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Rotational relaxation matrix for fast non-Markovian collisions
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By using the Zwanzig-Mori theory, the rotational relaxatibnmatrix of the sudden approximation is
corrected for rotational adiabaticity, off-energy shell scattering, and initial bath-molecule correlations. Expres-
sions derived for the case of a linear rotator perturbed by fast binary collisions are shown to satisfy all known
fundamental relations; in addition, thematrix is symmetric and positive definite in line space. The general
case of non-Markovian relaxation of an arbitrary moleculdér rank tensor is treated, which substantially
expands the scopes of the impact scalax Q) relaxation. A model of is developed compatible with the
known data on thé&l,— N, potential and is shown to fit well a variety of different relaxation characteristics
(r=0,1,2) measured in compressed room-temperature nitr¢§&050-29479)09509-9

PACS numbsds): 34.10+x, 33.70.Jg

[. INTRODUCTION when the frequencw is sufficiently detuned from the band
. . . center (see the recent publication8,9], and references

Ap_art f_rom the ac_adem|c. interest, collisional mixing of therein. This requires the use of off-energy-shell scattering
rotovibrational lines is required for a number of SpeCtro'amplitudes to account for incompletaon-Markovian col-
scopic applications, including gas diagnostics and the phySisions [10], whereas the general impact approach to rota-
ics of planetary atmospheres. The main achievements in thig,na| relaxatior[11] operates with a conventionsl matrix.

field are due to the concept of the relaxation maffixthat ~ Moreover, the fundamental sum rulgk?] for the relaxation
accounts for collisional correlation between different radia-matrix elements hold generally only in the more realistic
tive transitions. Concurrent with theoretical advances, manyion-Markovian picture in which frequency-dependent refax-
models ofl" have been developddee booK1] and reviews ation matriced (r;w) appear. S_uch matrices hav_e thus far
[2,3]) exploiting the scattering approach. Among them, thebeen _elaborated only for weak interactions b_y using the per-
infinite-order sudden approximatioflOSA) and its exten- turbation theorysee[13] and references therginThe task is

sions hold much promise as a basis for modeling. To treafturther c;omplicated by the problem pf initial molecgle-bath
the inelastic rotational—J’ transitions, the IOSA assumes correlations [9’1.0]’ vyhose r_1eg|t_ect in_the scattering ap-
that both the collision duratiotyy and the associated Massey proachgs can give rise to violations of thg detailed-balance

O . o properties of the computed spectra. For this reason also, the
parameterp=tyw;; are negligible. This oversimplification

. . = ; . theoretical description should be revised.
results in broadening coefficients of the isotropic Raman Based on the Zwanzig-Mori formalisiil4], the present

Q1(J) lines of linear moleculeg4] calculated using the eatment simultaneously incorporates rotational adiabaticity
IOSA not decreasing with (except for the very lowest tran- (finjte 1), non-Markovian effects, and initial correlations into
sitiong and diverging increasingly from the experimental the |OSA scheme. All known fundamental relations are sat-
data}; allowance for fin.itey is thus required. It was with such isfied for thef(r;w) matrix so obtained: further, the calcu-
an intent that De Pristet al. [5] developed the energy- |ation of its secular part also poses no problem. Some pre-
corrected sudden approximatidECSA), which generated |iminary results have been reported recently by the author
much interest among spectroscopigts-3]. However, their  [15] Although only the case of a nonvibrating rotator is

proposed correctiofi5] is semiempirical, and its form was considered here, extensions to more complicated cases seem
postulated rather than rigourously derived. For this reasong pe straightforward.

ECSA interaction lengths deduced from experiment by using
different models are scatter¢f] and are difficult to corre-
late with intermolecular potential parameters. Moreover, for
optical transitions induced by nonscalar#0) photon- A. Liouville space metric
molecule couplmg, the sudden apprOX|mat|(_)ns are fea§|ble The line-spacdor projection formalism exploited in the
only for the off-diagonal elements of the rotational relaxatlonpresent derivatioffor details, see booki4]) is based on the
matrix I' [7], and their accuracy for diagonal elements ispotion of the Liouville space spanned by the quantum-
questionable. _ ~ mechanical operators of the total “moleculea)(
Blngry coII|5|ons_ are treated by sca’gtermg_theory as iso- path (B)” system. Caution is required at the first step,
lated impacts, which leaves out details of intracollisionalzg the metric inC. cannot be defined uniquely in the quantum
evolution. It has been realized that broadband spectroscopiggse. As is shown below, the conventional definition of the
are promising tools for probing this evolution, especially gqg)ar product A|C) of two Liouville vectorsA and C,

namely,

II. RELAXATION MATRIX
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(p is the total density matrjxleads to spurious effects. Con- the rotator eigenstates; generally, it is an irreducible tensor of
sider the spectral functioB(w) of a rigid rotator perturbed rankr whose explicit form17]

by binary collisions, namely,
Jf r ‘]i
KP= > (=1)r ™

S(w)=7"1lim fx(A(O)|A(t))exp(—izt)dt, ) g me —o —m
o ? x| 3m) (3im| = £, (5)

where the “complex” frequency=w—ie lies in the lower  f4|lows from the representation of the molecular operator
half-plane £€=0). The total system has a continuous energyn ()

spectrum and, because of molecule-bath coupling, time cor-

relation functions[such as(A(0)|A(t))] vanish at long ) o

times. Their absolute values are assumed to be integrable Afrr):Ek AkKEfEi [ EYCEIAC], (6)
over infinite time intervals, thus ensuring the analyticity

of S(z) in the lower half plane. The total Liouville onq the Wigner-Eckart theorefil8]. The coefficientsA,
superoperator. governs the time evolution oR: A(t)  —(f|AM][i) are the reduced rotational matrix elemefig]

= exp(Ht/A)A(0)exp(-iHt/A)=exp(Lt)A(0). For the case of A("). Due to the isotropy of spaceA(”|B())~ 6, , and
thatA is the molecular dipole moment, the real paiiw) of  from Eq. (4) on, the usual scalar contraction operation
the spectral functiofEq. (2)] defines the far-infrared absorp- (A(f)lc(f))EEUA(j)UCg)(_1)0 shall be implied. For brev-
tion profile. As collisions become more frequent, the forma—ity, we shall occasionally drop tensor ranks. The nawrof

tion of a new, prog[essively narrowed quasi-Lorentzian banﬂiR) (Ne=n1¢ = \(Bar T Bar)12) is given by the diagonal ma-
centered ato=(A|L|A) is predicted by the line-space for- iy elements of the reduced rotational density maffix

malism([1,14]. In the eigenbasis dfi, one has =Trg p. Averaging over the bath states £Jthen converts
p into a scalar operator diagonal in the spherical-harmonics
w=2, (pi—prr) wsi|Ag|42>0. (3)  basis; because of this tile) set is orthogonal13]. In prin-
fi

ciple, p,j; may deviate from the rotational Boltzmann fac-

) tors p,3; of a free rotator; the difference will, however, be
In other words, a new long-lasting quantum mode appears gfeglected since it produces smaller terms nonlinear in the
positive w; of course, this is impossible from a physical pyffer-gas number density.

standpoint. One can rigorously show tha&'(—w) The projection technique reduces the spectrum calculation
=S'(w)exp(-fw/kT). This fundamental detailed-balance tg matrix inversion, that is,

relation may be lost when one uses the projection technique:

for example, the artifact peak formation at+# 0, which i _ . . 1

arises from the use of metrit), is inconsistent with detailed Flo)=7""lim({(A[R"HA))=lim E AAK (R™ D s
balance, and the metric must therefore be modified. For this o0 o0 R0

reason, the symmetrized metfit3]
in the line spaceCg spanned by the transition operatdts
[Eg. (5)]; the weightsA, and the relaxation matrix elements

) ) I are defined in terms of the scalar product of E4):
was adopted previously. In this case, the even real SpeCtr%\lkE(HA):nkAﬁ. Further, note that the matriRg.(2)

function F' (w)=[S'(w) +S'(— w)]/2 is generated by Egs. "X .
(2) and (4). For a particular case, its relation to the observ-f_'(z_w'f) 5kk’jrkk’(z) contains the molecular  self-
able response poses no problem, so that the detaiIed-balanéggl_l;enc'esff"f_f“’fi ' f th ional’ i el h
relation can be incorporated exactly into the response profil ehexp '?tg om;) of the rotational -matrix element has
from the very beginning. In the symmetrized approach, the’€n S own13] to be
motionally narrowed band becomes correctly centered at _ -
=Zi(pi+pr) 01i|Aif|?/2=0. Moreover, the parity of T} (z)=(1/2nifni,f,)f exp(—izt) Trp[(|F)(i]) TN (1)
F’(w) is not violated by the neglect of initial correlations. 0
One may expect that, in contrast to the Fano or scattering- N ~ N St
theory treatments, possible inaccuracies caused by this ne- XIEOG T+ MO DAD dt, (8)
glect will be partially suppressed. As has been ndte[ o
such neglect in the conventional treatment leads to the art?j-vherez @—ie (s>0), and the superoperator
fact of negative band-wing intensifyL6].

Naturally, a change of metric also affects the form of the
relaxation matrix.

(A|C)=Trp[ATC+CA"/2, (4)

M(t)=LTexpilt)L, 9)

transforms the vectors inC. Here I:l is the anisotropic

molecule-bath coupling: ;= (W—W>)/#, whereW acts on

_ o the ket vectors, whil&V* is the complex adjoint o¥V, and
The dynamic subspac@, in £ is spanned by the vectors acts on the bra vectors.

|F)=|KIB), wherel g is the identity operator acting on the  The terms constituting matrix eleme(8) can be classi-

bath wave functions. The transition operatortransforms fied as “outer” (i.e., containingWW or W*W*) and

B. Fano-Mori superoperator
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“middle” (containingWW* or W*W). The technique will o o
be demonstrated for the integrand of the ouféw term, V(t)ZEL: (v (1),C(Qa)], (14
which can be written as

Zﬁznifnirfrr\é\ﬁ\?/(t) U(t)ZE [U(L/)(t)’C(L,)(Qa)]’ (15)
L’

=Tr p{[i (W flexp(iLt)W]|f')(i’|
where C(M)(Q,) is a spherical harmonic normalized to

+LexpliL W (i [T (Wil} Vaml(2L+1); vB(t) andu)(t) are tensor operators in
the bath space. However, only the scalar contractiond'of
= > (nolplia)(fa|WexpiHt)W|f’B) andu(™) of the same rank survive averaging over the bath
apon variables. In factX is a scalar operator with respect to mo-
X (i’ Blexp(—iHt/A)|na) + (fo|Wp|na) lecular rotations, and one arrives at the formula
X{na|expiHt)W|f’ B)(i’ Blexp(—iHt/A)|io), Tty = 8 8¢5 (FIX(D)| ), (16)
10 iy which

where the Greek letters label bath states. 3L 32

The IOSA assumes the bath motion to be much faster than 2 |Vt .
rotation. Conventionally, it neglects the rotational enelrtyy (f|X(t)|f)—§, HJ'( 0 O O) emeJ'Jit)[pa”FL(t)
in the total HamiltoniartH =H_,+Hg+ W when it enters the
evolution operators, and does the same for the anisotropic +payyFL(=1)], 17
part of the interaction potentidV in the density matrixne- )
glect of initial correlations resulting inp=p,pg. Both ap-  With Ilap  c=v(2a+1)(2b+1),... (Z+1). The func-
proximations are unnecessary in the present approach, resuions F.(t), given by
in in the energy-and-frequency-corrected sudden
a;?proximation(EFCSA)qy | / FLO)=(2L+1)  Trgu®(t) vB(1)), (18)

Intrinsically, the EFCSA is similar to the adiabatic ap-
proximation[19] used in quantum chemistry. Instead of elec-
trons, the translational motion plays the role of a rapid sub
system, while rotation is analogous to nuclear moleculal
motion. Since traces are invariant to the choice of basis, we  , .
may choose the bath basis to be an eigenbasldgf Hg 207N Ui (1 @) outer
+W at fixed orientatior(),=(6,,¢,) of the molecular axis

= bij 1 st/ f

characterize the bath motion at fixed molecular orientation.
Similarly, the outer term proportional #&/*W* can also be
Ighown to be entirely diagonal. The total outer contribution

in the laboratory frame. Due to the isotropy of space, the
translational energy eigenvalues, are independent of) ,

w _ JL J\?
Oexp(—lwt)g(o 0 0) explioyyt)

and the basic EFCSA equation reads 7L J\2
I
X[ paiiFL()+ pay 3 FL(—1)]+ )
(N QIHIMB(Q)~ Sundup(Ent o), (1D a0 Fpara PO g g g
where E,, is the rotational energy of tha state. The ne- xXexplioy g parFL(—t) +payyFL(]dt (19

glected off-diagonal terms are of ordes,,/wz,| [19]; sta-
tistically, this ratio is converted into the Massey parameter is the same for any relaxation rank, and is expressible in
The use of such af) ,-adjusted bath basis greatly simplifies terms of the one-sided Fourier transforfg (x) defined via
the calculation. One finds directly that

thnlfnlrflrww(t):5“/<f|x|f’>, (12) (I)I::(X)Iﬁizfo exq_IXt)FL(it)dt (20)

out

where
X=pai TrgU(t) > exdi(Ey —E)t/h]

J'm’

The middle terms generate the following matrix element:

F:;f’(r;w)middle:_(1/%2nifni’f’)fo exp(—iwt)Trp
X3 )3 V() + Trig V(=t) 2 payyr
I’ X{(KPWexp(iHt),K) Wexp —iHt))
Xexgi(Ey—Ept/A]ld' m y{I'm'|U(-t). (13
Hi(Ey ~BQUAI m) " m U0, (19 +(exp(—iHOWK  exgiH) WK )
Two operators acting in the total space, namelt) ) " ] "
=Wexp(—iHgt/fi)pg and U(t)=Wexp(Hgt/i), appear in +(expiH) WK, exp(—iHt) WKi¢))}
the last equation, withpg=exp(—~BHg)/Zg and B=1/KkT. . " . "
. : : . . + Ht)K: ;W —iHt),Ky’W).
Neither operator contains differential operators in the rota- (EXpHOK W exp(—THE), K W)
tional subspace; they can be written as the scalar contractions (21
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For clarity, the subscripts of thi€(") operator explicitly in- Remarkably, Eqs(23) and (25 have exactly the same
dicate the rotational transition. The use of the EFCSA andorm as those obtained by the perturbation apprddd;,

the spherical-harmonic expansion of the operatmnd U differing only in the definition of the bath functionB (x).
simplifies the last formula. After performing the intermediate Perturbation theory may be used for large rotational energy

summation gaps, i.e., for high values df, whereas the EFCSA is appli-
cable for low or moderaté values. Therefore, one may hope
S (Cpyet M mesm L T Ji that some hybrid model can be developed to cover the entire
o~ m —o —m J domain. We note also that no assumption has been made
7MiMy My on the perturber structure, so that the derived results may
yor ) ( JoL J equally be applied to molecule-atom and molecule-molecule
X ) | , ) collisions. Physically, the IOSA holds whét;;/| is much
—Mmgooom, -mi Mom smaller than the half width,* of ® (») (i.e., <1), and

assumes collisions to be Markovidie., w~0), the IOSA
cross sections can be expressed in terms of the quantities

J L’ 3l then one may set, (w;5)~® (0). If, additionally, one

(_mf -M’ mf’)

33 r (generally complex G, =2®,(0). Their real partsq,
Pt ]/(2L+ 1), (22) =2®/(0) define the so-called basic{6L) transition rates.

=(—1)MS | Sym
( ) LL MM [J; Ji! L

. C. Fundamental properties of the EFCSA matrix
one obtains

1. Sum rules

it _ - . .
i (r@)migaie= = (2Minire) T 5,0000(= 1) Sum rules can be obtaindd?2] for any tensorA that is
diagonal in coordinate representation:
X2

L

JoL Ji)(Jf L Jf’)
0 0 0/i0 0 0 =2 AT e(@)=— 2 AT (@) =AT (o).

J Jior o . (26)
X1y g lPai (o= o)
[ In the EFCSA case, they can be verified straightforwardly by
T pairi P (0= w5i) + pari®@F (w5 — ) carrying out the summations over the rotational quantum
et " Al numbers(see Ref[13] for details.
+paf,f,¢f(wfri—w)]dt. (23)
2. Matrix symmetry
Note that this term also contributes to the secular matrix |+ ¢siiows from Eq. (23) that the EFCSA matrix is sym-

elements. It has been derived using the propéHy(t)

R - _ metric, i.e.,
=F_(—1t) (see the Appendjx which implies the integrabil-
ity of |F_(t)|; in so doing, the fre_gftrjency may finally be F;f’f/(r;w):F:f,f,(r;w). 27)
taken to be real. The real part &%;' (r;®)miqqie CaN be
given in terms of the double-sided Fourier transforms As shown below, this symmetry ensures that the non-

negative character df’ (r,w)=Rel'(r,w), i.e.,
(I),’_(x)=Re<I>,_(x)=(1/2ﬁ2)J exp(—ixt)F(t)dt.

B|T''|B)=2, BT, B=0, 28
(24) < | | > %( k k' kPk ( )
Like S'(w), these quantities obey the relatioh| (—x) holds for any line-space vect®") expandable in the line-
=exp(—AaBx)d|(x) (see the Appendjx and by using it, one space basis oA, Hence, both tensors have coincident re-
arrives at the following result: laxation matrices and, by using the sum rules A6P, one
_ obtains
Rel}" (1} @) middie=— (2nieni) M 5,0000(= 1)

<B|F’|B>= _1/22 Ak’AkFL'k(Bk/Ak_Bk’ /Ak/)z.
k' #k

5 JoL J\[Jh L J
X
1o o0 o/lo o o (29
P Explicitly, A, andA,, are given by
X 1+exp—h
[J; ” L][ H—hBw)] 3,
, A= =DM o o [T (30a
X[pati® (w5 — o)

XexphBw)+ paii®| (0= wiri)].

Ao = -1 ‘],<Jil r Jf’)H 30b
’ Ny i rqr.
(25) k k( ) Ji ¢ ( )

0O 0 0] -
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The coefficient— A AL, (k#k') is positive as can be qL=2%P(wq)- (36
seen from Eqs(25) and(30), so that inequality28) holds.
i i When one uses these rates as the input param@teosvn,
3. Time-reversal relation say, from experimentthe ECSA matrix becomes
The EFCSAT matrix obeys the time-reversal equation
(the Ben-Reuven relatiofil7])

N e 31 00=-/221.,
PHY () =T (- w). U
For narrowQ branches, one can use the Markov limi ( J 2
—0), in which case the corresponding block, as seen from X; 0 0 0 D (035)qL /P (wqy).

Eq. (31), consists of real matrix elements.

(37

4. Dispersion relations

According to Eq.(8), any element of the exact relaxation . )
matrix I'(z) is an analytic function in the lower half plane; ~ The same procedure applied to E@3) results in the
hence, its real and imaginary parts are interrelated via thelement
Kramers-Kronig formulas. Thus, for example, the imaginary
partI’”(w) (for brevity, we drop the matrix indicéss given

via the principal value of the integral Rel'" (r;0)=—(=1)'[1+exp—ABw) 20 ¢,
1 (= JoL J\[(J L J
r"(w):—P—f I'(o)(o'—0) 'do'. (32 X ' (
TJ—o 2 0O 0 0/\0 0 O
For practical implementation, it therefore suffices to model JoJor
only I''(w)=lim,_,oRel'(2, and then to evaluat€”(w). x[ . }HJ_J 33700
Effectively, the EFCSA decouples the bath motion from the N

rotational motion. This leads to dispersion relations for the

bath spectral functions. Apparently, edcth term® (z) of X[pi® (w5 —w)expfi fo)
the EFCSAI'(z) of Eq.(23) is also analytic in the lower half
plane. Because of the detailed balance and dispersion rela- +pi® (0= ) /P (wo), (38

tions, the modeling of | (w) is accomplished once one fixes

its symmetrized real pa () =[P (@) + P (= w)]/2. originating from the middle terms. Apart from frequency ar-

_ guments, the form of Eq$23) and (38) is the same as that
D. Particular cases given by the I0SA[20,21]. To enforce the unitarity of the
1. Raman bands scattering matrix, the diagonal IOSA terms in the scalar case
, i ) e (r=0) are obtained from summation of the inelastic transi-
For isotropic Raman bands £0,i=f=J,i"=1"=J"), (i rates. However, such terms do not directly appear in the
the Markov theory may be used, and one obtains the reghga [20], and the secular part of its geneFamatrix is not
symmetric matrix §#J'), properly obtained. The same applies to the energy-corrected

"’ IOSA matrix[5].
r37'(0,0=r3,,(0,0 [5]

/ J oL J)\?
=—2 &sz ( ! ' D (wyy). 2. Relaxation of irreducible angular-momentum tensors
Py t \0 0 O

The tensors of interest are the rotational angular momen-
(33 tumJitself (r=1) and{J®J}? (r=2); the latter appears
in the depolarized RamaR,-branch shapes. For both cases,
the radiation selection rules are the same as that for the iso-
tropic Raman casei€f=J,i'=f'=J'), and hence Mar-
kov theory may be used. The corresponding IOSA matrix is
(34) given by Eq.(38) with wj;»=w=0. Examination of the di-
agonal elements of'(r;0) shows them to contain both
r-dependent elastigvith the zero-frequency argumepend
inelastic terms, which are independentrofsee Eq.(19)].
This allows a comparison of the present expressions with the
p3(23+1)Wy3 = p3,(23" +1)W;, 5. (35  known IOSA expressiong0,21], even though in the IOSA
approach all terms are proportional tb/(0). The off-
The functions®| can be related with the basic upward (0 diagonal elements in both approaches are of the same struc-
—L) transition ratesy), given by ture, but the relative nonadiabatic contributions to the secular

The conventional(unsymmetrizef relaxation matrix ele-
ments are

0, (23 +1)

o _rdy
I'jp3=—W;3=TI5; (0,0 023+ 1) "

whereW; ;, represents thé—J’ transition rate, which obeys
the detailed-balance relation
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part disagree drastically. Due to shortcomings of the conven-
tional IOSA T matrix, it annulsJ [7,20], with the conse-
guence thatl is macroscopically conserved in this approxi- ] E
mation. Such an unphysical result does not appear in the E
present formulation. Numerical examples are presented in
the following section.

w N

[lI. MODELING OF SPECTRAL CHARACTERISTICS

W, (mK/amagat)
F—>—f
|| om

F>fom

The translational spectral functiods; (») are the basic '3 i
EFCSA characterisitics; to calculate them, some realistic ap- ] : : .
proximations can be exploited. In the first place, classical 0 50 100 180 200 250
dynamics applies in most cases. Moreover, the general be- J(J+1)

. he—4 ! - .. -
havior of ®((w) is known from collision-induced spectra, FIG. 1. Collisional 0-J transition rates in nitrogen T(

and one can reconstrud| (w) by calculating its leading =298K): 1—this paper, 2—exponential energy-gap mdas],
momentsM(?" (n=0,12...). This is a much simpler task and 3—measuremen{g4].

than solving exactly the quantum or classical equations. Be-

sides, the shape is determined by the relative moments

mf_z”), which are not particularly sensitive to the approxima-nitrogen does not completely satisfy all the assumptions re-
tions employed8]. To obtainm{®V the anisotropy ofHj  quired for the IOSA/EFCSA, it has been chosen as a refer-
may be neglected, and the perturbation theory regdf8$ ence system since a variety of accurate spectroscopic and

then appear. Using the Legendre expansion in the case ofkinetic data are available for it.
point perturber The proposed general' (r,w) matrix is thus five-

parametric(depending uporA,«a, v, x,wy). The value ofy
has been fixed¥=1.5) as recommended by the theory of
w=>, W (R[CP(Q),cM(Q,)] collision-induced spectral line shapi&s]: variations around
L v=1.5 have little effect on the calculated characteristics.
Translational-shape calculatiofig3] give wo=a/RyVm§,
=> W (R)P (cos#)), (399 wherem is the collisional reduced mass, whie=1.5 is a
L dimensionless coefficient; in this way, and o, are corre-
lated. From the sophisticatéd, — N, potential[25] one can

with the supposedly short-ranged coefficiems (R) de-  infer that Ry~0.3-0.4A. Usingo=3.73A [25], one may
scribed by a unique core parameRy [i.e., W, is assumed €xploit y~0.01 andwo~ 100 cm * as reasonable estimates.
to have the formW, ~exp®/Ry)], one obtaing22] m{?~1  The set ¢=2,y=1.5,y=0.01,wo=100cm*) provides a
+(Ro/0)2L(L+1)=x2(x,L), where ¢ characterizes the reasonable fit of the measured isotrop@,(J) line-
position of the repulsion-wall ang=(Ry/c)2 Typically, ~bProadening coefficients(see Fig. 2 The value A
the ratioy is of the order 0.01. The above approximations are=13.1 mK/amagat was found by equating the calculated and
incorporated in the formula measure26] broadening coefficients dt=8; the specified
parameter set leads to reasonable absolute values of the mea-
~, , sured basic rateésee Fig. 1L The EFCSA predictions are
P (0)=~C(fifw)P(0)¢(w/k), (40 also consistent with other available transition rdd from
excitedJ states, as exemplified by the= 6 case(see Fig. 3.

where the facto€ ensures the detailed-balance relation. The

known models {C(x)=exp{/2); C(x)=2[1+exp(-x)]} 70
were found to have almost the same accuracy for our put 60 :\;A ,,,,, . e e
poses. . ] . ﬁ/i/'/"j
The even shape functiorsare quasi-Lorentzian near the ¥ 507 T R
maxima, and decrease exponentially in the wings. Such beg 404 e X e
havior is typical for collision-induced translational spectra,§ ] —e—2 R
; . 30 e
and is well approximated bj23] £ ] 3
T 201 —v—4
: 2 TS P
e(x)=exd y— vy + (0 wo)’]. (41) ] / M
04 v

To complete the EFCSA we specify that 0 5 10 15

qu=Aexp—aBEy) (42) FIG. 2. Isotropic £=0) and anisotropic r(=2) Q(J) line-

broadening coefficients of nitrogenT£293K): 1—EFCSA,r
that reasonably fits witlk~2, the basic room temperature =0; 2—IOSA, r=0 (this papey, 3—EFCSA ¢ =2); 4—EFCSA
rates measured in nitrogé@4] (see Fig. 1 Although pure adiabatic term (=2); 5—experiment (=0) [26].
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FIG. 3. Collisional 6-J transition rates in nitrogen T( J
=298 K): 1—EFCSA, 2—IOSA (this work), 3—exponential
energy-gap moddR28], and 4—measuremenia4]. FIG. 4. EFCSA broadening coefficients @f;(J)(r=0) and

So(J)(r=2) nitrogen lines T=293K). Adiabatic parts 0f5,(J)
broadening coefficients and experimental d&2] are also shown.
On the contrary, the IOSAwith the same parameters,
except forwg—o) is incompatible with the experimental
widths forJ=6 (see Fig. 2 similar patterns have been ob- collisions only. The EFCSA predicts a similar situation for
tained forr =0 by direct IOSA calculationp4,27]. One sees theSy(J) lines, whose widths are equal to the half sum of the
from Fig. 3 that the IOSA gives a weaker rate decrease offotropic Q(J) and Q(J+2) line widths plus the adiabatic

|J—J'| than the EFCSA does. contribution(see Fig. 4. However, the latter is pronouncedly
The matriij'JJ'(O;O) defines the rotational-energy re- weaker in comparison with the anisotrofdg lines (cf. Figs.
laxation cross sectiomrg via 2 and 4. The calculatedSy(J) half widths are somewhat

higher (5—-159% than the spontaneous Raman di8,31],
but are close to those obtained by Raman gain spectroscopy
nVoe=(AE? AAAEAE, (T Y0;0)],  [32 (see Fig. 4
Lvoe=(AEY % Ay ABAE, (TH(0:003 The half width measurements of the isotrofig(J) lines
(43)  are possible due to the vibration-rotation coupling that splits
_ _ - _ the branch. In the anisotropig, branch ¢ =2), the splitting
wheren, is the Loschmidt number = V82kT/7Tm, AEis s absent, and only integral broadening effects can be ob-
the rotational energy fluctuation, aqd E®) stands for its  served. Theory13] gives an expression for the Fourier trans-

mean-square value. Due to the energy weighting factars, form Cq(t) of the anisotropicQ,-branch profile,
is rather sensitive to the distribution of off-diagohamatrix

elements at highed values. For example, the energy-gap
model[28], which accurately reproduces the isotropic line- Co(t)=exp( ~Tot)[ 1+ aq(I'qh)?], (44)
width distribution, givesog=15.8/&, which strongly dis-
agrees with the experimental valug®(3) A2] collected in ~ which fits the observed time dependence wW&B] when
Ref.[29]. An even greater disagreement was found presentlyo=0.0545). The corresponding experimental T(
with the 10SA limit: o(I0SA)=20.3 2. On the contrary, =293K) cross-sectiowq is 34.4(6) & [34]. Both charac-
the EFCSA resultog=9.7 A2 at T=298K) is in good ac- teristics can be calculated with the knowh matrix: oq
cord with the experiment. Remarkably, an orthogonal trans=31.1 &, aq=0.077. Our IOSA results do not considerably
formation in the line space to the Laguerre polynomialsdeviate from these vaIueEQ(IOSA)=28.4,5?, ag(I0SA)
L,(e;) of the discrete variable ;= BE; [13] practically di- =0.088. The reason is that the adiabatic effects, pronounced
agonalizes the IOSA matrix. The Laguerre eigenbasis apn ther=2 case, are insensitive to the increaseawiyy be-
pears in the classical Keilson-Storer mofig], the relevant sides, the energy weighting that influences thevalue is
eigenvalues being given by,=y(1—\2"). This depen- absent fol’q . The region adjacent to the main diagonal, i.e.,
dence is well reproduced in the I0SA limit with the colli- characterized by moderatd—J’| values, contributes the
sional “‘softness” parametex~0.80. most tol' ; the matrix elements in this region are not much
One of the main advantages of the EFCSA approach oveaffected by variations of.
the conventional IOSA/ECSA approaches is its ability to The accuracy of EFCSA is further supported by the
produce all characteristics obtained by spectroscopies chacalculation of the time correlation functio@,(t) of the
acterized by nonscalar photon-molecule coupling. The reangular momentum. The cross sectioo;€15.8/&) so
sults for the anisotropitwith r =2) RamanQ,(J) andSy(J) obtained is close to that derived from NMR spedtt4.5 &
line half widths are depicted in Figs. 2 and 4. The adiabati¢35]). As has been said above, the present IOSA formulation
contributions proportional te| (0) amount to 20% for the leads to a nonzero value far;; its value (14.8 &) almost
first anisotropidQy(J) lines, and are also shown there; due tocoincides with the measured one. Strikingly, the associated
this contribution, the anisotropiQy(J) lines are always Laguerre ponnomiaIsLS,l)(sJ) (n=0,12...) [13] practi-
broader than the isotropic ones that are affected by inelastically diagonalize the I0SA™(1,0) matrix, the eigenvalues
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closely followingy{?oc1—\3""* with X ;~0.73. The energy
and angular-momentum “softness” parameters so obtained
reasonably match one another showing thatNhe- N, im-
pacts more likely fall into the soft-collision\(=1) regime
than they do the strong-collisiol\&0) regime.

Generally, a realistic behavior of the EFCSA matrix in the
most physically important domains of frequency and rota- :(477)—12 (00a|W exp(iH jt/%)| BLM)
tional quantum numbers is supported by the results of this Map
study. The simulated rates were found to be sensitive to
variations ofy andwg; for example, an increase in the value X (LM B|W exp( —iH gt/A) ph| «00), (A1)
of x to 0.015 results inrg=31.4&, 0;=14.8 &, and «
=0.067, all of which are in better agreement with the experiy, ich upon going to the eigenbasis8f(Q,), becomes
ment. Final conclusions on the usefulness of the proposed ' an
model may be drawn following a complete multiproperty

FL(t)=(47r)’1%: Trg(00W exp(iH 5t/7)|LM)

X (LM|W exp( —iH 4t/%) p}3| 00)

optimization; further, direct calculation, or more accurate FL)=(4m) 1> pe(e)exfdi(eg—e )t/h]
modeling, of theF(t), is desirable. This topic will be the Map
subject of future studies. ><<00|WQB|LM><LM |W[3a|00>' (A2)

The unitary transformation to the real tesseral harmonics
|ILM) [18] leaves the projector unchanged;,|LM)(LM|
We briefly summarize the results obtained. Assuming the==,,|LM)(LM|, and we have
collisions to be rapid, corrections for both the electromag-
netic field frequency and molecular rotation are rigorously

IV. SUMMARY

introduced into the Zwanzig-Mori matrik(r,w) describing (00 W, LM)=(LM[Wg,|00)*

relaxation of an arbitraryth rank tensor. The allowance is ~ 5

thus made for incomplete binary collisiofsff-energy shell =(LM|W,4/00)= (00 Wg,|LM)*.
scattering [10] as well as for a finite rotational Massey pa-

rameter. The fundamental properties of the derived ECFSA (A3)

matrix have been demonstratdd) the symmetry relative to
interchange of the line-space indiceb) the positive defi-
niteness, (c) the sum-rgles rglation(d} the time-revgrsal complex conjugates, and the real eigenvalsgsare inde-
symmetry, ande) the dispersion relations. The matrix ele- endent o), , one gets

; . as
ments are expressed via the Fourier transforms of the baﬁll
time correlation function§ | (t) obtained at fixed molecular
orientation. A bath-spectrum model consistent with the
known N,—N, potential gives encouraging results for a ) . ,
number of the rotational-relaxation characteristics measure§iaking the Fourier transform| () [see Eq(24)] leads to
in room-temperature nitrogen. In order to avoid direct dy- L
namic calculations, a few leading moments can first be cal- N
culated and then employed to reconstruct the bath-spectral P (0)= Z,\%ﬁ Pa(£0) (0= wpa) (0GWop LM)
functions. The treatment can be extended to solve related
problems(such as rotational relaxation of symmetric and X(LM[Wp,|00), (A5)
spherical tops, spectroscopy of bending states of linear mol-
ecules, and collisional coherence of radiative transitions irwhich can be directly shown to satisfy
different molecules

Since the two matrix elements & entering Eq.(A2) are

FEO=F(=1). (A4)

| (—w)=exp(—haolkT)D| (o). (A6)

This generalizes the well-known Boltzmann relation to the

EFCSA case. EquatiofAl) can be straightforwardly re-
The author thanks Dr. J. V. Buldyreva for providing dataduced to the perturbation-theory expresdid8] by neglect-

on the Laguerre polynomials of a discrete variable. Financiaing the anisotropy oHg in the exponential operators. In this

support of the Russian Foundation for Basic Researclease, the latter do not act on the rotational wave functions,

(Project N0.97-03-3365%as gratefully acknowledged. and the perturbation theory expression readily follows,

namely,
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APPENDIX FL(t)=II_“Trg pg(W'-(0),W™(1)), (A7)

Using the explicit forms of the operatots™ andv(®) in which the bath motion assumedly occurs in the isotropic
[Egs.(14) and(15)], one obtains from Eq.18): intermolecular potential.
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