
PHYSICAL REVIEW A OCTOBER 1999VOLUME 60, NUMBER 4
Energy levels of triply ionized carbon „C IV …: Polarization method

A. K. Bhatia and Richard J. Drachman
Laboratory for Astronomy and Solar Physics, NASA, Goddard Space Flight Center, Greenbelt, Maryland 20771

~Received 1 June 1999!

In a previous publication@Can. J. Phys.75, 11 ~1997!# we calculated the generalized polarizabilities up to
multipole order 3 as well as certain higher-order hyperpolarizabilities for two-electron atoms and ions ofZ
52 – 6 and 10. In this paper we apply some of these results to calculate excited-state energies in three times
ionized ~lithiumlike! carbon. For states with angular momentumL.3 accurate results are obtained using an
asymptotic polarizability expansion that includes nonadiabatic effects. Comparison is made with recent optical
measurements, and a critical discussion of the correct form of the expansion is given. In addition, the possi-
bility of very accurate measurements of the fine-structure splitting encourages us to present a table of such
splittings to very high accuracy. An appendix contains similar results for lithiumlike oxygen and neon ions.
@S1050-2947~99!07610-6#

PACS number~s!: 31.15.2p, 31.50.1w
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I. INTRODUCTION

In two recent papers@1# term energies for high Rydber
states of lithiumlike carbon~CIV! have been given and ana
lyzed using both the quantum defect method and a polar
tion model following Edle´n @2#. These are semiempirica
techniques that describe deviations from the simple appr
mate hydrogenic level scheme. We have previously trea
the high-NL Rydberg states of lithium itself by anab initio
polarization method@3#. This uses very accurately calculate
values of the generalized core polarizabilities@4# appearing
in the effective potential that acts between the two-elect
core and the excited electron. After including effects of re
tivity and retardation we found excellent agreement with
cent high-precision measurements of the fine structure s
tings @5#.

In more recent work, we extended the calculations of R
@4# to other systems, including carbon, and in the pres
paper we will use those results to compute theoretical va
of Rydberg energy levels in CIV. An important point, which
will be emphasized later, is the fact that the correct form
the effective potential differs from the form that has be
traditionally used.

The familiar, basic idea of the method is to reduce
three-electron system to an effective one-electron system
eliminating the coordinates of the two-electron core. To
this we must find an effective interaction between the c
and the outer electron and then calculate the energy shi
the outer electron by perturbation theory. The traditional w
to do this is to use the adiabatic approximation for the ou
electron. That is, one holds the outer electron fixed and c
putes the change in energy of the core due to polarizat
This energy shift is obviously dependent on the position
the outer electron, so it gives rise to an adiabatic effec
potential whose long-range leading term has the follow
form:

V~x!52(
l 51

a l

x2l 12 . ~1!

Here x is the position of the outer electron relative to t
nucleus anda l is the multipole polarizability of orderl. In
PRA 601050-2947/99/60~4!/2848~5!/$15.00
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this approximation one calculates the expectation value
V(x) for the hydrogenic state of interest; these expectat
values are analytic and well known@6#. For a state of angula
momentumL all terms up tol 5L give finite results; this is
obviously not a convergent series and it must be truncate
its smallest term. In Ref.@2# this method is described, an
the first two terms are used to calculate energy levels;
same method is also used in the more recent work on CIV

@1#.
But the adiabatic theory is not the whole story. Beginni

with the term in 1/x6 the complete theory introduces add
tional terms due to the inability of the core to follow th
motion of the outer electron exactly. These are usually ca
‘‘nonadiabatic corrections,’’ and they serve to reduce the
fect of the adiabatic polarization terms, which are all attra
tive. ~This was emphasized by Dalgarno and Shorer a lo
time ago@7#.! In the next section we will show the explic
form of the complete effective potential up to terms of ord
1/x8.

II. THE EFFECTIVE POTENTIAL

Consider the CIV ion, with two electrons in a 1s2 1S0
core state and the third electron in a highly excited state w
quantum numbers~N,L!. If we take the mass of the nucleu
as M in electron mass units, the system is described by
following nonrelativistic Hamiltonian (Z56 for carbon!:

HNR5F2¹1
22¹2

22K“1•“22
2Z

r 1
2

2Z

r 2
1

2

r 12
G

1F2¹x
22

2~Z22!

x G1H 2
4

x
1

2

uxW2rW1u
1

2

uxW2rW2uJ ,

~2!

whereK52/(M11) and the energy is in reduced Rydbe
units R5(12K/2) Ry. The first bracket is the Hamiltonia
of the coreH0(12), the second of the Rydberg electro
H0(x), and the braces contain the interaction between
two partsH int , which decreases rapidly with increasing di
tance of the third electronx. ~We neglect the difference be
tween the reduced mass of an electron relative to the nuc
2848 ©1999 The American Physical Society
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TABLE I. Illustration of the contributions of the various correction terms in the case of theN58 manifold in CIV. Results are given in
units of cm21. (EN is the nonrelativistic, hydrogenic binding energy of the Rydberg electron in the shielded Coulomb potentia
independent ofL.! An approximate value of the energy shift due to penetration and exchange is also given to indicate that it is of th
order as the estimated error in convergence forL53 and is negligible forL.3.

L53 L54 L55 L56 L57

EN 227433.0745 227433.0745 227433.0745 227433.0745 227433.0745
D2 21.4208 20.3777 20.1284 20.0511 20.0225
D2 20.0011 20.0001
D rel 20.5609 20.3754 20.2573 20.1756 20.1157
D rel 0.0021 0.0005 0.0002 0.0001
D ret 0.0009 0.0002 0.0001
DLamb 20.0002 20.0001
Etotal 227435.054560.0435 227433.827160.0020 227433.459960.0001 227433.3011 227433.2127

Dpen 20.037 20.0002 2831027

Dexch 20.064 20.0004 21.331026
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and that of an electron relative to the two-electron core.! To
a pretty good approximation, the energy of this system
e02(Z22)2/N2, wheree0 is the energy of the core, and th
third electron moves in an almost pure Coulomb potent
partially shielded by the two electrons in the core. Our pro
lem is to find the small corrections to this zero-order ener

We do this by first expanding the interaction in a mul
pole series, withx@r 1,2:

H int5(
l 51

`

(
j 51

2 2r j
l

xl 11 Pl~ r̂ j• x̂! ~3!

and then calculate perturbations in the usual way, beginn
with second order

D25(
^NLunn~x!uN8L8&^N8L8unn~x!uNL&

~e02en!1~ENL2EN8L8!
, ~4!

where nn(x)5^0uH intun&. In principle, we could evaluate
this sum, including excited states of both the core~n! and the
outer electron (N8L8). Not only would this be somewha
difficult but it would have to be repeated for every value ofN
and L in which we were interested. Instead, we make
assumption~justified after the fact! that the excitation ener
gies of the core are larger than those of the outer electr
system. Then we expand the denominator of Eq.~3! in a
binomial series:

D2'(
n

^NLunn~x!uN8L8&^N8L8unn~x8!uNL&
e02en

3F11
EN8L82ENL

e02en
1¯G . ~5!

In the first term above it is easy to apply closure over
intermediate statesN8L8 to obtain an effective ‘‘adiabatic’’
potential

Vad~x!5(
n

nn~x!nn~x!

e02en
52(

l 51

a l

x2~ l 11! ~6!
is

l,
-
.

g
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whose expectation valuêNLuVad(x)uNL& gives the leading
correction to the energy. The second sum in Eq.~6! cannot
be carried out tò because the higher terms would diverg
the series is probably asymptotic and should be terminate
its smallest term.

The second term in Eq.~5! seems harder to convert int
effective potential form because of the energy-depend
factor, but a simple trick solves this problem:

(
n

^NLunn~x!uN8L8&^N8L8unn~x!uNL&~EN8L82ENL!

~e02en!2

5K NLU(
n

nn~x!@H0~x!,nn~x!#

~e02en!2 UNLL . ~7!

By converting the energy dependence to a commutator
are able to carry out the closure sum; the first time this tr
was used may have been by Mittleman and Watson@8#. After
commutation and integration by parts, this ‘‘first nonad
batic term’’ takes the following form:

Vnad~x!5
1

2 (
n

¹x
2nn

2~x!

~e02en!2 5(
l

~ l 11!~2l 11!b l

x2l 14 , ~8!

where b l is just like a l but with one more power of the
energy difference in the denominator, and higher terms
be computed in a similar way:g l has three powers of the
energy difference in the denominator,d is a third-order term,
ande is of fourth order.

In this way the effective potential can be written out to t
term of orderx28 as follows:

U~x!52
a1

x4 1
6b12a2

x6 1
d116g1/5

x7

1
15b22a32e1a1b1272g1@11L~L11!/10#

x8 .

~9!

In a series of papers@9#, which are summarized in perhap
excessive detail in Ref.@10#, this method was applied to th
Rydberg states of helium, including terms up to orderx210,
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with considerable success. Of course, in that case all
coefficients that appear in the effective potential can
evaluated exactly and analytically, since the core is simp
hydrogenic ion. In the case of lithiumlike systems, the c
contains two electrons, and the sums giving the various
efficients must be performed numerically. To calculate the
we used the method of pseudostate summation; that is
replaced the complete set of statesn by a finite and discrete
set of pseudostates. These are in the form of prediagona
Hylleraas expansions, and the eigenvaluesen are replaced by
the discrete expectation values of the core Hamilton
H0(12).

At this point it is worthwhile to examine the differenc
between the form of the effective potential shown in Eq.~9!
and the adiabatic potential. In the particular case of CIV the
coefficient of the term inx26 in the present form, 6b1
2a2 , is almost exactly equal to1a2 , just the negative of
the adiabatic value.~In fact @11#, the ratio of these two quan
tities is 0.9988, for the case of12C IV, the most abundan
isotope.! So it is clear that for any level of CIV for which this
term is significant we will find exactly the opposite effe
from the adiabatic model prediction.

III. OTHER ENERGY CORRECTIONS

There are several other corrections to the energy leve
addition to the expectation value of the effective poten

TABLE II. Level energies of CIV in cm21, compared with those
of Quinet@1#. Errors are estimated from the convergence rate of
effective potentialU(x), as described in Sec. IV.

L53 DE Level E(NL) E(NL) ~Quinet!

N54 211.48 2109743.7860.18 2109744.4
5 26.86 270235.5360.13 270234.6
6 24.310 248774.22060.090 248773.5
7 22.856 235833.81060.062 235834.0
8 21.980 227435.05560.043 227435.1
9 21.425 221676.94160.032 221677.1
10 21.140 217558.30860.024 217558.3
11 20.869 214510.92560.018 214510.9
12 20.677 212193.15560.014 212193.2

L54
N55 22.133 270230.80460.004 270230.7
6 21.487 248771.39760.003 248770.1
7 21.045 235831.99960.003 235830.3
8 20.752 227433.82760.002 227432.1
9 20.556 221676.07260.002 221676.1
10 20.421 217557.58960.001 217557.6
11 20.330 214510.38660.001 214510.4
12 20.260 212192.73860.001 212192.7

L55
N56 20.654 248770.5646<0.0001 248769.9
7 20.506 235831.460 235830.1
8 20.385 227433.460 227432.1
9 20.296 221675.812 221674.5
10 20.230 217557.398 217557.4
11 20.181 214510.237 214510.2
12 20.145 212192.623 212192.6
e
e
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U(x) that must be included. First, we should include seco
order effects ofU(x). Since we have included terms of ord
x28 in the effective potential, it is reasonable to include
leading term (x24) in second-order perturbation theory a
well. That is,

D25 (
N8ÞN

z^NLua1 /x4uN8L& z2

EN2EN8
. ~10!

An analytic expression for this second-order energy shift
been derived@12#, and we will use it here.

The remaining corrections are relativistic or quantu
electrodynamic. The first of these simply adds t
Sommerfeld-Dirac correction of ordera2 to the nonrelativ-
istic energy of the outer electron:

D rel5
~Z22!4a2

N3 F 3

4N
2

1

J11/2G , ~11!

whereJ5L61/2. The difference between these two valu
of J should account well for the fine-structure splitting
those cases, with high enough values ofL, for which the
hydrogenic approximation is good. Otherwise, an appro
ateJ-weighted average over the two fine-structure levels
be used, which corresponds to replacingJ by L.

The final three small corrections have been discussed
viously in detail for the case of lithium@3#, and the same
methods are used here. The first is the shiftD rel due to rela-
tivistic changes in the motion of the inner electrons which
reflected in modification of the polarizability of the core. It

e
TABLE III. Theoretical fine structure intervals of CIV in MHz,

including all the effects discussed above. The errors shown ar
the two levels combined in quadrature.

Transition Interval~MHz! Transition Interval~MHz!

5F-5G (141.764.0)3103 8I-8K 2 652.1560.20
6F-6G (84.662.7)3103 9I-9K 1 884.7160.18
7F-7G (54.361.8)3103 10I-10K 1 385.4360.15
8F-8G (36.861.3)3103 11I-11K 1 047.2860.13
9F-9G (26.0560.95)3103 12I-12K 810.4160.11
10F-10G (21.5460.71)3103

11F-11G (16.1660.54)3103 9K-9L 1228.62360.022
12F-12G (12.560.42)3103 10K-10L 902.35160.020

11K-11L 681.66560.018
6G-6H 24 984698 12K-12L 527.23260.015
7G-7H 16 150678
8G-8H 11 001660 10L-10M 648.639560.0034
9G-9H 7 814647 11L-11M 489.639760.0031
10G-10H 5 742636 12L-12M 378.498960.0028
11G-11H 4 454629
12G-12H 3 438623 11M-11N 374.565260.0007

12M-12N 289.393660.0006
7H-7I 6 983.163.0
8H-8I 4 763.662.6 12N-12O 230.7703260.00016
9H-9I 3 386.762.1
10H-10I 2 490.461.7
11H-11I 1883.061.4
12H-12I 1466.961.1
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TABLE IV. Theoretical fine-structure intervals of OVI in MHz, including all the effects discussed abov

Transition Interval~MHz! Transition Interval~MHz!

5F-5G (292.067.4)3103 8I-8K 10 374.11460.048
6F-6G (172.965.0)3103 9I-9K 7 318.80660.064
7F-7G (110.363.4)3103 10I-10K 5 352.47360.063
8F-8G (74.662.4)3103 11I-11K 4 030.87560.056
9F-9G (52.761.8)3103 12I-12K 3 110.35560.048
10F-10G (42.861.3)3103

11F-11G (32.161.0)3103 9K-9L 5 279.402360.0044
12F-12G (24.8460.78)3103 10K-10L 3 858.652960.0071

11K-11L 2 904.603460.0075
6G-6H 67 015624 12K-12L 2 240.529660.0071
7G-7H 42 785622
8G-8H 28 915618 10L-10M 2 951.067560.0005
9G-9H 20 430614 11L-11M 2 220.625860.0010
10G-10H 14 956611 12L-12M 1 712.465460.0012
11G-11H 11 463.868.5
12G-12H 8 840.066.8 11M-11N 1 765.0480360.000 09

12M-12N 1 360.8557860.000 18
7H-7I 23 475.9460.78
8H-8I 15 852.8560.86 12N-12O 1111.7843260.000 02
9H-9I 11 194.4960.77
10H-10I 8 192.3360.64
11H-11I 6 172.5560.53
12H-12I 4 779.4660.43

TABLE V. Theoretical fine-structure intervals of NeVIII in MHz, including all the effects discusse
above.

Transition Interval~MHz! Transition Interval~MHz!

5F-5G (58.261.0)3104 8I-8K 30 335.7260.76
6F-6G (34.1660.70)3104 9I-9K 21 345.4660.70
7F-7G (21.6960.48)3104 10I-10K 15 582.8060.61
8F-8G (14.6060.34)3104 11I-11K 11 719.3960.52
9F-9G (10.2960.25)3104 12I-12K 9 033.8360.44
10F-10G (8.0960.18)3104

11F-11G (6.0760.14)3104 9K-9L 15 929.53660.082
12F-12G (4.6960.11)3104 10K-10L 11 625.01360.078

11K-11L 8 740.92760.071
6G-6H (1.650060.0036)3105 12K-12L 6 736.77160.062
7G-7H (1.046960.0029)3105

8G-8H (0.704860.0022)3105 10L-10M 9 059.35460.012
9G-9H (0.496660.0017)3105 11L-11M 6 810.70460.012
10G-10H (0.362960.0014)3105 12L-12M 5 248.48360.011
11G-11H (0.275660.0011)3105

12G-12H 21 241685 11M-11N 5 472.934760.0024
12M-12N 4 217.191760.0023

7H-7I 64 684611
8H-8I 43 491.169.8 12N-12O 3 468.3637260.00054
9H-9I 30 621.368.2
10H-10I 22 362.666.6
11H-11I 16 823.465.4
12H-12I 12 988.264.4
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calculated using third-order perturbation theory including
Breit-Pauli operator. The second is the retardation correc
D ret, due to the finite light propagation time between t
core and a highly excited valence electron. We have used
expression for this correction given by Auet al. @13#, care-
fully evaluated for the case of a two-electron core. Fina
we have included the two-electron Lamb shift in the pr
ence of the perturbing valence electron, using the expres
given by Goldman and Drake@14#:

DLamb
NL 5

8

3
Za3F22 lna1

19

30
2 ln KG^d~rW1!1d~rW2!&,

~12!

where lnK52.98412912 ln(Z20.00615). Again, the expec
tation value of the delta functions is evaluated using thi
order perturbation theory.

IV. THEORETICAL ENERGY LEVELS

We can now calculate theoretical term values for anyL
sufficiently high that penetration of the valence electron i
the core and exchange between core and valence elec
give negligible contributions. As an example, in Table I w
show each of the energy contributions discussed above
the N58 manifold and the total energy of eachL sublevel,
including the norelativistic hydrogenic main term, relative
the ionization limit. Since the contribution of the effectiv
potential Eq.~9! is only asymptotic, we terminate the seri
of expectation values at its smallest term keeping1

2 of that
term and estimating the error also as1

2 the smallest term.
This is a fairly conservative procedure, and it has been v
successful in previous cases. We also show some typ
values for the penetration and exchange contributions, ca
lated using the open-shell approximation for the two-elect
core wave function; it is clear that these contributions
insignificant for L.3, and we do not include them in th
total energy even forL53 since they are of the same ord
of magnitude as our estimate of the asymptotic converge
of the polarization energy.
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In Table II we compute many term energies and comp
them with those of Quinet@1#. In this reference the lowe
term values are obtained from experiment, while the hig
ones are derived by an effective potential technique l
ours, but with what we have described above as the incor
term2a2 /x instead of (6b12a2)/x in Eq. ~9!. Note that for
these upper levels the difference is very small: forN510 and
L55 this term contributes only 431024 cm21, a completely
negligible amount in comparison with the errors in the op
cal measurements.

Nevertheless, there is a good chance that the details o
calculation, including the small relativistic corrections a
others, can be tested. The technique of Lundeen and his
laborators has been used to measure the fine structur
excited states of helium@15#, lithium @5#, and the hydrogen
molecule @16# to extremely high precision, and it appea
that the same methods could be applied to CIV. For that
reason, in Table III we give the fine-structure differences
many CIV levels.
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APPENDIX

Although we were originally motivated to carry out th
computation of energy levels for CIV because of the work in
Ref. @1#, the possibility of making very accurate measur
ments of the fine structure by Lundeen’s methods has
couraged us to present additional data for two more lithiu
like ions OVI and NeVIII . In Tables IV and V we show
theoretical fine structure intervals for these two ions, in an
ogy with Table III for CIV.
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