable.

Binary collisions are treated by scattering theory as i
lated impacts, which leaves out details of intracollision
evolution. It has been realized that broadband spectrosco
are promising tools for probing this evolution, especia
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when the frequencyv is sufficiently detuned from the ban
center ~see the recent publications@8,9#, and references
therein!. This requires the use of off-energy-shell scatteri
amplitudes to account for incomplete~non-Markovian! col-
lisions @10#, whereas the general impact approach to ro
tional relaxation@11# operates with a conventionalS matrix.
Moreover, the fundamental sum rules@12# for the relaxation
matrix elements hold generally only in the more realis
non-Markovian picture in which frequency-dependent rela
ation matricesĜ(r ;v) appear. Such matrices have thus f
been elaborated only for weak interactions by using the p
turbation theory~see@13# and references therein!. The task is
further complicated by the problem of initial molecule-ba
correlations @9,10#, whose neglect in the scattering a
proaches can give rise to violations of the detailed-bala
properties of the computed spectra. For this reason also
theoretical description should be revised.

Based on the Zwanzig-Mori formalism@14#, the present
treatment simultaneously incorporates rotational adiabati
~finite h!, non-Markovian effects, and initial correlations in
the IOSA scheme. All known fundamental relations are s
isfied for theĜ(r ;v) matrix so obtained; further, the calcu
lation of its secular part also poses no problem. Some p
liminary results have been reported recently by the aut
@15#. Although only the case of a nonvibrating rotator
considered here, extensions to more complicated cases
to be straightforward.

II. RELAXATION MATRIX

A. Liouville space metric

The line-space~or projection! formalism exploited in the
present derivation~for details, see book@14#! is based on the
notion of the Liouville spaceL spanned by the quantum
mechanical operators of the total ‘‘molecule (a)
1 bath (B)’’ system. Caution is required at the first ste
as the metric inL cannot be defined uniquely in the quantu
case. As is shown below, the conventional definition of
scalar product (AuC) of two Liouville vectors A and C,
namely,

~AuC![Tr rA†C, ~1!
2931 ©1999 The American Physical Society
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~r is the total density matrix! leads to spurious effects. Con
sider the spectral functionS(v) of a rigid rotator perturbed
by binary collisions, namely,

S~v!5p21 lim
«→0

E
0

`

„A~0!uA~ t !…exp~2 izt!dt, ~2!

where the ‘‘complex’’ frequencyz5v2 i« lies in the lower
half-plane («>0). The total system has a continuous ene
spectrum and, because of molecule-bath coupling, time
relation functions @such as „A(0)uA(t)…# vanish at long
times. Their absolute values are assumed to be integr
over infinite time intervals, thus ensuring the analytic
of S(z) in the lower half plane. The total Liouville
superoperatorL̂ governs the time evolution ofA: A(t)
5exp(iHt/\)A(0)exp(2iHt/\)[exp(iL̂t)A(0). For the case
thatA is the molecular dipole moment, the real partS8(v) of
the spectral function@Eq. ~2!# defines the far-infrared absorp
tion profile. As collisions become more frequent, the form
tion of a new, progressively narrowed quasi-Lorentzian ba
centered atÃ5(AuL̂uA) is predicted by the line-space fo
malism @1,14#. In the eigenbasis ofH, one has

Ã5(
f i

~r i i 2r f f !v f i uAi f u2/2.0. ~3!

In other words, a new long-lasting quantum mode appear
positive Ã; of course, this is impossible from a physic
standpoint. One can rigorously show thatS8(2v)
5S8(v)exp(2\v/kT). This fundamental detailed-balanc
relation may be lost when one uses the projection techniq
for example, the artifact peak formation atÃÞ0, which
arises from the use of metric~1!, is inconsistent with detailed
balance, and the metric must therefore be modified. For
reason, the symmetrized metric@13#

~AuC!5Tr r@A†C1CA†#/2, ~4!

was adopted previously. In this case, the even real spe
function F8(v)5@S8(v)1S8(2v)#/2 is generated by Eqs
~2! and ~4!. For a particular case, its relation to the obse
able response poses no problem, so that the detailed-ba
relation can be incorporated exactly into the response pro
from the very beginning. In the symmetrized approach,
motionally narrowed band becomes correctly centered aÃ
5( f i(r i i 1r f f)v f i uAi f u2/250. Moreover, the parity of
F8(v) is not violated by the neglect of initial correlation
One may expect that, in contrast to the Fano or scatter
theory treatments, possible inaccuracies caused by this
glect will be partially suppressed. As has been noted@9#,
such neglect in the conventional treatment leads to the
fact of negative band-wing intensity@16#.

Naturally, a change of metric also affects the form of t
relaxation matrix.

B. Fano-Mori superoperator

The dynamic subspaceLD in L is spanned by the vector
uk̃)5uKI B), whereI B is the identity operator acting on th
bath wave functions. The transition operatorK transforms
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the rotator eigenstates; generally, it is an irreducible tenso
rank r whose explicit form@17#

Ks
(r )5 (

mimf

~21!Jf2mfS Jf r Ji

mf 2s 2mi
D

3uJfmf&^Jimi u[u f &^ i u, ~5!

follows from the representation of the molecular opera
A(r ),

As
(r )5(

k
Ak8K[(

f i
u f &^ f iA(r )i i &^ i u, ~6!

and the Wigner-Eckart theorem@18#. The coefficientsAk8
5^ f iA(r )i i & are the reduced rotational matrix elements@18#

of A(r ). Due to the isotropy of space, (A(r )uB(r 8));d rr 8 , and
from Eq. ~4! on, the usual scalar contraction operati
(A(r ),C(r ))[(sA2s

(r ) Cs
(r )(21)s shall be implied. For brev-

ity, we shall occasionally drop tensor ranks. The normnk of
uk̃) (nk5ni f 5A( r̃aii1 r̃a f f)/2) is given by the diagonal ma
trix elements of the reduced rotational density matrixr̃a
[TrB r. Averaging over the bath states (TrB) then converts
r into a scalar operator diagonal in the spherical-harmon
basis; because of this theuk̃) set is orthogonal@13#. In prin-
ciple, r̃aJJ may deviate from the rotational Boltzmann fa
tors raJJ of a free rotator; the difference will, however, b
neglected since it produces smaller terms nonlinear in
buffer-gas number density.

The projection technique reduces the spectrum calcula
to matrix inversion, that is,

F~v!5p21 lim
«→0

^^AuR21uA&&5 lim
«→0

( Ak* Ak8~R21!kk8 ,

~7!

in the line spaceLS spanned by the transition operatorsK
@Eq. ~5!#; the weightsAk and the relaxation matrix elemen
Gkk8 are defined in terms of the scalar product of Eq.~4!:
Ak[( k̃uA)5nkAk8 . Further, note that the matrixRkk8(z)
5 i (z2vk)dkk81Gkk8(z) contains the molecular self
frequenciesvk5v f i .

The explicit form of the rotationalG-matrix element has
been shown@13# to be

G i f
i 8 f 8~z!5~1/2ni f ni 8 f 8!E

0

`

exp~2 izt!Tr r@~ u f &^ i u!†M̂ ~ t !

3u f 8&^ i 8u1„M̂ ~ t !u f 8&^ i 8u…~ u f &^ i u!†#dt, ~8!

wherez5v2 i« («.0), and the superoperator

M̂ ~ t !5L̂1
† exp~ i L̂ t !L̂1 ~9!

transforms the vectors inL. Here L̂1 is the anisotropic
molecule-bath coupling:L̂15(W2W3)/\, whereW acts on
the ket vectors, whileW3 is the complex adjoint ofW, and
acts on the bra vectors.

The terms constituting matrix element~8! can be classi-
fied as ‘‘outer’’ ~i.e., containing WW or W3W3! and
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‘‘middle’’ ~containingWW3 or W3W!. The technique will
be demonstrated for the integrand of the outerWW term,
which can be written as

2\2ni f ni 8 f 8Gout
WW~ t !

5Tr r$u i &^W fuexp~ i L̂ t !Wu f 8&^ i 8u

1@exp~ i L̂ t !Wu f 8&^ i 8u#u i &^W fu%

5 (
absn

^nsuru ia&^ f auWexp~ iHt !Wu f 8b&

3^ i 8buexp~2 iHt /\!uns&1^ f suWruna&

3^nauexp~ iHt !Wu f 8b&^ i 8buexp~2 iHt /\!u is&,

~10!

where the Greek letters label bath states.
The IOSA assumes the bath motion to be much faster t

rotation. Conventionally, it neglects the rotational energyHa
in the total HamiltonianH5Ha1HB1W when it enters the
evolution operators, and does the same for the anisotr
part of the interaction potentialW in the density matrix~ne-
glect of initial correlations! resulting inr5rarB . Both ap-
proximations are unnecessary in the present approach, re
ing in the energy-and-frequency-corrected sudd
approximation~EFCSA!.

Intrinsically, the EFCSA is similar to the adiabatic a
proximation@19# used in quantum chemistry. Instead of ele
trons, the translational motion plays the role of a rapid s
system, while rotation is analogous to nuclear molecu
motion. Since traces are invariant to the choice of basis,
may choose the bath basis to be an eigenbasis ofHB85HB

1W at fixed orientationVa5(ua ,fa) of the molecular axis
in the laboratory frame. Due to the isotropy of space,
translational energy eigenvalues«a are independent ofVa
and the basic EFCSA equation reads

^na~Va!uHumb~Va!&'dnmdab~En1«a!, ~11!

where En is the rotational energy of then state. The ne-
glected off-diagonal terms are of orderuvmn /vbau @19#; sta-
tistically, this ratio is converted into the Massey parameteh.
The use of such anVa-adjusted bath basis greatly simplifie
the calculation. One finds directly that

2\2ni f ni 8 f 8Gout
WW~ t !5d i i 8^ f uXu f 8&, ~12!

where

X5raii TrB U~ t ! (
J8m8

exp@ i ~EJ82Ei !t/\#

3uJ8m8&^J8m8uV~ t !1TrB V~2t ! (
J8m8

raJ8J8

3exp@ i ~EJ82Ei !t/\#uJ8m8&^J8m8uU~2t !. ~13!

Two operators acting in the total space, namely,V(t)
5W exp(2iHB8t/\)rB8 and U(t)5W exp(iHB8t/\), appear in
the last equation, withrB85exp(2bHB8)/ZB8 and b51/kT.
Neither operator contains differential operators in the ro
tional subspace; they can be written as the scalar contrac
n
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V~ t !5(
L

@v ~L !~ t !,C~L !~Va!#, ~14!

U~ t !5(
L8

@u(L8)~ t !,C(L8)~Va!#, ~15!

where C(L)(Va) is a spherical harmonic normalized t
A4p/(2L11); v (L)(t) and u(L8)(t) are tensor operators in
the bath space. However, only the scalar contractions ofv (L)

andu(L) of the same rankL survive averaging over the bat
variables. In fact,X is a scalar operator with respect to m
lecular rotations, and one arrives at the formula

Gout
WW~ t !5d i i 8d f f 8^ f uX~ t !u f &, ~16!

in which

^ f uX~ t !u f &5(
LJ8

PJ8
2 S Jf L J8

0 0 0 D 2

exp~ ivJ8Ji
t !@raiiFL~ t !

1raJ8J8FL~2t !#, ~17!

with Pab . . . c5A(2a11)(2b11), . . . ,(2c11). The func-
tions FL(t), given by

FL~ t !5~2L11!21 TrB„u
(L)~ t !,v (L)~ t !…, ~18!

characterize the bath motion at fixed molecular orientati
Similarly, the outer term proportional toW3W3 can also be
shown to be entirely diagonal. The total outer contributio

2\2ni f ni 8 f 8G i f
i 8 f 8~r ;v!outer

5d i i 8d f f 8E
0

`

exp~2 ivt !(
LJ8

S J8 L Jf

0 0 0D 2

exp~ ivJ8Ji
t !

3@raiiFL~ t !1raJ8J8FL~2t !#1S J8 L Ji

0 0 0D 2

3exp~ ivJ8Jf
t !@ra f fFL~2t !1raJ8J8FL~ t !#dt ~19!

is the same for any relaxation rank, and is expressible
terms of the one-sided Fourier transformsFL

6(x) defined via

FL
6~x!5\22E

0

`

exp~2 ixt !FL~6t !dt. ~20!

The middle terms generate the following matrix eleme

G i f
i 8 f 8~r ;v!middle52~1/2\2ni f ni 8 f 8!E

0

`

exp~2 ivt !Tr r

3$„Ki f
(r )W exp~ iHt !,K f 8 i 8

(r ) W exp~2 iHt !…

1„exp~2 iHt !WKi f
(r ) ,exp~ iHt !WKf 8 i 8

(r )
…

1„exp~ iHt !WKf 8 i 8
(r ) ,exp(2 iHt !WKi f

(r ))…%

1„exp~ iHt !K f 8 i 8
(r ) W exp~2 iHt !,Ki f

(r )W….

~21!
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For clarity, the subscripts of theK (r ) operator explicitly in-
dicate the rotational transition. The use of the EFCSA a
the spherical-harmonic expansion of the operatorsV andU
simplifies the last formula. After performing the intermedia
summation

(
smimfmi8mf8

~21!s1mi1mf1mi 81mf 81r 1LS Jf r Ji

mf 2s 2mi
D

3S Jf8 r Ji8

2mf8 s mi8
D 3S Ji8 L Ji

2mi8 M mi
D

3S Jf L8 Jf8

2mf 2M 8 mf8
D

5~21!MdLL8dMM8H Ji Jf r

Jf8 Ji8 LJ /~2L11!, ~22!

one obtains

G i f
i 8 f 8~r ;v!middle52~2ni f ni 8 f 8!

21PJiJfJi8J
f8
~21!r

3(
L

S Ji8 L Ji

0 0 0
D S Jf L Jf8

0 0 0
D

3H Ji Jf r

Jf8 Ji8 LJ @raiiFL~v2v f 8 i !

1rai8 i 8FL~v2v f i 8!1ra f fFL* ~v f i 82v!

1ra f8 f 8FL* ~v f 8 i2v!#dt. ~23!

Note that this term also contributes to the secular ma
elements. It has been derived using the propertyFL* (t)
5FL(2t) ~see the Appendix!, which implies the integrabil-
ity of uFL(t)u; in so doing, the frequency may finally b

taken to be real. The real part ofG i f
i 8 f 8(r ;v)middle can be

given in terms of the double-sided Fourier transforms

FL8~x!5ReFL~x!5~1/2\2!E
2`

`

exp~2 ixt !FL~ t !dt.

~24!

Like S8(v), these quantities obey the relationFL8(2x)
5exp(2\bx)FL8(x) ~see the Appendix!, and by using it, one
arrives at the following result:

ReG i f
i 8 f 8~r ;v!middle52~2ni f ni 8 f 8!

21PJiJfJi8J
f8
~21!r

3(
L

S Ji8 L Ji

0 0 0
D S Jf L Jf8

0 0 0
D

3H Ji Jf r

Jf8 Ji8 LJ @11exp~2\bv!#

3@ra f fFL8~v f i 82v!

3exp~\bv!1raiiFL8~v2v f 8 i !#.

~25!
d

x

Remarkably, Eqs.~23! and ~25! have exactly the same
form as those obtained by the perturbation approach@13#,
differing only in the definition of the bath functionsFL(x).
Perturbation theory may be used for large rotational ene
gaps, i.e., for high values ofJ, whereas the EFCSA is appli
cable for low or moderateJ values. Therefore, one may hop
that some hybrid model can be developed to cover the en
J domain. We note also that no assumption has been m
on the perturber structure, so that the derived results m
equally be applied to molecule-atom and molecule-molec
collisions. Physically, the IOSA holds whenuvJJ8u is much
smaller than the half widtht0

21 of FL(v) ~i.e., h!1!, and
then one may setFL(vJJ8)'FL(0). If, additionally, one
assumes collisions to be Markovian~i.e., v'0!, the IOSA
cross sections can be expressed in terms of the quan
~generally complex! q̃L52FL(0). Their real parts qL

52FL8(0) define the so-called basic (0→L) transition rates.

C. Fundamental properties of the EFCSA matrix

1. Sum rules

Sum rules can be obtained@12# for any tensorA that is
diagonal in coordinate representation:

2 (
k8Þk

Ak8Gkk8~v!52 (
k8Þk

Ak8Gk8k~v!5AkGkk~v!.

~26!

In the EFCSA case, they can be verified straightforwardly
carrying out the summations over the rotational quant
numbers~see Ref.@13# for details!.

2. Matrix symmetry

It follows from Eq. ~23! that the EFCSA matrix is sym
metric, i.e.,

G i f
i 8 f 8~r ;v!5G i 8 f 8

i f
~r ;v!. ~27!

As shown below, this symmetry ensures that the n
negative character ofG8(r ,v)5ReG(r,v), i.e.,

^BuG8uB&5(
k8k

Bk8Gk8k
8 Bk>0, ~28!

holds for any line-space vectorB(r ) expandable in the line-
space basis ofA(r ). Hence, both tensors have coincident r
laxation matrices and, by using the sum rules forA(r ), one
obtains

^BuG8uB&521/2(
k8Þk

Ak8AkGk8k
8 ~Bk /Ak2Bk8 /Ak8!

2.

~29!

Explicitly, Ak andAk8 are given by

Ak5nk~21!JiS Ji r J f

0 0 0DPJiJf
, ~30a!

Ak85nk8~21!Ji8S Ji8 r J f8

0 0 0
DPJ

i8J
f8
. ~30b!
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The coefficient2Ak8AkGk8k
8 (kÞk8) is positive as can be

seen from Eqs.~25! and ~30!, so that inequality~28! holds.

3. Time-reversal relation

The EFCSAG matrix obeys the time-reversal equatio
~the Ben-Reuven relation@17#!

G f i
f 8 i 8~r ;v!5G i f

i 8 f 8* ~r ;2v!. ~31!

For narrowQ branches, one can use the Markov limit (v
→0), in which case the corresponding block, as seen fr
Eq. ~31!, consists of real matrix elements.

4. Dispersion relations

According to Eq.~8!, any element of the exact relaxatio
matrix G(z) is an analytic function in the lower half plane
hence, its real and imaginary parts are interrelated via
Kramers-Kronig formulas. Thus, for example, the imagina
partG9(v) ~for brevity, we drop the matrix indices! is given
via the principal value of the integral

G9~v!52P
1

p E
2`

`

G8~v8!~v82v!21dv8. ~32!

For practical implementation, it therefore suffices to mo
only G8(v)5 lim«→0 ReG(z), and then to evaluateG9(v).
Effectively, the EFCSA decouples the bath motion from t
rotational motion. This leads to dispersion relations for
bath spectral functions. Apparently, eachLth termFL(z) of
the EFCSAG(z) of Eq. ~23! is also analytic in the lower hal
plane. Because of the detailed balance and dispersion
tions, the modeling ofFL(v) is accomplished once one fixe
its symmetrized real partF̃L8(v)5@FL8(v)1FL8(2v)#/2.

D. Particular cases

1. Raman bands

For isotropic Raman bands (r 50,i 5 f 5J,i 85 f 85J8),
the Markov theory may be used, and one obtains the
symmetric matrix (JÞJ8),

GJJ
J8J8~0,0!5GJ8J8

JJ
~0,0!

522A rJ

rJ8
PJJ8(

L
S Ji8 L Ji

0 0 0
D 2

FL8~vJJ8!.

~33!

The conventional~unsymmetrized! relaxation matrix ele-
ments are

G̃JJ8[2WJJ85GJJ
J8J8~0,0!ArJ8~2J811!

rJ~2J11!
, ~34!

whereWJJ8 represents theJ→J8 transition rate, which obeys
the detailed-balance relation

rJ~2J11!WJJ85rJ8~2J811!WJ8J . ~35!

The functionsFL8 can be related with the basic upward (
→L) transition ratesqL given by
m

e
y

l

e
e

la-

al

qL52FL8~v0L!. ~36!

When one uses these rates as the input parameters~known,
say, from experiment!, the ECSA matrix becomes

GJJ
J8J8~0,0!52A rJ

rJ8
PJJ8

3(
L

S J8 L J

0 0 0D
2

FL8~vJJ8!qL /FL8~v0L!.

~37!

The same procedure applied to Eq.~23! results in the
element

ReG i f
i 8 f 8~r ;v!52~21!r@11exp~2\bv!#/2ni f ni 8 f 8

3(
L

S Ji8 L Ji

0 0 0
D S Jf L Jf8

0 0 0
D

3H Ji Jf r

Jf8 Ji8 LJ PJi Jf J
i8J

f8
qL

3@r fFL8~v f i 82v!exp~\bv!

1r iFL8~v2v f 8 i !#/FL8~v0L!, ~38!

originating from the middle terms. Apart from frequency a
guments, the form of Eqs.~23! and ~38! is the same as tha
given by the IOSA@20,21#. To enforce the unitarity of the
scattering matrix, the diagonal IOSA terms in the scalar c
(r 50) are obtained from summation of the inelastic tran
tion rates. However, such terms do not directly appear in
IOSA @20#, and the secular part of its generalG matrix is not
properly obtained. The same applies to the energy-corre
IOSA matrix @5#.

2. Relaxation of irreducible angular-momentum tensors

The tensors of interest are the rotational angular mom
tum J itself (r 51) and$J^ J%(2) (r 52); the latter appears
in the depolarized RamanQ0-branch shapes. For both case
the radiation selection rules are the same as that for the
tropic Raman case (i 5 f 5J, i 85 f 85J8), and hence Mar-
kov theory may be used. The corresponding IOSA matrix
given by Eq.~38! with v j j 85v50. Examination of the di-
agonal elements ofG(r ;0) shows them to contain bot
r -dependent elastic~with the zero-frequency arguments! and
inelastic terms, which are independent ofr @see Eq.~19!#.
This allows a comparison of the present expressions with
known IOSA expressions@20,21#, even though in the IOSA
approach all terms are proportional toFL8(0). The off-
diagonal elements in both approaches are of the same s
ture, but the relative nonadiabatic contributions to the sec
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part disagree drastically. Due to shortcomings of the conv
tional IOSA G matrix, it annulsJ @7,20#, with the conse-
quence thatJ is macroscopically conserved in this approx
mation. Such an unphysical result does not appear in
present formulation. Numerical examples are presente
the following section.

III. MODELING OF SPECTRAL CHARACTERISTICS

The translational spectral functionsF̃L8(v) are the basic
EFCSA characterisitics; to calculate them, some realistic
proximations can be exploited. In the first place, class
dynamics applies in most cases. Moreover, the general
havior of F̃L8(v) is known from collision-induced spectra

and one can reconstructF̃L8(v) by calculating its leading
momentsML

(2n) (n50,1,2 . . . ). This is a much simpler task
than solving exactly the quantum or classical equations.
sides, the shape is determined by the relative mom
mL

(2n) , which are not particularly sensitive to the approxim
tions employed@8#. To obtainmL

(2n) the anisotropy ofHB8
may be neglected, and the perturbation theory results@13#
then appear. Using the Legendre expansion in the case
point perturber

W5(
L

WL~R!@C(L)~V!,C(L)~Va!#

5(
L

WL~R!PL~cosua8!, ~39!

with the supposedly short-ranged coefficientsWL(R) de-
scribed by a unique core parameterR0 @i.e., WL is assumed
to have the formWL;exp(R/R0)#, one obtains@22# mL

(2);1
1(R0 /s)2L(L11)[k2(x,L), where s characterizes the
position of the repulsion-wall andx5(R0 /s)2. Typically,
the ratiox is of the order 0.01. The above approximations
incorporated in the formula

F̃L8~v!'C~\bv!FL8~0!w~v/k!, ~40!

where the factorC ensures the detailed-balance relation. T
known models $C(x)5exp(x/2); C(x)52/@11exp(2x)#%
were found to have almost the same accuracy for our p
poses.

The even shape functionsw are quasi-Lorentzian near th
maxima, and decrease exponentially in the wings. Such
havior is typical for collision-induced translational spect
and is well approximated by@23#

w~x!5exp@g2Ag21~v/v0!2#. ~41!

To complete the EFCSA we specify that

qL5A exp~2abEL! ~42!

that reasonably fits witha'2, the basic room temperatur
rates measured in nitrogen@24# ~see Fig. 1!. Although pure
n-

e
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p-
l
e-

e-
ts

-

f a

e

e

r-

e-
,

nitrogen does not completely satisfy all the assumptions
quired for the IOSA/EFCSA, it has been chosen as a re
ence system since a variety of accurate spectroscopic
kinetic data are available for it.

The proposed generalG(r ,v) matrix is thus five-
parametric~depending uponA,a,g,x,v0!. The value ofg
has been fixed (g51.5) as recommended by the theory
collision-induced spectral line shapes@23#: variations around
g51.5 have little effect on the calculated characteristi
Translational-shape calculations@23# give v05a/R0Amb,
wherem is the collisional reduced mass, whilea'1.5 is a
dimensionless coefficient; in this way,x and v0 are corre-
lated. From the sophisticatedN22N2 potential@25# one can
infer that R0'0.3-0.4 Å. Usings53.73 Å @25#, one may
exploit x'0.01 andv0'100 cm21 as reasonable estimate
The set (a52,g51.5,x50.01,v05100 cm21) provides a
reasonable fit of the measured isotropicQ1(J) line-
broadening coefficients~see Fig. 2!. The value A
513.1 mK/amagat was found by equating the calculated
measured@26# broadening coefficients atJ58; the specified
parameter set leads to reasonable absolute values of the
sured basic rates~see Fig. 1!. The EFCSA predictions are
also consistent with other available transition rates@24# from
excitedJ states, as exemplified by theJ56 case~see Fig. 3!.

FIG. 1. Collisional 0→J transition rates in nitrogen (T
5298 K): 1—this paper, 2—exponential energy-gap model@28#,
and 3—measurements@24#.

FIG. 2. Isotropic (r 50) and anisotropic (r 52) Q(J) line-
broadening coefficients of nitrogen (T5293 K): 1—EFCSA, r
50; 2—IOSA, r 50 ~this paper!; 3—EFCSA (r 52); 4—EFCSA
adiabatic term (r 52); 5—experiment (r 50) @26#.
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On the contrary, the IOSA~with the same parameters
except for v0→`! is incompatible with the experimenta
widths for J>6 ~see Fig. 2!; similar patterns have been ob
tained forr 50 by direct IOSA calculations@4,27#. One sees
from Fig. 3 that the IOSA gives a weaker rate decrease
uJ2J8u than the EFCSA does.

The matrix GJJ
J8J8(0;0) defines the rotational-energy re

laxation cross sectionsE via

nLv̄sE5^DE2&Y (
JJ8

AJAJ8DEJDEJ8„G
21~0;0!…JJ

J8J8 ,

~43!

wherenL is the Loschmidt number,v̄5A8kT/pm, DE is
the rotational energy fluctuation, and^DE2& stands for its
mean-square value. Due to the energy weighting factorssE
is rather sensitive to the distribution of off-diagonalG-matrix
elements at higherJ values. For example, the energy-g
model @28#, which accurately reproduces the isotropic lin
width distribution, givessE515.8 Å2, which strongly dis-
agrees with the experimental values@9(3) Å2# collected in
Ref. @29#. An even greater disagreement was found prese
with the IOSA limit: sE(IOSA)520.3 Å2. On the contrary,
the EFCSA result~sE59.7 Å2 at T5298 K! is in good ac-
cord with the experiment. Remarkably, an orthogonal tra
formation in the line space to the Laguerre polynomi
Ln(«J) of the discrete variable«J5bEJ @13# practically di-
agonalizes the IOSA matrix. The Laguerre eigenbasis
pears in the classical Keilson-Storer model@1#, the relevant
eigenvalues being given bygn5g(12l2n). This depen-
dence is well reproduced in the IOSA limit with the coll
sional ‘‘softness’’ parameterl'0.80.

One of the main advantages of the EFCSA approach o
the conventional IOSA/ECSA approaches is its ability
produce all characteristics obtained by spectroscopies c
acterized by nonscalar photon-molecule coupling. The
sults for the anisotropic~with r 52! RamanQ0(J) andS0(J)
line half widths are depicted in Figs. 2 and 4. The adiaba
contributions proportional toFL8(0) amount to 20% for the
first anisotropicQ0(J) lines, and are also shown there; due
this contribution, the anisotropicQ0(J) lines are always
broader than the isotropic ones that are affected by inela

FIG. 3. Collisional 6→J transition rates in nitrogen (T
5298 K): 1—EFCSA, 2—IOSA ~this work!, 3—exponential
energy-gap model@28#, and 4—measurements@24#.
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collisions only. The EFCSA predicts a similar situation f
theS0(J) lines, whose widths are equal to the half sum of t
isotropic Q(J) and Q(J12) line widths plus the adiabatic
contribution~see Fig. 4!. However, the latter is pronouncedl
weaker in comparison with the anisotropicQ0 lines~cf. Figs.
2 and 4!. The calculatedS0(J) half widths are somewha
higher ~5–15 %! than the spontaneous Raman data@30,31#,
but are close to those obtained by Raman gain spectros
@32# ~see Fig. 4!.

The half width measurements of the isotropicQ1(J) lines
are possible due to the vibration-rotation coupling that sp
the branch. In the anisotropicQ0 branch (r 52), the splitting
is absent, and only integral broadening effects can be
served. Theory@13# gives an expression for the Fourier tran
form CQ(t) of the anisotropicQ0-branch profile,

CQ~ t !5exp~2GQt !@11aQ~GQt !2#, ~44!

which fits the observed time dependence well@33# when
aQ50.057(5). The corresponding experimental (T
5293 K) cross-sectionsQ is 34.4(6) Å2 @34#. Both charac-
teristics can be calculated with the knownG matrix: sQ
531.1 Å2; aQ50.077. Our IOSA results do not considerab
deviate from these values:GQ(IOSA)528.4 Å2, aQ(IOSA)
50.088. The reason is that the adiabatic effects, pronoun
in the r 52 case, are insensitive to the increase inv0 ; be-
sides, the energy weighting that influences theGE value is
absent forGQ . The region adjacent to the main diagonal, i.
characterized by moderateuJ2J8u values, contributes the
most toGQ ; the matrix elements in this region are not mu
affected by variations ofv0 .

The accuracy of EFCSA is further supported by t
calculation of the time correlation functionCJ(t) of the
angular momentum. The cross section (sJ515.8 Å2) so
obtained is close to that derived from NMR spectra~14.5 Å2

@35#!. As has been said above, the present IOSA formula
leads to a nonzero value forsJ ; its value (14.8 Å2) almost
coincides with the measured one. Strikingly, the associa
Laguerre polynomialsLn

(1)(«J) (n50,1,2 . . . ) @13# practi-
cally diagonalize the IOSAG(1,0) matrix, the eigenvalue

FIG. 4. EFCSA broadening coefficients ofQ1(J)(r 50) and
S0(J)(r 52) nitrogen lines (T5293 K). Adiabatic parts ofS0(J)
broadening coefficients and experimental data@32# are also shown.
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closely followinggn
(J)}12lJ

2n11 with lJ'0.73. The energy
and angular-momentum ‘‘softness’’ parameters so obtai
reasonably match one another showing that theN22N2 im-
pacts more likely fall into the soft-collision (l51) regime
than they do the strong-collision (l50) regime.

Generally, a realistic behavior of the EFCSA matrix in t
most physically important domains of frequency and ro
tional quantum numbers is supported by the results of
study. The simulated rates were found to be sensitive
variations ofx andv0 ; for example, an increase in the valu
of x to 0.015 results insQ531.4 Å2, sJ514.8 Å2, and a
50.067, all of which are in better agreement with the expe
ment. Final conclusions on the usefulness of the propo
model may be drawn following a complete multiproper
optimization; further, direct calculation, or more accura
modeling, of theFL(t), is desirable. This topic will be the
subject of future studies.

IV. SUMMARY

We briefly summarize the results obtained. Assuming
collisions to be rapid, corrections for both the electroma
netic field frequency and molecular rotation are rigorou
introduced into the Zwanzig-Mori matrixG(r ,v) describing
relaxation of an arbitraryr th rank tensor. The allowance i
thus made for incomplete binary collisions~off-energy shell
scattering! @10# as well as for a finite rotational Massey p
rameter. The fundamental properties of the derived ECF
matrix have been demonstrated:~a! the symmetry relative to
interchange of the line-space indices,~b! the positive defi-
niteness,~c! the sum-rules relation,~d! the time-reversal
symmetry, and~e! the dispersion relations. The matrix el
ments are expressed via the Fourier transforms of the
time correlation functionsFL(t) obtained at fixed molecula
orientation. A bath-spectrum model consistent with t
known N22N2 potential gives encouraging results for
number of the rotational-relaxation characteristics measu
in room-temperature nitrogen. In order to avoid direct d
namic calculations, a few leading moments can first be
culated and then employed to reconstruct the bath-spe
functions. The treatment can be extended to solve rela
problems ~such as rotational relaxation of symmetric a
spherical tops, spectroscopy of bending states of linear m
ecules, and collisional coherence of radiative transitions
different molecules!.
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APPENDIX

Using the explicit forms of the operatorsu(L) and v (L)

@Eqs.~14! and ~15!#, one obtains from Eq.~18!:
d

-
is
to

i-
ed
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y

A
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e
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l-
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l-
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FL~ t !5~4p!21(
M

TrB^00uW exp~ iH B8 t/\!uLM &

3^LM uW exp~2 iH B8 t/\!rB8 u00&

5~4p!21 (
Mab

^00auW exp~ iH B8 t/\!ubLM &

3^LMbuW exp~2 iH B8 t/\!rB8 ua00&, ~A1!

which, upon going to the eigenbasis ofHB8 (Va), becomes

FL~ t !5~4p!21 (
Mab

rB8 ~«a!exp@ i ~«b2«a!t/\#

3^00uWabuLM &^LM uWbau00&. ~A2!

The unitary transformation to the real tesseral harmon
uLM̃ & @18# leaves the projector unchanged:(MuLM &^LM u
5(MuLM̃ &^LM̃ u, and we have

^00uWabuLM̃ &5^LM̃ uWbau00&*

5^LM̃ uWabu00&5^00uWbauLM̃ &* .

~A3!

Since the two matrix elements ofW entering Eq.~A2! are
complex conjugates, and the real eigenvalues«a are inde-
pendent ofVa , one gets

FL* ~ t !5FL~2t !. ~A4!

Taking the Fourier transformFL8(v) @see Eq.~24!# leads to

FL8~v!5
1

4 (
Mab

rB~«a!d~v2vba!^00uWabuLM &

3^LM uWbau00&, ~A5!

which can be directly shown to satisfy

FL8~2v!5exp~2\v/kT!FL8~v!. ~A6!

This generalizes the well-known Boltzmann relation to t
EFCSA case. Equation~A1! can be straightforwardly re
duced to the perturbation-theory expression@13# by neglect-
ing the anisotropy ofHB8 in the exponential operators. In thi
case, the latter do not act on the rotational wave functio
and the perturbation theory expression readily follow
namely,

FL~ t !5PL
22 TrB rB„W

(L)~0!,W(L)~ t !…, ~A7!

in which the bath motion assumedly occurs in the isotro
intermolecular potential.
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