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Bound-state properties of the positronium negative ion Ps2

Alexei M. Frolov
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 15 December 1998; revised manuscript received 18 June 1999!

Various geometrical and energetical~bound-state! properties of the positronium negative ion (Ps2 or
e2e1e2) are determined by using highly accurate variational wave functions. These wave functions have been
constructed by applying the advanced two-stage strategy proposed by Frolov@Phys. Rev. A57, 2436~1998!#.
The determined total energy of the ground stateE520.262 005 070 232 975 7 a.u. is the lowest and most
accurate value obtained for this system to date~the corresponding binding energy equals
20.326 674 721 317 821 eV). The computation of the second-order relativistic corrections (.a2) to the total
energy is discussed also. The general form of the Breit-Pauli Hamiltonian in the relative coordinates for the
Ps2 ion is presented.@S1050-2947~99!04910-0#

PACS number~s!: 36.10.Dr
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In our previous work@2# published a few years ago, th
results of highly accurate calculations for some propertie
the Ps2 ion have been reported. Recently, however, sign
cant progress has been made in performing such calculat
In particular, the advanced two-stage procedure propose
@1# produces extremely accurate wave functions for vari
three-body systems. As a result, the final accuracy of hig
accurate, three-body, bound-state calculations has bee
creased drastically. In general, such wave functions give
additionally two to three correct significant decimal figur
in the total energy. Also, our present knowledge about
bound-state properties in three-body~and four-body! systems
is far beyond the level that we had even four years a
Finally, now we can compute significantly more bound-st
properties and compare them with the expected or predi
values. Furthermore, the whole system of independent t
can be used today in order to check these properties and
more appropriate definitions for them.

On the other hand, the Ps2 ion is of increasing interest fo
theoretical studies and various applications. For instanc
complete theoretical analysis of the one-photon annihila
in this system has been made recently@3–7# ~see also@1#!. It
was shown that the probability of this process is determi
by the expectation value of the three-particled function ~i.e.,
^d321&). In many similar studies, the knowledge of oth
bound-state properties for the Ps2 ion is critically important
~see, e.g.,@8#!. Another example is the present work, whe
we discuss the second-order relativistic corrections to
ground-state energy of the Ps2 ion. This requires numerica
calculations of expectation values of some specific opera
~see below!. Actually, one of the goals of this work is t
compute a large number of nonrelativistic properties for
Ps2 ion. In principle, our present study can be considered
a ‘‘nonrelativistic basis’’ for future relativistic consider
ations.

It should be mentioned that the stability of the Ps2 ion
was demonstrated for the first time by Wheeler@9# and Hyl-
leraas @10#. Today, there are a few hundred publicatio
which deal with various properties of this system. But in
paper of this size it is clearly impossible to discuss ev
aspect or property of the Ps2 ion. Presently, we restrict our
selves only to the discussion of works which contain
PRA 601050-2947/99/60~4!/2834~6!/$15.00
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results of highly accurate bound-state calculations. Note
the first highly accurate calculations have been stimulated
earlier theoretical studies for the Ps2 ion performed by Ho
and Bhatia and Drachman@11–13#. In particular, these pa
pers as well as the two experimental works by Mills@14#
have stimulated my own interest in the study of the Ps2 ion.
The first highly accurate calculations of the bound-st
properties for this system have been made by Ho@15#. Our
earlier works@16# related with the Ps2 ion include only the
bound-state energy computations. In@2# we considered the
same properties as in@15#. The next paper@6# contains a
large number of new properties for the Ps2 ion. However,
Ho in @17# used an improved technique to construct a ve
accurate wave function for the Ps2 ion. Our method used in
@6# could not provide even comparable accuracy. Moreov
all earlier attempts to improve our method@6# have failed.
Finally, after a few years of extensive calculations a succe
ful approach@1# was found in some alternative direction. I
@1# the new, advanced, two-stage procedure has been d
oped in order to construct extremely accurate wave functi
for the three-body systems.

Let us remember, that in this approach the trial wa
function C is represented by the sum of the very well op
mized, short-term functionC1 with the N0 basis functions
and roughly optimized~or even nonoptimized! long-term
function C2. If the total number of basis functions equalsN
and each of the basis functions containsm nonlinear param-
eters, then we may writeC(N)5C1(N0)1C2(N2N0),
whereN0!N. The mN0 nonlinear parameters in the shor
term or booster functionC1(N0) are optimized very care
fully. This problem is not very complicated, since the boos
function C1(N0) contains only a relatively small numbe
(mN0) of the nonlinear parameters. The long-term functi
C2(N2N0) with m(N2N0) nonlinear parameters is con
structed with an approximate optimization or even witho
any optimization of the nonlinear parameters. A detailed
scription of the choice of nonlinear parameters in the boo
and long-term functions can be found in@1#.

In the present work, the exponential variational expans
is used. For the considered case of the~ground! 1 1S state in
the Ps2 ion this expansion takes the form
2834 ©1999 The American Physical Society
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C5
1

2
~11 P̂21!(

i 51

N

Ci exp~2a i r 322b i r 312g i r 21!. ~1!

Here Ci are linear~or variational! parameters anda i , b i ,
and g i are nonlinear parameters. The operatorP̂21 is the
permutation of the two identical~1 and 2! particles ~elec-
trons! in the Ps2 ion. For the two-stage procedure in th
present study we have chosenN05200 andNmax51600. As
is mentioned above, the first stage produces a very com
and highly accurate wave functionC1. This function in-
cludes only 3N05600 nonlinear parameters. The appropria
energy contains approximately 12–13 correct decimal
ures ~in atomic units!. The second stage of the procedu
gives as a rule 3–4 additional correct decimal figures to
total energy, and generates extremely accurate wave f
tions, which is used to compute various properties of the P2

ion.
The total variational energies from Table I are represen

quite well by the following approximate formula:

E~N!5E~`!1
A

Np
. ~2!

Here,A andp are the two positive constants,N is the number
of basis functions used to computeE(N), andE(`) is the
asymptotic value of energy which corresponds, in princip
to the infinite number of basis functions. If any three en
gies E(Ni) have been computed, then all three consta
p, A, andE(`) in the last equation can be determined e
ily. For instance, by using theE(N) values for N5800,
1000, and 1200 from Table I, one findsE(`)5
20.262 005 070 232 975 79 a.u., while forN5900, 1000,
and 1200 the analogous result is E(`)5
20.262 005 070 232 974 75 a.u. Note that as a ruleE(`)
contains one to two extra correct significant figures in co

TABLE I. The total energies~E! in atomic units (me51, \
51, e51) for the ground states of the Ps2 ion. N designates the
number of basis functions used.

N E

200a 20.2620050702293112
400 20.2620050702322065
500 20.2620050702326614
600 20.2620050702328437
700 20.2620050702329184
800 20.2620050702329484
900 20.2620050702329598
950 20.2620050702329634

1000 20.2620050702329674
1200 20.2620050702329726
1400 20.2620050702329749

1600b 20.2620050702329757

aThis case corresponds to the short-term, booster functionC1(N0),
whereN05200.
bThe three most accurate variational energies obtained previo
are 20.262 005 070 232 855 a.u.@17#, 20.262 005 070 232 950
@28# a.u., and20.262 005 070 232 965 a.u.@1#.
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parison withE(Nmax). Finally, in terms of the results given
in Table I we have estimated theE(`) value as follows:

E~`!520.26200507023297864310215 a.u. ~3!

Note that our asymptotic and variational energies are v
close to each other.

The numerical values for some of the properties~i.e., ex-
pectation values! can be found in Table II. In this table onl
stable figures from calculations with the higherN are pre-
sented for most of the Ps2 properties. For the two- and three
particle cusps, only the best results are given in Table II.
properties are given in atomic units (me51, e51, and\
51). The physical meaning for all of the expectation valu
in Table II is quite clear from the notations used~for more
detail, see also@1#!. So, here we wish to make only a fe
following remarks. In all the formulas given below and al
in Table II, the notations 1 and 2 mean electrons, while
notation 3 designates the positron. The notationsd31,d21,
andd321 stand for the two- and three-particle Diracd func-
tions, respectively. The two-body cusp ratios are determi
in a traditional manner@18,19#:

n i j 5

K d~r i j !
]

]r i j
L

^d~r i j !&
, ~4!

where d i j 5d(r i j ) is the appropriate Diracd function and
( i j )5(21) and (31). The exact value ofn i j equals

n i j 5qiqj

mimj

mi1mj
, ~5!

where qi and qj are the charges andmi and mj are the
masses of the particles.

The expectation values of the two interparticle cos
functions are determined traditionally:

t i j 5^cos~r ikr jk!&5 K r ik•r jk

r ikr jk
L , ~6!

where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk) and

( i , j ,k)5(1,2,3)# as follows:

^ f &5 K cU u1

r 32

u2

r 31

u3

r 21
Uc L

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~7!

The value^ f & can be calculated directly or by applyingt i j .
Their coincidence indicates that theset21,t32,t31 and ^ f &
have been computed correctly. The equalities

t211t321t315114^ f & ~8!

hold for an arbitrary three-body system. For the symme
Ps2 ion, we havet325t31.

The virial factorh is determined as follows:

ly
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TABLE II. The expectation valueŝXi j & in atomic units (me51, \51, e51) of some properties for the
ground states of the Ps2 ion. The notations 1 and 2 designate the two electrons, while 3 stands fo
positron (e1).

^Xi j & ^Xi j &

^r 21
22& 0.03602205848 ^r 21

21& 0.15563190565266

^r 31
22& 0.27932654211 ^r 31

21& 0.33982102305927

^r 21& 8.54858065516 ^r 21
2 & 93.178633855

^r 31& 5.48963325238 ^r 31
2 & 48.418937230

^r 21
3 & 1265.5804487 ^r 21

4 & 21054.45349

^r 31
3 & 607.29563001 ^r 31

4 & 9930.638730

^(r 31r 32)
21& 0.0909353465282 ^r31•r32& 1.82962030209

^(r 31r 21)
21& 0.0606976902876 ^r31•r21& 46.5893169266

^(r 32r 31r 21)
21& 0.0220342378947

^2
1
2 ¹1

2& 0.066619294535873 ^“1•“2& 20.004472107910576

^2
1
2 ¹3

2& 0.12876648116117 ^“1•“3& 20.12876648116117
t31 0.5919817011492 ^d31& 0.0207331976
t21 0.0197696328167 ^d21& 0.1709969231023

^ f & 0.05093325877879 ^d321& 0.3587531024

n31 20.499999795011881 n21 0.499983153136046
n31

a 20.5 n21
a 0.5

j123 20.221846010657566 h <0.559715310214

j123
b 20.25 «(eV) 20.326674721317821c

aThe exact value from Eq.~4!.
bThe exact value, from Eq.~11!.
cTo compute this value, we assume that the corresponding conversion factor equals 27.211 396 1~eV/a.u.!
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h5U11
^V&
2^T&

U, ~9!

where^T& and ^V& are the expectation values of the kine
and potential energy, respectively. The deviation of the f
tor h from zero indicates, in principle, the quality of th
wave function used. The appropriate binding energies« are
given in eV ~the conversion factor is 1 a.u
527.211 396 1 eV). Note however, that even exact coin
dence of the factorh with 0 does not indicate the high qua
ity of the wave function. Indeed, by using the so-called sc
ing transformation (rW i5arW i) one can make the factorh very
close to zero for an arbitrary wave function. Analogously,
excellent coincidence between computed and expected
values can be found in some cases~or easily made! for wave
functions whicha priori have a very poor quality. In particu
lar, one can easily construct the three-term trial function
~1! which provides a stable bound state for the Ps2 ion and
‘‘exact’’ values for both then21 andn31 cusps. But for other
properties the quality of such a function will be very poor.
general, the wave function has a high quality if~and only if!
it reproduces very accurately a large number of bound-s
properties.

The numerical values for the properties in Table II ag
quite well with the values known from previous highly a
curate calculations~see@1,2,6#, and @17#!. The convergence
for the properties upon the number of basis functions u
was considered in detail in@2,6# and @17#. Note, however,
that some of the properties have never been computed
fore. For instance, the so-called symmertrized three-par
cusp,
-
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j1235j12;31j13;21j23;1, ~10!

where

j ik; j5

K d i jk

]2

]r i j ]r jk
L

^d i jk&
5

K d~r i j !d~r jk!
]2

]r i j ]r jk
L

^d~r i j !d~r jk!&
~11!

is of specific interest. Its numerical value for the exact Co
lomb three-body wave function equals6` ~for more detail
see, e.g.,@20#!. But for an arbitrary finite-term analytical tria
function @e.g., Eq.~1!#, all j ik; j cusps are finite@21#, and
moreover, they can be expressed through Kato’s two-b
cusps. Indeed, following Kato@18#, we can determine the
so-called cusp operatorsn̂ i j :

n̂ i j 5d~r i j !
]

]r i j
, ~12!

where (i j )5(32), ~31!, ~21! and (i j )5( j i ). For an arbitrary
three-body Coulomb wave functionC(r 32,r 31,r 21) the three
following conditions are obeyed@18#:

n̂ i j C~r 32,r 31,r 21!5n i j d~r i j !C~r 32,r 31,r 21!, ~13!

where the eigenvaluesn i j are given by Eq.~4!. Now, from
Eq. ~11! one finds for thej123 cusp

j1235n12n131n12n231n13n23. ~14!

For the Ps2 ion the expected value for thej123 cusp is
20.25 ~in atomic units!. The comparison of thej123 value
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with 20.25 can be found in Table II. Note, however, that t
definition of the three-particle cusps can be given in a f
different ways and for some of the definitions the observ
agreement with excepted values is better~for more detail, see
@20#!.

Note that some expectation values in Table II can be
pressed as the linear combinations of other properties.
instance, for the three relative vectorsrW32, rW31, andrW21 we
have

rW322rW311rW2150W . ~15!

Therefore, the three equalities@( i , j ,k)5(1,2,3)#

rW ik•rW jk5
1

2
~r ik

2 1r jk
2 2r i j

2 ! ~16!

hold in any case. For the appropriate expectation values,
finds ~see Table II!

^rW ik•rW jk&5
1

2
~^r ik

2 &1^r jk
2 &2^r i j

2 &!. ~17!

Analogously, sincepW 11pW 21pW 350W , then we write

pW i•pW j5
1

2
~pk

22pi
22pj

2! ~18!

and

^pW i•pW j&5
1

2
~^pk

2&2^pj
2&2^pi

2&!, ~19!

respectively@( i , j ,k)5(1,2,3)#. Moreover, if the threepW i are
determined by the relationspW i5(2ı)¹W i in Cartesian coordi-
nates, then one finds

^¹W i•¹W j&5^2 1
2 ¹k

2&2^2 1
2 ¹ i

2&2^2 1
2 ¹ j

2&, ~20!

where (i , j ,k)5(1,2,3). The expectation values from bo
sides of this equality can be found in Table II. Note, ho
ever, that the last three equalities are obeyed only in Ca
sian coordinates, where we have¹W i5ıpW i . In the present
study, all¹W i operators are written in Cartesian coordinat
and thereforê ¹W i•¹W j& can be expressed through^2 1

2 ¹ i
2&

and vice versa. Moreover, in the symmetric systems we h

^p1
2&5^p2

2& and^rW31•rW21&5^rW32•rW12&, respectively. This sim-
plifies some of the equations presented above. Moreover
the symmetric systems one easily finds that^¹W 1•¹W 2& is al-
ways negative, sincê¹W 1•¹W 2&52^2 1

2 ¹3
2&,0.

Now, by using the expectation values for thed functions
from Table II, we can calculate the total and one-pho
annihilation rates~analytical expressions can be found, e.
in @13# and @1#!:

G52pa4ca0
21F12aS 17

p
2

19p

12 D G^d31&

5100.617 480 93109^d31& sec21,

~21!
d

-
or

ne

-
e-

,

ve

or

n
,

G1g5
4

9

16p2

3
a8ca0

21^d321&51065.757 44̂d321& sec21,

where a50.729 735 30831022 is the fine-structure con
stant, c50.299 792 4583109 m sec21 is the velocity of
light, and the Bohr radius a0 equals
0.529 177 249310210 m @22#. Now, by applying the expec
tation values for the appropriate Diracd functions from
Table II, one finds from the last equalities thatG
52.086 122 1143109 sec21 and G1g53.823 40
31022 sec21. The deviations from the appropriate resu
computed earlier~see, e.g.,@1# and @17#! do not exceed
50 sec21 and 7•1024 sec21 for G and G1g , respectively.
The other annihilation ratesG2g ,G3g , . . . can be easily es
timated by using thêd31& value and formulas from@23#.

Now, let us discuss the calculations of relativistic corre
tions of the lowest orders. The energies and other prope
discussed above are essentially nonrelativistic. The first n
zero correction corresponds to the second-order terms u
a @24#. The Hamiltonian which includes terms.a2 is called
the Breit-Pauli Hamiltonian. In the next approximation.a3

one needs to consider terms which represent emission,
sorption, and scattering of radiation@24#. In the fourth-order
approximation upona, electron-positron annihilation in the
Ps2 ion will affect the energy levels in this system. In fac
the closed solution can be found only in the second-or
approximation upona. It should be mentioned that this prob
lem has been considered earlier@25#.

Here, we want to discuss the calculation of the seco
order corrections upona in detail. For an arbitrary three
body system (m1 ,m2 ,m3 ;q1 ,q2 ,q3), the Breit-Pauli Hamil-
tonianHBP takes the following general form~in atomic units;
see, e.g.,@26#!:

HBP5H 1

2m1
p1

21
1

2m2
p2

21
1

2m3
p3

21
q1q2

r 21
1

q1q3

r 31
1

q2q3

r 32
J

2
a2

8 F 1

m1
p1

41
1

m2
p2

41
1

m3
p3

4G1a2Û1~pW 3 ,pW 2 ,rW32!

1a2Û2~pW 1 ,pW 3 ,rW31!1a2Û3~pW 2 ,pW 1 ,rW21!, ~22!

wherem1 , m2, andm3 are the particle masses andq1 , q2,
andq3 are their charges.a'7.297 353 0831023 is the fine-
structure constant.rW i andpW i are the coordinate and momen
tum vectors, respectively (i 51,2,3). In order to make the
formulas below more compact, the following notations a
used: rW i j 5rW j2rW i and pW i5(2ı)¹W i . The terms withouta2

represent the nonrelativistic HamiltonianH0. The terms.p4

correspond to the corrections related with the relativis
m(v) dependence. The operatorÛ3(pW 2 ,pW 1 ,rW21) takes the
form

Û3~pW 2 ,pW 1 ,rW21!

52
pq1q2

2 S 1

m1
2

1
1

m2
2D d~rW21!2

q1q2

2m1m2r 21

3F pW 1•pW 21
rW21~rW21•pW 1!•pW 2

r 21
2 G
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2
q1q2

4m1
2r 21

3 ~rW213pW 1!•sŴ 11
q1q2

4m2
2r 21

3 ~rW213pW 2!•sŴ 2

2
q1q2

4m1m2r 21
3 @~rW213pW 1!•sŴ 22~rW213pW 2!•sŴ 1#

1
q1q2

4m1m2
FsŴ 1•sŴ 2

r 21
3

23
~sŴ 1•rW21!~sŴ 2•rW21!

r 21
5

2
8p

3
sŴ 1•sŴ 2d~rW21!G , ~23!

where sŴ 5(ŝx ,ŝy ,ŝz), and ŝx ,ŝy and ŝz are the usual
Pauli (232) matrices~see, e.g.,@26#!. The other two opera-
tors Û1(pW 3 ,pW 2 ,rW32) and Û2(pW 1 ,pW 3 ,rW31) can be found from
Û3(pW 2 ,pW 1 ,rW21) by cyclic permutations. For the Ps2 ion, all
massesm1 ,m2, andm3 are equal to each other, and furthe
more, all of them equal 1~in atomic units!. This simplifies
the operatorÛ3(pW 2 ,pW 1 ,rW21) significantly:

Û3~pW 2 ,pW 1 ,rW21!

52pq1q2d~rW21!2
q1q2

2r 21
F pW 1•pW 21

rW21~rW21•pW 1!•pW 2

r 21
2 G

1
q1q2

4r 21
3 @2~sŴ 112sŴ 2!~rW213pW 1!

1~sŴ 212sŴ 1!•~rW213pW 2!#

1
q1q2

4
FsŴ 1sŴ 2

r 21
3

23
~sŴ 1•rW21!~sŴ 2•rW21!

r 21
5

2
8p

3
sŴ 1•sŴ 2d~rW21!G . ~24!

The first line in this equation represents the so-called orb
~or L2) corrections. The second line corresponds to the s
orbital ~or LS) interaction, while the last line includes th
corrections related with the spin-spin~or S2, or tensor! inter-
action. In principle, all terms in the last equation have
same or quite comparable order of magnitude, anda priori
we cannot neglect any of them.

Now, in the first approximation we can calculate the e
pectation value of this HamiltonianHBP using the eigenfunc-
al
n-

e

-

tion C(N) determined above for theH0 nonrelativisticH0
Hamiltonian. In this approximation, allLS terms equal zero
identically ~see, e.g.,@27#!. Furthermore, the ground-stat
Ps2 ion wave function is represented in the for
FS(r 32,r 31,r 21)(ā1b̄22ā2b̄1)ā3, whereFS(r 32,r 31,r 21) is
the coordinate~or positional, or spatial! function, which is
symmetric with respect to the pair interchange of particle
and 2~i.e., electrons!. The function (ā1b̄22ā2b̄1)ā3 is the
appropriate spin function, which is antisymmetric with r
spect to the same interchange~i.e., it changes the sign!. The
definition of the basis spin functionsā i andb̄ i ( i 51,2,3) is
traditional:

~ ŝz! i ā i5~11!ā i , ~ ŝz! i b̄ i5~21!b̄ i . ~25!

Now, by using the identitysŴ i•sŴ j52SW i j
2 23 ~see, e.g.,@26#!

we can write the following expression for the expectati
value of the Breit-Pauli Hamiltonian, or in other words fo
the Breit-Pauli energyEBP:

EBP5^HBP&5E02
a2

8
@2^p1

4&1^p3
4&#

2
a2

2 F K pW 1•pW 2

r 21
L 1K rW21~rW21•pW 1!•pW 2

r 21
2 L G

1a2F K pW 1•pW 3

r 31
L 1K rW31~rW31•pW 1!•pW 3

r 31
2 L G

1a2S p2
4p

3
•SW 21

2 D ^d~rW21!&

2a2S 2p2
4p

3
~SW 31

2 1SW 32
2 ! D ^d~rW31!&, ~26!

where the symmetry between particles 1 and 2~electrons! is
taken into account. For the (ā1b̄22ā2b̄1)ā3 spin function
mentioned above, we haveSW 21

2 50 and SW 31
2 1SW 32

2 51. This
produces the final expression for theEBP energy. The last
expression contains a few expectation values, which h
never been calculated before. Their computation is our g
for the nearest future.
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