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Energy levels of triply ionized carbon (C1v): Polarization method
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In a previous publicatiofCan. J. Phys75, 11 (1997)] we calculated the generalized polarizabilities up to
multipole order 3 as well as certain higher-order hyperpolarizabilities for two-electron atoms and iBns of
=2-6 and 10. In this paper we apply some of these results to calculate excited-state energies in three times
ionized (lithiumlike) carbon. For states with angular momentum 3 accurate results are obtained using an
asymptotic polarizability expansion that includes nonadiabatic effects. Comparison is made with recent optical
measurements, and a critical discussion of the correct form of the expansion is given. In addition, the possi-
bility of very accurate measurements of the fine-structure splitting encourages us to present a table of such
splittings to very high accuracy. An appendix contains similar results for lithiumlike oxygen and neon ions.
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PACS numbes): 31.15-p, 31.50+w

[. INTRODUCTION this approximation one calculates the expectation value of
V(x) for the hydrogenic state of interest; these expectation
In two recent paperkl] term energies for high Rydberg values are analytic and well knov/6]. For a state of angular
states of lithiumlike carbofC1v) have been given and ana- momentumL all terms up tol =L give finite results; this is
lyzed using both the quantum defect method and a polarizasbviously not a convergent series and it must be truncated at
tion model following Edi@ [2]. These are semiempirical its smallest term. In Ref.2] this method is described, and
techniques that describe deviations from the simple approxithe first two terms are used to calculate energy levels; the
mate hydrogenic level scheme. We have previously treatedame method is also used in the more recent work on C
the highNL Rydberg states of lithium itself by aab initio  [1].
polarization methodi3]. This uses very accurately calculated  But the adiabatic theory is not the whole story. Beginning
values of the generalized core polarizabilitj@§ appearing  with the term in 1x® the complete theory introduces addi-
in the effective potential that acts between the two-electroriional terms due to the inability of the core to follow the
core and the excited electron. After including effects of rela-motion of the outer electron exactly. These are usually called
tivity and retardation we found excellent agreement with re-‘nonadiabatic corrections,” and they serve to reduce the ef-
cent high-precision measurements of the fine structure splifect of the adiabatic polarization terms, which are all attrac-
tings[5]. tive. (This was emphasized by Dalgarno and Shorer a long
In more recent work, we extended the calculations of Reftime ago[7].) In the next section we will show the explicit
[4] to other systems, including carbon, and in the presentorm of the complete effective potential up to terms of order
paper we will use those results to compute theoretical values/x®.
of Rydberg energy levels in @. An important point, which

will be emphasized later, is the fact that the correct form of Il. THE EFFECTIVE POTENTIAL
the effective potential differs from the form that has been ) ) _ _
traditionally used. Consider the @/ ion, with two electrons in a € 1S,

The familiar, basic idea of the method is to reduce thecore state and the third electron in a highly excited state with
three-electron system to an effective one-electron system pguantum numberéN,L). If we take the mass of the nucleus
eliminating the coordinates of the two-electron core. To do@sM in electron mass units, the system is described by the
this we must find an effective interaction between the cordollowing nonrelativistic HamiltonianZ=6 for carbon:
and the outer electron and then calculate the energy shift of

the outer electron by perturbation theory. The traditional way Hooe| —V2—V2—KV..V.,— E_ E n i}

to do this is to use the adiabatic approximation for the outer = """ 12 R T T

electron. That is, one holds the outer electron fixed and com-

putes the change in energy of the core due to polarization. +| —vy2_ 2(2-2) [_ f+ 2 + 2 ]

This energy shift is obviously dependent on the position of X X X |X=Ty|  [R=Ty)”

the outer electron, so it gives rise to an adiabatic effective @)
potential whose long-range leading term has the following

form: whereK=2/(M+1) and the energy is in reduced Rydberg

units R=(1—K/2) Ry. The first bracket is the Hamiltonian
(1) of the coreHy(12), the second of the Rydberg electron

Ho(x), and the braces contain the interaction between the

two partsH;,;, which decreases rapidly with increasing dis-
Here x is the position of the outer electron relative to the tance of the third electror. (We neglect the difference be-
nucleus andy, is the multipole polarizability of ordek. In tween the reduced mass of an electron relative to the nucleus

a)
V(X)=— 2, <3
=1 X
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TABLE I. lllustration of the contributions of the various correction terms in the case dith@ manifold in Civ. Results are given in
units of cni’ . (Ey is the nonrelativistic, hydrogenic binding energy of the Rydberg electron in the shielded Coulomb potential; it is
independent of..) An approximate value of the energy shift due to penetration and exchange is also given to indicate that it is of the same
order as the estimated error in convergencelfer3 and is negligible fol.> 3.

L=3 L=4 L=5 L=6 L=7
En —27433.0745 —27433.0745 —27433.0745 —27433.0745  —27433.0745
A, —1.4208 -0.3777 —0.1284 —-0.0511 —-0.0225
D, —0.0011 —0.0001
Al —0.5609 —0.3754 —0.2573 —-0.1756 —-0.1157
Dyel 0.0021 0.0005 0.0002 0.0001
Aot 0.0009 0.0002 0.0001
ALamb —0.0002 —0.0001
Evotal —27435.0545 0.0435 —27433.82710.0020 —27433.4599:0.0001 —27433.3011  —27433.2127
Apen —-0.037 —0.0002 -8x10°7
Aexen —0.064 —0.0004 —1.3x10°¢

and that of an electron relative to the two-electron gofe.  whose expectation valudNL|V,(X)|NL) gives the leading

a pretty good approximation, the energy of this system icorrection to the energy. The second sum in &j.cannot

€o— (Z—2)%IN?, whereg, is the energy of the core, and the be carried out toc because the higher terms would diverge;

third electron moves in an almost pure Coulomb potentialthe series is probably asymptotic and should be terminated at

partially shielded by the two electrons in the core. Our prob-ts smallest term.

lem is to find the small corrections to this zero-order energy. The second term in EJ5) seems harder to convert into
We do this by first expanding the interaction in a multi- effective potential form because of the energy-dependent

pole series, withk>r{ ,: factor, but a simple trick solves this problem:
2 2r} 2 (NL|wyO)[N"L")(N"L" v, (X)[NL)(Enr i — Ene)
Hin= 2y 2, g1Pi(;-%) 3 7 (co—€n)?
vn(X)[Ho(X), vq(X) ]
and then calculate perturbations in the usual way, beginning =<N|— > (co—e )zn INL : )
with second order " o
By converting the energy dependence to a commutator we
A= (NL|w,()[N"L")(N'L"[vp(X)|NL) @ e able to carry out the closure sum; the first time this trick
2 (eg—€n)+(EnL—EnrLr) ’ was used may have been by Mittleman and Waf8¢rAfter

commutation and integration by parts, this “first nonadia-

where v,(x)=(0|H;4n). In principle, we could evaluate batic term” takes the following form:
this sum, including excited states of both the c@reand the 2 9
outer electron KI'L’). Not only would this be somewhat Vv :12 Vi¥a(X) => (I+D2l+1)s5

- . nad X) —_\2 2174 , (8
difficult but it would have to be repeated for every value\of 2°% (eg—€n) [ X
and L in which we were interested. Instead, we make the o ) .
assumptior(justified after the fagtthat the excitation ener- Where g, is just like a; but with one more power of the
gies of the core are larger than those of the outer electroniénergy difference in the denominator, and higher terms can
system. Then we expand the denominator of Bj.in a  be computed in a similar wayy, has three powers of the

binomial series: energy difference in the denominatais a third-order term,
and e is of fourth order.
(NL| vy |N"L YN'L" [o(x")INL) In this way the effective potential can be written out to the
Ay~ term of orderx ™8 as follows:
n €0~ €p
a; 6Bi—ay O+16y,/5
X 1+M+... (5) U(X):_X_i—'— '8;6 2+ X771
€0~ €p
158,— az— e+ a; By— 72y, [1+L(L+1)/10]
In the first term above it is easy to apply closure over the + X8 .
intermediate stateN’L’ to obtain an effective “adiabatic”
potential 9

In a series of paper®], which are summarized in perhaps
Vo()=S nn(¥)vn(X) D @ (6) excessive detail in Ref10], this method was applied to the
& N €0~ €n =g x2 1+ Rydberg states of helium, including terms up to orget®,
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TABLE Il. Level energies of Qv in cm™ 4, compared with those TABLE Ill. Theoretical fine structure intervals of I€ in MHz,
of Quinet[1]. Errors are estimated from the convergence rate of theéncluding all the effects discussed above. The errors shown are of
effective potential(x), as described in Sec. IV. the two levels combined in quadrature.

L=3 AE Level E(NL) E(NL) (Quine} Transition Interval(MHz) Transition Interval(MHz)
N=4 —11.48 —109743.780.18 —109744.4 5F-5G (141.74.0)x 10° 81-8K 2 652.15-0.20
5 —6.86 —70235.53-0.13 —70234.6 6F-6G (84.6:2.7)x 10° 91-9K 1884.71-0.18
6 —-4.310 —48774.226:0.090 —48773.5 TF-7G (54.3:1.8)x 10° 101-10K 1385.430.15
7 —2.856 —35833.81@:-0.062 —35834.0 8F-8G (36.8:1.3)x10°  11I-11K 1047.280.13
8 —1.980 —27435.055:-0.043 —27435.1 9F-9G (26.05:0.95)x10°  121-12K 810.410.11
9 —1.425 —21676.9410.032 —21677.1 10F-10G  (21.540.71)X 10°
10 —1.140 —17558.308:-0.024 —17558.3 11F-11G  (16.160.54)X 10° 9K-9L 1228.623-0.022
11 —0.869 —14510.925-0.018 —14510.9 12F-12G (12.5:0.42)x 10° 10K-10L 902.351%0.020
12 —-0.677 —12193.155-0.014 —12193.2 11K-11L 681.665-0.018
L—a 6G-6H 24 984-98 12K-12L 527.2320.015
7G-7TH 16 1578
N=5 72133 770230.8040.004 102307 8G-8H 1100160  10L-10M  648.6395 0.0034
6 —1.487 —48771.3970.003 —48770.1
9G-9H 7 81447 11L-11M  489.639% 0.0031
! ~1.045 —35831.999:0.003 358303 10G-10H 5742-36 12L-12M  378.498%0.0028
8 —0.752 —27433.8270.002 —27432.1 11G-11H 4 454 29
o ~0.556 —21676.072:0.002 —21676.1 12G-12H 343823 11M-11IN  374.5652 0.0007
10 —-0.421 —17557.589%0.001 —17557.6 19M-12N  289.3936 0.0006
11 —0.330 —14510.386-0.001 —14510.4 7H-71 6983 1 3.0
12 ~0.260  —12192.738-0.001 —l2l9z2.7 8H-8l 4763.6-2.6 12N-120 230.770320.00016
L=5 9H-9I 3386.7+2.1
N=6 —0.654  —48770.564-<0.0001 —48769.9 10H-10I 2490.41.7
7 —-0.506 —35831.460 —35830.1 11H-111 1883.a:1.4
8 —0.385 —27433.460 —27432.1 12H-12I 1466.91.1
9 —0.296 —21675.812 —21674.5
10 —0.230 —17557.398 —17557.4
11 —0.181 —14510.237 —14510.2 U(x) that must be included. First, we should include second-
12 0145 —12192.623 ~12192.6 order effects ofJ(x). Since we have included terms of order

x~ % in the effective potential, it is reasonable to include its

. . ] leading term ¥~ %) in second-order perturbation theory as
with considerable success. Of course, in that case all thge||. That is,

coefficients that appear in the effective potential can be

evaluated exactly and analytically, since the core is simply a |<NL|a1/X4|N’L)|2
hydrogenic ion. In the case of lithiumlike systems, the core D= E Ev—Ew, (10
contains two electrons, and the sums giving the various co- N'#N NN

efficients must be performed numerically. To calculate them
we used the method of pseudostate summation; that is, W an derived12], and we will use it here

replaced the complete set of stz_ateby a finite and c_hscrete_ The remaining corrections are relativistic or quantum
set of pseudostates. These are in the form of pred|agonal|zeeq

) ) ectrodynamic. The first of these simply adds the
HyIIer_aas expansions, _and the eigenvalagare replaceq by_ Sommerfeld-Dirac correction of order? to the nonrelativ-
the discrete expectation values of the core Hamiltonia

Rstic energy of the outer electron:

An analytic expression for this second-order energy shift has

Ho(12).
At this point it is worthwhile to examine the difference (Z—2)%a?[ 3 1
between the form of the effective potential shown in E9j. A= NE IN_ Jrio (11

and the adiabatic potential. In the particular case of @e
coefficient of the term inx © in the present form, B;
—a,, is almost exactly equal te- a5, just the negative of
the adiabatic valugln fact[11], the ratio of these two quan-
tities is 0.9988, for the case dfCIv, the most abundant
isotope) So it is clear that for any level of @ for which this
term is significant we will find exactly the opposite effect
from the adiabatic model prediction.

whereJ=L=*1/2. The difference between these two values
of J should account well for the fine-structure splitting in
those cases, with high enough valuesLoffor which the
hydrogenic approximation is good. Otherwise, an appropri-
ate J-weighted average over the two fine-structure levels can
be used, which corresponds to replacihby L.

The final three small corrections have been discussed pre-
viously in detail for the case of lithiunh3], and the same
methods are used here. The first is the dDift; due to rela-

There are several other corrections to the energy levels itivistic changes in the motion of the inner electrons which is
addition to the expectation value of the effective potentialreflected in modification of the polarizability of the core. It is

Ill. OTHER ENERGY CORRECTIONS
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TABLE IV. Theoretical fine-structure intervals of @ in MHz, including all the effects discussed above.

ENERGY LEVELS OF TRIPLY IONIZED CARBON.. ..

Transition Interval(MHz) Transition Interval(MHz)
5F-5G (292.6:7.4)x 10° 81-8K 10374.114-0.048
6F-6G (172.95.0)x 10° 91-9K 7 318.806-0.064
TF-7G (110.33.4)x 10° 101-10K 5352.4730.063
8F-8G (74.6:2.4)X 10° 111-11K 4 030.875%0.056
9F-9G (52.7#1.8)X 10° 121-12K 3110.355%0.048
10F-10G (42.81.3)x1C°
11F-11G (32.+1.0)x10° 9K-9L 5 279.4023 0.0044
12F-12G (24.84:0.78)x 10° 10K-10L 3 858.6529:0.0071

11K-11L 2 904.6034 0.0075
6G-6H 67015-24 12K-12L 2 240.5296 0.0071
7G-7TH 42 78522
8G-8H 28915-18 10L-10M 2 951.06750.0005
9G-9H 204314 11L-11M 2 220.6258 0.0010
10G-10H 1495611 12L-12M 1712.46540.0012
11G-11H 11463.88.5
12G-12H 8 840.6:6.8 11M-11IN 1765.048080.000 09
12M-12N 1 360.855780.000 18
TH-71 23475.940.78
8H-8lI 15852.85-0.86 12N-120 1111.784320.000 02
9H-9I 11194.490.77
10H-10I 8192.330.64
11H-111 6172.550.53
12H-121 4779.460.43

TABLE V. Theoretical fine-structure intervals of Nel in MHz, including all the effects discussed

above.

Transition Interval(MHz) Transition Interval(MHz)

5F-5G (58.2-1.0)x10* 81-8K 30335.72:0.76

6F-6G (34.16:0.70)x 10* 91-9K 21345.46:0.70

TF-7G (21.6%-0.48)x 10* 101-10K 15582.86:0.61

8F-8G (14.6@:0.34)x 10* 111-11K 11719.390.52

9F-9G (10.2%-0.25)x 10* 121-12K 9033.83:0.44

10F-10G (8.090.18)x 10*

11F-11G (6.0%0.14)x 10* 9K-9L 15929.536-0.082

12F-12G (4.69-0.11)x 10* 10K-10L 11625.0130.078
11K-11L 8 740.92%0.071

6G-6H (1.6506-0.0036)< 10° 12K-12L 6 736.771+0.062

7G-7H (1.0469-0.0029)x 10°

8G-8H (0.7048-0.0022)x 10° 10L-10M 9 059.354:0.012

9G-9H (0.4966-0.0017)x 10° 11L-11M 6 810.704:0.012

10G-10H (0.36290.0014)x 10° 12L-12M 5248.4830.011

11G-11H (0.2756:0.0011)X 10°

12G-12H 2124%85 11M-11N 5 472.93470.0024
12M-12N 4 217.19170.0023

7H-71 64 68411

8H-8l 43491.1-9.8 12N-120 3 468.363720.00054

9H-9I 30621.3-8.2

10H-10I 22 362.6:6.6

11H-111 16823.45.4

12H-12I 12988.24.4

2851
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calculated using third-order perturbation theory including the In Table 1l we compute many term energies and compare
Breit-Pauli operator. The second is the retardation correctiothem with those of Quinefl]. In this reference the lower
A, due to the finite light propagation time between theterm values are obtained from experiment, while the higher
core and a highly excited valence electron. We have used thenes are derived by an effective potential technique like
expression for this correction given by Aat al. [13], care-  ours, but with what we have described above as the incorrect
fully evaluated for the case of a two-electron core. Finally,term — a, /X instead of (6, — a,)/x in Eq. (9). Note that for
we have included the two-electron Lamb shift in the pres-these upper levels the difference is very small:Ner 10 and
ence of the perturbing valence electron, using the expressidn=>5 this term contributes onlyX410 % cm™!, a completely
given by Goldman and DrakKd 4] negligible amount in comparison with the errors in the opti-
cal measurements.
Nevertheless, there is a good chance that the details of the
calculation, including the small relativistic corrections and
(12 others, can be tested. The technique of Lundeen and his col-

_ . laborators has been used to measure the fine structure of
where INK=2.984129 2 In(Z—0.00615). Again, the expec- o, jted states of heliurfi.5], lithium [5], and the hydrogen

tation value of the delta functions is evaluated using third'molecule[l6] to extremely high precision, and it appears
order perturbation theory. that the same methods could be applied tos CFor that

reason, in Table Il we give the fine-structure differences for
IV. THEORETICAL ENERGY LEVELS many Civ levels.

e 8 3 19 > >
ALamb:§Za —2Ina+§)—an (8(F1)+ 8(F5)),

We can now calculate theoretical term values for &ny
sufficiently high that penetration of the valence electron into ACKNOWLEDGMENTS
the core and exchange between core and valence electrons
give negligible contributions. As an example, in Table | we ~We thank Stephen R. Lundeen for helpful discussions
show each of the energy contributions discussed above fd¥ver many years and for encouraging us to consider the
the N=8 manifold and the total energy of eathsublevel, problem of the fine-structure splitting inI€. This work was
including the norelativistic hydrogenic main term, relative to Supported by NASA-RTOP Grant No. 344-12-53-14. Nu-
the ionization limit. Since the contribution of the effective Merical results were obtained with the Cray Y-MP computer
potential Eq.(9) is only asymptotic, we terminate the series Of the NASA Center for Computational Science.
of expectation values at its smallest term keepjngf that
term and estimating the error also aghe smallest term. APPENDIX
This is a fairly conservative procedure, and it has been very
successful in previous cases. We also show some typical Although we were originally motivated to carry out the
values for the penetration and exchange contributions, calcieomputation of energy levels fori€ because of the work in
lated using the open-shell approximation for the two-electrorRef. [1], the possibility of making very accurate measure-
core wave function; it is clear that these contributions arements of the fine structure by Lundeen’s methods has en-
insignificant forL>3, and we do not include them in the couraged us to present additional data for two more lithium-
total energy even fok. =3 since they are of the same order like ions Ovi and Neviil. In Tables IV and V we show
of magnitude as our estimate of the asymptotic convergenciineoretical fine structure intervals for these two ions, in anal-

of the polarization energy. ogy with Table Il for Civ.
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