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Closed-form solutions for a noncentral parabolic potential

G. Gasaneo,1 F. D. Colavecchia,2 W. R. Cravero,1,2 and C. R. Garibotti2

1Departamento de Fı´sica, Universidad Nacional del Sur, 8000 Bahı´a Blanca, Buenos Aires, Argentina
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We have found closed-form solutions of the Schro¨dinger equation for a particle in a noncentral potential
given by a two-body Coulomb potential plus a parabolic barrier. These kinds of potentials arise in the context
of the three-body Coulomb continuum problem. Here we study the continuum and discrete spectrum eigen-
functions as well as their asymptotic behavior and the associated transition amplitudes.
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The exact solution for the quantum three-body Coulo
problem ~3BCP! remains unknown. In the field of atomi
collision physics, many strategies have been develope
deal with systems involving 3BCP. In some particular cas
such as the H2

1 ion molecule, approximate solutions can
obtained using an adiabatic approach@1#. Basis expansions
of the solutions in different sets of coordinates have b
found to be suitable for low energy collisions@2,3#, while
solutions of the Schro¨dinger equation through separation
variables andab initio methods have been widely used
atomic collisions in the intermediate to high energy regi
~see, for example,@4–7#!. Furthermore, transformations o
the Schro¨dinger equation into an integral equation have a
been proposed@8–10#. On the other hand, there is a gre
number of two-body problems, which have been solved
closed form. Among them, the two-body Coulomb proble
~2BCP! stands out, as it is the basic model for the ato
Then, it is usual to write down approximate solutions for t
3BCP in terms of 2BCP eigenfunctions. One of the m
thoroughly used approximations in ion-atom collisions rel
on separable functions where the different factors corresp
to 2BCP solutions@4,5#. Each pair of particles is considere
to interact separately with charges unscreened by the p
ence of the third particle. Several improvements to t
model have been employed to include the dynamics of
three-particle system in the wave functions. Recently,
authors and co-workers have proposed an approximate s
tion for the 3BCP which can be written as the superposit
of two-body problem eigenfunctions@11,12#:

CF25Cw0
tp( amwm

t wm
p . ~1!

w0
tp is a 2BCP solution, whilewm

t andwm
p are solutions of a

Schrödinger equation for the motion of a particle in a no
central potential.

In general, noncentral potentials are extremely difficult
solve, because of the system’s low level of symmetry. Fr
a physical point of view, fewer symmetries always imp
fewer constants of motion and, from a mathematical poin
view, fewer coordinate systems in which the problem
separable.
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This work deals with the problem of findingwm
i ( i

5t,p) in closed form, and analyzing the physics of this pa
ticular noncentral potential problem. As this system
closely related to the 3BCP, it is expected that further insi
into the latter could be gained from the study of the form
As a by-product, we intend to contribute to the general u
derstanding of the physical and mathematical properties
the solutions for a noncentral potential.

The paper is organized as follows: In the next section,
derive solutions for the noncentral potential both for the co
tinuum as well as for the discrete spectra. From the stud
the asymptotic behavior of the solutions found, we obt
and analyze the corresponding scattering amplitudes and
ferential cross sections. Atomic units~a.u.! are used through-
out.

I. THE SCHRÖ DINGER EQUATION

Let us consider the~time independent! Schrödinger equa-
tion for the motion of a spinless particle of massm in a
potentialV6:

Hc5Ec, F2
1

2m
¹ r

21V6Gc~r !5Ec~r !, ~2!

where

V652
uZu
r

1
l2

r 2~16 k̂8• r̂ !
, V65Vc1Vp. ~3!

Vc5uZu/r is a Coulomb potential andl is a positive integer.
Vp can be seen as a parabolic barrier,k̂8 being a parameter
This potential diverges forr 50 and for directions given by
16 k̂8• r̂50. According to its definition,V6 represents a
long-range noncentral potential, see Fig. 1.

We will first derive the solutions for the continuum spe
trum. Writing

c~r !5eik•rw~r ! ~4!

and replacing in Eq.~2!, we obtain for the distortionw(r )
284 ©1999 The American Physical Society
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F 1

2m
¹ r

21
i

m
k•“ r1

1

r S uZu2
l2

r ~16 k̂8• r̂ !
D Gw~r !50. ~5!

This equation is extremely difficult to solve in general. Ho
ever, choosingk̂85 k̂, i.e., the asymptotic particle momen
tum direction, the parabolic potential can be expressed
terms of the usual parabolic coordinates (j,h,f) @13#. In
order to perform a detailed analysis, we consider the po
tial V1, but solutions can be obtained forV2 in a similar
way. Writing Eq.~5! in parabolic coordinates, it reads

1

mr F ]

]jS j
]

]j D1
]

]hS h
]

]h D1
m~j1h!

4jh

]2

]f2

1 ikS j
]

]j
2h

]

]h D1mS uZu2
l2

j D Gw~r !50. ~6!

This equation can be easily separated into three equat
one for each parabolic coordinate. We will restrict ourselv
to the study off independent solutions for the continuu
spectrum. We introduce this separation as

w~r !5x1~j!x2~h! ~7!

and Eq.~6! reads

F j
]2

]j2
1~11 ikj!

]

]j
1b12

l2

j Gx1~j!50, ~8!

Fh
]2

]h2
1~12 ikh!

]

]h
1b2Gx2~h!50, ~9!

where b1 and b2 are separation constants, such thatb1
1b25muZu.

Solutions to these equations can be written in closed fo
in terms of confluent hypergeometric functions1F1@a,b,z#
@15#, as follows:

FIG. 1. Noncentral potentialV1 for l5Z51 a.u., in a plane

that includesk̂. The potential is symmetrical aroundk̂, whose di-
rection is denoted by the arrows.
in

n-

ns,
s

m

x15~2 ikj!l
1F1F2 i

b1

k
1l,112l,2 ikjG , ~10!

x25 1F1F i
b2

k
,1,ikh G , ~11!

so that the normalized continuum eigenfunctions read

c~r !5Neik•r
1F1F i

b1

k
,1,ikh G~2 ikj!l

1F1

3F2 i
b2

k
1l,112l,2 ikjG , ~12!

with N being the normalization constant to be determin
We note that, forl50 Eq.~12! yields the general solution o
the 2BCP forl z50:

c5Nceik•r
1F1F i

b1

k
,1,ikh G 1F1F2 i

b2

k
,1,2 ikjG . ~13!

The eigenfunction whose asymptotic behavior represe
a plane wave plus an ingoing spherical wave correspond
the electionb150:

c1~r !5Neik•r@2 i ~kr1k–r !#l
1F1

3F2 i
Zm

k
1l,112l,2 i ~kr1k–r !G . ~14!

In Fig. 2, we can see the particle distribution obtained
taking the square modulus ofc1(r ) as a function of the
Cartesian coordinatesr5(x,y,z) and for k51 a.u. andl
51. The effect of the repulsive barrier is to remove t
probability density from thek direction from r 50 to 2`,
producing an effect similar to that typically observed in r
dial wave functions for increasing angular momentum due
the so-called centrifugal barrier. The particle removal

FIG. 2. Particle distributionuc1(r )u2 as a function of the Carte
sian coordinatesr5(x,y,z) and for k51 a.u. andl51 a.u. Note

the probability density removal from thek̂ direction fromr 50 to
2`.
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creases withl. Similar results are observed fork50.01 a.u.
~Fig. 3!. For l50, c1(r ) reduces to the correspondin
2BCP solution,

c~r !5Nceik•r
1F1F2 i

Zm

k
,1,2 i ~kr1k–r !G . ~15!

Choosingb250, we have

c2~r !5Ceik•r
1F1F i

Zm

k
,1,ikhG

3~2 ikj!l
1F1@l,112l,2 ikj#. ~16!

One of the solutions found for Eq.~2!, associated with
V1, for which no Coulomb potential is present, is given b

c3~r !5NPeik•r~2 ikj!l
1F1@l,112l,2 ikj#. ~17!

By performing an analytical extension to the complex pla
of k52 iZm/n in Eq. ~12!, bound state solutions can also b
obtained@14#:

cn1 ,n2 ,m~r !5Ne2(Zm/n)rS Zm

n
j D A4l21m2/2S Zm

n
h D umu/2

3 1F1F2n1,11
A4l21m2

2
,
Zm

n
jG

3 1F1F2n2,11umu,
Zm

n
h G , ~18!

wheren1 , n2, andm are non-negative integers andN is the
normalization constant. Thus each stationary state of
Schrödinger equation~2! is determined by three integers: th
parabolic quantum numbersn1 and n2, and the magnetic
quantum numberm. For n, the principal quantum numbe
we have

n5n11n2111
umu
2

1
A4l21m2

2
, ~19!

and the energy results

FIG. 3. Same as Fig. 2 fork50.01 a.u.
e

e

E52
Z2m

2n2
. ~20!

We should note thatn is not in general an integer numbe
as the square root in Eq.~19! needs not be an integer. For
fixed value ofl and integer values ofn1 , n2, andm we fix
n, but we can get the same value ofn choosing differentn1 ,
n2, andm, i.e., n is a degenerate number. For givenn, the
number umu can take different values from 0 to (11n2

22n2l2)/(n21). As we can see in Eq.~19!, the lower
value ofn is n511ulu. For fixedn and ulu the numbern1

takes n2umu/22A4l21m2/2 values from 0 ton2umu/2
2A4l21m2/221.

It is interesting to note that due to the fact that the pot
tial is noncentral, the square of the angular momentumL2

does not commute with the Hamiltonian and so does
constitute a constant of motion. Nevertheless, the compo
of L along k̂ is indeed a constant of motion. On the oth
hand, the separability property of the Schro¨dinger equation
tells us that there exists another constant of motion whic
related to the Runge-Lenz vector.

In Fig. 4, we plot the square modulus ofcn1 ,n2 ,m(r ) for

the ground state as a function ofr , in the plane defined byk̂
and r̂ , and forl51. We can see that the effect of the repu
sive parabolic barrier over the probability distribution is
remove it from the directionk̂. It does not have spherica
symmetry as a consequence of the form of the potential
the uc0,0,0(r )u2 maximum is out of the origin.

In Fig. 5, we compare the probability distribution give
by uc2,0,1(r )u2 with the solution of the hydrogen atom whe
the parabolic quantum numbers aren152, n250, and m
51. The presence of the parabolic barrier modifi
uc2,0,1(r )u2, removing the probability from thek̂ axes. We
see thatcn1 ,n2 ,m(r ) maintains the distribution asymmetr

FIG. 4. Particle distributionucn150, n250, m50(r )u2 for the

ground state as a function ofr , in the plane defined byk̂ and r̂ , and
for l51 a.u. Note that the repulsive parabolic barrier removes

probability from the directionk̂. Furthermore, the ground stat
spherical symmetry is lost, and the maximum lies out of the orig
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FIG. 5. Probability distribution given byuc2,0,1(r )u2 compared with the solution of the hydrogen atom forn152, n250, andm51.
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that can be seen in the hydrogen atom for certain comb
tions of the parabolic quantum numbers. Forn1.n2, the
probability of finding the particle in the directionk̂•r.0 is
greater than fork̂•r.0, and vice versa forn2.n1. Besides,
it should be noted that this asymmetry also depends onl.

II. ASYMPTOTIC BEHAVIOR

In order to study the asymptotic behavior of the solutio
given by Eqs.~14! and~16!, we make use of ther→` form
for 1F1@b,c,x#:

1F1@b,c,x#5
G~c!

G~c2b!
~2x!2bv1@b,b2c11,2x#

1
G~c!

G~b!
xb2cexv2@12b,c2b,x#, ~21!

wherev1@a,b,x# andv2@a,b,x# are the Whittaker functions
@16#. Replacing Eq.~21! in Eq. ~14! and to order 1/r , we find

c1~r !→NF ~21!lG~112l!

G~11l1 i uZum/k!

3e2(p/2)(uZum/k)eik•r1i (uZum/k)ln[kr1k–r ]

1
G~112l!~2 i !2 i uZum/k21

G~2 i uZum/k1l!

e2 ikr 2 i uZum/k ln[kr1k–r ]

@kr1k–r # G .
Choosing an outgoing unitary flux normalization results i

c1~r !→eik•r1i (uZum/k)ln[kr1k–r ]1 f l~u!
e2 ikr 2 i (uZum/k)ln[2kr]

r
,

~22!

where

N1,l5~21!2l
G~11l1 i uZum/k!

G~112l!
e(p/2)(uZum/k), ~23!
a-

s

f 1,l~u!5~21!2lS uZum
e2 i (uZum/k) ln@cos2u/2#12igp

2k2 cos2 u/2

1 il
e2 i (uZum/k)ln[cos2 u/2]12igp

2k cos2 u/2
D

5~21!2l@ f 1,c~u!1 f 1,p~u!#, ~24!

and gp5arctan@uZum/k(11l)#. Scattering amplitudef 1,l(u)
turns out to be the addition of two different amplitud
f 1,c(u) and f 1,p(u). f 1,c(u) is similar to the Coulomb scat
tering amplitude, the only difference beinggp , and reduces
exactly to it for l50. f 1,p(u) shows the same angular be
havior asf 1,c(u), while its amplitude is proportional tol and
inversely proportional tok. It can be concluded thatf 1,c(u)
and f 1,p(u) are associated with the transition amplitudes
the Coulomb and the parabolic potentialV1, respectively.

The normalized solutionc1 reads

c1~r !5N1,leik•r@2 i ~kr1k–r !#l

3 1F1F2 i
uZum

k
1l,112l,2 i ~kr1k–r !G .

~25!

In the following section we analyze the cross section
fined by f 1,l(u). The distortion that accompanies the pla
wave in Eq.~14! or Eq. ~25! depends only on one of th
parabolic coordinates, while that inc2, given by Eq.~16!,
depends on both of them.

Replacing Eq.~21! in Eq. ~16! and retaining terms to or
der 1/r , we obtain

c2~r !→eik•r2i (uZum/k)ln[kr2k–r ]1 f 2,l~u!
eikr 1 i (uZum/k)ln[2kr]

r

1g2,l~u!
e2 ikr 2i (uZum/k)ln[2kr]

r
, ~26!

where
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N25~21!l
G~112l!

G~11l!
G~12 i uZum/k!e2(p/2)(uZum/k),

~27!

f 2,l~u!5 f c
1~u!

5uZum
G~11 i uZum/k!

G~12 i uZum/k!

e2 i (uZum/k)ln[sin2u/2]12igc

2k2 sin2 u/2
,

~28!

g2,l~u!5 i ~21!2ll
e2 i (uZum/k) ln@sin2 u/2#

2k cos2 u/2
, ~29!

andgc5arctan@uZum/k#. f c
1(u) represents the Coulomb tran

sition amplitude associated with the outgoing wave functi
It can be seen from Eq.~26! that the functionc2 in the

asymptotic region is a sum of three terms. The first o
shows the well known eikonal behavior corresponding to
nonperturbed Coulomb potential. The other two terms rep
sent outgoing and incoming spherical wave functions mo
lated by their corresponding scattering amplitudes. The e
nal wave arises from the asymptotic behavior of t
hypergeometric function that depends onh in Eq. ~16! since
the first order of the Kummer function inj is constant. It is
also clear that the outgoing spherical wave contributes to
outgoing flux, which is driven only by the distorted plan
wave in the pure Coulomb case, and hencec2(r ) has been
normalized to unit outgoing flux.

When the Coulomb potential is absent, i.e.,uZu50, the
wave function corresponding toV1 is given by Eq.~17!. The
asymptotic behavior forc3(r ) can be shown by replacin
Eq. ~21! in Eq. ~17!:

c3~r !→eik•r1 f 3,l~u!
e2 ikr

r
, ~30!

where

N3,l5~21!2l
G~11l!

G~112l!
, ~31!

f 3,l~u!5 i ~21!2l
l

2k cos2 u/2
. ~32!

The normalization coefficient is calculated in a way th
assures unit outgoing flux:

c3~r !5N3,leik•r~2 ikj!l
1F1@l,112l,2 ikj#. ~33!

Even whenVp is noncentral, the asymptotic behavior f
c3(r ) is not distorted, so we can considerVp to be a short-
range potential. The transition amplitudef 3,l(u) has an an-
gular dependence quite similar to that for the Coulomb a
plitude. However, its dependence on energy is qu
different.

In the following section, we will study the scattering cro
sections forV6.
.

e
e
e-
-

o-

e

t

-
e

III. DIFFERENTIAL CROSS SECTION

The scattering cross sections(u) for any given potential
is defined from the asymptotic form for the continuum wa
function. As we are dealing with a long-range potential
true free state is not possible@13#. Therefore, the asymptotic
wave function includes a logarithmic phase which modifi
both the plane and scattered wave:

c→eik•r1ia ln[kr1k•r ]1 f 6~u!
e6 ikr 2 ia ln[2kr]

r
, ~34!

wheref 6(u) is the scattering amplitude.a is a parameter tha
depends in general on the ratio between the intensity of
long-range portion of the given potential and the asympto
particle velocity. In our case, this is simplya5Zm/k. As
usual, the cross section can be written in terms of the s
tering amplitude:

s6~u!5u f 6~u!u2. ~35!

Since the potentialV6 is defined as the sum of two dif
ferent terms, the corresponding cross section can be cast

sl
2~u!5sc~u!1sl

p1~u!1s int
2 ~u!, ~36!

where

sc~u!5
~ uZum!2

4k4 cos4 u/2
, ~37!

sl
p1~u!5

l2

4k2 cos4 u/2
, ~38!

s int
2 ~u!52 Re@ f c

1~u! f p
1~u!#, ~39!

i.e., the cross section can be written as the sum of th
terms, one associated to the scattering off the Coulomb
tential, the second associated to the scattering off the p
bolic potentialVp, and the last one corresponding to the i
terference between the first two amplitudes.

It can be shown that the angular dependence ofsl
2(u) is

similar to the Rutherford scattering. In the low energy lim
k→0, sc(u) dominates the cross section, giving a pu
Rutherford cross section. On the other hand, whenk→`, the
incident particle interacts withVp in a stronger way, thus
makingsl

p1(u) dominate the differential cross section.
Total cross section defined as the angular integration

sl
2(u) is divergent. This is a well known feature of long

range potentials such as the Coulomb potential.

IV. DISCUSSION AND OUTLOOK

We have found closed-form solutions for the continuu
as well as the discrete spectra for a noncentral potential b
from a Coulomb potential plus a parabolic barrier.

We have analyzed the probability distribution obtain
from these solutions. Similarities and differences from t
pure Coulomb problem are highlighted. The presence of
parabolic barrier destroys the system’s, spherical symme
but still it is possible to find three constants of motion relat
to the energy, the angular momentum projection along thk̂
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direction, and the Runge-Lenz vector, respectively.
These two-body wave functions are related to the thr

body ones. So it could be expected that conclusions dr
for them could be extended, at least qualitatively, to
three-body problem.

In the three-body continuum Coulomb problem, it h
been customary to write the Schro¨dinger equation in a set o
six parabolic coordinates@5,11,12,17#. This set naturally
leads to the outgoing~or incoming! asymptotic behavior as
sociated with each of the parabolic coordinates@18,19,17#.
For example, the asymptotic motion of three particles m
ing away from each other is represented by a plane w
distorted by three eikonal phases that depend on three p
bolic coordinates and are independent of the other three.
only way in which outgoing~incoming! solutions have been
obtained so far was considering that the total wave func
. A

v

e

b-

lia
-
n

e

-
ve
ra-
he

n

is constrained to depend on three parabolic coordinates l
ing to outgoing~incoming! behavior@11,12,17#.

However, we note that thec2 function @Eq. ~16!# has a
purely outgoing asymptotic behavior, but retains its dep
dence on all the parabolic coordinates~in our case,j andh)
for nonasymptotic regions.

This fact implies a change in the normalization fact
with respect to the Coulomb problem. Then, we can think
three-body wave functions depending on all the six coor
nates, but with the right asymptotic behavior given by t
eikonal functions in only three of them. In this way, w
would be able to introduce modifications in the normaliz
tion factors. Moreover, one can expect these kinds of w
functions to describe a richer dynamics~particularly in the
so-called condensation region! by retaining the full depen-
dence on the system’s six degrees of freedom.
eo,
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d
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