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Integral identities and bounds for scattering calculations and the Dirac formalism
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Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

~Received 5 January 1999!

Integral identities that hold between ‘‘desired’’ and ‘‘comparison’’ solutions of the radial Dirac equations
for scattering processes are considered. Applications of these identities are discussed, particularly the determi-
nation of bounds to variational calculations ofK-matrix elements.@S1050-2947~99!09106-4#

PACS number~s!: 11.80.2m
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Relativistic effects in atomic scattering, and indeed
many quantum scattering processes, can usually be treat
small corrections, and handled by perturbation theory w
respect to the nonrelativistic~Schrödinger! results. However,
for some processes, such as the scattering of electron
atoms and molecules, and for many nuclear scattering
cesses, it is often convenient or even necessary to use
Dirac equation directly. This is because the relativistic kin
matics and spin effects are then automatically ‘‘built in
~see, for example, Refs.@1–3# and citations therein!. In ad-
dition to this, relativistic corrections to the dynamics~i.e.,
corrections to the static potential! may need to be taken int
account.

In the Dirac formalism, the description of the scattering
a fermion~such as an electron or positron! by a target~such
as a neutral atom! is often reducible to the solution of th
radial Dirac equations (\5c51)

f 8~r !1
k

r
f ~r !5@E1m2V~r !#g~r !1X~r !, ~1!

g8~r !2
k

r
g~r !52@E2m2V~r !# f ~r !1Y~r !, ~2!

wheref (r ) andg(r ) are the usual reduced radial coefficien
of the ‘‘large’’ and ‘‘small’’ components of the Dirac spino
for the incident fermion of massm and energyE. The terms
X(r ) and Y(r ) include exchange effects as may be app
cable. We shall restrict our discussion to the class of po
tials V(r ), and corresponding exchange termsX(r ),Y(r ),
such that the solutionsf (r ),g(r ) satisfy the following
boundary conditions:

f k~r 50!5gk~r 50!50, ~3!

f k~r→`!;Ak~k!sinS kr2 l
p

2 D1Bk~k!cosS kr2 l
p

2 D ,

~4!

gk~r→`!;
f k8~r !

E1m

5
k

E1m FAk~k!cosS kr2 l
p

2 D
2Bk~k!sinS kr2 l

p

2 D G , ~5!
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wherek25E22m2, andk5 j 1 1
2 if j 5 l 2 1

2 ~‘‘spin down’’ !
and k52( j 1 1

2 ) if j 5 l 1 1
2 ~‘‘spin up’’ !. This means that

the potentials are short range and not overly singular at
origin. Specifically, a sufficient condition is that the limit o
r 2V(r ) be zero asr→` and asr→0. If the potentialV(r ) is
long range, i.e., if it contains a Coulombic contribution, th
the sine and cosine functions in Eqs.~4! and ~5! would be
replaced by the corresponding Coulomb functions.

The asymptotic forms~4! and ~5! can be written in the
equivalent form

f k~r→`!;Ck~k!sinS kr2 l
p

2
1hk~k! D , ~6!

gk~r→`!;
k

E1m
Ck~k!cosS kr2 l

p

2
1hk~k! D , ~7!

wherehk(k) are the scattering phase shifts, while

Ak~k!5Ck~k!coshk~k! and Bk~k!5Ck~k!sinhk~k!.
~8!

The asymptotic normalization constantsCk(k) @or,
equivalently, the constantsAk(k),Bk(k)# may be chosen to
be anything that is convenient. Some common choices
Ck(k)51, Ck(k)5sechk(k), etc. The scattering cross se
tions or polarization parameters are then calculated from
phase shiftshk(k) @1,2#.

In nonrelativistic~Schrödinger! scattering theory, pertur
bative effects can be taken into account by using the inte
identity between a ‘‘given’’ and ‘‘comparison’’ solution firs
obtained by Hulthe´n @4# and later elaborated by Kato@5# and
others. This integral identity can also serve as the basis
approximate variational solutions to the scattering equati
@4–7#, and for determining bounds on approximate calcu
tions of scattering parameters@8,9#.

Evidently, analogous results can be written down in t
Dirac formalism of scattering theory, as we now proceed
discuss. Thus, supposef̄ (r ),ḡ(r ) are solutions of a ‘‘trial’’
or ‘‘comparison’’ problem, corresponding toX̄(r ), Ȳ(r ) and
the potentialV̄(r ), namely

f̄ 8~r !1
k

r
f̄ ~r !5@E1m2V̄~r !#ḡ~r !1X̄~r !, ~9!
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ḡ8~r !2
k

r
ḡ~r !52@E2m2V̄~r !# f̄ ~r !1Ȳ~r !, ~10!

with

f̄ k~r→`!;C̄k~k!sinS kr2 l
p

2
1h̄k~k! D , ~11!

ḡk~r→`!;
k

E1m
C̄k~k!cosS kr2 l

p

2
1h̄k~k! D . ~12!

Straightforward manipulations of Eqs.~1!, ~2!, ~9!, and
~10! result in the identity

d

dr
~ f̄ g2 f ḡ!5~V2V̄!~ f f̄ 1gḡ!1X̄g2Xḡ1 f̄ Y2 f Ȳ.

~13!

Integration of Eq.~13! leads to the result

@ f̄ ~r !g~r !2 f ~r !ḡ~r !#0
R5E

0

R

dr@~V2V̄!~ f f̄ 1gḡ)

1X̄g2Xḡ1Y f̄2Ȳf #, ~14!

where f 5 f (r ), etc. in the integrand of Eq.~14!. If we now
make the replacementsf 5 f̄ 1( f 2 f̄ ), etc., Eq.~14! can be
rewritten in the form

D5E
0

R

dr@~V2V̄!~ f̄ 21ḡ2!#

1E
0

R

dr~V2V̄!@~ f 2 f̄ ! f̄ 1~g2ḡ!ḡ#

1E
0

R

dr@~X̄2X!ḡ2~Ȳ2Y! f̄ #

1E
0

R

dr@X̄~g2ḡ!2Ȳ~ f 2 f̄ !#, ~15!

where

D5@ f̄ ~r !g~r !2 f ~r !ḡ~r !#0
R;

k

E1m
CC̄ sin~ h̄k2hk!

5
k

E1m
~B̄A2ĀB!, ~16!

and the symbol ‘‘;’’ indicates thatR has been taken to b
sufficiently large that the asymptotic forms~6!, ~7!, ~11!, and
~12! apply ~we can takeR→`).

The integral identities~14! and~15! relate the phase shift
hk ~or, more generally, functions of these, such as
K-matrix elements,Kk5tanhk , T-matrix elements,Tk
5eihk sinhk , etc.! to the ‘‘comparison’’ phase shiftsh̄k ~or
corresponding functions thereof!. This is clear from the ex-
plicit form of D for a given choice of asymptotic normaliza
tion, that is, choice ofA and B or alternatively C. For
example, ifC5C̄51, thenD5@k/(E1m)#sin(h̄k2hk), or
e

if A5Ā51, B5tanhk5Kk , and B̄5tanh̄k5K̄k , then

D5@k/(E1m)#(K̄k2Kk), etc.
The integral identities~14! or ~15! can be used for various

purposes, some of which we discuss briefly in what follow
(i) Formal results.If we takeV̄50, and the corresponding

free incident wave solutions of Eqs.~9! and ~10! for f̄ k and
ḡk , then the identity~14! ~with A5Ā51, B5tanhk5Kk ,
and B̄50) gives the well-known integral expression for th
K-matrix elements,

Kk52
E1m

k E
0

R

dr@V~ f f̄ 1gḡ!2Xḡ1Y f̄#. ~17!

This is often used for extracting the phase shifts from n
merical solutions of Eqs.~1! and ~2!.

(ii) Perturbative calculations.A not-infrequent situation
is that the potentialV can be written in the formV5V0
1V1 , whereV0 is a dominant~and/or easily solvable! inter-
action term~such as the electrostatic potential in atomic sc
tering!, and V1 is a small ‘‘correction’’ term. Then, obvi-
ously, if V̄5V0 , f̄ and ḡ are known~or easily obtainable!,
while V2V̄5V1 can be handled perturbatively. Takingf
5 f̄ and g5ḡ in lowest order on the right-hand side of E
~15!, one can use that equation to evaluatehk in terms ofh̄k
plus a lowest-order perturbative correction@which is given
by the right-hand side of Eq.~15! with f 5 f̄ and g5ḡ#. In
general the perturbation may be inV only, or in X andY, or
both ~see, for example, Ref.@10#!.

(iii) Variational approximations.In some instances it may
be useful or necessary to approximate the solutions of E
~1! and~2! variationally. For example, one may wish to ha
analytic representations of the solutions@recall that, with rare
exceptions, Eqs.~1! and~2! are not analytically solvable#. In
such cases, one can use a variational approach, in which
desired~unknown! solutionsf (r ),g(r ) are approximated by
analytic trial formsf̄ (r ),ḡ(r ) that contain adjustable param
eters a j ( j 51,...,np). The identity ~15! can be used to
choose these parametersa j in a variationally optimal way.
We illustrate this in the caseX5Y5X̄5Ȳ50, and normal-
ization choiceCk5C̄k51, in which case the identity~15!
can be written as

k

E1m
sin~ h̄k2hk!5I @ f̄ ,ḡ#1R2@ f ,g, f̄ ,ḡ#, ~18!

where

I @ f̄ ,ḡ#5E
0

R

dr~V2V̄!~ f̄ 21ḡ2! ~19a!

5E
0

R

drH f̄ F S d

dr
2

k

r D ḡ1~E2m2V! f̄ G
2ḡF S d

dr
1

k

r D f̄ 2~E1m2V!ḡG J , ~19b!

and where we have used the identities
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S d

dr
1

k

r D f̄ ~r !2@E1m2V~r !#ḡ~r !5@V~r !2V̄~r !#ḡ~r !,

~20!

S d

dr
2

k

r D ḡ~r !1@E2m2V~r !# f̄ ~r !52@V~r !2V̄~r !# f̄ ~r !,

~21!

in rewriting Eq. ~19a! in the form ~19b!. The termR2 is a
‘‘remainder’’ that is given by the expression

R2@ f ,g, f̄ ,ḡ#5E
0

R

dr~V2V̄!@~ f 2 f̄ ! f̄ 1~g2ḡ!ḡ#,

~22!

which is second order in the ‘‘small’’ quantitiesf 2 f̄ , g

2ḡ, and V2V̄. Usually we takeR→` in these integrals,
and this shall be done in the rest of this paper.

From Eq.~18!, if we neglectR2 , it follows that

hk~k!.h̄k~k!2
E1m

k
sin21 I @ f̄ ,ḡ#5hk

~app.!~k,a j !,

~23!

where hk
(app.)(k,a j ) is the approximate value ofhk(k) for

any givenk and k. Note that an explicit knowledge of th
comparison potentialV̄ is not necessary to evalua
hk

(app.)(k,a j ), that is, it is only necessary to choose the tr

functions f̄ ,ḡ. This is evident from Eq.~19b!, in which, as
can be seen,V̄ does not appear explicitly. Of course, w
want to choose the adjustable parametersa j of f̄ (r ,a j ) and
ḡ(r ,a j ) in such a way thathk

(app.)(k,a j ) is as close tohk(k)
as possible. In other words, we wish to minimizeuhk(k)
2hk

(app.)(k,a j )u with respect toa j . Since

]

]a j
uhk~k!2hk

~app.!~k,a j !u

52
~hk~k!2hk

~app.!~k,a j !!

uhk~k!2hk
~app.!~k,a j !u

]

]a j
hk

~app.!~k,a j !, ~24!

we see that a condition for a minimum ofuhk(k)
2hk

(app.)(k,a j )u is that

]

]a j
hk

~app.!~k,a j !50, ~25!

as happens also in the corresponding Schro¨dinger theory.
The resulting optimal values,a j

opt, of the adjustable param
etersa j ~which include the trial valueh̄k of the phase shift,
or of K̄k5tanh̄k if the normalizationĀ51, B̄5tanh̄k is
used, etc.!, are then substituted into Eq.~23! to yield the
optimal variational approximation,hk

(app.)(k,a j
opt), to hk(k)

@or Kk5tan(hk), etc.#, corresponding to a minimum value o
uR2u. ~Strictly speaking, minima ofuhk(k)2hk

(app.)(k,a j )u
may occur at points in parameter space wh
(]/]a j )hk

(app.)(k,a j ) is undefined~i.e., cusps rather than
l

e

smooth minima! or at boundary points of the domain of pa
rameter space. Such possibilities must be kept in mind
investigated, if necessary.!

(iv) Bounds on scattering parameters.In approximate cal-
culations of scattering parameters~phase shifts,K-matrix el-
ements, etc.! neither the sign nor the magnitude of the d
ference between the~unknown! exact and approximate valu
is known. However, for the caseX5X̄5Y5Ȳ50, if we
write V̄5V1dV, f̄ 5 f 1d f , and ḡ5g1dg, where
dV,d f ,dg→0, then~with the choice of asymptotic normal
ization C51) Eq. ~14! implies that

k

E1m
~ h̄k2hk!52E

0

`

dr dV~ f̄ 21ḡ2!, ~26!

where we have kept only the first-order terms in infinitesim
quantities, and so set sin(dh)5dh. Equation~26! shows that
if V̄→V from below, i.e., ifdV5V̄2V,0, thenh̄k.hk and
vice versa~as happens also in Schro¨dinger theory!. This
property can be used to set up a scheme in which appr
mate calculations of phase shifts approach the~unknown!
exact values from above~or below!, provided that the trial
solutions are chosen so that the corresponding trial poten
approach the exact one from below~or above!.

Although, as already stated, in general it is not possible
evaluate either the sign or the magnitude of the remain
termR2 , Eq. ~22!, it is possible, in some cases, to determi
calculable boundsB onR2 of the form

uR2@ f ,g, f̄ ,ḡ#u,B@V, f̄ ,ḡ#. ~27!

This, together with Eq.~18! ~or its equivalent with other
asymptotic normalizations!, leads to upper and lower bound
on the scattering parameters. We illustrate this on the po
tial scattering case (X5Y5X̄5Ȳ50), and the choice of
asymptotic normalization A5Ā51, B5tanhk5Kk , B̄

5tanh̄k5K̄k , whereupon Eq.~14! becomes

k

E1m
~K̄k2Kk!5I @ f̄ ,ḡ#1R2 , ~28!

whereI @ f̄ ,ḡ# is given in Eq.~19!.
We write the remainder term, Eq.~22!, in the form

R25R2L1R2S , ~29!

where

R2L5E
0

`

dr DVF~r ! f̄ ~r !, R2S5E
0

`

dr DVG~r !ḡ~r !,

~30!

with DV5V2V̄, F5 f 2 f̄ , and G5g2ḡ. Then, using the
Schwartz inequalityu(s,t)u2<(s,s)(t,t), it follows from Eq.
~29! that

uR2Lu<aFbf̄ , uR2Su<aGbḡ and so

uR2u,aFbf̄1aGbḡ , ~31!

where
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b
f̄

2
5E

0

`

dr r21~r !uDV~r ! f̄ ~r !u2,

bḡ
25E

0

`

dr r21~r !uDV~r !ḡ~r !u2, ~32!

aF
25E

0

`

dr r~r !uF~r !u2, aG
2 5E

0

`

dr r~r !uG~r !u2,

~33!

and r(r ) is an arbitrary, positive weight function~but such
that all the indicated integrals exist!. For example,r(r )
might be chosen to beuDV(r )u, or some other positive func
tion, possibly with adjustable parameters, such that the i
cated integrals exist. For a given choice of trial functio
f̄ ,ḡ, the expressionsbf̄ and bḡ of Eq. ~32! are calculable
@remember thatV̄ need not be known explicitly, in light o
the identities~20! and ~21!#.

It remains now to determine bounds onaF andaG ~which
are not calculable sinceF5 f 2 f̄ and G5g2ḡ are not
known!. One way that such bounds can be obtained is fr
the integral equations for the radial Dirac functions~written
here for the present choice of asymptotic normalizationA

5Ā51 so thatB5K5tanh and B̄5K̄5tanh̄):

f k~r !5u1~r !1E
0

`

dr8U~r 8!@Gl
11~r ,r 8! f k~r 8!

1Gl
12~r ,r 8!gk~r 8!#, ~34!

gk~r !5u2~r !1E
0

`

dr8U~r 8!@Gl
21~r ,r 8! f k~r 8!

1Gl
22~r ,r 8!gk~r 8!#, ~35!

where the Green functionsGl
ab are defined by

Gl
ab~r ,r 8!5

1

k
va~kr !ub~kr8!, r 8,r

5
1

k
ua~kr !vb~kr8!, r 8.r ~36!

andU(r )5(E1m)V(r ). The functionsua ,va are defined in
terms of the usual Ricatti-Bessel and Ricatti-Neumann fu
tions @11#,

ĵ l~kr !5kr j l~kr !;sinS kr2 l
p

2 D
and

n̂l~kr !5krnl~kr !;2cosS kr2 l
p

2 D , ~37!

namely
i-
s

-

u1~kr !5 ĵ l~kr !, v1~kr !5n̂l~kr !, ~38!

u2~kr !5sk

k

E1m
ĵ l̄ ~kr !, v2~kr !5sk

k

E1m
n̂l̄ ~kr !,

~39!

where l̄ 5 l 2sk andsk5k/uku is the sign ofk. Similar in-
tegral equations can be written down forf̄ andḡ, hence also
for F5 f 2 f̄ andG5g2ḡ, specifically

Fk~r !5F̄k~r !1E
0

`

dr8U~r 8!@Gl
11~r ,r 8!Fk~r 8!

1Gl
12~r ,r 8!Gk~r 8!#, ~40!

Gk~r !5Ḡk~r !1E
0

`

dr8U~r 8!@Gl
21~r ,r 8!Fk~r 8!

1Gl
22~r ,r 8!Gk~r 8!#, ~41!

where

F̄k~r !5E
0

`

dr8@U~r 8!2Ū~r 8!#@Gl
11~r ,r 8! f̄ k~r 8!

1Gl
12~r ,r 8!ḡk~r 8!#, ~42!

Ḡk~r !5E
0

`

dr8@U~r 8!2Ū~r 8!#@Gl
21~r ,r 8! f̄ k~r 8!

1Gl
22~r ,r 8!ḡk~r 8!#. ~43!

Note thatF̄k(r ),Ḡk(r ) are known functions, for given tria
functions f̄ k and ḡk , sinceGl

ab(r ,r 8) are known. We stress

that the explicit form of the trial potentialŪ(r ) need not be
known in Eqs.~42! and ~43! because of the identities~20!

and ~21!. Thus, only the trial functionsf̄ k(r ,a j ) and
ḡk(r ,a j ) need be specified.

Now, multiplying Eq. ~42! by r(r )F* (r ), integrating
over r, and making repeated use of the Schwartz inequa
gives the result

aF<aF̄1aFg111aGg12, ~44!

and similarly

aG<aḠ1aFg211aGg22, ~45!

whereaF̄ andaḠ , defined as in Eq.~33!, are calculable since
F̄ andḠ are known. The factorsgi j are given by

gi j
2 5E

0

`E
0

`

dr dr8r~r !uGl
i j ~r ,r 8!U~r 8!u2r21~r 8!.

~46!

The generalized Schwartz inequality
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U E E dr dr8s~r !Q~r ,r 8!t~r 8!U2

<E drus~ t !u2E dr8ut~r 8!u2E E dr dr8uQ~r ,r 8!u2

~47!

was used in obtaining the results~44!–~46!.
From Eqs.~44! and ~45!, it follows that

aF<
1

D @~12g22!aF̄1g12aḠ#5BF , ~48!

ag<
1

D @~12g11!aḠ1g21aF̄#5BG , ~49!

provided that

gii ,1 ~ i 51,2! and D5~12g11!~12g22!2g12g21.0.
~50!

From the definition~46! of gi j , and that of the Green func
tions ~36!, it is clear that the conditions~50! are, for givenk
~i.e., given energy of incidence!, restrictions on the strengt
of the potentialV(r ). That is, the potential must be suffi
ciently weak for the inequalities~50! to be met. Note, how-
ever, that since the Green functions contain the factor 1/k,gi j
will generally decrease with increasingk. This means that a
given potentialV(r ) may be such that the inequalities~50!
might not hold whenk is small ~low-energy scattering! but
will hold for higher values ofk.

Replacing the expressionsaF andaG by their bounds~48!
and ~49! in Eq. ~31! then leads to the inequality

uR2u,BFbf̄1BGbḡ5B2 , ~51!

and hence to the following simultaneous upper and low
bounds on the~unknown! exactK-matrix element:
in
r

Kk
~app.!2

E1m

k
B2,Kk

~exact!5tanhk,Kk
~app.!1

E1m

k
B2 ,

~52!

where

Kk
~app.!5K̄2

E1m

k
I @ f̄ ,ḡ#. ~53!

The definition~53! is the analog of that of Eq.~23! for the
present choice of asymptotic normalizationA5Ā51. Note,
again, that the bounds~52! hold provided that all the inte-
grals that enter into the expressions forKk

(app.) andB2 exist,
and that the inequalities~50! apply.

We stress that the boundB2 of Eq. ~51! @with Eqs.~32!,
~48!, and ~49!# is expressible in terms ofV(r ) and the trial
functions f̄ k(r ,a j ) and ḡk(r ,a j ), hence it is ultimately a
function of the adjustable parameters, that is,B2(a j ). These
parameters may be chosen in accordance with the variati
prescription~25!, or such that the upper and lower boun
are as close as possible, i.e., such thatB2(a j ) is a minimum.
These two prescriptions are not the same but, for sufficie
flexible trial functions, they will yield similar results. In
practice, the prescription~25! is simpler to implement. In
either caseB2 can be made as small as desirable@in the
domain where the conditions~50! hold#, provided thatf̄ and
ḡ are sufficiently flexible.

To summarize, we have presented integral identities
hold between given and comparison~or ‘‘trial’’ ! solutions
for scattering calculations in the Dirac formalism. Vario
applications of these integral identities have been discus
including their use in approximate, variational solutions
the scattering parameters~phase shifts or functions thereof!.
In particular, we have used these integral identities to es
lish rigorous and calculable bounds on the difference
tween the exact and approximateK-matrix elements for a
wide class of potentials. These bounds can be made as
as necessary, if sufficiently flexible trial functions are use
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