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Closed-form solutions for a noncentral parabolic potential
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We have found closed-form solutions of the Salinger equation for a particle in a noncentral potential
given by a two-body Coulomb potential plus a parabolic barrier. These kinds of potentials arise in the context
of the three-body Coulomb continuum problem. Here we study the continuum and discrete spectrum eigen-
functions as well as their asymptotic behavior and the associated transition amplitudes.
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The exact solution for the quantum three-body Coulomb This work deals with the problem of finding! (i
problem (3BCP remains unknown. In the field of atomic =t,p) in closed form, and analyzing the physics of this par-
collision physics, many strategies have been developed tgcular noncentral potential problem. As this system is
deal with systems involving 3BCP. In some particular casesglosely related to the 3BCP, it is expected that further insight
such as the K ion molecule, approximate solutions can beinto the latter could be gained from the study of the former.
obtained using an adiabatic approddff. Basis expansions As a by-product, we intend to contribute to the general un-
of the solutions in different sets of coordinates have beemlerstanding of the physical and mathematical properties of
found to be suitable for low energy collisiofi2,3], while  the solutions for a noncentral potential.
solutions of the Schiinger equation through separation of ~ The paper is organized as follows: In the next section, we
variables andab initio methods have been widely used in derive solutions for the noncentral potential both for the con-
atomic collisions in the intermediate to high energy regimetinuum as well as for the discrete spectra. From the study of
(see, for example[4—7]). Furthermore, transformations of the asymptotic behavior of the solutions found, we obtain
the Schrdinger equation into an integral equation have alscand analyze the corresponding scattering amplitudes and dif-
been proposefi8—10. On the other hand, there is a great ferential cross sections. Atomic uniis.u) are used through-
number of two-body problems, which have been solved irout.
closed form. Among them, the two-body Coulomb problem
(2BCP stands out, as it is the basic model for the atom.
Then, it is usual to write down approximate solutions for the
3BCP in terms of 2BCP eigenfunctions. One of the most Let us consider thé&ime independentSchralinger equa-
thoroughly used approximations in ion-atom collisions reliestion for the motion of a spinless particle of maasin a
on separable functions where the different factors correspongotential V*:
to 2BCP solution$4,5]. Each pair of particles is considered
to interact separately with charges unscreened by the pres- 1
ence of the third particle. Several improvements to this Hy=Ey, [—2—V$+V+
model have been employed to include the dynamics of the K
three-particle system in the wave functions. Recently, the h
authors and co-workers have proposed an approximate solgnere
tion for the 3BCP which can be written as the superposition
of two-body problem eigenfunctio41,12:

I. THE SCHRO DINGER EQUATION

P(r)=Ep(r), @

4 \? .
vie— ST vEoveRVP, (3)

Dy~ P t p . . . e
V2=Cof Y anemeh. @) e |Z|/r is a Coulomb potential anl is a positive integer.
VP can be seen as a parabolic barrier being a parameter.
(p})p is a 2BCP solution, whil@ﬁn and ¢P, are solutions of a This potential diverges for=0 and for directions given by

Schralinger equation for the motion of a particle in a non- 1=k’-1=0. According to its definition,V* represents a
central potential. long-range noncentral potential, see Fig. 1.

In general, noncentral potentials are extremely difficult to  We Wwill first derive the solutions for the continuum spec-
solve, because of the system’s low level of symmetry. Fronfrum. Writing
a physical point of view, fewer symmetries always imply

fewer constants of motion and, from a mathematical point of p(r)=e*To(r) (4)
view, fewer coordinate systems in which the problem is
separable. and replacing in Eqg(2), we obtain for the distortiorp(r)
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FIG. 1. Noncentral potentiaV* for \=Z=1 a.u., in a plane

that includesk. The potential is symmetrical arourkd whose di-
rection is denoted by the arrows.

FIG. 2. Particle distributiomy,(r)|? as a function of the Carte-
sian coordinates=(x,y,z) and fork=1 a.u. and\=1 a.u. Note

the probability density removal from tHe direction fromr=0 to

— o0,

)\2

|Z] = —————=
r(l=k’-r)

1, 1
ﬂVﬁ—;k-Vﬁ—F QD(I’)ZO. (5)

This equation is extremely difficult to solve in general. How-

ever, choosing’ =k, i.e., the asymptotic particle momen-
tum direction, the parabolic potential can be expressed in x2=1F1
terms of the usual parabolic coordinates #,¢) [13]. In
order to perform a detailed analysis, we consider the poten-
tial V*, but solutions can be obtained f&t~ in a similar
way. Writing Eq.(5) in parabolic coordinates, it reads

i %,ukn}, (11)

so that the normalized continuum eigenfunctions reads

By

lﬁ(r):Neik'rlﬁ[i K ,1,ik7]}(—ik§))‘1F1
a) u(é+mn) &

1 a( a) d
wr | 58\ 5| Ty

an 4fn  g¢? X —i%+>\,1+2x,—ik§}, (12
N \?
Tik 3 Tan) TH |Z|—? ¢(r)=0. ()  with N being the normalization constant to be determined.

We note that, foh =0 Eq.(12) yields the general solution of

This equation can be easily separated into three equation ,e 2BCP forl ;=0

one for each parabolic coordinate. We will restrict ourselves

to the study of_¢ independgnt soluti(_)ns for the continuum y=NCek T F, i%,l,ikn 1F1[—i %,1,_”(5 . (13
spectrum. We introduce this separation as
()= x1(E) xa( 1) ) The eigenfunction v_vhos_e asymptotic behavior represents
a plane wave plus an ingoing spherical wave corresponds to
and Eq.(6) reads the electiong,=0:
2 J A2 () =Ne* T—i(kr+k-r)]Fy
§— +(1+iké)—= +B1— | x1(§)=0, 8 7
o€ ¢ ¢ % —iTM+)\,1+2)\,—i(kr+k-r) . a9
2
,7‘?_+(1_ik,7)i+132 Ya(7)=0, (9) In Fig. 2, we can see the particle distribution obtained by
an® an taking the square modulus af(r) as a function of the
Cartesian coordinates=(x,y,z) and fork=1 a.u. andx
where 8, and B, are separation constants, such tifat =1. The effect of the repulsive barrier is to remove the
+ Bo=pu|Z|. probability density from thek direction fromr=0 to —,

Solutions to these equations can be written in closed fornproducing an effect similar to that typically observed in ra-
in terms of confluent hypergeometric functiopB4[a,b,z] dial wave functions for increasing angular momentum due to
[15], as follows: the so-called centrifugal barrier. The particle removal in-
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FIG. 3. Same as Fig. 2 fdt=0.01 a.u. x[a.u]

. o 5
creases with.. Similar results are observed fke=0.01 a.u. FIG. 4. Particle distribution|yp, —o, n,-0, m=o(r)|* for the

(Fig. 3. For A=0, ,(r) reduces to the corresponding 9round state as a function ofin the plane defined bly andr, and
2BCP solution, for A=1 a.u. Note that the repulsive parabolic barrier removes the

probability from the directionk. Furthermore, the ground state
spherical symmetry is lost, and the maximum lies out of the origin.

Y(r)=Nee® " F | —i Z%,l,—i(kwk-r)}. (15

. Z%u
ChoosingB,=0, we have E=— F (20
PRET 9 . . .
Po(r)=Cée 1F1[|T11Jk7l} We should note that is not in general an integer number,
as the square root in E¢L9) needs not be an integer. For a
X (—ik&MF [N, 1+ 2N, —ik&]. (16)  fixed value of\ and integer values af;, n,, andm we fix

) ) _ n, but we can get the same valuerothoosing different,
V', for which no Coulomb potential is present, is given by number |m| can take different values from 0 to {In?
ot s : —2n—\?%)/(n—1). As we can see in Eq19), the lower
— NPaik-re _ A _ !
Pa(r)=N"e""(—ik&) 1 Fy[N 1+ 2N, —ikE]. (A7) e ofnis n=1+|\|. For fixedn and|\| the numbem,
By performing an analytical extension to the complex plang@kes n—|m|/2—y4\“+m?/2 values from O ton—|m|/2
of k= —iZu/n in Eq.(12), bound state solutions can also be — V4A“+m“/2—1.

obtained[14]: ~ Itis interesting to note that due to the fact that the poten-
tial is noncentral, the square of the angular momentifm
Zu VarxZ+m?i2 Zu |m|/2 does not commute with the Hamiltonian and so does not
W (r)=Ne~(@#nr| ——¢ —7 constitute a constant of motion. Nevertheless, the component
nl,nz,m n n

of L alongk is indeed a constant of motion. On the other
[AN? + m? Z_,u } hand, the separability property of the Safirmer equation
2 1

X 1Fq| —ng, 1+ n tells us that there exists another constant of motion which is
related to the Runge-Lenz vector.
< Fy =y | Z_,un} 19 In Fig. 4, we plot the square modulus ¢f]1,n2,m(r) foAr
' "n 7 the ground state as a function fin the plane defined bl

andr, and forx=1. We can see that the effect of the repul-

wheren,, np, andm are non-negative integers antlis the ive parabolic barrier over the probability distribution is to
normalization constant. Thus each stationary state of tha've P _ P y

Schradinger equatiori2) is determined by three integers: the fémove it from the directiork. It does not have spher_ical
parabolic quantum numbers; and n,, and the magnetic symmetry as a consequence of the form of the potential and

- 2 ; : i
quantum numbem. For n, the principal quantum number, the [4g,0,o(r)|* maximum is out of the origin.

we have In Fig. 5, we compare the probability distribution given
by | 420,4(r)|? with the solution of the hydrogen atom when

Im|  VANZ+m? the parabolic quantum numbers amg=2, n,=0, andm
n=ni+n+l+—>-+—"75—, (19  =1. The presence of the parabolic barrier modifies

|4/2,04(r)|?, removing the probability from thé& axes. We
and the energy results see thaty,,. . m(r) maintains the distribution asymmetry
12
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FIG. 5. Probability distribution given by//z,o,l(r)|2 compared with the solution of the hydrogen atom tige=2, n,=0, andm=1.

that can be seen in the hydrogen atom for certain combina- e i(1Zlulk) In[co6/2] + 2i v,
tions of the parabolic quantum numbers. For>n,, the fi(@)=(—1)"1|Zlu >
. . L T . * 2k? cog 6/2
probability of finding the particle in the directida-r>0 is
greater than fok-r>0, and vice versa fon,>n;. Besides, e~ 1(1Zlu/kin[cos” /2] +2iy,
it should be noted that this asymmetry also depends.on +iN
2k cog /2
Il. ASYMPTOTIC BEHAVIOR =(=1) M f(O)+F15(0)], (24)

In order to study the asymptotic behavior of the solutionsgpg yp=arcta|Z|u/k(1+\)]. Scattering amplitudef ; , (6)
given by Egs(14) and(16), we make use of the—c form  yns out to be the addition of two different amplitudes

for 1F4[b,c,x]: f10(6) andfy,(6). f1.(6) is similar to the Coulomb scat-
tering amplitude, the only difference being, and reduces

(c) b exactly to it forA=0. f,,(6) shows the same angular be-
1Fa[b,c.x]= T(c— b)( —X) Pva[b,b—cH+1,-x] havior asf ¢(6), while its amplitude is proportional to and
re) inversely proportional tk. It can be concluded thdt .( 6)
c . ; " ;
b—c.x o andf, ,(0) are associated with the transition amplitudes for
+F(b)x eva[1-b,c=b.x], @1 the Coulomb and the parabolic potentiét, respectively.
The normalized solutiony; reads
wherev [ a,b,x] andv,[ a,b,x] are the Whittaker functions o \
[16]. Replacing Eq(21) in Eqg. (14) and to order ¥/, we find ga(r)=Ng e[ —i(kr+k-r)]
Y4
(=1 C(1+2N) X 1F1 —i&+)\,1+2)\,—i(kr+k-r) .
#i(r)—N k

C(1+N+i|Z|ulk)

25
x @~ (712)(1Z| uk) gik-r+i(|Z| /) Infkr +Kk-r] 29

In the following section we analyze the cross section de-
fined by fq,(6). The distortion that accompanies the plane
[(—i|Z|ulk+N) [kr+k-r] ' wave in Eq.(14) or Eq. (25 depends only on one of the
parabolic coordinates, while that i,, given by Eq.(16),
Choosing an outgoing unitary flux normalization results in depends on both of them.
Replacing Eq(21) in Eq. (16) and retaining terms to or-
e ikr=i(1Z|p/k)in[2kr] der 1f, we obtain

F) s ik TH(ZI ke kor] | ,
P (r)— A (0) p ikr +i(|Z] /K In[2kr]

(22) I)[jz(r)_)eik»r—i(|Z\,u/k)In[kr7k~r] N a)e

T(1+2N)(—i) 1Zmik=1 gike=i|Z|u/k Infkr+k-r]

r

where e~ ikr=i(|Z|u/k)In[2kr]

+02,(0) . , (26)

L D@+n+i|Z]ulk)
T(1+2\N)

Ny =(—1) e(w/Z)(\Z\M/k)1 (23) where
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T(1+2\) Ill. DIFFERENTIAL CROSS SECTION
['(1—i|Z|u/k)e™ (72UZluk),
[(1+N) The scattering cross sectier( 6) for any given potential

(27)  is defined from the asymptotic form for the continuum wave
function. As we are dealing with a long-range potential, a

No=(-1)*

fon(0)=F(0) true free state is not possitbl&3]. Therefore, the asymptotic

_ ) L, ) wave function includes a logarithmic phase which modifies
_iz] [(1+i|Z|u/k) e (Zu/kinlsin®0/2]+2i v both the plane and scattered wave:
FT(@=ilzlulk 2k? sin? 612 ’ orikr—ia In[2kr]
I//_>eik-r+ialn[kr+k-r]+fi(a) (34)
(28 r ’

e 1(1Zlnk) In[sir? 6/2] wheref* () is the scattering amplituda.is a parameter that
Oon(0)=i(—1)"*\ , (290  depends in general on the ratio between the intensity of the
2k cos /2 long-range portion of the given potential and the asymptotic

particle velocity. In our case, this is simpby=Zu/k. As
and y.=arctai|Z|u/k]. f. (#) represents the Coulomb tran- usual, the cross section can be written in terms of the scat-
sition amplitude associated with the outgoing wave functiontering amplitude:

It can be seen from Eq26) that the functiony, in the . .

asymptotic region is a sum of three terms. The first one o= (0)=|f=(0)>. (39
shows the well known eikonal behavior corresponding to the _. s . .
nonperturbed Coulomb potential. The other two terms repref— Since the pr?tenna‘{/ IS dgfmed as the sum of two d'f'.
sent outgoing and incoming spherical wave functions moduferent terms, the corresponding cross section can be cast into
lated by their _correspondlng scattering a_\mphtude_s. The eiko- o (0)=0u(6)+ 0P (8)+ory(0), (36)
nal wave arises from the asymptotic behavior of the
hypergeometric function that depends g1in Eq. (16) since  where
the first order of the Kummer function ifiis constant. It is

also clear that the outgoing spherical wave contributes to the (12| p)?
outgoing flux, which is driven only by the distorted plane o(0)= 4K cod 012" (37)
wave in the pure Coulomb case, and hegcér) has been
normalized to unit outgoing flux. A2

When the Coulomb potential is absent, ijZ|=0, the ot (O)=——r, (39)
wave function corresponding ¥ is given by Eq(17). The 4k? cos' /2
asymptotic behavior fok;(r) can be shown by replacing B 1 L
Eq. (21) in Eq. (17): Tin(0) =2 R4 f:(0)f(6)], (39

e ikr i.e., the cross section can be written as the sum of three

Pa(r)—e* T+ 15,(0) (300  terms, one associated to the scattering off the Coulomb po-
tential, the second associated to the scattering off the para-
bolic potentialVP, and the last one corresponding to the in-

where terference between the first two amplitudes.

It can be shown that the angular dependence,0f6) is

I(1+xn) (31) similar to the Rutherford scattering. In the low energy limit,

r(i+2n)’ k—0, o.(#) dominates the cross section, giving a pure
Rutherford cross section. On the other hand, wker, the
incident particle interacts witi/P in a stronger way, thus

(32  makingo?"(6) dominate the differential cross section.

Total cross section defined as the angular integration of

o L . o, (6) is divergent. This is a well known feature of long-
The normalization coefficient is calculated in a way thatrange potentials such as the Coulomb potential.

assures unit outgoing flux:

r )

Nzy=(—1)"*

fan(0)=i(—1) r———.
a(O)=1(=1) 2k cog 612

_ IV. DISCUSSION AND OUTLOOK
Pa(r)=Ng e "(—ik&) Fi[N,1+ 2N, —ikE]. (33

We have found closed-form solutions for the continuum

Even whenVP is noncentral, the asymptotic behavior for s well as the discrete spectra for a noncentral potential built
i3(r) is not distorted, so we can considéP to be a short- from a Coulomb potential plus a parabolic barrier. _
range potential. The transition amplitudg, (6) has an an- We have analyzed the probability distribution obtained
gular dependence quite similar to that for the Coulomb amfrom these solutions. Similarities and differences from the
plitude. However, its dependence on energy is quitg?ure Coulomb problem are highlighted. The presence of the
different. parabolic barrier destroys the system'’s, spherical symmetry,

In the fo”owing Section’ we will Study the Scattering Cross but still it is pOSSibIe to find three constants of motion related
sections forv=*. to the energy, the angular momentum projection alongkthe
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direction, and the Runge-Lenz vector, respectively. is constrained to depend on three parabolic coordinates lead-
These two-body wave functions are related to the threeing to outgoing(incoming behavior[11,12,17.
body ones. So it could be expected that conclusions drawn However, we note that thé, function[Eq. (16)] has a
for them could be extended, at least qualitatively, to thepurely outgoing asymptotic behavior, but retains its depen-
three-body problem. dence on all the parabolic coordinat@s our case¢ and %)
In the three-body continuum Coulomb problem, it hasfor nonasymptotic regions.
been customary to write the Schiinger equation in a set of This fact implies a change in the normalization factor
six parabolic coordinate$5,11,12,17. This set naturally with respect to the Coulomb problem. Then, we can think of
leads to the outgoingor incoming asymptotic behavior as- three-body wave functions depending on all the six coordi-
sociated with each of the parabolic coordinaft#8,19,11. nates, but with the right asymptotic behavior given by the
For example, the asymptotic motion of three particles moveikonal functions in only three of them. In this way, we
ing away from each other is represented by a plane wavevould be able to introduce modifications in the normaliza-
distorted by three eikonal phases that depend on three partien factors. Moreover, one can expect these kinds of wave
bolic coordinates and are independent of the other three. Thenctions to describe a richer dynamigzarticularly in the
only way in which outgoingincoming solutions have been so-called condensation regiohy retaining the full depen-
obtained so far was considering that the total wave functiordence on the system’s six degrees of freedom.
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