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Optimization of Gaussian basis sets for density-functional calculations

Dirk Porezag and Mark R. Pederson
Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375

~Received 19 April 1999!

We introduce a scheme for the optimization of Gaussian basis sets for use in density-functional calculations.
It is applicable to both all-electron and pseudopotential methodologies. In contrast to earlier approaches, the
number of primitive Gaussians~exponents! used to define the basis functions is not fixed but adjusted, based
on a total-energy criterion. Furthermore, all basis functions share the same set of exponents. The numerical
results for the scaling of the shortest-range Gaussian exponent as a function of the nuclear charge are explained
by analytical derivations. We have generated all-electron basis sets for H, B through F, Al, Si, Mn, and Cu. Our
results show that they efficiently and accurately reproduce structural properties and binding energies for a
variety of clusters and molecules for both local and gradient-corrected density functionals.
@S1050-2947~99!07110-3#
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I. INTRODUCTION

The majority of all electronic-structure methods that a
currently used to investigate extended systems expands
electronic wave functions in terms of basis functions. T
classes of functions are commonly applied: plane wa
~PWs! and localized atomiclike orbitals~AOs!. PW basis sets
are usually applied in combination with pseudopotentials
supercell calculations with periodic boundary conditions@1#.
They are computationally easy to handle and the con
gence of the calculated properties with respect to basis
size can be controlled easily. However, they suffer from
drawback that many basis functions are needed to accur
describe localized states. As a result, calculations on sys
of first-row or transition-metal atoms can be quite expens
Atomiclike orbitals provide an excellent tool for bypassin
these problems since they are intrinsically localized. Furth
more, it should be noted that there is currently much progr
in developing self-consistent full-potential methods, whi
scale linearly with system size@2–4#. Such methods are
much more easily implemented within a localized basis si
well-separated, localized orbitals do not overlap.

Several types of AO functions have been proposed. C
monly used are augmented plane waves@5# that are actually
a mix of plane waves and AOs, linearized muffin-tin orbita
@6#, Slater-type orbitals~STOs! introduced by Slater@7#, and
Gaussian-type orbitals~GTOs! which were first used by
Boys @8#. STOs describe the properties of the atomic wa
functions more accurately than GTOs but the mathema
associated with them is much more involved. The advanta
of STOs and GTOs may be combined by building line
combinations of GTOs, which resemble the shape of ST
These basis functions are called contracted GTOs~CGTOs!.
The usefulness of GTOs in calculations on finite syste
such as molecules and clusters was first demonstrate
Huzinaga@9# and their importance has been growing ev
since@10–18#. Most of the early work aimed at constructin
CGTOs was based on least-squares fitting@9,19–21#. Later,
Tatewaki and Huzinaga@22# combined least-squares fits an
an atomic optimization scheme to obtain more reliable ba
sets. This method was also used later by Andzelm and
PRA 601050-2947/99/60~4!/2840~8!/$15.00
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workers @14,23# to create a set of density-functional opt
mized CGTOs. More sophisticated Hartree-Fock-based o
mization schemes, which avoid least-squares fits, have
been developed@24,25#.

Experience has shown that it is a good idea to base
construction of CGTOs on calculations for free atoms. T
general philosophy is to find the best set of CGTOs for
free atom and then provide additional functions to allow t
atom to respond to changes in its environment. The majo
of the previously reported methods for constructing CGT
have the disadvantage that they fix the number of GTOs u
to define a single CGTO. This may lead to deficiencies in
description of the core or valence orbitals of a given ato
As a result, functions corresponding to other atoms m
lower its energy further when it is placed into a molecu
thus resulting in an overestimation of the binding ener
This effect is called basis-set superposition error~BSSE!.
Furthermore, different atomic orbitals are usually optimiz
independently, which leads to a different set of Gauss
exponents for each orbital. In practical applications, one
pensive part of the calculation is the evaluation of the ex
nential function or its integrals~for instance, for the determi
nation of the wave function or Coulomb energy!, while the
degree of the contraction is less important. For this reaso
basis set, which uses the same set of exponents for all CG
orbitals, is more desirable since it is more efficient. We ha
developed a method to construct such basis sets. It is
scribed in Sec. II. In Sec. III, we show that these basis s
are able to yield converged results for equilibrium propert
of a variety of systems ranging from simple first-row ato
molecules to magnetic transition metal-oxide clusters. T
basis-set exponents and coefficients for all elements
cussed here are given in Ref.@26#. We hope that they will
facilitate future work with Gaussian orbital basis sets a
further increase the number of research groups using
approach.

II. METHOD

The basis-set optimization scheme introduced here is
plied within the density-functional formalism~DFT! @27,28#
2840 ©1999 The American Physical Society
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but it could be used in principle within Hartree-Fock or oth
methods. If density-functional theory is applied within th
usual Kohn-Sham scheme, the total energy can be writte

E5(
s,i

occ

nisE dr F is* ~r!F2
“

2

2
1Vext~r!1VH@r~r!#GF is~r!

1Exc@r↑~r!,r↓~r!#, ~1!

wheres denotes the spin index,nis are the occupation num
bers,F is are the Kohn-Sham orbitals,VH is the Coulomb
potential due to the electron densityr, and Exc is the
exchange-correlation energy depending on the spin dens
r↑ andr↓ given by

rs~r!5(
i

occ

F is* ~r!F is~r!, r~r!5r↑~r!1r↓~r!. ~2!

The Kohn-Sham orbitals are determined by minimizing tot
energy expression~1!, which leads to the Kohn-Sham equ
tions:

F2
“

2

2
1Vext~r!1VH@r~r!#1Vxc@r↑~r!,r↓~r!#GF is~r!

5« isF is~r!, ~3!

whereVxc is the functional derivative ofExc .

A. Determination of the Gaussian exponents

The Gaussian exponents are optimized by minimizing
total energy of the spherical free atom in its electro
ground state. For this system, radial and angular degree
freedom may be separated. The radial wave functions
need to be determined while the angular part is given
spherical harmonics. We expand thei th atomic Kohn-Sham
orbital corresponding to angular momentum (l ,m) into
GTOsw lma given by

F i lms5(
a

cli saw lma~r!, w lma~r!5r le2ar 2
YlmS r

r D .

~4!

The total energy of the spherical atom may then be expre
as

E5(
s

(
l

(
i

occ

nli s(
a8

(
a

cli sa8cli saE
0

`

dr r l 12e2a8r 2

3F2
¹ r

2

2
1

l ~ l 11!

2r 2
2

Z

r
1

1

2
VH@r~r !#

1«xc„r↑~r !,r↓~r !…G r le2ar 2
, ~5!

where the occupation numbersnli s may range from 0 to 2l
11 due to angular momentum degeneracies.¹ r

2 is the radial
part of the Laplacian operator given by¹ r

25d2/dr2

1(2/r )d/dr. The Coulomb potential of the nucleus2Z/r
r
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may be replaced by a~possiblyl-dependent! pseudopotential
if basis bets are to be optimized for this technique.

Total-energy expression~5! only depends on the expo
nentsa and coefficientscli sa . For a given number of expo
nents, one needs to search for the set of exponents and
ficients that leads to the lowest total energy. For a given
$a% the bestcli sa can be determined by performing a sta
dard self-consistent solution of the atomic problem with
the DFT framework. After a successful atomic calculati
with a fixed set of exponents we calculate the derivativesGa

of the total energy with respect toa given by

Ga522(
s

(
l

(
i

occ

nli scli sa(
b

cb l i sE
0

`

dr r l 14e2ar 2

3F2
¹ r

2

2
1

l ~ l 11!

2r 2
2

Z

r
1VH@r~r !#

1Vxc„r↑~r !,r↓~r !…2« l i sG r le2br 2
. ~6!

The knowledge ofGa enables one to use efficient conjugat
gradient routines to minimize the total energy with respec
a. Derivatives of the DFT total energy with respect
Gaussian exponents have been previously used in molec
DFT simulations@29#. Note that Eq.~6! is the full ~as op-
posed to partial! derivative of the total energy with respect
a. This is the case since for a fully self-consistent solution
the atomic Kohn-Sham equations, the derivative of the to
energy with respect tocli sa is zero and hence the Hellmann
Feynman theorem can be applied to calculate theGa .

Since the necessary theory is now developed, our stra
to optimize the Gaussian exponents based on an atomic
culation may be pointed out.~a! Perform a basis set free~all
numerical! atomic calculation in order to find the corre
ground-state energy.~b! Define the total number of expo
nents.~c! Define the initial set of exponents$a%. By default,
this is a geometric progression~even-tempered Gaussian!
ranging froma50.05 to a5100 Z3. Of course, the final
result of the optimization should not depend on the init
guess and we find that this is indeed the case.~d! Find the
atomic ground-state energy in a self-consistent DFT calc
tion. ~e! Calculate the derivativesGa of the total energy with
respect to each exponenta via Eq. ~6!. ~f! Compute the
natural logarithm (lna) andGln a5(]E/] ln a)5aGa for each
exponenta. If the Gln a are larger than the predefined co
vergence margin, use a conjugate gradient routine to up
$ ln a% and go back to step~d!. Optimizing $ ln a% instead of
$a% is numerically more stable and therefore advantageo
~g! Compare the total energy with the result of step~a!. If the
difference is larger than a predefined error margin, incre
the number of exponents and go back to step~c!.

One fact worth pointing out is that differenta may ‘‘at-
tract’’ each other in the course of an optimization. This c
lead to instabilities in the relaxation process due to lin
dependences in the basis set. To avoid this problem, an
iliary term is added to the total energy:



ou
re

th

th
e
l
n

hi

t

n
t
ge
n

on

t

d-

sis

ling

i-

O

ch

n-

r a

e a
n an
the

tely
rge
re
sis

s-

ill
he

for

2842 PRA 60DIRK POREZAG AND MARK R. PEDERSON
Eaux5(
a

(
a8Þa

H a

x
~12x!3 ~x<1!,

0 ~x>1!,

where ~7!

x5S ln~a!2 ln~a8!

ln~b! D 2

.

We have chosen to fixa50.1 eV, b51.5. All basis sets
published here have been derived with this setting with
encountering any problems in the optimization. Furthermo
for the cases presented hereEaux always vanishes for the
final set of exponents, i.e., it is only needed to stabilize
minimization procedure.

One fact worth discussing is the scaling behavior of
largest exponentA[amax as a function of the nuclear charg
Z. Numerically, we find thatA is approximately proportiona
to Z3.3. It can be expected that this scaling is closely co
nected to the properties of the 1s core state, which may be
well approximated by the corresponding 1s orbital of a one-
electron hydrogenlike atom with nuclear chargeZ. This sys-
tem is described by the Hamiltonian:

Ĥ52
“

2

2
2

Z

r
, ~8!

which is invariant with respect to a renormalizationr→r/Z
andE→EZ2 of spatial coordinate and energy. Based on t
knowledge one can show that a~possibly incomplete! Gauss-
ian basis set, which predicts an energyEH for the hydrogen
atom (Z51), will give an energyEHZ2 for arbitraryZ if the
Gaussian exponents are scaled asa5aHZ2 (Aa has the di-
mension of an inverse length!. This is also true for the larges
exponentA and, therefore,

«5E2E05~EH2EH
0 !Z25«HZ2, A5AHZ2, ~9!

where « is the difference between actually calculated a
ground-state energy (E andE0, respectively! due to basis-se
incompleteness. Focusing our attention on the hydro
atom (Z51), we can write a Gaussian basis-set expansio
the radial wave functionF(r ) in the most general form as

F~r !5E
0

AH
da c~AH ,a!exp~2ar 2!, ~10!

whereAH is the largest exponent allowed in the expansi
For AH5` ~complete basis!, c(`,a) is known @9#:

c~`,a!;a23/2expS 2
1

4a D . ~11!

For arbitraryAH , the c(AH ,a) which leads to the lowes
energy, can be obtained by requiring that the variation

d

dc~AH ,a!
EH5

d

dc~AH ,a!
^FuĤuF&50, ^FuF&51.

~12!
t
,

e

e

-

s
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After substitutingBH51/AAH it is possible to expand the
energyEH at BH50. Using straightforward differentiation
and Eqs.~10!–~12! one concludes that the first- and secon
order derivatives vanish and, therefore,

«H5EH2EH
0 ;BH

3 ;AH
23/2. ~13!

We have also veryfied Eq.~13! numerically by determining
the total energy of the hydrogen atom with Gaussian ba
sets. Finally, combining Eqs.~9! and ~13! results in

«;A23/2Z5 or A;«22/3Z10/3. ~14!

The above equation predicts an analytically derived sca
of A proportional toZ10/3, which agrees well with theZ3.3

scaling found numerically.

B. Determination of the contraction coefficients

After the optimum Gaussian exponentsa have been
found, the first set of CGTOs is defined by building a min
mal basis set~one CGTO each for 1s, 2s, 2p, 3s, 3p, 3d,
etc.! for the free atom. We are already furnished with a GT
expansion of these orbitals~the ca l i s obtained in thea opti-
mization contain exactly the information we need!. The only
complication is that instead of a single expansion for ea
state, there are two~spin up and down! similar but different
sets ofcli sa . Therefore, the spin-averaged orbitals are co
structed from

F lmi5(
a

cli aw lma , cli a5
nli ↑cli ↑a1nli ↓cli ↓a

nli ↑1nli ↓
, ~15!

which will give the majority spin orbital for a fully spin-
polarized state and the correct spin-averaged orbitals fo
spinless state.

Although thecli a resulting from Eq.~15! would provide a
very good minimal basis set for the atom, they do hav
major disadvantage. Since they were determined based o
atomic all-electron calculation, the valence states show
usual wiggles close to the nucleus. In order to accura
represent these wiggles one needs GTOs with fairly la
Gaussian exponents~similar to the ones needed for the co
states!. However, it would be preferable to have a set of ba
functions that are either short-range~core! or long-range~va-
lence! without any substantial wiggles. Fortunately, it is po
sible to create a new setF lmi8 of CGTOs with the desired
properties as a linear combination of the oldF lmi defined by
Eq. ~15! without losing accuracy since the total energy w
not change as long as theF lmi8 span the same space as t
F lmi .

The basis-set transformation is done independently
each angular momentum. Assuming that the old statesF lmi
are ordered so that their Kohn-Sham eigenvalues~and spatial
range! increase with increasing state index, theF lmi8 are writ-
ten as

F lmi8 5(
j

i

dli j F lm j→cli a8 5(
j

i

dli j cli a ~16!

and thedli j are determined so the expression
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(
j

(
j 8

dli j dli j 8(
a

(
a8

cli acli a8^w lmauw lma8&~aa8!3/2

~17!

is minimized under the condition that theF lmi8 remain nor-
malized. Although this procedure is certainly not unique
effectively reduces the contribution of large Gaussian ex
nents toF lmi8 . Consequently, the contribution of manycli a8
to F lmi8 is now negligible. As a result, the final basis fun
tions contain fewer terms in the CGTO expansion, wh
further increases their efficiency for large-scale calculatio
Figure 1 shows how the Krypton 4s orbital can be trans-
formed into a very smooth orbital by means of the proced
described above.

While the set$F lmi8 % of CGTOs is well suited for the free
atom in its ground state, it is an overconstrained basis se
clusters, molecules, and solids, because in these system
valence electrons usually assume a spatial distribut
which is different from the free atom. The basis that has b
constructed so far does not give the valence electrons
freedom to ‘‘breathe’’ since they are ‘‘frozen’’ in a singl
CGTO. This deficiency may be overcome by creating ad
tional functions allowing the atoms to adapt to changes
their environment. These functions may be of higher angu
momentum than the ones occupied in the atom~polarization
functions! or just provide more radial flexibility~breathing
functions!.

In order to keep the extended basis as efficient as p
sible, the Gaussian exponents resulting from the optimiza
scheme described above may also be used to form the a
tional CGTOs. This is not a serious restriction since adjac
a values are not too different and intermediate values m
be approximated well by linear combinations. The additio
CGTOs are optimized by minimizing the total energy of t
homonuclear diatomics at their equilibrium separation. T
way, the optimization of all basis functions is based on
same simple criterion. However, in a few cases the hom
nuclear diatomics are either unbound or very weakly bou
In these cases, heteronuclear diatomics may be more sui
~e.g., Mn-O has been used here to optimize the additio
functions for Mn! or the internuclear separation needs to
chosen manually at a reasonable value.

FIG. 1. All-electron Kr 4s orbital and the smooth function re
sulting from the orbital transformation described in Sec. II.
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For the smallest of the basis sets presented here@denoted
density-functional optimized~DFO-1! in the next section#,
we have chosen to define one additional CGTO per ang
momentum comprised of two GTOs. This corresponds t
level usually referred to as double-zeta valence with po
ization function similar to the 6-31G* basis used by many
commercial program packages@13#. For increased accuracy
more single GTOs may be added to the basis. In this man
one can gradually obtain basis sets with more and more fu
tions and higher accuracy.

III. RESULTS AND DISCUSSION

In this paper, we report all-electron basis sets and res
for the elements H,B through F, Al, Si, Mn, and Cu. We al
provide a function set for Si applicable in calculations usi
Bachelet-Haman-Schlu¨ter pseudopotentials @30,31#. Of
course, the same procedure may be applied to other elem
as well. All basis sets were optimized within the loca
density approximation~LDA ! but results are also presente
for the Perdew-Burke-Ernzerhof~PBE! generalized gradien
approximation~GGA! @34,35#. The code for the basis se
construction is available from the authors via the Wo
Wide Web~please contact porezag@physics.georgetown.
for details!. Results for clusters and molecules have be
obtained using a Gaussian orbital-based cluster c
~NRLMOL! developed by Pederson and Jackson@15,16#.
Within this scheme, all necessary integrals are determi
numerically using a variational mesh, which allows for arb
trary precision. Furthermore, densities and potentials are
culated directly from the wave functions without using a
additional expansions or approximations.

Three different basis sets are used in this paper for e
atomic species. They are termed DFO-X. DFO-1 was c
structed with an error margin of 0.1 eV in the optimization
the exponents, one additional breathing function per ang
momentum, and one polarization function. DFO-2 was c
ated with an error margin of 0.01 eV, two additional brea
ing functions per angular momentum, and two polarizat
functions. DFO-R is only used to assess the quality
DFO-1 and DFO-2 in terms of convergence with basis-
size. It contains the same Gaussian exponents as DFO-2
one additional Gaussian exponent, which is one third of
longest-range DFO-2 exponent. However, in contrast
DFO-2, which uses these GTOs to define contracted fu
tions, DFO-R employs all exponents smaller than 10.0 a.u
single GTOs. It is therefore very flexible. Hyperpolarizatio
functions~of angular momentuml 12 wherel is the highest
angular momentum occupied in the free atom! have not been
included in either of the basis sets. While it is known th
orbitals of this type may be important to obtain converg
results for properties that depend on the response of the e
trons to external perturbations such as electric fields@32,33#,
they usually have a very small impact on binding energ
and structural properties, which are the main issue in
paper. In certain cases, hyperpolarization functions may
be replaced by off-center CGTOs of lower angular mom
tum.

The results are compared with two basis set types kno
from the literature and commonly used today: the sets p
lished by Andzelm, Godbout~AG!, and co-workers@14,23#
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2844 PRA 60DIRK POREZAG AND MARK R. PEDERSON
~defined for H,B through F, and Sc through Zn! that were
optimized within DFT, and the 6-31G* set ~defined for H
through Ar!, which is based on the work of Pople and c
workers@36# and probably one of most widely used Gauss
basis sets in general. It should be noted that in contrast t
other basis sets discussed here 6-31G* has been optimized
based on Hartree-Fock calculations and proven to be
cient and accurate for these types of calculations. DFT
Hartree-Fock frequently show a different spatial behavior
the charge density and we would like to stress that the D
results published here cannot be used to assess the qua
the basis sets for Hartree-Fock or other methods.

Since the main purpose of this paper is to demonstrate
convergence of the calculation with basis-set size, all ca
lated quantities will be compared to the correspond
DFO-R results. In other words, we want to show the mag
tude of the basis set expansion errors for different quantit
Deviations between theory and experiment that are cau
by the theory~DFT! itself are beyond the scope of this pu
lication. There are a number of papers available that add
this issue@34,37,38#.

A. Atoms

The total energy of the free atoms was the main figure
merit used in the basis-set optimization. Therefore, o
should expect good results for these systems. Table I sh
the root-mean-square~RMS! errors for total energies an
Kohn-Sham eigenvalues of the occupied valence orbi
with respect to basis-set free numerical calculations. The
sults are determined within the LDA using the~spin-
polarized! electronic ground-state configurations. As e
pected, the accuracy decreases in the order DFO-R, DF
and DFO-1. However, all DFO sets remain approximat
within the error margins set in the optimization~0.1 eV for
DFO-1 and 0.01 eV for DFO-2, respectively!. For hydrogen,
the DFO sets perform significantly better than AG and mu
better than 6-31G* . The main reason for the errors asso
ated with the latter sets is that they do not provide a su

TABLE I. RMS errors ~in eV! with respect to all-numerica
calculations for LDA total energies and eigenvalues of the occup
valence states calculated within the DFO and other basis sets
basis sets are from Refs.@14,23# and 6-31G* sets are from Ref.
@13#.

Atoms Quantity DFO-R DFO-2 DFO-1 AG 6-31G*

H DEtot 0.001 0.001 0.021 0.062 0.254
D«v 0.000 0.002 0.028 0.210 0.504

B–F DEtot 0.007 0.009 0.089 0.154 0.986
D«v 0.001 0.003 0.040 0.061 0.668

Al DEtot 0.009 0.011 0.093 0.873
D«v 0.001 0.003 0.049 0.049

Si DEtot 0.010 0.012 0.124 0.980
D«v 0.002 0.003 0.043 0.080

Mn DEtot 0.008 0.013 0.083 30.503
D«v 0.000 0.003 0.018 0.055

Cu DEtot 0.010 0.011 0.097 44.380
D«v 0.001 0.006 0.060 0.133
n
all

fi-
d
f
T
of

he
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ed

ss
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ciently long-ranges-type function. For the first-row element
B through F, DFO-1 shows a slightly better performan
than AG and both of these sets are much better than 6-31* .
Large differences between DFO-1 and AG can be obser
for the total energies of the heavy Mn and Cu atoms. Thi
mainly due to the fact that the AG CGTOs are comprised
only 4 GTOs for these atoms in order to keep the numer
efforts tractable. However, it is worth noting that the AG s
for Mn still contains 26 different exponents while DFO-
and DFO-2 contain only 17 and 20, respectively. One of
advantages of the present basis-set optimization schem
that the number of Gaussian exponents does not grow
early with the number of occupied states in the atom, bu
grows logarithmically with its nuclear charge~of course this
behavior will change if pseudopotentials are employed
stead of performing an all-electron calculation!.

B. Bond lengths and angles

We have tried to select a variety of systems with differe
types of bonding to demonstrate the basis-set performa
The set includes the simple diatomic H2 , CH4 ~methane!,
C2H6 ~ethane!, C2H4 ~ethene!, and C2H2 ~acetylene! as ex-
amples for hydrocarbons with single, double, and trip
bonds. C60 as the most important fullerene cluster, H2O ~wa-
ter!, HCN ~hydrogen cyanide!, HCF3 ~fluoroform!, and
trans-HCOOH~formic acid!, as examples for systems with
fairly large interatomic charge transfer, have also been inv
tigated. Si2H6 ~disilane!, which has a simple Si-Si single

d
G

FIG. 2. GGA-PBE ground-state structures of the Mn2O2 and
Mn4O4 clusters. The arrows indicate the spin of the manganesed
electrons and indicate an antiferromagnetic ordering.
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TABLE II. Dipole moments~D! as calculated with different basis sets. Experimental data for H2O and
HCN are from Ref.@37#, for HCF3 and HCOOH from Ref.@42#. AG basis sets are from Refs.@14,23# and
6-31G* sets are from Ref.@13#.

LDA GGA-PBE
Exp. DFO-R DFO-2 DFO-1 AG 6-31G* DFO-R DFO-2 DFO-1 AG 6-31G*

H2O 1.85 1.86 1.89 2.12 2.16 2.07 1.81 1.84 2.06 2.08 1.9
HCN 2.98 3.03 3.03 3.02 3.00 2.91 2.96 2.96 2.98 2.93 2.8
HCF3 1.59 1.53 1.53 1.58 1.68 1.31 1.54 1.53 1.59 1.68 1.3
HCOOH 1.51 1.54 1.55 1.51 1.59 1.52 1.48 1.49 1.45 1.53 1.4
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bond, is also part of the set. Additionally, we have includ
the planar rhombus-shaped Si4 cluster~for previous theoret-
ical investigation see, e.g., Refs.@39–41# and the manganes
oxide clusters Mn2O2 and Mn4O4). To the best of our
knowledge, there have been no previous theoretical inve
gations of these transition-metal oxide clusters. Their gro
state is found to be planar with an antiferromagnetic order
of the manganese 3d electrons~see Fig. 2!. We are in the
process of testing the basis sets for solids as well and
report the corresponding results in a forthcoming pap
However, since solids are more dense systems than
ecules or clusters and since our basis sets are explicitly
structed with a minimum BSSE, we expect them to work
least as well for solids as they do for molecules and clust

RMS errors of bond lengths and bond angles have b
determined for the 14 selected test systems. Bond angle
described very accurately with all basis sets except for
2.0 degree deviation of 6-31G* for water. It is more difficult
to accurately describe this molecule with a small basis du
the existence of the lone electron pair on the oxygen at
However, it is worth noting that DFO-R predicts 104.7° f
the HOH angle which is very close to the experimenta
determined angle of 104.5°. Bond lengths are very well c
verged~RMS errors of 0.002 Å or less! within both DFO
basis sets for the molecules containing first-row eleme
d

ti-
d
g

ill
r.
ol-
n-
t
s.
n

are
e

to
.

-

s.

AG and 6-31G* show significantly larger errors of abou
0.01 Å. Deviations in the bond lengths will very often lead
substantial errors in calculated vibrational frequencies.
example, the harmonic frequencies for the GGA-PBE sy
metric stretching mode in H2O are 3697 cm21 and
3608 cm21 if calculated using DFO-R and 6-31G* , respec-
tively. Most of this error is due to different equilibrium ge
ometries for the two basis sets.

The DFO-1 and DFO-2 absolute deviations for the s
tems containing Si and Mn atoms are larger~about 0.003 Å
to 0.007 Å! but one needs to keep in mind that the bonds
these structures are weaker and 1.5–1.8 times longer tha
bonds in the molecules that contain only first-row atom
Hence, the relative error is only slightly increased. Over
the performance of both DFO-1 and DFO-2 is very satisf
tory.

C. Dipole moments

The dipole moment represents the first moment of
charge densities and hence is a good indicator for its con
gence with respect to basis-set size. Four of the systems
sented here have nonzero dipole moments. Their basis
dependence is shown in Table II. DFO-1 performs very w
except for H2O, which has the lone electron-pair proble
95
76
54
74

9
98
.58

8
7

TABLE III. Atomization energies~D! as calculated within LDA and GGA-PBE. Errors and values for C60

are given per atom. AG basis sets are from Refs.@14,23#, and 6-31G* sets are from Ref.@13#.

LDA GGA-PBE
DFO-R DFO-2 DFO-1 AG 6-31G* DFO-R DFO-2 DFO-1 AG 6-31G*

H2 4.90 4.90 4.89 4.99 4.82 4.53 4.54 4.53 4.63 4.43
CH4 20.02 20.01 19.98 20.18 19.78 18.20 18.19 18.17 18.37 17.
C2H6 34.38 34.36 34.31 34.58 34.10 31.05 31.03 30.99 31.28 30.
C2H4 27.37 27.35 27.28 27.33 27.17 24.74 24.72 24.67 24.75 24.
C2H2 19.88 19.85 19.79 19.56 19.69 17.93 17.91 17.86 17.68 17.
C60 8.50 8.49 8.47 8.40 8.57 7.47 7.45 7.43 7.40 7.53
H2O 11.54 11.52 11.40 11.48 11.06 10.16 10.15 10.04 10.12 9.6
HCN 15.59 15.56 15.51 15.20 15.47 14.09 14.07 14.02 13.78 13.
HCOOH 25.85 25.80 25.69 25.52 25.82 22.62 22.57 22.47 22.36 22

D/atm 0.01 0.03 0.07 0.07 0.01 0.03 0.05 0.07

Si2H6 25.08 25.01 24.90 24.93 22.51 22.45 22.36 22.3
Si4 14.29 14.23 14.23 14.05 12.39 12.34 12.37 12.1
Mn2O2 16.89 16.83 16.65 16.32 14.09 14.07 13.91 13.60
Mn4O4 39.14 39.02 38.69 38.45 33.06 33.01 32.74 32.50
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TABLE IV. Total-energy differences for selected reactions. Note that these are not reaction enth
since zero-point motion effects are not included. AG basis sets are from Refs.@14,23# and 6-31G* sets are
from Ref. @13#.

Functional DFO-R DFO-2 DFO-1 AG 6-31G*

C2H21H2→C2H4 LDA 2.59 2.60 2.60 2.78 2.66
GGA-PBE 2.28 2.27 2.28 2.44 2.37

C2H41H2→C2H6 LDA 2.11 2.11 2.14 2.26 2.11
GGA-PBE 1.78 1.77 1.79 1.90 1.79

C2H61H2→2CH4 LDA 0.76 0.76 0.76 0.79 0.64
GGA-PBE 0.82 0.81 0.82 0.83 0.71

HCOOH13H2→H2O1CH4 LDA 2.55 2.55 2.42 2.65 1.62
GGA-PBE 2.31 2.30 2.19 2.36 1.46

2 Mn2O2→Mn4O4 LDA 5.36 5.36 5.39 5.81
GGA-PBE 4.88 4.87 4.92 5.30
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mentioned earlier. DFO-2 corrects most of the DFO-1 er
and yields an almost converged result. For all other syste
DFO-1 and DFO-2 work very well in contrast to AG an
6-31G* , which show larger deviations for HCF3 and HCN.
Note also that the convergence is similar for both LDA a
GGA-PBE functionals.

D. Atomization and reaction energies

One of the most important tasks of quantum physics
chemistry is the prediction of the relative stability of diffe
ent structures. In order to calculate such properties ac
rately, one usually needs to take pressure, entropy, and
sibly other effects into account. However, the larg
contribution to the binding-energy difference of two syste
normally comes from the difference in the atomization en
gies of the two systems. Table III displays the calcula
atomization energies for the 14 test structures presented
defined as the total-energy difference between the conde
system and free atoms~i.e., neglecting effects due to zero
point motion!. Again, the DFO basis sets perform better th
AG and 6-31G* . While the agreement between DFO-2 a
DFO-R is very good in all cases, DFO-1 shows larger err
for H2O and the systems containing Si and Mn. Howev
the deviations are acceptable for a basis set of this size
substantially smaller than for AG and 6-31G* . Further, it
should be noted that both DFO-1 and DFO-2 always und
estimate the correct value. This should be the case since
are both based on total-energy optimizations of the free a
and hence basis-set superposition errors should be sma
explicitly show that this is indeed the case, we have de
mined the BSSE for all atoms in fluoroform. While the tot
BSSE is rather small for both DFO sets~0.019 eV and 0.006
eV for DFO-1 and DFO-2, respectively!, AG gives a signifi-
cantly larger error of 0.060 eV. 6-31G* shows the worst
performance with a BSSE of 0.6 eV. Since each system
have a different BSSE, errors of this magnitude can seve
alter the computational results of reaction energies. Table
illustrates this problem using a few hydrogenation a
cluster-cluster reactions. For example, the 6-31G* energy
difference for the hydrogenation of formic acid is almost
eV too small. On the other hand, the DFO basis sets sho
good convergence.
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E. Performance issues

One of the points made in the Introduction of this pape
that Gaussian basis sets, which share exponents betwee
ferent angular momenta, will be more efficient than othe
Table V summarizes relative timings for the calculation
the Coulomb potential in C60. While such numbers may
slightly depend on the specific implementation of the pro
lem, it is apparent that the DFO basis sets show a be
performance, especially when accuracy and speed are
sidered together.

IV. CONCLUSION

We have introduced a scheme for the full optimization
CGTOs for density-functional calculations on extended s
tems. The method is based on a total-energy minimiza
procedure for free atoms and makes efficient use of the to
energy gradient with respect to the Gaussian exponents.
number of exponents is not fixed but determined by requir
a predefined accuracy of the total energy, which leads
basis sets of minimum BSSE. The definition of addition
breathing and polarization functions is based on a minimu
energy principle as well. DFO sets of higher accuracy m
be created by successively adding additional basis functi
following the same energy-minimization procedure. Resu
for molecules and clusters suggest that the DFO basis
presented here can accurately and efficiently describe a

TABLE V. Total number of GTOs and basis functions per ato
and relative timings for the calculation of the Coulomb potential
C60. AG basis sets are from Refs.@14,23# and 6-31G* sets are from
Ref. @13#.

DFO-2 DFO-1 AG 6-31G*

Number of GTOs 9 12 17 11
Number of basis functions 34 21 21 21
Relative timings 1.80 1.00 3.70 1.10
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ety of systems with both LDA and GGA functionals. In ord
to simplify the application of our method, the softwar
which implements the optimization procedure, is made p
lic on the World Wide Web.
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APPENDIX

The basis-set data are published electronically: see
@26#. In this supplementary document, we give the Gauss
exponents and coefficients of the DFO-1 and DFO-2 ba
sets for all elements discussed here. Additionally, we prov
a DFO-1-type basis set for Si to be used with the Bache
Hamann-Schluter~BHS! pseudopotential@30,31#.
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