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Optimization of Gaussian basis sets for density-functional calculations
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We introduce a scheme for the optimization of Gaussian basis sets for use in density-functional calculations.
It is applicable to both all-electron and pseudopotential methodologies. In contrast to earlier approaches, the
number of primitive Gaussiari@xponentsused to define the basis functions is not fixed but adjusted, based
on a total-energy criterion. Furthermore, all basis functions share the same set of exponents. The numerical
results for the scaling of the shortest-range Gaussian exponent as a function of the nuclear charge are explained
by analytical derivations. We have generated all-electron basis sets for H, B through F, Al, Si, Mn, and Cu. Our
results show that they efficiently and accurately reproduce structural properties and binding energies for a
variety of clusters and molecules for both local and gradient-corrected density functionals.
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PACS numbe(s): 31.15.Ew

I. INTRODUCTION workers[14,23 to create a set of density-functional opti-
mized CGTOs. More sophisticated Hartree-Fock-based opti-

The majority of all electronic-structure methods that aremization schemes, which avoid least-squares fits, have also
currently used to investigate extended systems expands tfgen developefl4,25|.
electronic wave functions in terms of basis functions. Two Experience has shown that it is a good idea to base the
C|asses Of functions are Comm0n|y app“ed p|ane Wave§0nstructi0n of CGTOs on calculations for free atoms. The
(PWS and localized atomiclike orbital®Os). PW basis sets general philosophy is to find the best set of CGTOs for the
are usually applied in combination with pseudopotentials foffree atom and then provide additional functions to allow the
supercell calculations with periodic boundary conditipt ~ atom to respond to changes in its environment. The majority
They are computationally easy to handle and the converof the previously reported methods for constructing CGTOs
gence of the calculated properties with respect to basis-sé@ve the disadvantage that they fix the number of GTOs used
size can be controlled easily. However, they suffer from thel© define a single CGTO. This may lead to deficiencies in the
drawback that many basis functions are needed to accurat%scription of the core or valence orbitals of a given atom.
describe localized states. As a result, calculations on systenfss @ result, functions corresponding to other atoms may
of first-row or transition-metal atoms can be quite expensivelower its energy further when it is placed into a molecule,
Atomiclike orbitals provide an excellent tool for bypassing thus resulting in an overestimation of the binding energy.
these problems since they are intrinsically localized. FurtherThis effect is called basis-set superposition erf@ESE.
more, it should be noted that there is currently much progreskurthermore, different atomic orbitals are usually optimized
in developing self-consistent full-potential methods, whichindependently, which leads to a different set of Gaussian
scale linearly with system sizf2—4]. Such methods are €xponents for each orbital. In practical applications, one ex-
much more easily implemented within a localized basis sinc@ensive part of the calculation is the evaluation of the expo-
well-separated, localized orbitals do not overlap. nential function or its integral§or instance, for the determi-

Several types of AO functions have been proposed. Compation of the wave function or Coulomb eneygwhile the
monly used are augmented plane wal@sthat are actually degree of the contraction is less important. For this reason, a
a mix of plane waves and AOs, linearized muffin-tin orbitalsPasis set, which uses the same set of exponents for all CGTO
[6], Slater-type orbital§STOS introduced by Slatef7], and orbitals, is more desirable since it is more efficient. We have
Gaussian-type orbital§GTOs which were first used by deyelopgd a method to construct such basis sets. It is de-
Boys [8] STOs describe the properties of the atomic Wave.scnbed in Sec. Il. In Sec. ”I, we ShOW that these baS|S sets
functions more accurately than GTOs but the mathematicd'e able to yield converged results for equilibrium properties
associated with them is much more involved. The advantage?f a variety of systems ranging from simple first-row atom
of STOs and GTOs may be combined by building linearmolecules to magnetic transition metal-oxide clusters. The
combinations of GTOS, which resemble the Shape of STOg?aSiS‘Set eXponentS and coefficients for all elements dis-
These basis functions are called contracted GT@BTOY.  cussed here are given in R¢R6]. We hope that they will
The usefulness of GTOs in calculations on finite systemdacilitate future work with Gaussian orbital basis sets and
such as molecules and clusters was first demonstrated Byrther increase the number of research groups using this
Huzinaga[9] and their importance has been growing everapproach.
since[10-18. Most of the early work aimed at constructing
CGTOs was based on least-squares fit{i®g 9—21. Later,
Tatewaki and Huzinagg22] combined least-squares fits and
an atomic optimization scheme to obtain more reliable basis The basis-set optimization scheme introduced here is ap-
sets. This method was also used later by Andzelm and cglied within the density-functional formalistiDFT) [27,2§

IIl. METHOD
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but it could be used in principle within Hartree-Fock or othermay be replaced by @ossiblyl-dependentpseudopotential
methods. If density-functional theory is applied within the if basis bets are to be optimized for this technique.
usual Kohn-Sham scheme, the total energy can be written as Total-energy expressiotb) only depends on the expo-
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whereo denotes the spin indekg;, are the occupation num-

bers,®;, are the Kohn-Sham orbital§/,, is the Coulomb
potential due to the electron densipy, and E,. is the

nentsa and coefficientg,;,, . For a given number of expo-
nents, one needs to search for the set of exponents and coef-
ficients that leads to the lowest total energy. For a given set
{a} the bestc);,, can be determined by performing a stan-
dard self-consistent solution of the atomic problem within
the DFT framework. After a successful atomic calculation
with a fixed set of exponents we calculate the derivatises

of the total energy with respect @ given by

exchange-correlation energy depending on the spin densities

p; andp, given by

occ

p(,<r>=2i DE(NDi,(r), p(r)=pi(r)+p(r). (2

The Kohn-Sham orbitals are determined by minimizing total- 2
energy expressiofl), which leads to the Kohn-Sham equa-

tions:

2
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whereV,. is the functional derivative oE,¢.

A. Determination of the Gaussian exponents
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The knowledge of5,, enables one to use efficient conjugate-
gradient routines to minimize the total energy with respect to
«. Derivatives of the DFT total energy with respect to
Gaussian exponents have been previously used in molecular
DFT simulations[29]. Note that Eq.(6) is the full (as op-
posed to partialderivative of the total energy with respect to

The Gaussian exponents are optimized by minimizing thg, This is the case since for a fully self-consistent solution of
total energy of the spherical free atom in its electronicthe atomic Kohn-Sham equations, the derivative of the total
ground state. For this system, radial and angular degrees ghergy with respect to;;,,, is zero and hence the Hellmann-
freedom may be separated. The radial wave functions St"l':eynman theorem can be applied to calculateGhe
need to be determined while the angular part is given by since the necessary theory is now developed, our strategy

spherical harmonics. We expand tith atomic Kohn-Sham
orbital corresponding to angular momenturh,nf) into
GTOS ¢, given by

o2 r
Diime= 2 Cliga®Pima(l),  @ma(=r'e " YIm(F)-

(4)

to optimize the Gaussian exponents based on an atomic cal-
culation may be pointed outa) Perform a basis set frgall
numerical atomic calculation in order to find the correct
ground-state energyb) Define the total number of expo-
nents.(c) Define the initial set of exponen{s}. By default,

this is a geometric progressigeven-tempered Gaussians
ranging froma=0.05 to =100 Z3. Of course, the final
result of the optimization should not depend on the initial

The total energy of the spherical atom may then be expressqﬁ,ess and we find that this is indeed the caddgFind the

as
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where the occupation numbeng, may range from 0 to P
+1 due to angular momentum degeneracﬁ%,is the radial
part of the Laplacian operator given by?=d?dr?
+(2/r)d/dr. The Coulomb potential of the nucleusz/r

atomic ground-state energy in a self-consistent DFT calcula-
tion. (e) Calculate the derivativeS , of the total energy with
respect to each exponent via Eq. (6). (f) Compute the
natural logarithm (Inw) andG,, ,=(JE/dIn @)=aG,, for each
exponenta. If the G, , are larger than the predefined con-
vergence margin, use a conjugate gradient routine to update
{In @} and go back to stefd). Optimizing{In «} instead of
{a} is numerically more stable and therefore advantageous.
(g) Compare the total energy with the result of stap If the
difference is larger than a predefined error margin, increase
the number of exponents and go back to d®p

One fact worth pointing out is that differeat may “at-
tract” each other in the course of an optimization. This can
lead to instabilities in the relaxation process due to linear
dependences in the basis set. To avoid this problem, an aux-
iliary term is added to the total energy:
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After substitutingB,=1/{/A, it is possible to expand the

a
Eau= 2 F(17x* (x=1), energyEy at B,=0. Using straightforward differentiation
e 2. and Eqgs{(10)—(12) one concludes that the first- and second-
0 (x=1), order derivatives vanish and, therefore,
where (7 en=Ey—E%~B3~A, %2 (13)
[In(e)—In(a")\? We have also veryfied Eq13) numerically by determining
B In(b) the total energy of the hydrogen atom with Gaussian basis

sets. Finally, combining Eq$9) and (13) results in
We have chosen to fia=0.1 eV, b=1.5. All basis sets
published here have been derived with this setting without e~A"¥2Z5 or A~e 27108 (14
encountering any problems in the optimization. Furthermore, ) ) . . ]
for the cases presented hefg,, always vanishes for the The above equation predicts an analytically derived scaling
final set of exponents, i.e., it is only needed to stabilize the?f A proportional toZ'%, which agrees well with th&>*

minimization procedure. scaling found numerically.
One fact worth discussing is the scaling behavior of the
largest exponem = «a,,,, as a function of the nuclear charge B. Determination of the contraction coefficients

Z. Numerically, we find thaA is approximately proportional After the optimum Gaussian exponents have been

to Z*% It can be exp_ected that this scaling is_ closely COM%ound, the first set of CGTOs is defined by building a mini-
nected to the properties of thes Tore state, which may be mal bélsis setone CGTO each forg, 2s, 2p, 3s, 3p, 3d

well approximated by the corresponding drbital of a one- etc) for the free atom. We are already furnished with a GTO
elect.ron hydrogenlike atom W.ith nuclear chatgerhis sys- expansion of these orbitalthe c,;, obtained in thex opti-
tem is described by the Hamiltonian: mization contain exactly the information we ne€etihe only
complication is that instead of a single expansion for each
A=———-=, (8)  State, there are twspin up and downsimilar but different

2 r sets ofc;,, . Therefore, the spin-averaged orbitals are con-

o ) _ o structed from
which is invariant with respect to a renormalization:r/Z

andE— E Z? of spatial coordinate and energy. Based on this _ 2
knowledge one can show thatgossibly incompleteGauss- Pimi= = Clia®Pima
ian basis set, which predicts an enefgy for the hydrogen

atom (Z=1), will give an energyE,,Z* for arbitraryZ if the  \yhich will give the majority spin orbital for a fully spin-
Gaussian exponents are scaledvasaZ? (\/a has the di-  polarized state and the correct spin-averaged orbitals for a
mension of an inverse lengttThis is also true for the largest spinless state.
exponentA and, therefore, Although thec); , resulting from Eq(15) would provide a
very good minimal basis set for the atom, they do have a
e=E—-E’=(Ey—EQ)Z?=e4Z? A=A.Z% (9  major disadvantage. Since they were determined based on an
atomic all-electron calculation, the valence states show the
where ¢ is the difference between actually calculated andusual wiggles close to the nucleus. In order to accurately
ground-state energyE(andE®, respectively due to basis-set represent these wiggles one needs GTOs with fairly large
incompleteness. Focusing our attention on the hydrogeGaussian exponentsimilar to the ones needed for the core
atom (Z=1), we can write a Gaussian basis-set expansion oftate$. However, it would be preferable to have a set of basis
the radial wave functiom(r) in the most general form as  functions that are either short-ran@®re or long-rangegva-
lence without any substantial wiggles. Fortunately, it is pos-
sible to create a new sat,; of CGTOs with the desired
properties as a linear combination of the dig,,; defined by
Eq. (15) without losing accuracy since the total energy will
whereA, is the largest exponent allowed in the expansionnot change as long as thi,; span the same space as the
For A=~ (complete basjs c(=,«a) is known[9]: D -
The basis-set transformation is done independently for
each angular momentum. Assuming that the old stdgs
(1D are ordered so that their Kohn-Sham eigenvalaes spatial
range increase with increasing state index, thg,; are writ-

For arbitraryA,, the c(Ay,a) which leads to the lowest t€n as
energy, can be obtained by requiring that the variation

o ~ MitClitat i Cli o
e Ny Ny

, (15
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5c(AH,a)EH:5c(AH,a)<q)|H|q)>:o’ (®|D)y=1.
(12)  and thedy;; are determined so the expression
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1.0 ' . y For the smallest of the basis sets presented [dEeoted
______ density-functional optimizedDFO-1) in the next sectioh

& 1 we have chosen to define one additional CGTO per angular
e momentum comprised of two GTOs. This corresponds to a
= 10 ) level usually referred to as double-zeta valence with polar-
S ization function similar to the 6-31%Gbasis used by many
2 all-electron . )
s 1 transformed commgrual program packaggk3]. For mcregsed accuracy,
2 a0l | more single GTOs may be added to the basis. In this manner,
E ' one can gradually obtain basis sets with more and more func-
g tions and higher accuracy.
<

-5.0 . . .

0.0 1.0 2.0 3.0 4.0 I1l. RESULTS AND DISCUSSION

Radius [units of a;] ) )
In this paper, we report all-electron basis sets and results

FIG. 1. All-electron Kr 4 orbital and the smooth function re- for the elements H,B through F, Al, Si, Mn, and Cu. We also
sulting from the orbital transformation described in Sec. Il. provide a function set for Si applicable in calculations using
Bachelet-Haman-Schier pseudopotentials[30,31]. Of
course, the same procedure may be applied to other elements
d”jd”j,z E C|iaC|ia'<€D|ma|<P|ma/>(aa')3/2 as well. All basis sets were optimized within the local-
a o density approximatiofLDA) but results are also presented
(17 for the Perdew-Burke-Ernzerh¢PBE) generalized gradient
approximation(GGA) [34,35. The code for the basis set
) o - , ) construction is available from the authors via the World
is minimized under the condition that tii,,; remain nor-  \jge Web(please contact porezag@physics.georgetown.edu
malized. Although this procedure is certainly not unique, itfor detaily. Results for clusters and molecules have been
effectively reduces the contribution of large Gaussian expogptained using a Gaussian orbital-based cluster code
nents to®/,,;. Consequently, the contribution of masy,  (nrLmoL) developed by Pederson and Jacksd®,16.
to @/, is now negligible. As a result, the final basis func- Within this scheme, all necessary integrals are determined
tions contain fewer terms in the CGTO expansion, whichnumerically using a variational mesh, which allows for arbi-
further increases their efficiency for large-scale calculationstrary precision. Furthermore, densities and potentials are cal-
Figure 1 shows how the Kryptonsdorbital can be trans- culated directly from the wave functions without using any
formed into a very smooth orbital by means of the procedureadditional expansions or approximations.
described above. Three different basis sets are used in this paper for each
While the se{®/,,;} of CGTOs is well suited for the free atomic species. They are termed DFO-X. DFO-1 was con-
atom in its ground state, it is an overconstrained basis set fa@tructed with an error margin of 0.1 eV in the optimization of
clusters, molecules, and solids, because in these systems tine exponents, one additional breathing function per angular
valence electrons usually assume a spatial distributiormomentum, and one polarization function. DFO-2 was cre-
which is different from the free atom. The basis that has beeated with an error margin of 0.01 eV, two additional breath-
constructed so far does not give the valence electrons thiag functions per angular momentum, and two polarization
freedom to “breathe” since they are “frozen” in a single functions. DFO-R is only used to assess the quality of
CGTO. This deficiency may be overcome by creating addi-DFO-1 and DFO-2 in terms of convergence with basis-set
tional functions allowing the atoms to adapt to changes irsize. It contains the same Gaussian exponents as DFO-2 plus
their environment. These functions may be of higher angulaone additional Gaussian exponent, which is one third of the
momentum than the ones occupied in the atpawiarization  longest-range DFO-2 exponent. However, in contrast to
functiong or just provide more radial flexibilitfbreathing DFO-2, which uses these GTOs to define contracted func-
functions. tions, DFO-R employs all exponents smaller than 10.0 a.u. as
In order to keep the extended basis as efficient as posingle GTOs. It is therefore very flexible. Hyperpolarization
sible, the Gaussian exponents resulting from the optimizatiofunctions(of angular momenturh+2 wherel is the highest
scheme described above may also be used to form the addingular momentum occupied in the free ajdrave not been
tional CGTOs. This is not a serious restriction since adjacenincluded in either of the basis sets. While it is known that
a values are not too different and intermediate values mawrbitals of this type may be important to obtain converged
be approximated well by linear combinations. The additionakesults for properties that depend on the response of the elec-
CGTOs are optimized by minimizing the total energy of thetrons to external perturbations such as electric fig#533,
homonuclear diatomics at their equilibrium separation. Thighey usually have a very small impact on binding energies
way, the optimization of all basis functions is based on theand structural properties, which are the main issue in this
same simple criterion. However, in a few cases the homopaper. In certain cases, hyperpolarization functions may also
nuclear diatomics are either unbound or very weakly boundbe replaced by off-center CGTOs of lower angular momen-
In these cases, heteronuclear diatomics may be more suitakilem.
(e.g., Mn-O has been used here to optimize the additional The results are compared with two basis set types known
functions for Mn or the internuclear separation needs to befrom the literature and commonly used today: the sets pub-
chosen manually at a reasonable value. lished by Andzelm, GodboUWAG), and co-workerg14,23

!
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i
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TABLE I. RMS errors (in eV) with respect to all-numerical
calculations for LDA total energies and eigenvalues of the occupied
valence states calculated within the DFO and other basis sets. AG
basis sets are from Refgl4,23 and 6-31CG sets are from Ref.
[13].

Atoms Quantity DFO-R DFO-2 DFO-1 AG 6-3%G

H AE,  0.001 0001 0021 0062 0.254
Ae, 0000 0002 0.028 0210 0.504
B-F  AE,  0.007 0.009 0.089 0.154 0.986
Ae, 0001 0.003 0.040 0061 0.668

Al AE, 0009 0011 0.093 0.873
Ae,  0.001 0.003 0.049 0.049
Si AE, 0010 0012 0.124 0.980
Ae, 0002 0.003 0.043 0.080
Mn AE,  0.008 0.013 0.083 30.503
Ae, 0000 0.003 0018 0.055
Cu AE, 0010 0011 0.097 44.380

Ae, 0.001 0.006 0.060 0.133

(defined for H,B through F, and Sc through)zinat were
optimized within DFT, and the 6-3TGset (defined for H
through Ap, which is based on the work of Pople and co-
workers[36] and probably one of most widely used Gaussian
basis sets in general. It should be noted that in contrast to all
other basis sets discussed here 6-31@as been optimized
e T o e o S 15, 2. GGAPBE ground e sictres of e g and
; . ) . TF/Inélo4 clusters. The arrows indicate the spin of the manganeése 3
Hartree-Fock frequently show a dlf_ferent spatial behavior o lectrons and indicate an antiferromagnetic ordering.
the charge density and we would like to stress that the DF'Ie
results published here cannot be used to assess the quality siéntly long-ranges-type function. For the first-row elements
the basis sets for Hartree-Fock or other methods. B through F, DFO-1 shows a slightly better performance
Since the main purpose of this paper is to demonstrate thgyan AG and both of these sets are much better than 6-31G
convergence of the calculation with basis-set size, all calcutarge differences between DFO-1 and AG can be observed
lated quantities will be compared to the correspondingor the total energies of the heavy Mn and Cu atoms. This is
DFO-R results. In other words, we want to show the magnimainly due to the fact that the AG CGTOs are comprised of
tude of the basis set expansion errors for different quantitiessnly 4 GTOs for these atoms in order to keep the numerical
Deviations between theory and experiment that are causestforts tractable. However, it is worth noting that the AG set
by the theory(DFT) itself are beyond the scope of this pub- for Mn still contains 26 different exponents while DFO-1
lication. There are a number of papers available that addresghd DFO-2 contain only 17 and 20, respectively. One of the
this issue[34,37,38. advantages of the present basis-set optimization scheme is
that the number of Gaussian exponents does not grow lin-
early with the number of occupied states in the atom, but it
A. Atoms grows logarithmically with its nuclear chargef course this
ehavior will change if pseudopotentials are employed in-

The total energy of the free atoms was the main figure o tead of performing an all-electron calculation

merit used in the basis-set optimization. Therefore, one
should expect good results for these systems. Table | shows
the root-mean-squar€RMS) errors for total energies and
Kohn-Sham eigenvalues of the occupied valence orbitals
with respect to basis-set free numerical calculations. The re- We have tried to select a variety of systems with different
sults are determined within the LDA using thepin- types of bonding to demonstrate the basis-set performance.
polarized electronic ground-state configurations. As ex-The set includes the simple diatomic, HCH, (methang
pected, the accuracy decreases in the order DFO-R, DFO-Z,H¢ (ethane, C,H, (etheng, and GH, (acetyleng as ex-

and DFO-1. However, all DFO sets remain approximatelyamples for hydrocarbons with single, double, and triple
within the error margins set in the optimizatiod.1 eV for  bonds. G, as the most important fullerene clustep®(wa-
DFO-1 and 0.01 eV for DFO-2, respectivelyror hydrogen, ter), HCN (hydrogen cyanide HCF; (fluoroform), and

the DFO sets perform significantly better than AG and muchrans-HCOOHformic acid, as examples for systems with a
better than 6-31&. The main reason for the errors associ-fairly large interatomic charge transfer, have also been inves-
ated with the latter sets is that they do not provide a suffitigated. SjHg (disilane, which has a simple Si-Si single

B. Bond lengths and angles
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TABLE Il. Dipole moments(D) as calculated with different basis sets. Experimental data $& &hd
HCN are from Ref[37], for HCF; and HCOOH from Ref[42]. AG basis sets are from Refdl4,23 and
6-31G" sets are from Ref.13].

LDA GGA-PBE
Exp. DFO-R DFO-2 DFO-1 AG 6-31G DFO-R DFO-2 DFO-1 AG 6-316
H,O 1.85 1.86 1.89 212 216 2.07 1.81 1.84 206 2.08 1.99
HCN 298 3.03 3.03 3.02 3.00 291 2.96 2.96 298 293 284
HCR; 159 1.53 1.53 158 168 131 1.54 1.53 159 168 1.32
HCOOH 151 154 1.55 151 159 1.52 1.48 1.49 145 153 147

bond, is also part of the set. Additionally, we have includedAG and 6-31G show significantly larger errors of about
the planar rhombus-shaped, $iuster(for previous theoret- 0.01 A. Deviations in the bond lengths will very often lead to
ical investigation see, e.g., Ref89—-41 and the manganese supstantial errors in calculated vibrational frequencies. For
oxide clusters MpO, and Mn,O,). To the best of our example, the harmonic frequencies for the GGA-PBE sym-
knowledge, there have been no previous theoretical investinetric stretching mode in 40 are 3697 cm! and
gations of these transition-metal oxide clusters. Their grounggng 1 if calculated using DFO-R and 6-3tGrespec-

state is found to be planar with an an;iferromagnetig Orderingiively. Most of this error is due to different equilibrium ge-
of the manganesed3electrons(see Fig. 2 We are in the ?metries for the two basis sets

procetssthof testing thed'ba5|s seltts for SOI:CdStr?S well and Will" 1o pFO.1 and DFO-2 absolute deviations for the Sys-
|r_|ep0r € (_:orrespcl)_g INg resuits olln a for fomlntgh PaPelioms containing Si and Mn atoms are larg@bout 0.003 A
OWEVEr, since Solids are more dense Systems than moj g 557 A but one needs to keep in mind that the bonds in

ecules or qlusters_ a_nd since our basis sets are explicitly COrese structures are weaker and 1.5—1.8 times longer than the
structed with a minimum BSSE, we expect them to work 8honds in the molecules that contain only first-row atoms.
least as well for solids as they do for molecules and cluster

Fence, the relative error is only slightly increased. Overall,
RMS errors of bond lengths and bond angles have beef performance of both DFO-1 and DFO-2 is very satisfac-
determined for the 14 selected test systems. Bond angles
described very accurately with all basis sets except for the
2.0 degree deviation of 6-3X¥Gor water. It is more difficult
to accurately describe this molecule with a small basis due to
the existence of the lone electron pair on the oxygen atom. The dipole moment represents the first moment of the
However, it is worth noting that DFO-R predicts 104.7° for charge densities and hence is a good indicator for its conver-
the HOH angle which is very close to the experimentallygence with respect to basis-set size. Four of the systems pre-
determined angle of 104.5°. Bond lengths are very well consented here have nonzero dipole moments. Their basis-set
verged (RMS errors of 0.002 A or legswithin both DFO  dependence is shown in Table Il. DFO-1 performs very well
basis sets for the molecules containing first-row elementsxcept for HO, which has the lone electron-pair problem

C. Dipole moments

TABLE lll. Atomization energiegD) as calculated within LDA and GGA-PBE. Errors and values fgy C
are given per atom. AG basis sets are from Rgfd,23, and 6-31G sets are from Ref.13].

LDA GGA-PBE

DFO-R DFO-2 DFO-1 AG 6-316 DFO-R DFO-2 DFO-1 AG 6-316
H, 4.90 4.90 489  4.99 4.82 4.53 4.54 453 4.63 4.43
CH, 20.02 20.01 19.98 20.18 19.78 18.20 18.19 18.17 1837 17.95
C,Hg 3438 3436 3431 3458 34.10 31.05 31.03 30.99 31.28 30.76
CoH, 2737 2735 2728 2733 27.17 2474 2472 2467 2475 2454
C,H, 19.88 19.85 19.79 19.56 19.69 1793 1791 17.86 17.68 17.74
Ceo 8.50 8.49 8.47  8.40 8.57 7.47 7.45 743 7.40 7.53
H,O 1154 1152 1140 11.48 11.06 10.16 10.15 10.04 10.12 9.69
HCN 1559 1556 1551 15.20 15.47 14.09 14.07 14.02 13.78 13.98
HCOOH 2585 2580 25.69 2552 25.82 22.62 2257 2247 2236 22.58
Alatm 0.01 0.03 0.07 0.07 0.01 0.03 0.05 0.07
Si;Hg 25.08 25.01 24.90 24.93 2251 2245 22.36 22.38
Siy 1429 1423 14.23 14.05 1239 1234 12.37 12.17
Mn,0O, 16.89 16.83 16.65 16.32 14.09 14.07 1391 13.60

Mn4O, 39.14 39.02 38.69 38.45 33.06 33.01 32.74 3250
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TABLE V. Total-energy differences for selected reactions. Note that these are not reaction enthalpies
since zero-point motion effects are not included. AG basis sets are from[R4f23 and 6-31G sets are
from Ref.[13].

Functional DFO-R DFO-2 DFO-1 AG 6-31G

C,H,+H,—CoH, LDA 2.59 2.60 2.60 2.78 2.66
GGA-PBE 2.28 2.27 2.28 2.44 2.37
C,oHa+Hy— CoHg LDA 2.11 2.11 2.14 2.26 2.11
GGA-PBE 1.78 1.77 1.79 1.90 1.79
C,Hg+H,—2CH, LDA 0.76 0.76 0.76 0.79 0.64
GGA-PBE 0.82 0.81 0.82 0.83 0.71
HCOOH+ 3H,—H,0+ CH, LDA 2.55 2.55 2.42 2.65 1.62
GGA-PBE 2.31 2.30 2.19 2.36 1.46
2 Mn,0,—Mn,0, LDA 5.36 5.36 5.39 5.81
GGA-PBE 4.88 4.87 4.92 5.30
mentioned earlier. DFO-2 corrects most of the DFO-1 error E. Performance issues

and yields an almost converged result. For all other systems,

DFO-1 and DFO-2 work very well in contrast to AG and  One of the points made in the Introduction of this paper is

6-31G", which show larger deviations for HGRand HCN. that Gaussian basis sets, which share exponents between dif-

Note also that the convergence is similar for both LDA andferent angular momenta, will be more efficient than others.

GGA-PBE functionals. Table V summarizes relative timings for the calculation of
the Coulomb potential in §. While such numbers may
slightly depend on the specific implementation of the prob-

D. Atomization and reaction energies lem, it is apparent that the DFO basis sets show a better

One of the most important tasks of quantum physics and€"formance, especially when accuracy and speed are con-
chemistry is the prediction of the relative stability of differ- Sidered together.
ent structures. In order to calculate such properties accu-
rately, one usually needs to take pressure, entropy, and pos-
sibly other effects into account. However, the largest
contribution to the binding-energy difference of two systems

normally comes from the difference in the atomization ener- We h introduced h for the full optimizati f
gies of the two systems. Table Il displays the calculated e have introduced a scheme for the full optimization o

atomization energies for the 14 test structures presented hef@C 1 OS for density-functional calculations on extended sys-
defined as the total-energy difference between the condens&@Ms- The method is based on a total-energy minimization
system and free atom&e., neglecting effects due to zero- procedure for free atoms and makes efficient use of the total-
point motion. Again, the DFO basis sets perform better than€nergy gradient with respect to the Gaussian exponents. The
AG and 6-31G. While the agreement between DFO-2 and number of exponents is not fixed but determined by requiring
DFO-R is very good in all cases, DFO-1 shows larger error@ predefined accuracy of the total energy, which leads to
for H,O and the systems containing Si and Mn. Howeverbasis sets of minimum BSSE. The definition of additional
the deviations are acceptable for a basis set of this size arfifeathing and polarization functions is based on a minimum-
substantially smaller than for AG and 6-31GFurther, it energy principle as well. DFO sets of higher accuracy may
should be noted that both DFO-1 and DFO-2 always underbe created by successively adding additional basis functions,
estimate the correct value. This should be the case since thégllowing the same energy-minimization procedure. Results
are both based on total-energy optimizations of the free atorfor molecules and clusters suggest that the DFO basis sets
and hence basis-set superposition errors should be small. Twesented here can accurately and efficiently describe a vari-
explicitly show that this is indeed the case, we have deter-

mined the BSSE for all atoms in fluoroform. While the total

BSSE is rather small for both DFO s€t019 eV and 0.006 ) )

eV for DFO-1 and DFO-2, respectivélyAG gives a signifi- TABL_E V._Tc_)tal number of GTO_s and basis functions per atom
cantly larger error of 0.060 eV. 6-3¥Gshows the worst and relative _tlmlngs for the calculation of the Coulomb potential in
performance with a BSSE of 0.6 eV. Since each system wil ?f' [Aig] basis sets are from Refd4,23 and 6-31G sets are from
have a different BSSE, errors of this magnitude can severely ~ "™

alter the computational results of reaction energies. Table IV
illustrates this problem using a few hydrogenation and

IV. CONCLUSION

DFO-2 DFO-1 AG 6-316

cluster-cluster reactions. For example, the 6-81&ergy  Number of GTOs 9 12 17 11
difference for the hydrogenation of formic acid is almost 1 Number of basis functions 34 21 21 21
eV too small. On the other hand, the DFO basis sets show Relative timings 1.80 1.00 3.70 1.10

good convergence.
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ety of systems with both LDA and GGA functionals. In order in part by the ONR Molecular Design Institute under Grant
to simplify the application of our method, the software, No. NO001498WX20709.
which implements the optimization procedure, is made pub-

lic on the World Wide Web. APPENDIX
The basis-set data are published electronically: see Ref.
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