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Spherical many-center scattering systems
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Don State Technical University, 1 Gagarin Square, 344010 Rostov-on-Don, Russia

~Received 22 February 1999!

High-symmetric systems of a large number of scatterers located at a sphere of radiusR ~the R sphere! are
considered. A method of constructing such systems with point symmetries of crystalline lattices which is based
on the projection of atomic shells onto theR sphere is proposed. In this way one can obtain theR sphere with
the number of scatterers tending to infinity. By choosing potentials of separate centers one finds that such a
system is closest to a spherically symmetric one. In this case the solution of scattering is uniquely characterized
by a certain value of the orbital quantum numberl. Specific shape resonances, geometric resonances, which can
exist in many-center systems only in narrow energetic intervals and are destroyed as a potential becomes
stronger, are examined.@S1050-2947~99!07109-7#

PACS number~s!: 34.10.1x
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I. INTRODUCTION

The discovery of fullerenes has stimulated the devel
ment of the investigations of various types of exotic stru
tures including speculative constructions of a large num
of atoms. The achievements of nanotechnology allow u
hope that some kinds of these constructions can be real
However, even though some constructions are unstable
cannot exist in reality, the analysis of them can be use
both from the theoretical and practical points of view if
enables us to discover new properties of many-atom syst
or generalize some theoretical propositions.

The purpose of this paper is to develop a scheme of c
structing hypothetical spherical many-atom systems
study their properties appearing in the electron scatte
from these systems. We consider systems of many at
located at a sphere of some radius that are, in a sense, si
to fullerenes. The basic question is how much the scatte
from such systems can be close to the scattering from sp
cally symmetric potentials and what principal differenc
there are between these types of scattering. In addition,
low specific quasistationary states~geometric shape reso
nances!, which are characteristic for high-symmetric man
center systems and expected to be most strongly pronou
in objects under consideration, are investigated.

II. MANY-CHANNEL SCATTERING FROM
A MANY-CENTER SYSTEM

Let us consider a system of a large number of scatter
whose centers are located at a sphere of radiusR. We assume
that the potential describing the interaction between the s
tered electron and the system is equal to zero outside
system. In this case electronic states with certain value
quantum numbersl and m are eigenstates of an asympto
Hamiltonian, and it is possible to say aboutL channels
through which the electron can approach and move off fr
the system@L[( l ,m) is a combined quantum number#.
Then, as is well known, solutions of the stationary Sch¨-
dinger equation can be represented as
PRA 601050-2947/99/60~4!/2900~7!/$15.00
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CL~E,r !5hl
2~kr !YL~V!1(

L8
SLL8hl 8

1
~kr !YL8~V!~r .R!,

~1!

where hl
6(kr) are spherical Hankel functions,YL(V) are

real spherical harmonics,SLL8 are elements of theS matrix,
k5AE, E is the energy of the scattered electron, andr is a
distance from the electron to the sphere center. Equation~1!
describes the situation when the electron approaches the
tem through a certain inputL channel and moves off throug
a system of many outputL8 channels. It is the fact tha
distinguishes the scattering by many-center systems from
scattering by a spherically symmetric potential for which it
characteristic that the electron approaches and moves
from the system through the same channel. The main p
lem to be solved below is to construct a many-center sys
so that the scattering by it is most close to the scattering
a spherically symmetric potential. More exactly, we try
find a system for which the scattering is one channel, at le
in some finite energetic interval.

Beforehand we shall write a few general relations th
will be useful later on. System of solutions~1! can be trans-
formed to more symmetric form in which there are som
input channels and, moreover, the flows incoming and o
going in every channel are equal to each other. Obviou
the question is a basis set of solutions in which theS matrix
is diagonal. In this case

Cl5(
L

qlLCL

5(
L

qlL@hl
2~kr !1exp~2ihl!hl

1~kr !#YL~V!, ~2!

where the indexl numbers linearly independent solution
hl are eigenphases of the system, andqlL are elements of a
matrix diagonalizing theS matrix.

Further one can pass to the most symmetric expression
Cl , where summands describing incoming and outgo
waves are identical. To this end we redefine coefficients
require that the functionCl is real
2900 ©1999 The American Physical Society
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Cl5(
L

dlL@exp~2 ihl!hl
2~kr !1exp~ ihl!hl

1~kr !#YL~V!

5~Cl
21Cl

1!/25ReCl
1 . ~3!

HereCl
15(Cl

2)* 5(LdlL exp(ihl)hl
1(kr)YL(V) is the solu-

tion of the Schro¨dinger equation for a system with sourc
@1#. It is proportional to the many-center Jost solution@1#.
The coefficientsdlL are real and satisfy the condition

(
L

dlLdmL5dlm ~4!

that provides the orthonormalizing of the functions from E
~3!

E Cl~k,r !Cm~k8,r !dV5@p/~2k2!#dlmd~k2k8!.

It is easy to show that asr→} the solutionsCl
1 for the

system of sources due to the properties ofhl
6 take the form

Cl
15@exp~ ikr 1 ihl!/~ ikr !#Al~n!,

whereAl(n)5(L(7 i ) ldlLYL(V) are some effective spher
cal harmonics describing the angular dependence of the
wave emitted by the system of sources.

The coefficientsdlL are uniquely determined by the po
tential of a concrete system and depend on the energy o
scattered electron. Ask→0 only one of these coefficient
remains nonzero:dlL→dLLl

, whereLl is the quantum num-

ber characterizing approximately the solutionCl at smallk
values. In this caseAl(n)5(7 i ) l lYLl

(V) and the phases

hl behave as phases for spherical objects:hl;k2l l11. Thus
at k→0 the scattering from any finite many-center syst
becomes one-channel and is similar to the scattering fro
spherically symmetric potential. However, ask increases, the
situation changes and some channels become connected
Cl . The larger the system, the more channels one mus
take into account. In real calculations at finitek values one
should consider channels withl<kR.

If a system has no point symmetry, all such channels m
in each solution. In the case of systems with a point symm
try the whole set of the channels is divided into subsets c
responding to the irreducible representations of the sym
try group. In particular, in the case of the cubic symme
~the symmetry groupOh) in alg solutions only channels with
l 50,4,6, . . . , remain mixed. Due to this sequence of t
numbers one of thealg solutions can be imitated by the on
channel representation withl 50 up to comparatively largek
values (k,4/R). For the highest point symmetry, icosah
dral symmetry~the groupYh), in the identical representatio
ag the channels withl 50,6, . . . ,mix, and a system with this
symmetry ~e.g., the moleculeC12) is still more similar to
spherically symmetric one.

Thus, high-symmetric systems at small energies are
distinguished significantly from spherically symmetric on
in the scattering processes. This general conclusion is
course, well known, and some details adduced above
necessary for us only to approach our problems. The firs
them is to determine the conditions under which a ma
.
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center system is not distinguished from spherically symm
ric onesat arbitrary energies. It is natural to expect that the
most satisfying these conditions is a system of scatte
centers located at a sphere. As long as we are intereste
symmetry properties of the Schro¨dinger equation solutions
rather than concrete potentials of scattering centers, i
worth to consider models within which the arrangement
centers is reproduced exactly but potentials can be re
duced roughly. The simplest such model is a system of p
scatterers~PSs!. We shall attempt to find how many PSs
choose and how to locate them in order for the scatter
from the system to be most close to the scattering from
spherically symmetric potential? A system of PSs allows
to find this on an analytical level.

It should be reminded that an isolated PS is uniquely ch
acterized by only the parametera ~see, e.g., Ref.@2#!. Near
the scatterer the real wave function can be represented

C5const3@1/r 2a#1O~r !,

which can be considered as the determination of thea pa-
rameter. If a.0, the PS has a single bounds state ~in a
frame of reference related to this PS! with the energyE
52a2/2. For a system ofN point scatterers there areN
orthonormalized solutions with nonzero phasesh @2#.
Sources in PS system can emit onlys waves. TheCl

1 solu-
tion for a system of sources centered at PSs can be wr
for arbitraryr values~both inside and outside the system! as

Cl
15exp~ ihl!(

j
bl jh0

1~kur2r j u!, ~5!

wherer j are coordinates of PSs andbl j are amplitudes ofs
waves emitted by the sources. Using the knownh0

1 re-
expansion formula

h0
1~kur2r 8u!

54p(
L

j l~kr8!YL~V8!hl
1~kr !YL~V! ~r 8,r !

~6!

@j l(kR) are spherical Bessel functions#, we get the one-
center expansion ofCl

1 written about the sphere center

Cl
15exp~ ihl!(

L
dlLhl

1~kr !YL~V! ~r .R! ~7!

in which

dlL54p j l~kR!(
j

bl jYL~nj !. ~8!

From these equations it follows that somes wave, emitted
by a source, in the frame of reference related to the sph
center is an aggregate ofL waves emitted into channels wit
all l values (l 50,1, . . . ,}). Such waves in channels ar
characterized by the amplitudesdlL . Notice also that the
phasehl is common for alls waves emitted by the source
andL waves in channels, i.e., the sources are coherent. O
due to the superposition of waves emitted by various sou
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2902 PRA 60YURI F. MIGAL
can one attain that a wave in channel with a certainl value
vanishes. It is possible if for thisl valuedlL;( jbl jYL(nj )
50. @Effects conditioned by the vanishing of the fact
j l(kR) will be considered in Sec. IV.# Thus, changing am-
plitudesbl j of s waves of sources~through changing param
etersa j ), one can pick up a set ofbl j so that a wave in a
certainL channel vanishes. Moreover, for a finite number
PSs it is possible to eliminate waves simultaneously from
finite number of channels. In order that the scattering from
system is strictly one channel, one must eliminate wa
from all channels except one. It is clear, that at arbitr
energies it is possible only for a system of theinfinite num-
ber of scatterers.

In our approach it is easy to determine what distribut
of amplitudes in an infinite system of sources provides
strictly one-channel scattering. From Eq.~8! it follows that if
scatterers are distributed at the sphere uniformly and am
tudes bl j→bYLl

(nj ) where b is a constant, thendlL

54p j l(kR)*bYLl
(V)YL(V)dV5dLLl

4pb j l(kR). Hence,

an infinite system of PSs located uniformly at the sphere
emittings waves whose amplitudes are proportional to so
spherical harmonicYL(V) with a givenL value, generates a
total wave with the sameL value at arbitrary energies.

Here we want to emphasize a fact important from point
view of the methodology. If in a system atr .R there is an
only wave with a certainL value andlÞ0, it signifies that
the system being in this state is surrounded by the centrifu
barrier with the samel. ~It follows immediately from the fact
that such a wave is the solution of the Schro¨dinger equation
with the corresponding centrifugal barrier.! Because we have
obtained ourL wave via the superposition ofl 50 waves,
every of which is not related to any centrifugal barriers
may affirm that the centrifugal barrier surrounding the s
tem is aninterference effect. In this case it is thedestructive
interferenceof waves from various centers that leads to t
suppression of the total wave in a region adjacent to
system. This point of view on the nature of centrifugal b
riers is indeed less formal than one adduced in standard
books, and it is constructive for the analysis of one-elect
quasistationary states in many-center systems~see Ref.@3#
and Sec. IV of this paper!.

Above we studied the way of obtaining one-channel so
tions at arbitrary energies and have shown that it is poss
only in case of model systems of the infinite number of sc
terers. However, for finite preassigned energies the situa
is essentially simpler. If an energetic region under consid
ation is limited by a maximum valueEmax, then in the total
solution we can ignore waves in channels withl @kmaxR, and
even for a finite system it is possible to realize the o
channel scattering to a high precision.~Here we consider no
a complete set of solutions involving all the scattering ch
nels, but only solutions with nonzero scattering phases
pearing in quantities observed experimentally, e.g., in
cross section for scattering, etc.! Obviously, the more scat
terers in a system, the larger the region of energies where
can realize the one-channel scattering. In the next section
consider a practical way of constructing systems for whic
is possible to get the one-channel scattering to any pr
signed precision.
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III. ONE-CHANNEL SCATTERING
FROM A MANY-CENTER SYSTEM

At the beginning of the previous section we already co
sidered examples of high-symmetric systems the scatte
from which at small nonzero energies is close to on
channel. The octahedral and icosahedral arrangement
scatterers were in question. A system of the minimum nu
ber of scatterers with the octahedral symmetry is the sys
of six identical centers located at apexes of an octahedro
scatterers are point, in this case there are six solutionsCl

1

with nonzero scattering phases: onea1g solution, threet1u

solutions, and twoeg solutions. At smallk values these so
lutions, as stated above, can be classified by means of
orbital quantum numberl. Below we shall need information
what l values are represented in one-center expansions o
solutions about the point symmetry center in the case of
Oh group. This information~see, e.g., Ref.@4#! is collected in
Table I. From it follows particularly that in thea1g solution
expansion there are summands withl 50, 4, and so on. At
k→0 it should retain in the expansions only a summand w
the minimall value (l 5 l 1). Thus, atk→0 thea1g solution
contains only a term withl 150, the t1u solution with l 1
51, and theeg solution with l 152. The size of an energeti
region where one can restrict oneself to the first summ
depends on the secondl value (l 5 l 2) in the expansions. In
particular, for thea1g solution l 254, and the region of the
one-channel scattering is restricted by the valuekmax,4/R.

In the case of icosahedral symmetry the minimum syst
is a system of twelve PSs located at apexes of an icosahe
@Fig. 1~a!#. As mentioned above, for solutions of theag type
in such a system the one-channel scattering region wil
50 is restricted by the valuekmax,6/R.

Now we go over to the consideration of systems cons
ing of large number of PSs for which the one-channel sc
tering region is bigger than for the above instances. Proce
ing from the reasons stated in Sec. II we shall study syste
of scatterers located at a sphere of radiusR. In order that the
situation is closer to real we do not fix theR value but as-
sume that it depends on the number of scatterers. We
fixed the minimum distanced between scatterers and acce
it to be equal to 1 a.u. which is equal in order to internucle
distances in real compounds. Under such conditions, as
number of scatterers increases, the sphere radius incre
too.

For the system of six PSs located at apexes of an oct
dron R50.7071 a.u., and for the system of twelve PSs
cated at apexes of an icosahedronR50.9511 a.u. In these
small systems the amplitudes of thes waves emitted by
sources are the same for all PSs within a given solut
(bl j5const) that provides the high symmetry and leads t
certain similarity between these systems and spheric
symmetric ones. While constructing systems of a larger nu
ber of PSs one should keep, of course, the point symmetr
the arrangement of scatterers to be high.@Here we do not
consider the variant with no symmetry when amplitudesbl j
of all PSs may be quite different. It should be noted that
analysis of even the simplest two-PS system~see, e.g., Ref.
@3#! shows that it is advisable for our aim to build a syste
keeping its symmetry to be high enough#. It is well-known
that the highest point symmetry is icosahedral and, hence
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PRA 60 2903SPHERICAL MANY-CENTER SCATTERING SYSTEMS
should build large systems with this symmetry. However,
do it is a complicated thing. It is essentially simpler to bu
large systems with the octahedral symmetry, and here
choose this symmetry.

Below we act as follows. We take a face-centered cu
lattice, then choose one of its atoms as central and cons
atomic shells around this atom. Every atomic shell is a c
tain set of atoms with the octahedral symmetry. Angular
ordinates of atoms from different shells, generally speak
are not the same, and we have, thus, an infinite variety of
of angular coordinates. Let us describe around our cen
atom a sphere of radiusR ~theR shells!, then project centers
of atoms from various atomic shells onto this sphere pres
ing angular coordinates of atoms, and place point scatte
at corresponding points of theR sphere.~Projections of some
atoms from different shells can be coincident, and then
oms whose projections do not add new points at theR sphere
should be excepted from the consideration.! As a result we
obtain the desired system of scattering centers locatedR
sphere, with the octahedral symmetry and with the cen
number that we can choose according to our judgment.
radius ofR sphere is determined finally so that the nearest
distance is 1 a.u.

FIG. 1. Systems of point scatterers with the icosahedral~a! and
octahedral~b! symmetries. The upper system contains 12 ident
scatterers located at apexes of an icosahedron. The lower sy
contains 14 scatterers disposed at a sphere including six scat
located at apexes of an octahedron~marked byj, the subsystemA!
and eight scatterers located at apexes of a cube~marked byd, the
subsystemB!.
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If the radius ofR sphere does not change, we can consi
a pure theoretical problem of proceeding to the limit of
spherically symmetric system. Our construction suppo
that the number of points on a sphere of fixed radius can
infinite, and in this case the points are uniformly distribut
on the sphere. It follows from the fact that in the direction
any ray outgoing from the central atom of the initial crysta
line lattice there are atoms whose centers are situated at
ray. If the number of atomic shells projected onto theR
sphere increases, we sooner or later reach the first sp
with one of these atoms, and the corresponding point app
on the R sphere. Obviously, by increasing the number
atomic shells projected, in the limit we can fill the sphe
completely.

In this section, however, we do not consider systems
very large numbers of scatterers and restrict ourselve
comparatively small systems which, nevertheless, are s
cient to show the tendencies appearing as the system
crease. More exactly, we consider only a system obtained
projecting the two first atomic shells from the face-cente
cubic lattice. The first shell coincides in fact with the syste
of six PSs already considered above. The second shell
sists of eight scatterers located at the apexes of a cube.
projection of these shells onto theR sphere gives us two
subsystemsA and B containing six and eight PSs, respe
tively @Fig. 1~b!#. The symmetry operations from theOh
group transfer into each other point scatterers either from
subsystemA or from the subsystemB. The radius of theR
sphere providing the valued51 a.u. is equal to 1.0877 a.u
which is somewhat greater than in the case of the icosa
dron @Fig. 1~a!#. From the fact that the system is divided in
the two subsystems it follows that parametersa j of scatterers
and wave amplitudesbj of sources from different subsystem
can be different. This freedom allows us to choose the
rameters so that the solutions of scattering from our sys
are most close to spherically symmetric ones.

The total number of PSs~and also of the solutions with
nonzero phases! in our system is equal to 14. All the solu
tions are distributed over the irreducible representations
2a1g1a2u1eg12t1u1t2g . When associating these solu
tions atk→0 with certain l values it should be taken into
account that if some representation occurs twice in suc
distribution then for the scattering system there exist t
different orthonormalized solutions. One of them is char
terized by the first value ofl, and the other by the secon
value from a set corresponding to a given representation~see
Table I!. Thus, in our case thea1g solutions are classified by

TABLE I. The decomposition of the space of the functionsYL

with l fixed into subspaces corresponding to the irreducible rep
sentations of theOh group.

l Irreducible representations

0 a1g

1 t1u

2 eg1t2g

3 a2u1t1u1t2u

4 a1g1eg1t1g1t2g

5 eu1t2u12t1u

6 a1g1a2g1eg12t1g1t2g

l
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ers
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2904 PRA 60YURI F. MIGAL
valuesl 50 and 4,a2u by l 53, eg by l 52, t1u by l 51 and
3, andt2g by l 52. We can see that in case of the total syst
there is thel 54 solution which is absent in solution sets f
the separate subsystems~for the A subsysteml<2, and for
the B subsysteml<3).

However, the presence of the two subsystems does
lead automatically to additional vanishing of some su
mands in one-center expansions of the solutions for the t
system. In particular, in the botha1g solutions of the system
there are summands withl 50 and l 54 existing in the ex-
pansions for the subsystems too. But at smallk the contribu-
tions of these summands to both thea1g solutions are differ-
ent. In the first solution, also as in the solutions for t
separate subsystems, thel 50 summand is dominant, and th
l 54 one is comparatively small. The situation in the seco
solution is inverse. In this case our task is to find such
system whose solutions are closer to spherically symme
e

e

n
e
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-
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e

m
b

in
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ot
-
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ones than for the separate subsystems. For example, fo
first a1g solution with dominantl 50 summand it is required
to find a form in which thel 54 summand is absent com
pletely. The presence of the two subsystems with indep
dent parametersa enables such solutions to be constructe

To fit properly the parameters we turn to the problem
determining wave amplitudesbj for the system. In our case
there are only two different amplitudesbj : bA characterizes
sources in theA subsystem, andbB in the B subsystem. To
determine concrete values of these amplitudes we use e
tions of matching of solutions~5! and the ‘‘inner’’ solutions
for separate point scatterersc j5pj (ur2r j u212a j ),r→r j ,
wherepj are coefficients depending on the energy~see, e.g.,
Ref. @2#!. The matching procedure includes the power ser
expansion of solution~5! and the equality of the correspond
ing terms in Eq.~5! and in the ‘‘inner’’ solutions. As a resul
for the a1g solutions we get the pair of coupled equations
rs.
bA@4 sin~kr131h!/r 131sin~2kR1h!/~2R!1k cosh1aA sinh#1bB@4 sin~kr121h!/r 1214 sin~kr141h!/r 14#50,

bA@3 sin~kr121h!/r 1213 sin~kr141h!/r 14#1bB@3 sin~kr241h!/r 2413 sin~kr251h!/r 251sin~2kR1h!/~2R!

1k cosh1aB sinh#50. ~9!

Herer 1250.9194R, r 1351.4142R, r 1451.7761R, r 2451.1547R, r 2551.6330R are different distances between the scattere
The written system of equations allows us to find the phasesh and the relation between the amplitudesbA and bB . To
determine these amplitudes completely it is necessary also to use the normalizing condition~4!.

The next step is the analysis of the one-center expansion of thea1g solution about the sphere center written in the form

Cl
15@6blA18blB# j 0~kR!h0

1~kr !1@6blAf4~V1!18blBf4~V2!# j 4~kR!h4
1~kr !f4~V!

1@6blAf6~V1!18blBf6~V2!# j 6~kR!h6
1~kr !f6~V!1¯ ~r .R!, ~10!
tion.
tions

ith
ical

limi-
s
xt
in

ron

a
and
by

rete
etric
igher
wheref l(V) are cubic harmonics corresponding to thea1g

solution. Their values at the centers of theA subsystem are
f4(V1)50.6464,f6(V1)50.3596, and at the centers of th
B subsystemf4(V2)520.4309,f6(V2)50.6393. In order
that the l 54 summand in Eq.~10! becomes zero at som
energy it is sufficient, for example, to fix theaA quantity
and, by varying theaB quantity, find its proper value. In
particular, atk52.0 andaA55 we getaB54.55. In this case
the amplitudes take the following~non-normalized! values:
for the first solution (l51)bA51,bB51.128 which provides
the vanishing of thel 54 summand, for the second solutio
(l52)bA51,bB520.75 which leads to the vanishing of th
l 50 summand. It should be noted that the amplitudesb de-
pend on the energy, and in our example the summands
cated do not become zero atkÞ2.0 although they remain
small enough~smaller than for the separate subsystems! in a
wide interval ofE. Also such a relation between the sum
mands withl 1 andl 2 takes place, as a rule, in the case of a
values ofaA andaB close enough to each other. Only if on
of the parameters becomes large in modulus~.100!, this
relation becomes similar to that for the separate subsyste

The result obtained is, of course, not unexpected. It can
easily extended to larger systems. We affirm that by vary
parametersa one can attain that the solution for a fini
di-

y

s.
e

g

system of PSs approaches a spherically symmetric solu
The more scatterers in a system, the nearer these solu
each other. Already for the considered system of 14 PSs w
the octahedral symmetry we have obtained the effect typ
for icosahedral systems—the absence of thel 54 summand
in the solution with the dominantl 50 summand. As the
number of scatterers increases, one can sequentially e
nate the summands withl 56,8 and so on, increasing in thi
way thel 2 quantity up to any preassigned value. In the ne
section we consider a specific phenomenon appearing
many-center systems for which thel 2 value is large.

IV. GEOMETRIC SHAPE RESONANCES IN A SPHERICAL
MANY-CENTER SYSTEM

In high-symmetric systems there may exist one-elect
quasistationary states~shape resonances! of a peculiar kind
discovered in Ref.@5#. These states are distinguished by
specific behavior as the potential of a system intensifies,
they occur only in narrow energetic intervals determined
the geometric size of the system. In contrast to usual~hybrid-
ized! shape resonances which shift smoothly into the disc
spectrum when the potential becomes stronger, the geom
resonances are destroyed under such conditions. The h
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the symmetry of the system, the more strongly pronoun
these resonances are. In Ref.@5# the resonances in a syste
of eight identical PSs located at apexes of a cube were
amined. Later on such resonances were discovered als
real many-atom systems. In particular, in Ref.@6# these reso-
nances were investigated for the compounds LiBiS2 and
NaBiS2.

The reasons of the existence of geometric resonances
be shown easily by considering point scatterers for wh
simple analytical expressions can be written. Let us ag
turn to Eqs.~7! and~8!. In the previous section we examine
the vanishing of coefficientsdlL caused by sums
( jbl jYL(nj ). Now we consider an effect related to the va
ishing of the functionj l(kR). In particular, in the case of th
a1g solution in octahedral systems, behaving at smallk as the
s solution, the second summand, as repeatedly mentio
above, is thel 54 term. However, in the energetic doma
wherekR'p the l 50 summand vanishes because here
function j 0(kR) is close to zero. Under such conditions t
l 54 summand becomes dominant. Thus, whenk increases
from zero to 2p/R thea1g solution turns from thes solution
into the g solution and conversely. In a narrow energe
interval including the valuek25(p/R)2 the system is in the
g state and surrounded by the high centrifugal barrier w
l 54. If one-center potentials of the system~parametersa j
for the PS system! are fitted properly, in this energetic inte
val there exists a strongly pronounced shape resonance
l 54. If the potentials intensify, the resonance is destro
because its energy shifts into a domain where thel 50 sum-
mand again becomes dominant inC1. At these energies the
barrierlesss channel becomes connected to the system
the scattered electron goes to infinity through this chan
without delay. Since such resonances exist in narrow e
getic intervals determined by the geometric size of the s
tem they appear in, they are called geometric resonance

The behavior of geometric resonances, their depende
on the potential, is described visually by means of the mot
of the corresponding poles of theS matrix in the complexk
or E plane. It is known that the real coordinate of th
S-matrix pole corresponds to the resonance energy and
imaginary coordinate to the lifetime of the resonant st
~see, e.g., Ref.@7#!. The nearer the pole to the real axis, t
more long-lived the state and more strongly pronounced
corresponding peak in the cross section for the elastic e
tron scattering from a system. For hybridized resonances
characteristic that when a potential intensifies a pole
proaches the real axis monotonically. Atk→0 the imaginary
coordinate of such a pole is conjugate with its real coordin
by the relation Imkres;(Rekres)

2l . The behavior of poles in
the case of geometric resonances is quite different. Whe
potential intensifies, the pole at first approaches the real
and then moves away. For a system of PSs located at tR
sphere the point of the maximum approach is determined
the equationj l(kR)50 with the minimuml (5 l 1) for the
irreducible representation corresponding to the reson
state. If this state is thea1g state, thenl 150 and the maxi-
mum approach point isk'p/R.

The degree of the proximity of a pole to the real ax
depends on thel 2 value for the one-center expansion ofC1.
For the system of eight PSs located at apexes of a cubl 2
54, for the system of twelve PSs located at apexes of
d
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icosahedronl 256, and in the second case a pole approac
the real axis significantly nearer than in the first. It is caus
by different penetrability of thel 54 and l 56 centrifugal
barriers. For the system of 14 PSs considered in the prev
section one can also obtain the solution withl 256. Trajec-
tories of theS-matrix poles corresponding to the geomet
a1g resonances in the systems of 8 and 14 PSs withd
51 a.u. are shown in Fig. 2. In the case of 8 PSs the poin
the maximum proximity to the real axis isk053.522
2 i0.0592, and in the case of 14 PSsk052.886
2 i0.000823. In the same figure the trajectory of theS-matrix
pole corresponding to the hybridized resonance withl 254
~the seconda1g solution! in the system of 14 PSs is pre
sented for the comparison.~In all calculations performed for
the system of 14 PSs the parametersa j were accepted to be
identical:aA[aB .)

It is clear that by increasing the number of PSs at theR
sphere and, respectively, thel 2 value one can achieve a
essential proximity of a pole to the real axis. Then the c
responding geometric resonance is almost not distinguis
from a state of the discrete spectrum. One may assume
if such systems can be realized, the geometric resona
with superlarge lifetimes can be used for the creation of tr
for free electrons. As long as characteristics of geome
resonances significantly depend on the symmetry of
atomic arrangement and any breakdown of the symm
deteriorates the conditions of the existence of the resonan
the traps can be controlled by distorting them by means
external fields. A detailed consideration of this problem w
be published.

V. CONCLUSIONS

For a system of large number of scatterers located a
sphere one can obtain the solutions of scattering which

FIG. 2. Trajectories of theS-matrix poles corresponding to geo
metric ~1,2! and hybridized~3! shape resonances in systems
point scatterers with the nearest-neighbor distanced51 a.u. Curve
1 corresponds to a system of eight scatterers located at apexes
cube, and curves 2,3 correspond to the system of 14 scatt
shown in Fig. 1~b!.
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close to the solutions for spherically symmetric potentia
By fitting potentials of separate centers it is possible to at
that in a given interval of energies the wave function
the scattered electron outside the system is described,
high precision, by a term with a certain value of the orbi
quantum numberl. In the one-center expansion of th
wave function about the point symmetry center one can
.
in
f

a
l

e-

glect all other terms corresponding to otherl values. The
degree of this approximation depends on the number of s
terers.

In such systems there may exist geometric shape r
nances with large lifetimes increasing if systems increa
These specific states can be used for creating traps for
electrons.
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