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Spherical many-center scattering systems
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High-symmetric systems of a large number of scatterers located at a sphere ofRdthieRR spherg¢ are
considered. A method of constructing such systems with point symmetries of crystalline lattices which is based
on the projection of atomic shells onto tResphere is proposed. In this way one can obtainRtsphere with
the number of scatterers tending to infinity. By choosing potentials of separate centers one finds that such a
system is closest to a spherically symmetric one. In this case the solution of scattering is uniquely characterized
by a certain value of the orbital quantum numhe3pecific shape resonances, geometric resonances, which can
exist in many-center systems only in narrow energetic intervals and are destroyed as a potential becomes
stronger, are examineflS1050-294{@9)07109-1

PACS numbd(s): 34.10+x

I. INTRODUCTION
W(E,n=hy (kNY(Q)+2 S (knYL(Q)(r>R),
The discovery of fullerenes has stimulated the develop- L (1)
ment of the investigations of various types of exotic struc-

tures including spoculative constructions of a large numbeyhere hi“(kr) are spherical Hankel functions, () are
of atoms. The acnlevements of nanotechnology allow us tPeal spherical harmonics, ,, are elements of th& matrix,
hope that some kinds of these construotlons can be realizeg_ JE, E is the energy of the scattered electron, arid a
However, even thoogh some cons_tructlons are unstable anflsiance from the electron to the sphere center. Equétipn
cannot exist in reality, the analysis of them can be usefuljescribes the situation when the electron approaches the sys-
both from the theoretical and practical points of view if it tem through a certain inpiit channel and moves off through
enables us to discover new properties of many-atom systems system of many output’ channels. It is the fact that
or generalize some theoretical propositions. distinguishes the scattering by many-center systems from the
The purpose of this paper is to develop a scheme of conscattering by a spherically symmetric potential for which it is
structing hypothetical spherical many-atom systems andharacteristic that the electron approaches and moves off
study their properties appearing in the electron scatterinpom the system through the same channel. The main prob-
from these systems. We consider systems of many atomiem to be solved below is to construct a many-center system
located at a sphere of some radius that are, in a sense, simile® that the scattering by it is most close to the scattering by
to fullerenes. The basic question is how much the scattering spherically symmetric potential. More exactly, we try to
from such systems can be close to the scattering from sphefiind a system for which the scattering is one channel, at least
cally symmetric potentials and what principal differencesin some finite energetic interval.
there are between these types of scattering. In addition, be- Beforehand we shall write a few general relations that
low specific quasistationary statégeometric shape reso- Will be useful later on. System of solutiofi$) can be trans-
nances which are characteristic for high-symmetric many- formed to more symmetric form in which there are some

center systems and expected to be most strongly pronounoérbo_Ut ohannels and, moreover, the flows incoming an_d out-
in objects under consideration, are investigated. going in every channel are equal to eoch o'gher. Obv!ously,
' the question is a basis set of solutions in which $maatrix

is diagonal. In this case

IIl. MANY-CHANNEL SCATTERING FROM
A MANY-CENTER SYSTEM v,=> qu¥,
L

Let us consider a system of a large number of scatterers,
whose centers are located at a sphere of raRiVge assume _ — ; +
that the potential describing the interaction between the scat- EL: A Lhy (ke exp2im)hy (k)Y (D), (2)
tered electron and the system is equal to zero outside the
system. In this case electronic states with certain values offhere the indexx numbers linearly independent solutions,
guantum numbert and m are eigenstates of an asymptotic 7, are eigenphases of the system, apd are elements of a
Hamiltonian, and it is possible to say aboutchannels matrix diagonalizing theS matrix.
through which the electron can approach and move off from Further one can pass to the most symmetric expression for
the system[L=(l,m) is a combined quantum number ¥,, where summands describing incoming and outgoing
Then, as is well known, solutions of the stationary Sehro waves are identical. To this end we redefine coefficients and
dinger equation can be represented as require that the function, is real
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center system is not distinguished from spherically symmet-
W, =2, dy[exp(—in)h (kn)+exp(in)h’(kNTYL(Q)  ric onesat arbitrary energieslt is natural to expect that the
- most satisfying these conditions is a system of scattering
=(¥, +¥))2=Re¥ . ©) centers located at a sphere. As long as we are interested in
symmetry properties of the Schtinger equation solutions
HereW, =(¥,)*=3d,,_expin)h (kr)Y_(Q) is the solu- rather than concrete potentials of scattering centers, it is
tion of the Schrdinger equation for a system with sourcesworth to consider models within which the arrangement of
[1]. It is proportional to the many-center Jost solutidr. centers is reproduced exactly but potentials can be repro-

The coefficientsl,, are real and satisfy the condition duced roughly. The simplest such model is a system of point
scatterer{PSg. We shall attempt to find how many PSs to

S d,d, =6 4 choose and how to locate them in order for the scattering

= CALEaL T O @ from the system to be most close to the scattering from a
spherically symmetric potential? A system of PSs allows us

that provides the orthonormalizing of the functions from Eg.to find this on an analytical level.

(3 It should be reminded that an isolated PS is uniquely char-
acterized by only the parametaer(see, e.g., Ref.2]). Near

f ‘P)\(k,r)\Pﬂ(k’,r)dV=[7-r/(2k2)]5W6(k—k’). the scatterer the real wave function can be represented as
¥ =constX[1/r — a]+O(r),
It is easy to show that as— =« the solutions¥, for the

system of sources due to the propertiepftake the form ~ Which can be considered as the determination ofdfea-
rameter. Ifa>0, the PS has a single boursdstate (in a

‘I’fz[exp(ierrim)/(ikr)]Ax(n), frame of reference related to this P®&ith the energyE
=—a?/2. For a system oN point scatterers there afg
whereA, (n)==(Fi)'d,_ Y, (Q) are some effective spheri- orthonormalized solutions with nonzero phases [2].
cal harmonics describing the angular dependence of the tot&lources in PS system can emit oslwaves. The¥," solu-
wave emitted by the system of sources. tion for a system of sources centered at PSs can be written
The coefficientad,, are uniquely determined by the po- for arbitraryr values(both inside and outside the systeas
tential of a concrete system and depend on the energy of the
scattered electron. Ak—0 only one of these coefficients
remains nonzerd,, — OLL, whereL, is the quantum num-
ber characterizing approximately the solutidn at smallk
values. In this cas@\x(n)z(Ii)'xY,_x(Q) and the phases Wherer; are coordinates of PSs ahg; are amplitudes o$
7, behave as phases for spherical objegts- k2» "1, Thus ~ Waves 'emitted by the sources. Using the knob@ re-
at k—0 the scattering from any finite many-center systemeXpansion formula
becomes one-channel and is similar to the scattering from a

*P:=exp<im)§ by;hg (Klr—r;]), (5)

+ '
spherically symmetric potential. However, lagcreases, the ho (Klr=r"[)
situation changes and some channels become connected with
¥, . The larger the system, the more channels one must to =47, ji(kr")YL(Q)h(kr)Y(Q) (r'<r)
take into account. In real calculations at finkezalues one -
should consider channels witkskR. (6)

If a system has no point symmetry, all such channels mix
in each solution. In the case of systems with a point symmelj|(KR) are spherical Bessel functiopswe get the one-
try the whole set of the channels is divided into subsets corcenter expansion oF, written about the sphere center
responding to the irreducible representations of the symme-
try group. In particular, in the case of the cubic symmetry +_ ; +
(the symmetry grou®;,) in a4 solutions only channels with Wy =exl 77*)2;‘ A (knYL(Q) (r>R) — (7)
[=0,4,6 ..., remain mixed. Due to this sequence of the
numbers one of thayy solutions can be imitated by the one- in which
channel representation witl=0 up to comparatively largke

values k<4/R). For the highest point symmetry, icosahe- A _ _

dral symmetry(the groupY},), in the identical representation A 4WJ'(kR); Dy YLNy). ®

a4 the channels with=0,6, . . . ,mix, and a system with this

symmetry (e.g., the moleculeC,,) is still more similar to From these equations it follows that soswave, emitted
spherically symmetric one. by a source, in the frame of reference related to the sphere

Thus, high-symmetric systems at small energies are natenter is an aggregate bfwaves emitted into channels with
distinguished significantly from spherically symmetric onesall | values (=0,1, ... <). Such waves in channels are
in the scattering processes. This general conclusion is, afharacterized by the amplitudel, . Notice also that the
course, well known, and some details adduced above arghaser, is common for alls waves emitted by the sources
necessary for us only to approach our problems. The first chndL waves in channels, i.e., the sources are coherent. Only
them is to determine the conditions under which a many-<due to the superposition of waves emitted by various sources
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can one attain that a wave in channel with a certaimlue Ill. ONE-CHANNEL SCATTERING
vanishes. It is possible if for thisvalued,, ~Xb,;Y(n;) FROM A MANY-CENTER SYSTEM
=0. [Effects conditioned by the vanishing of the factor
i1(kR) will be considered in Sec. IY.Thus, changing am-
plitudesb,; of swaves of sourcefthrough changing param-

At the beginning of the previous section we already con-
sidered examples of high-symmetric systems the scattering
etersa), one can pick Up a set df, . so that a wave in a from which at small nonzero _energies is close to one-

n . A . channel. The octahedral and icosahedral arrangements of
certainL channel vanishes. Moreover, for a finite number of . ... o< \vere in question. A system of the minimum num-

PSs it is possible to eliminate waves simultaneously from %er of scatterers with the octahedral symmetry is the system

finite number of channels. In order that the scattering from f six identical centers located at apexes of an octahedron. If

system is strictly one channel, one must eliminate waves o . )
: - “3catterers are point, in this case there are six solutibfis
from all channels except one. It is clear, that at arbitrary

energies it is possible only for a system of ih&nite num- W|t|ht'nonzerodstcatter|n? Ehaseit ORgy Iiolutlmn, tzreetlu
ber of scatterers. solutions, and twa, solutions. At smalk values these so-

In our approach it is easy to determine what distributionluuons’ as stated above, can be classified by means of the

) . L . orbital quantum numbédr Below we shall need information
of amplitudes in an infinite system of sources provides the

strictly one-channel scattering. From E8) it follows that if Whatl values are represented in one-center expansions of the
y o 9. B fotiow. ! solutions about the point symmetry center in the case of the
scatterers are distributed at the sphere uniformly and ampl

i bh group. This informatiorisee, e.g., Ref4]) is collected in
tudes byj—bY, (n;) where b is a constant, therd\.  Tapje |, From it follows particularly that in tha, 4 solution

=4mj (KR [bY_ ()Y (2)dQ =35 47bj(kR). Hence, expansion there are summands with0, 4, and so on. At
an infinite system of PSs located uniformly at the sphere an— 0 it should retain in the expansions only a summand with
emitting s waves whose amplitudes are proportional to soméhe minimall value (=1;). Thus, atk—0 thea,, solution
spherical harmoni®, () with a givenL value, generates a contains only a term witl,=0, thet,, solution with |,
total wave with the same value at arbitrary energies. =1, and theey solution withl,=2. The size of an energetic
Here we want to emphasize a fact important from point of €9ion where one can restrict onesglf to the f|rst.summand
view of the methodology. If in a system at-R there is an  depends on the secomdzalue (=I5) in the expansions. In
only wave with a certairL value andl =0, it signifies that Particular, for thea,  solutionl;=4, and the region of the

the system being in this state is surrounded by the centrifugaﬂnIe'dr']"’mneI sc?t'teringhisdrelstricted by tf;}e V¥H9<<4/R'
barrier with the samé (It follows immediately from the fact n the case of icosahedral symmetry the minimum system

that such a wave is the solution of the Safinger equation is a system of twelve PSs located at apexes of an icosahedron

with the corresponding centrifugal barrieBecause we have .[F'g' Ua}]. As mentioned above, for solutlon_s of th@. type

obtained ourL wave via the superposition d&=0 waves n OSl.JCh a gystgrg thhe onelz-ghannﬁe/l scattering region iwith
o . o = <6/R.

every of which is not related to any centrifugal barriers we Is restricted by the valukina,~6/R

. . 4 . Now we go over to the consideration of systems consist-
may affirm that the centrifugal barrier surrounding the Sys‘mg of large number of PSs for which the one-channel scat-
tem is aninterference effectn this case it is thelestructive

, ! tering region is bigger than for the above instances. Proceed-
mterferen_ceof waves from various centers thatlleads to theing from the reasons stated in Sec. Il we shall study systems
suppression of the total wave in a region adjacent to they scatterers located at a sphere of radudn order that the
system. This point of view on the nature of centrifugal bar-sjtuation is closer to real we do not fix tievalue but as-
riers is indeed less formal than one adduced in standard texsume that it depends on the number of scatterers. We hold
books, and it is constructive for the analysis of one-electroriixed the minimum distance between scatterers and accept
quasistationary states in many-center syst¢se® Ref[3] it to be equal to 1 a.u. which is equal in order to internuclear
and Sec. IV of this papgr distances in real compounds. Under such conditions, as the
Above we studied the way of obtaining one-channel solunumber of scatterers increases, the sphere radius increases
tions at arbitrary energies and have shown that it is possibl&o.
only in case of model systems of the infinite number of scat- For the system of six PSs located at apexes of an octahe-
terers. However, for finite preassigned energies the situatiodron R=0.7071a.u., and for the system of twelve PSs lo-
is essentially simpler. If an energetic region under considereated at apexes of an icosahedi®s0.9511a.u. In these
ation is limited by a maximum valug,,,,, then in the total small systems the amplitudes of tlsewaves emitted by
solution we can ignore waves in channels wWithk,,,R, and  sources are the same for all PSs within a given solution
even for a finite system it is possible to realize the one{b,;=const) that provides the high symmetry and leads to a
channel scattering to a high precisi¢here we consider not certain similarity between these systems and spherically
a complete set of solutions involving all the scattering chansymmetric ones. While constructing systems of a larger num-
nels, but only solutions with nonzero scattering phases apder of PSs one should keep, of course, the point symmetry of
pearing in quantities observed experimentally, e.g., in thehe arrangement of scatterers to be hifjiere we do not
cross section for scattering, et©bviously, the more scat- consider the variant with no symmetry when amplitutigs
terers in a system, the larger the region of energies where ortd all PSs may be quite different. It should be noted that the
can realize the one-channel scattering. In the next section wanalysis of even the simplest two-PS syst@®ee, e.g., Ref.
consider a practical way of constructing systems for which if3]) shows that it is advisable for our aim to build a system,
is possible to get the one-channel scattering to any preaeeping its symmetry to be high enodglt is well-known
signed precision. that the highest point symmetry is icosahedral and, hence, we
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TABLE I. The decomposition of the space of the functiofis
with | fixed into subspaces corresponding to the irreducible repre-
sentations of th@®,, group.

I Irreducible representations

alg

tlu

€yt 1oy

3-2u+t1u+t2u
aigtegtiygtiy

e, tto, 12ty
Aigtaygt eyt 2ttty

OOk WNEFE O

If the radius ofR sphere does not change, we can consider
a pure theoretical problem of proceeding to the limit of a
spherically symmetric system. Our construction supposes
that the number of points on a sphere of fixed radius can be
infinite, and in this case the points are uniformly distributed
on the sphere. It follows from the fact that in the direction of
any ray outgoing from the central atom of the initial crystal-
line lattice there are atoms whose centers are situated at this
ray. If the number of atomic shells projected onto tRe
sphere increases, we sooner or later reach the first sphere
with one of these atoms, and the corresponding point appears
on the R sphere. Obviously, by increasing the number of
atomic shells projected, in the limit we can fill the sphere

completely.
\/ In this section, however, we do not consider systems of
very large numbers of scatterers and restrict ourselves to
comparatively small systems which, nevertheless, are suffi-

FIG. 1. Systems of point scatterers with the icosahe@aind  ¢jent to show the tendencies appearing as the systems in-
octahedralb) symmetries. The upper system contains 12 'dent'calcrease. More exactly, we consider only a system obtained by
scatterers located at apexes of an icosahedron. The lower syst !

contains 14 scatterers disposed at a sphere including six scatter Jaojecting the two first atomic shells from the face-centered
located at apexes of an octahedfararked byl the subsystem) bic lattice. The first shell coincides in fact with the system

and eight scatterers located at apexes of a ¢oizked by®, the O.f six PS.S already considered above. The second shell con-
subsystend). sists of_ eight scatterers located at the apexes of a cube. The
projection of these shells onto tHe sphere gives us two
should build large systems with this symmetry. However, tosubsystem&A and B containing six and eight PSs, respec-
do it is a complicated thing. It is essentially simpler to build tively [Fig. 1(b)]. The symmetry operations from th®,
large systems with the octahedral symmetry, and here wegroup transfer into each other point scatterers either from the
choose this symmetry. subsystermA or from the subsysterB. The radius of theR
Below we act as follows. We take a face-centered cubisphere providing the value=1 a.u. is equal to 1.0877 a.u.
lattice, then choose one of its atoms as central and consid&hich is somewhat greater than in the case of the icosahe-
atomic shells around this atom. Every atomic shell is a cerdron[Fig. 1(a)]. From the fact that the system is divided into
tain set of atoms with the octahedral symmetry. Angular cothe two subsystems it follows that paramete[of scatterers
ordinates of atoms from different shells, generally speakingand wave amplitudess; of sources from different subsystems
are not the same, and we have, thus, an infinite variety of setzn be different. This freedom allows us to choose the pa-
of angular coordinates. Let us describe around our centrabmeters so that the solutions of scattering from our system
atom a sphere of radilR (the R shellg, then project centers are most close to spherically symmetric ones.
of atoms from various atomic shells onto this sphere preserv- The total number of PS&nd also of the solutions with
ing angular coordinates of atoms, and place point scatterer®nzero phasgsn our system is equal to 14. All the solu-
at corresponding points of tHesphere(Projections of some tions are distributed over the irreducible representations so:
atoms from different shells can be coincident, and then at2a;4+a,,+ €4+ 2t;,+t,5. When associating these solu-
oms whose projections do not add new points aRisphere  tions atk— 0 with certainl values it should be taken into
should be excepted from the consideratiols a result we account that if some representation occurs twice in such a
obtain the desired system of scattering centers locatdl at distribution then for the scattering system there exist two
sphere, with the octahedral symmetry and with the centerdifferent orthonormalized solutions. One of them is charac-
number that we can choose according to our judgment. Theerized by the first value of, and the other by the second
radius ofR sphere is determined finally so that the nearest PSalue from a set corresponding to a given representatiea
distance is 1 a.u. Table ). Thus, in our case the, 4 solutions are classified by
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valuesl =0 and 4,a,, by |=3,e4 by I=2,t;, byl=1 and ones than for the separate subsystems. For example, for the
3, andt,4 by | =2. We can see that in case of the total systenfirst a;4 solution with dominant=0 summand it is required
there is thd =4 solution which is absent in solution sets for to find a form in which thd =4 summand is absent com-
the separate subsystertfer the A subsysteni<2, and for  pletely. The presence of the two subsystems with indepen-
the B subsystem <3). dent parametera enables such solutions to be constructed.
However, the presence of the two subsystems does not To fit properly the parameters we turn to the problem of
lead automatically to additional vanishing of some sum-determining wave amplitudes; for the system. In our case
mands in one-center expansions of the solutions for the totahere are only two different amplitudés: b, characterizes
system. In particular, in the boty 4 solutions of the system sources in theA subsystem, antig in the B subsystem. To
there are summands wilh=0 andl=4 existing in the ex- determine concrete values of these amplitudes we use equa-
pansions for the subsystems too. But at srkalle contribu-  tions of matching of solutioné) and the “inner” solutions
tions of these summands to both thg solutions are differ- ~ for separate point scattererg=p;(|r — r]-|‘1— @j),r—rj,
ent. In the first solution, also as in the solutions for thewherep; are coefficients depending on the enefgge, e.g.,
separate subsystems, the0 summand is dominant, and the Ref.[2]). The matching procedure includes the power series
| =4 one is comparatively small. The situation in the secondexpansion of solutioit5) and the equality of the correspond-
solution is inverse. In this case our task is to find such ang terms in Eq(5) and in the “inner” solutions. As a result
system whose solutions are closer to spherically symmetritor the a;4 solutions we get the pair of coupled equations

bal4 sin(kriz+ 7)/r 13+ SiN(2kR+ 7)/(2R) + k cosn+ aa Sin ]+ bg[ 4 SiNKr o+ 7)/r 15+ 4 Sin(Kr4+ 7)/114]=0,
+kcosn+agsiny]=0. 9

Herer,=0.919R, r13=1.414R, r,=1.776R, r,,=1.154'R, r,5= 1.633[R are different distances between the scatterers.
The written system of equations allows us to find the phasesd the relation between the amplitudes and bg. To
determine these amplitudes completely it is necessary also to use the normalizing caddlition

The next step is the analysis of the one-center expansion afjtheolution about the sphere center written in the form

Wy =[6b,a+8byglio(kR)hg (Kr)+[6byachs(21) +8bygda(Q2)]ja(kR)hy (Kr) da(Q)
+[6byad6(Q21) +8byghe(Q2)1js(kR)Ng (Kr) ¢he(Q) +-++ (r>R), (10)

where ¢,({2) are cubic harmonics corresponding to thg system of PSs approaches a spherically symmetric solution.
solution. Their values at the centers of thesubsystem are The more scatterers in a system, the nearer these solutions
$4(Q1)=0.6464¢4(Q,)=0.3596, and at the centers of the each other. Already for the considered system of 14 PSs with
B subsystemg,(Q,) = —0.4309¢¢({2,)=0.6393. In order the octahedral symmetry we have obtained the effect typical
that thel =4 summand in Eq(10) becomes zero at some for icosahedral systems—the absence oflthd summand
energy it is sufficient, for example, to fix the, quantity in the solution with the dominant=0 summand. As the
and, by varying theag quantity, find its proper value. In number of scatterers increases, one can sequentially elimi-
particular, ak=2.0 anda,=5 we getag=4.55. In this case Nate the summands with=6,8 and so on, increasing in this
the amplitudes take the followingnon-normalizefvalues: ~ Way thel; quantity up to any preassigned value. In the next
for the first solution § =1)b,=1,b5=1.128 which provides section we consider a speqﬁc phenomgnon appearing in
the vanishing of thé=4 summand, for the second solution Many-center systems for which thevalue is large.
(A=2)bp=1bg=—0.75 which leads to the vanishing of the

=0 summand. It should be noted that the amplitudete-

pend on the energy, and in our example the summands inglY- GEOMETRIC SHAPE RESONANCES IN A SPHERICAL

cated do not become zero k2.0 although they remain MANY-CENTER SYSTEM

small enougtsmaller than for the separate subsysteims In high-symmetric systems there may exist one-electron
wide interval of E. Also such a relation between the sum- quasistationary statgshape resonancesf a peculiar kind
mands withl ; andl, takes place, as a rule, in the case of anydiscovered in Ref[5]. These states are distinguished by a
values ofa, andag close enough to each other. Only if one specific behavior as the potential of a system intensifies, and
of the parameters becomes large in modulnd00), this  they occur only in narrow energetic intervals determined by
relation becomes similar to that for the separate subsystemthe geometric size of the system. In contrast to udugbrid-

The result obtained is, of course, not unexpected. It can bized) shape resonances which shift smoothly into the discrete
easily extended to larger systems. We affirm that by varyingpectrum when the potential becomes stronger, the geometric
parameterse one can attain that the solution for a finite resonances are destroyed under such conditions. The higher
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the symmetry of the system, the more strongly pronounced
these resonances are. In Rgf] the resonances in a system
of eight identical PSs located at apexes of a cube were ex- 0.0 1.0 2.0
amined. Later on such resonances were discovered also ir 0.00 ! ' '
real many-atom systems. In particular, in Réfl these reso-
nances were investigated for the compounds LjB#d
NaBiS,. -0.04 —

The reasons of the existence of geometric resonances cal
be shown easily by considering point scatterers for which
simple analytical expressions can be written. Let us again -0.08 —
turn to Eqs(7) and(8). In the previous section we examined
the vanishing of coefficientsd,, caused by sums
2ib,;YL(n;). Now we consider an effect related to the van- 012
ishing of the functiorj;(kR). In particular, in the case of the 1
a4 solution in octahedral systems, behaving at siak the 016 -
s solution, the second summand, as repeatedly mentionec '
above, is thd =4 term. However, in the energetic domain 1
wherekR~ 7 the | =0 summand vanishes because here the 0.20 |
function jo(kR) is close to zero. Under such conditions the
|=4 summand becomes dominant. Thus, whkeincreases FIG. 2. Trajectories of th&matrix poles corresponding to geo-
from zero to 27/R thea, 4 solution turns from the solution  metric (1,2) and hybridized(3) shape resonances in systems of
into the g solution and conversely. In a narrow energeticpoint scatterers with the nearest-neighbor distahed a.u. Curve
interval including the valu&®=(7/R)? the system is in the 1 corresponds to a system of eight scatterers located at apexes of a
g state and surrounded by the high centrifugal barrier withcube, and curves 2,3 correspond to the system of 14 scatterers
|=4. If one-center potentials of the systedparametersy; shown in Fig. 1b).
for the PS systejrare fitted properly, in this energetic inter-
val there exists a strongly pronounced shape resonance witbosahedror,=6, and in the second case a pole approaches
| =4. If the potentials intensify, the resonance is destroyedhe real axis significantly nearer than in the first. It is caused
because its energy shifts into a domain wherelth® sum- by different penetrability of thd=4 and|=6 centrifugal
mand again becomes dominantdti". At these energies the barriers. For the system of 14 PSs considered in the previous
barrierlesss channel becomes connected to the system andection one can also obtain the solution wijk= 6. Trajec-
the scattered electron goes to infinity through this channetories of theS-matrix poles corresponding to the geometric
without delay. Since such resonances exist in narrow eneg;q resonances in the systems of 8 and 14 PSs with
getic intervals determined by the geometric size of the sys=1 a.u. are shown in Fig. 2. In the case of 8 PSs the point of
tem they appear in, they are called geometric resonances. the maximum proximity to the real axis iky=3.522

The behavior of geometric resonances, their dependencei0.0592, and in the case of 14 PSk,=2.886
on the potential, is described visually by means of the motion-i0.000823. In the same figure the trajectory of Sx@atrix
of the corresponding poles of ti&matrix in the compleXx  pole corresponding to the hybridized resonance Wjth 4
or E plane. It is known that the real coordinate of the (the seconda,q solution in the system of 14 PSs is pre-
S-matrix pole corresponds to the resonance energy and thsented for the compariso(in all calculations performed for
imaginary coordinate to the lifetime of the resonant statehe system of 14 PSs the parameteysvere accepted to be
(see, e.g., Ref7]). The nearer the pole to the real axis, theidentical: ap= g .)
more long-lived the state and more strongly pronounced the |t is clear that by increasing the number of PSs atRnhe
corresponding peak in the cross section for the elastic elegphere and, respectively, the value one can achieve an
tron scattering from a system. For hybridized resonances it igssential proximity of a pole to the real axis. Then the cor-
characteristic that when a potential intensifies a pole apresponding geometric resonance is almost not distinguished
proaches the real axis monotonically. lAt-0 the imaginary  from a state of the discrete spectrum. One may assume that,
coordinate of such a pole is conjugate with its real coordinatéf such systems can be realized, the geometric resonances
by the relation Imk.s~ (Reked?. The behavior of poles in  with superlarge lifetimes can be used for the creation of traps
the case of geometric resonances is quite different. When far free electrons. As long as characteristics of geometric
potential intensifies, the pole at first approaches the real axigsonances significantly depend on the symmetry of the
and then moves away. For a system of PSs located @ the atomic arrangement and any breakdown of the symmetry
sphere the point of the maximum approach is determined bgeteriorates the conditions of the existence of the resonances,
the equationj;(kR)=0 with the minimumlI(=1,) for the the traps can be controlled by distorting them by means of
irreducible representation corresponding to the resonardxternal fields. A detailed consideration of this problem will
state. If this state is the,q state, therl;=0 and the maxi- be published.
mum approach point ik~ 7/R.

The degree of the proximity of a pole to the real axis
depends on thb, value for the one-center expansion®f .
For the system of eight PSs located at apexes of a tybe  For a system of large number of scatterers located at a
=4, for the system of twelve PSs located at apexes of asphere one can obtain the solutions of scattering which are

Imk

V. CONCLUSIONS
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close to the solutions for spherically symmetric potentialsglect all other terms corresponding to otHevalues. The

By fitting potentials of separate centers it is possible to attairdegree of this approximation depends on the number of scat-
that in a given interval of energies the wave function ofterers.

the scattered electron outside the system is described, to a In such systems there may exist geometric shape reso-
high precision, by a term with a certain value of the orbitalnances with large lifetimes increasing if systems increase.
guantum numbed. In the one-center expansion of the These specific states can be used for creating traps for free
wave function about the point symmetry center one can neelectrons.
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