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Integral identities that hold between “desired” and “comparison” solutions of the radial Dirac equations
for scattering processes are considered. Applications of these identities are discussed, particularly the determi-
nation of bounds to variational calculations Kfmatrix elements[S1050-29479)09106-4

PACS numbds): 11.80—m

Relativistic effects in atomic scattering, and indeed inwherek?=E?—m?, andx=j+3% if j=1—% (“spin down”)

many quantum scattering processes, can usually be treated

a@sd k=—(j+3) if j=1+3% (“spin up”). This means that

small corrections, and handled by perturbation theory withthe potentials are short range and not overly singular at the

respect to the nonrelativistiSchralinge) results. However,

origin. Specifically, a sufficient condition is that the limit of

for some processes, such as the scattering of electrons b¥V(r) be zero as— o and ag — 0. If the potentiaM(r) is
atoms and molecules, and for many nuclear scattering prdeng range, i.e., if it contains a Coulombic contribution, then
cesses, it is often convenient or even necessary to use tlige sine and cosine functions in Edd) and (5) would be
Dirac equation directly. This is because the relativistic kine-replaced by the corresponding Coulomb functions.

matics and spin effects are then automatically “built in”
(see, for example, Ref§1-3] and citations therejn In ad-
dition to this, relativistic corrections to the dynami@s.,
corrections to the static potentiahay need to be taken into
account.

In the Dirac formalism, the description of the scattering of
a fermion(such as an electron or positiooy a target(such
as a neutral atomis often reducible to the solution of the
radial Dirac equationsf{=c=1)

f’(r)+;f(r)=[E+m—V(r)]g(r)+X(r), (D)

K
9'(N=—g(N=-[E-m=V(OJf(N+Y(r), (2
wheref(r) andg(r) are the usual reduced radial coefficients
of the “large” and “small” components of the Dirac spinor
for the incident fermion of mass and energye. The terms

X(r) and Y(r) include exchange effects as may be appli-

The asymptotic form44) and (5) can be written in the
equivalent form

o

fK<Hoo>~cK<k>sin(kr—l2+nk<k>), ©)

™

k
gK(r—>w)~ﬁCK(k)cos< kr—1 >+ nK(k)), (7)

where 5,.(k) are the scattering phase shifts, while

A(k)=C(k)cosn(k) and B,(k)=C,(k)sinz,k).
8

The asymptotic normalization constan§S, (k) [or,
equivalently, the constant, (k),B,.(k)] may be chosen to
be anything that is convenient. Some common choices are
C.(k)=1, C,(k)=secn,(K), etc. The scattering cross sec-

cable. We shall restrict our discussion to the class of poterntions or polarization parameters are then calculated from the

tials V(r), and corresponding exchange teriXér),Y(r),
such that the solutiond(r),g(r) satisfy the following
boundary conditions:

f(r=0)=g,.(r=0)=0, €
o r
fK(r—>oo)~AK(k)sin(kr—IE)+BK(k)cos<kr—I§),
4
fl(r)
gur—o)~ 2
- K a(k |7T)
~Erm Acogkrlg
o
- BK(k)sin( kr—I1 E) } (5)
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phase shiftsy, (k) [1,2].

In nonrelativistic(Schralingey scattering theory, pertur-
bative effects can be taken into account by using the integral
identity between a “given” and “comparison” solution first
obtained by Hulthe [4] and later elaborated by Kaf6] and
others. This integral identity can also serve as the basis for
approximate variational solutions to the scattering equations
[4-7], and for determining bounds on approximate calcula-
tions of scattering parametefi8,9].

Evidently, analogous results can be written down in the
Dirac formalism of scattering theory, as we now proceed to

discuss. Thus, suppoﬁ_ér),mr) are soluticfs of_a “trial”
or “comparis_on” problem, corresponding ¥(r), Y(r) and
the potentiaNM(r), namely

P+ —H O =[E+m-V(N g +X(1),  ©
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g(N- 9N =—[E-m-V(Nifn+Y(r), (0

with

f_K(Hoo)~EK(k)sin(kr—|g+mk)), (11)

K _
Gu(r—0)~ mck(k)cm( Kr—| g+a(k)). (12)

Straightforward manipulations of Eqgl), (2), (9), and
(10) result in the identity

d — . _ _ _
3y (f9= 1O =(V=V)(fT+gg) + Xg—Xg+ Y- 1Y.
(13

Integration of Eq.13) leads to the result

— R -
[f(r)g(r)—f(r)g(r)]s= fo dr[(V=V)(ff+gg)
+Xg—-Xg+Yf-Yf], (19

wheref=1(r), etc. in the integrand of Eq14). If we now

make the replacementfs=f+(f—f), etc., Eq.(14) can be
rewritten in the form

R _
A=f dr[(V=V)(f°+g?)]
0
R _ _
+ Oolr(v—V)[(f—f)f+(g—§)@
R _ o — —
+fo dr[(X—X)g—(Y-Y)f]
R _ _ _
+fo dr[X(g—g9)-Y(f—1)], (15)
where

— k —
A=[F(n)g(r)=F(1)a(r)]15~ g5 CCsin(7,— 7.

k — _—
= m(BA—AB), (16)
and the symbol " indicates thatR has been taken to be

sufficiently large that the asymptotic fornt®), (7), (11), and
(12) apply (we can takeR— ).

The integral identitie$14) and(15) relate the phase shifts
7, (or, more generally, functions of these, such as the

K-matrix elements,K, =tanz,, T-matrix elements, T,
=¢'7«siny,, etc) to the “comparison” phase shiftg, (or

corresponding functions thergofThis is clear from the ex-
plicit form of A for a given choice of asymptotic normaliza-

tion, that is, choice ofA and B or alternatively C. For
example, ifC=C=1, thenA=[k/(E+m)]sin(y,.—75,.), or
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if A=A=1, B=tanzy=K,, and B=tan7,=K,, then
A=[K/(E+m)](K,—K,), etc.
The integral identitie$14) or (15) can be used for various
purposes, some of which we gscuss briefly in what follows:
(i) Formal results.If we takeV =0, and the corresponding

free incident wave solutions of Eq&®) and(10) forf_,( and

U.. then the identity(14) (with A=A=1, B=tany,=K,,

and§=0) gives the well-known integral expression for the
K-matrix elements,

E+m (R — o
K":_TJ dr[V(ff+gg)—Xg+Yf]. (17
0

This is often used for extracting the phase shifts from nu-
merical solutions of Eq91) and(2).

(ii) Perturbative calculationsA not-infrequent situation
is that the potentiaV can be written in the formV=V,
+V,, whereV, is a dominan{and/or easily solvabjenter-
action term(such as the electrostatic potential in atomic scat-
tering, andV, is a small “correction” term. Then, obvi-

ously, if V=V, f andg are known(or easily obtainable
while V—V=V; can be handled perturbatively. Takirfg

=f andg=4g in lowest order on the right-hand side of Eq.
(15), one can use that equation to evalugtein terms ofz,
plus a lowest-order perturbative correctipmhich is given
by the right-hand side of Eq15) with f=f andg=g]. In
general the perturbation may beVhonly, or in X andY, or
both (see, for example, Ref10]).

(i) Variational approximationsln some instances it may
be useful or necessary to approximate the solutions of Egs.
(1) and(2) variationally. For example, one may wish to have
analytic representations of the solutidnscall that, with rare
exceptions, Eqgl) and(2) are not analytically solvableln
such cases, one can use a variational approach, in which the
desired(unknown) solutionsf(r),g(r) are approximated by

analytic trial formsf(r),g(r) that contain adjustable param-
eters @; (j=1,...n,). The identity (15) can be used to
choose these parameters in a variationally optimal way.
We illustrate this in the casé=Y=X=Y=0, and normal-
ization choiceC,=C,=1, in which case the identity15)
can be written as

= - sin(7.— n)=1[f.g]+R,[f.9.f.gl. (19
where
_ R _
|[f,m=f dr(V—V)(f?+9?) (1939
0
=fRdr f (i—5 g+(E-m-V)f
0 dr r 9
d K)—
—0/| gy T 7| f(E+m=V)g}, (19b)

and where we have used the identities
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d «\— —
(a+;)f(r)—[E+m—Wr)]@(r)=[V<r>—V<r>]§<r>,
(20)

d _
(a—;)g(fH[E m—V(n)]f(r)=—[V(r)=V()If(r),
(21

in rewriting Eq. (199 in the form (19b). The termR, is a
“remainder” that is given by the expression

_ R _ N
R, f.9.f,0]= fo dr(V=V)[(f-f)f+(g—g)gl,
(22)

which is second order in the “small” quantitiefs—f_, g

-0, andV—V. Usually we takeR— o in these integrals,

and this shall be done in the rest of this paper.
From Eq.(18), if we neglectR,, it follows that

sin tI[f,9]= 72" (k,a;),
(23

. E+m
7,(K)=7,(k)—

where 7k, ;) is the approximate value of,(k) for
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smooth minim& or at boundary points of the domain of pa-
rameter space. Such possibilities must be kept in mind and
investigated, if necessajy.

(iv) Bounds on scattering parametefs.approximate cal-
culations of scattering parametdphase shiftsK-matrix el-
ements, etg.neither the sign nor the magnitude of the dif-
ference between th@nknown exact and approximate value

is known. However, for the casE=X=Y=Y=0, if we
write V=V+6V, f=f+6f, and g=g+45g, where
oV, 6f, 69— 0, then(with the choice of asymptotic normal-
izationC=1) Eq.(14) implies that

k

(o ma=- [ Car v, @9

where we have kept only the first-order terms in infinitesimal
quantltles and so set siff)= on.. Equation(26) shows that

if V—V from below, i.e., ifsV=V—V<0, thenn,> 5, and
vice versa(as happens also in Schiinger theory. This
property can be used to set up a scheme in which approxi-
mate calculations of phase shifts approach gheknown
exact values from abovéor below), provided that the trial
solutions are chosen so that the corresponding trial potentials
approach the exact one from belgar above.

Although, as already stated, in general it is not possible to
evaluate either the sign or the magnitude of the remainder

any givenk and . Note that an explicit knowledge of the termR,, Eq.(22), it is possible, in some cases, to determine
comparison potentialV is not necessary to evaluate calculable bound® on R, of the form

nff‘pp')(k,aj), that is, it is only necessary to choose the trial

functionsf_@ This is evident from Eq(19b), in which, as

|RALf,0,1,0]|<BIV,,g]. 27)

can be seeny does not appear explicitly. Of course, we This, together with Eq(18) (or its equivalent with other

want to choose the adjustable parametejrsaf f(r @;j) and

9(r,aj) in such a way thaty®PP Xk, a; ;) is as close tay, (k)

as p055|ble In other words, we WISh to minimigze, (k)
7Pk, ;)| with respect toa; . Since

P
—|71,<(k)— 7P (k, ;)|

_ (app) .
_ (k)= (k,a,»in(apm(k,a.),
(k) — 7Pk )| day .

(24

we see that a condition for a minimum ofzy,(k)
— 7Pk, a;)| is that

7P (k, ;) =0,

7,7 (25

as happens also in the corresponding Sdimger theory.

The resulting optimal valuesax;Opt of the adjustable param-

etersa; (which include the tnal value7K of the phase shift,

or of K,=tany, if the normalizationA=1, B= tany, is
used, etg, are then substituted into E¢23) to yield the
optimal variational approximationy @Yk, a), to 7,(k)

[or K, .=tan(zy,), etc], corresponding to a minimum value of

|R,|. (Strictly speaking, minima of 5,.(k)— #»
may occur at points in parameter
(0lda;) 7@ Ak, q;) is undefined i.e.,

@PP XK, )|

asymptotic normalizationsleads to upper and lower bounds
on the scattering parameters. We illustrate this on the poten-

tial scattering caseX=Y=X= Y= 0), and the choice of
asymptotlc normalizationA=A=1, B= tann,=K,, B
=tany,=K,, whereupon Eq(14) becomes

k _
E+m(|< —K,)=I[f,g]+R,, (28)
wherel[f,g] is given in Eq.(19).
We write the remainder term, E2), in the form
Ro=RoL+Rys,s (29)

where

RZsz dr AVF(r)f(r), R25=f dr AVG(r)g(r),
0 0

(30
with AV=V—V, F=f—f, andG=g—g. Then, using the

Schwartz inequality(s,t)|><(s,s)(t,t), it follows from Eq.
(29) that
and so

|Rol=<aeby, [|Rosl<agby

| Ro| <apbi+achy, (31)

space where
cusps rather than where
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b% j drp’l(r)|AV(r)f_(r)|2, ul(kr)=]|(kr), Ul(kr):ﬁl(kr)1 (38)

k
f 4r p=H0) AV @ Uwkn=o KE+ Titkn),  va(kn =0z k),
(39
. . wherel =1 - ¢, ando,.= «/|«| is the sign of«. Similar in-
= fo drp(n)|F(n)?, ag= fo dr p(n)|G(n)/?, tegral equations can be written down foandg, hence also
(33 for F=f—f andG=g—{(g, specifically
and p(r) is an arbitrary, positive weight functiofbut such _ o
that all the indicated integrals existFor example,p(r) FK(r)ZFK(f)Jrf dr'U(r)[Gii(r,r)F(r")
might be chosen to b\ V(r)|, or some other positive func- 0
tion, possibly with adjustable parameters, such that the indi- +GH(r,r")G(r")], (40)
cated integrals exist. For a given choice of trial functions
f_@ the expression®; and by of Eq. (32) are calculable .
[remember thaV/ need not be known explicitly, in light of GK(r)=6K(r)+f dr'U(r")[G2(r,r")F(r")
the identities(20) and (21)]. 0
It remains now to determine bounds apandag (which +GA(r,r)G ()], (41)
are not calculable sinc&=f—f and G=g—g are not
known). One way that such bounds can be obtained is fromyhere
the integral equations for the radial Dirac functigmgitten
here for the present choice of asymptotic normalizatton "
=A=1 so thatB=K=tan» andB=K =tan7): E"(r):fo dr'[U(r)—U(r)IGH(r,r)f(r")
" 12 Ny
fn=u(+ | “arueretie e FORnrsATL “
+GiArr)g.(r)], (34) Ek(r)zfo dr'[U(r)=0(r ) IGE(r,r)Tu(r")
+GH(r,r)gur)]. (43)

gK<r>=uz<r)+f:dr'uu')[GF1<r,r'>fK<r’)

Note thatFK(r) GK(r) are known functions, for given trial

+GPAr,rg,(rH], (39  functionsf, andg,, sinceG°(r,r') are known. We stress
. ) that the explicit form of the trial potentlaJJ(r) need not be
ab
where the Green functior;™ are defined by known in Eqgs.(42) and (43) because of the identitie®0)

and (21). Thus, only the trial functionsf,(r,a;) and
9.(r,a;) need be specified.

Now, multiplying Eq. (42) by p(r)F*(r), integrating
overr, and making repeated use of the Schwartz inequality
gives the result

GP(r,r)=Zva(knug(kr’), r'<r

I
xIH XIH

ug(kryvp(kr’), r’>r (36
andU(r) = (E+m)\V(r). The functionu, v, are defined in 3F=arTargutacli, 49
terms of the usual Ricatti-Bessel and Ricatti-Neumann funcgq similarly
tions[11],
ags<agtarftacyze, (45
a ) ) a
Jitkr)=kr] |(kr)~sm< kr—| E) whereag andag, defined as in Eq33), are calculable since
g F andG are known. The factorg;; are given by

an

0= || ararpmiairue oo,

R T
n|(kr)=krn|(kr)~—cos(kr—lE), (37) 46)

namely The generalized Schwartz inequality
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2

jf drdr’s(r)Q(r,r")Ht(r’")

sfdrls(t)lzf dr’|t(r’)|2ffdrdr’lQ(r,r’)|2

(47
was used in obtaining the resul#4)—(46).
From Egs.(44) and (45), it follows that
1 J— —
ar=5[(1-9208r+ 01861 =Bk, (48)
1 — -
aggﬁ[(l_gll)ae"'gnal:]:BG, (49

provided that
gi<1l (i=12 and D:(l_gll)(l_QZZ)_glzg21(>0-
50

From the definition(46) of g;; , and that of the Green func-
tions (36), it is clear that the condition&0) are, for givenk
(i.e., given energy of incidengerestrictions on the strength
of the potentialV(r). That is, the potential must be suffi-
ciently weak for the inequalities0) to be met. Note, how-
ever, that since the Green functions contain the factagi/
will generally decrease with increasikg This means that a
given potentialV(r) may be such that the inequaliti€s0)
might not hold wherk is small (low-energy scatteringbut
will hold for higher values ok.

Replacing the expressioag andag by their bound$498)
and(49) in Eq. (31) then leads to the inequality

|R2|<Bbe_+ BGbgt 62, (51)

K (2pP) E+Tm62< K& = tan 5, <K@ 4 Em By,
(52
where
— E+m _—
K(@PP) =K — —[f.al. (53

The definition(53) is the analog of that of Eq23) for the
present choice of asymptotic normalizatiéis= A=1. Note,
again, that the bound&?2) hold provided that all the inte-
grals that enter into the expressions KIf*™) and 3, exist,
and that the inequalitie0) apply.

We stress that the bourt8, of Eq. (51) [with Egs.(32),
(48), and(49)] is expressible in terms of (r) and the trial
functions f (r,«;) and g,(r,«;), hence it is ultimately a
function of the adjustable parameters, thatdg(«;). These
parameters may be chosen in accordance with the variational
prescription(25), or such that the upper and lower bounds
are as close as possible, i.e., such Bigly;) is a minimum.
These two prescriptions are not the same but, for sufficiently
flexible trial functions, they will yield similar results. In
practice, the prescriptiofi25) is simpler to implement. In
either caseB, can be made as small as desirafile the

domain where the conditior§0) hold], provided thatf and

g are sufficiently flexible.

To summarize, we have presented integral identities that
hold between given and comparis¢or “trial” ) solutions
for scattering calculations in the Dirac formalism. Various
applications of these integral identities have been discussed,
including their use in approximate, variational solutions of
the scattering parametefghase shifts or functions thergof
In particular, we have used these integral identities to estab-
lish rigorous and calculable bounds on the difference be-
tween the exact and approximakematrix elements for a
wide class of potentials. These bounds can be made as tight
as necessary, if sufficiently flexible trial functions are used.
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