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Bound-state properties of the positronium negative ion Ps
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Various geometrical and energeticddound-state properties of the positronium negative ion (Psr
e e'e") are determined by using highly accurate variational wave functions. These wave functions have been
constructed by applying the advanced two-stage strategy proposed by Frblgs: Rev. A57, 2436(1998)].
The determined total energy of the ground state —0.262 005 070 232 975 7 a.u. is the lowest and most
accurate value obtained for this system to dafthe corresponding binding energy equals
—0.326 674 721 317 821 eV). The computation of the second-order relativistic correctiar3 fo the total
energy is discussed also. The general form of the Breit-Pauli Hamiltonian in the relative coordinates for the
Ps™ ion is presented.S1050-2947®9)04910-0

PACS numbd(s): 36.10.Dr

In our previous worl{ 2] published a few years ago, the results of highly accurate bound-state calculations. Note that
results of highly accurate calculations for some properties itthe first highly accurate calculations have been stimulated by
the PS ion have been reported. Recently, however, signifi-earlier theoretical studies for the Pson performed by Ho
cant progress has been made in performing such calculationsnd Bhatia and Drachmdri1-13. In particular, these pa-

In particular, the advanced two-stage procedure proposed ifers as well as the two experimental works by M[li4]

[1] produces extremely accurate wave functions for variouhave stimulated my own interest in the study of thé Rm.
three-body systems. As a result, the final accuracy of highlyrhe first highly accurate calculations of the bound-state
accurate, three-body, bound-state calculations has been iprgperties for this system have been made by[Hs. Our
creased drastically. In general, such wave functions give Usgyjier works[16] related with the Ps ion include only the
additionally two to three correct significant decimal ﬁg“resbound-state energy computations. [B] we considered the

in the total energy. Also, our present knowledge about theSame roperties as L5, The next papef6] contains a
bound-state properties in three-bd@yd four-body systems large npumpber of newﬁpl)rc]).perties for t?]epT’EDI]’]. However

's far beyond the level that we had even four years 2%%,5'in [17] used an improved technique to construct a ver
Finally, now we can compute significantly more bound-state mp nig very
curate wave function for the P$on. Our method used in

properties and compare them with the expected or predicteEiC d i bl M
values. Furthermore, the whole system of independent test&] could not provide even comparable accuracy. Moreover,

can be used today in order to check these properties and firdl €arlier attempts to improve our methg] have failed.
more appropriate definitions for them. Finally, after a few years of extensive calculations a success-

On the other hand, the Pson is of increasing interest for ful approach 1] was found in some alternative direction. In
theoretical studies and various applications. For instance, l&] the new, advanced, two-stage procedure has been devel-
complete theoretical analysis of the one-photon annihilatio®Ped in order to construct extremely accurate wave functions
in this system has been made recef@y7] (see alsd1]). It  for the three-body systems.
was shown that the probability of this process is determined Let us remember, that in this approach the trial wave
by the expectation value of the three-partiéléunction(i.e.,  function ¥ is represented by the sum of the very well opti-
(8329). In many similar studies, the knowledge of other mized, short-term functionV; with the Ny basis functions
bound-state properties for the P#n is critically important  and roughly optimized(or even nonoptimizedlong-term
(see, e.g.[8]). Another example is the present work, wherefunction V. If the total number of basis functions equals
we discuss the second-order relativistic corrections to th@nd each of the basis functions containsonlinear param-
ground-state energy of the Pson. This requires numerical eters, then we may writeV'(N)=Y(Ng)+¥,(N—Ny),
calculations of expectation values of some specific operatorghere Ng<<N. The mN, nonlinear parameters in the short-
(see below. Actually, one of the goals of this work is to term or booster functionV'{(Ny) are optimized very care-
compute a large number of nonrelativistic properties for thefully. This problem is not very complicated, since the booster
Ps™ ion. In principle, our present study can be considered agunction ¥,(Ny) contains only a relatively small number
a “nonrelativistic basis” for future relativistic consider- (mN,) of the nonlinear parameters. The long-term function
ations. W,(N—Njp) with m(N—Ng) nonlinear parameters is con-

It should be mentioned that the stability of the™Pisn  structed with an approximate optimization or even without
was demonstrated for the first time by Whed@fand Hyl-  any optimization of the nonlinear parameters. A detailed de-
leraas[10]. Today, there are a few hundred publicationsscription of the choice of nonlinear parameters in the booster
which deal with various properties of this system. But in aand long-term functions can be found|if].
paper of this size it is clearly impossible to discuss every Inthe present work, the exponential variational expansion
aspect or property of the Pgon. Presently, we restrict our- is used. For the considered case of theund 1 S state in
selves only to the discussion of works which contain thethe PS ion this expansion takes the form
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TABLE I. The total energiesE) in atomic units Me=1, 7 parison withE(N»,,). Finally, in terms of the results given

=1, e=1) for the ground states of the Pson. N designates the i, Table | we have estimated thg() value as follows:
number of basis functions used.

E()=—0.2620050702329784x 10 *a.u.  (3)

N E
200% 0.2620050702293112 Note that our asymptotic and variational energies are very

400 —0.2620050702322065 C'Oiﬁ to each other. .

500 _ 0.2620050702326614 e numerical values for some of the prop_erﬂes., ex-

pectation valugscan be found in Table Il. In this table only

600 —0.2620050702328437 . - . .

200 _ 0.2620050702329184 stable figures from calculations with the highrare pre-

sented for most of the Pgproperties. For the two- and three-

800 —0.2620050702329484 particle cusps, only the best results are given in Table II. All

900 —0.2620050702329598 properties are given in atomic unitsnf=1, e=1, and#

950 —0.2620050702329634 =1). The physical meaning for all of the expectation values
1000 —0.2620050702329674 in Table Il is quite clear from the notations usédr more
1200 —0.2620050702329726 detail, see als¢1]). So, here we wish to make only a few
1400 —0.2620050702329749 following remarks. In all the formulas given below and also
1600 —0.2620050702329757 in Table II, the notations 1 and 2 mean electrons, while the

&This case corresponds to the short-term, booster fundtigiiN,), notafion 3 designates the positron. The _notat|_6§t§, 021,
whereNg=200. e}nd O391 stanq for the two- and three—partl_cle Diracfunc- .
®The three most accurate variational energies obtained previouspons’ respectively. The two-body cusp ratios are determined

are —0.262 005 070 232 855 a.[17], —0.262 005 070 232 950 i a traditional mannef18,19

[28] a.u., and—0.262 005 070 232 965 a.[d]. 3
) . < a(rj; )m> W
n ViT o
\PZE(:H_PZD; Ci expl—airz— Bira1— yif20. (1) b (a(r))
_ o where ;= 5(r;;) is the appropriate Dira@ function and
Here C; are linear(or variational parameters and;, S, (ij)=(21) and (31). The exact value of; equals
and y; are nonlinear parameters. The operaRy; is the
permutation of the two identicall and 2 particles (elec- . m;m; ®)
trong in the PS ion. For the two-stage procedure in the Vi = 4id m;+m;’

present study we have chosig=200 andN,=1600. As

is mentioned above, the first stage produces a very compaathere g; and g; are the charges andy and m; are the
and highly accurate wave functio;. This function in- masses of the particles.

cludes only 3y= 600 nonlinear parameters. The appropriate The expectation values of the two interparticle cosine
energy contains approximately 12—13 correct decimal figfunctions are determined traditionally:

ures (in atomic unit$. The second stage of the procedure

gives as a rule 3—4 additional correct decimal figures to the _ Tk Tk
total energy, and generates extremely accurate wave func- T”_<C05(r‘krjk)>_< il i > ©)
tions, which is used to compute various properties of the Ps
ion. where (,j,k)=(1,2,3). The quantity(f) is expressed in
The total variational energies from Table | are representeterms of the relative coordinatess(,rs,,r»1) or perimetric
quite well by the following approximate formula: coordinates {;,u,,us) [where u;=3(rjj+ry—r;) and
(i,j,k)=(1,2,3)] as follows:
A
=E(0)+ —
E(N)=E( )+Np. 2) <f>:<¢/ ru_lru_zru_g l//>
32l31l21

Here,A andp are the two positive constants,is the number

of basis functions used to compuiN), and E(«) is the :f f f |4h(ug,Uz,Uz)|?usuzusduydupdus.  (7)
asymptotic value of energy which corresponds, in principle,

to the infinite number of basis functions. If any three ener-The value(f) can be calculated directly or by applying .
gies E(N;) have been computed, then all three constantSheir coincidence indicates that thesg,3,,73; and (f)

p, A, andE(«) in the last equation can be determined eastave been computed correctly. The equalities
ily. For instance, by using th&(N) values for N=800,

1000, and 1200 from Table I, one find&(»)= To1+ Tapt 791= 1+ 4(f) (8
—0.262 005 070 232 975 79 a.u., while fir=900, 1000,
and 1200 the analogous result iSE(x)= hold for an arbitrary three-body system. For the symmetric

—0.262 005 070 232 974 75 a.u. Note that as a E(e) Ps ion, we havers,= 7.
contains one to two extra correct significant figures in com- The virial factor » is determined as follows:
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TABLE Il. The expectation valuegX;;) in atomic units (=1, 2=1, e=1) of some properties for the
ground states of the Psion. The notations 1 and 2 designate the two electrons, while 3 stands for the
positron €*).

(Xij) (Xij)
(ryf 0.03602205848 (rod 0.15563190565266
(r3f) 0.27932654211 (ra) 0.33982102305927
(ra) 8.54858065516 (r3) 93.178633855
(ray 5.48963325238 (r3y 48.418937230
(r3y 1265.5804487 (r3) 21054.45349
(r3y 607.29563001 (r3p 9930.638730
((rars) ) 0.0909353465282 (rayra) 1.82962030209
((rarz) ™) 0.0606976902876 (raprap) 46.5893169266
((ragfaaf2) ™) 0.0220342378947
(—3V3) 0.066619294535873 (V1-Vy) —0.004472107910576
(—3V3) 0.12876648116117 (V1-V3) —0.12876648116117
Ta1 0.5919817011492 (830) 0.0207331976
o1 0.0197696328167 (820) 0.1709969% 10 *
(f) 0.05093325877879 (8320) 0.35875¢10*
vay —0.499999795011881 Vo1 0.499983153136046
V3,2 -0.5 Vo2 0.5
E13 —0.221846010657566 7 <0.55971510 4
128 -0.25 e(eV) —0.326674721317821

#The exact value from Ed4).
®The exact value, from Eq11).
“To compute this value, we assume that the corresponding conversion factor equals 27.21%k\326u}

exactly.
_l14 (V) ©) §103= E12:37 E13,0F 23,1, (10
7 2|’
where

where(T) and(V) are the expectation values of the kinetic 72 52
and potential energy, respectively. The deviation of the fac- <5ijk—> < 5(|’ij)5(rjk)—>
tor » from zero indicates, in principle, the quality of the Eiei = arijorjk _ arijorik (11)
wave function used. The appropriate binding energiese 1kl (Sijk) (8(rij)o(ri))

given in eV (the conversion factor is 1 a.u. . o ]

—27.211 396 1 eV). Note however, that even exact coincils of specific interest. Its numencal value for the exact (_Zou-
dence of the factor; with O does not indicate the high qual- |0mb three-body wave function equais> (for more detail

ity of the wave function. Indeed, by using the so-called scalS€€; e.g.;20]). But for an arbitrary finite-term analytical trial

. L= - function [e.qg., Eqg.(1)], all &.; cusps are finitd21], and
ing transformationi; =ar;) one can make the factoy very moreove[r tghey ga(n)gae exf)lrl'(éjssedechrough tho’s] two-body
close to zero for an arbitrary wave function. Analogously, an '

excellent coincidence between computed and expected cu§HSpS' Indeed, following Katf18], we can determine the

values can be found in some cageseasily madgfor wave ~ SO-called cusp operatous; :
functions whicha priori have a very poor quality. In particu-

lar, one can easily construct the three-term trial function Eq. ;ij =4(rij)
(1) which provides a stable bound state for the kan and
“exact” values for both thev,; and v, cusps. But for other

properties the quality of such a function will be very poor. In .
general, the wave function has a high qualityahd only if three-body Coulomb wave functlolﬂ.(r32,r3l,r21) the three
following conditions are obeyefd.8]:

it reproduces very accurately a large number of bound-state
properties. ~ e

The numerical values for the properties in Table Il agree vijW(raz,Ma1,r20) =i 81 W (raz.ran,f2), - (19
quite well with the values known from previous highly ac- \yhere the eigenvalues: are given by Ea(4). Now. from
curate calculationgsee[1,2,6], and[17]). The convergence g o8 g y Eql4) '

! i ) g. (11) one finds for thef;,5 cusp

for the properties upon the number of basis functions useg
was considered in detail_iEQ,B] and[17]. Note, however, £103= VioViat Viglogt VisVog. (14)
that some of the properties have never been computed be-
fore. For instance, the so-called symmertrized three-particl€or the PS ion the expected value for thé;,; cusp is
cusp, —0.25 (in atomic unitg. The comparison of thé;,5 value

m (12

where (j)=(32),(31), (21 and (j)=(ji). For an arbitrary
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with —0.25 can be found in Table Il. Note, however, that the 4 1672

definition of the three-particle cusps can be given in a few I'i,=g—3—« Scag (83210 = 1065.757 4453,1) sec

different ways and for some of the definitions the observed

agreement with excepted values is betfer more detail, see \where a=0.729 735 30& 102 is the fine-structure con-

[20)). stant, c=0.299 792 458 10° m sec * is the velocity of
Note that some expectation values in Table Il can be eXfight, and the Bohr radius  ag equals

pressed as the linear combinations of other propertres F@.529 177 24% 107 1° m [22]. Now, by applying the expec-

instance, for the three relative vectcrr@, rgl, andr21 we tation values for the appropriate Dirag functions from

have Table 1I, one finds from the last equalities thdt
=2.086 122 114 10° sec ! and I'y,=3.823 40
F32— F31+ F21= 0. (15 X102 sec . The deviations from the appropriate results
computed earlier(see, e.g.[1] and [17]) do not exceed
Therefore, the three equalitigéi,j, k) =(1,2,3)] 50sec! and 710 “sec! for I' andI'y,, respectively.
The other annihilation rates,, ,I's,, ... can be easily es-
Py :l(r_z +r2 —r2) (16) timated by using thé &;;) value and formulas frori23].
L R L Now, let us discuss the calculations of relativistic correc-

tions of the lowest orders. The energies and other properties
hold in any case. For the appropriate expectation values, orgiscussed above are essentially nonrelativistic. The first non-
finds (see Table zero correction corresponds to the second-order terms upon

« [24]. The Hamiltonian which includes termsa? is called

the Breit-Pauli Hamiltonian. In the next approximatiern®

r V= _({(r? 2y (2
(Fik Ui = 5 ({rii +{rji = {riy)- A7 one needs to consider terms which represent emission, ab-
sorption, and scattering of radiatip®4]. In the fourth-order
Analogously, sincep; +p,+ps=0, then we write approximation uponw, electron-positron annihilation in the

Ps™ ion will affect the energy levels in this system. In fact,
- - 1, L, the closed solution can be found only in the second-order
Pi- Pj :E(pk_ P —Pj) (18 approximation upom. It should be mentioned that this prob-
lem has been considered earljigb].
and Here, we want to discuss the calculation of the second-
order corrections upom in detail. For an arbitrary three-
. o 1 body systemifn;,m,,ms;q4,q,,0d3), the Breit-Pauli Hamil-
(Pi-pj)= §(<P5>_<Pj2>_<pi2>)' (19 tonianH gp takes the following general foriiin atomic units;
see, e.9.[26)):

respectively (i, j,k)=(1,2,3)]. Moreover, if the threq§i are 1 010> G105 G2
2 - +

1
. S NS . - _ 2 2
determined by the relatior = (—1)V; in Cartesian coordi Hep :Zml p1t 2m, P2+ 2ms p3+
nates, then one finds

M1 31 I32
2

a“| 1 1
— — —_—— — 4 —
(ViV)=(=3VD—(=3V)~(~3VD, (0 8 m P P ps +a?0a(Pa.P2 M
where (,j,k)=(1,2,3). The expectation values from both +a20,(p1,P3,r31) + @?Us(Po,py,lo1), (22)

sides of this equality can be found in Table Il. Note, how-
ever, that the last three equalities are obeyed only in Cartewherem;, m,, andm; are the particle masses aqg, Qa,

sian coordinates, where we ha¥=1p,. In the present andqsare their chargeszx 7.297 353 0& 10" ¥ is the fine-

study, allV; operators are written in Cartesian coordinates Structure constant; andp; are the coordinate and momen-

and therefore(V V) can be expressed through- : V2> tum vectors, respectlvelyl(zl 2,3). In order to make the

formulas below more compact the following notations are
and vice versa. Moreover, in the symmetric systems we have -

2
<p1> <p2> and<r31 r21> <r32 r12> respectively. This sim- used rij= rJ rI and pI (- |)V The terms withouta

lifies some of the equations presented above. Moreover, frepresent the nonrelativistic Hamiltoniéfy. The terms=p*
P q P correspond to the corrections related with the relativistic
the symmetric systems one easily finds thﬁt_ 2) is al-

. P1s the
ways negative, smc(sVl 2)__( §V3><0. ]rgﬁ\r:]) dependence. The operator3(p2 pl r21) takes
Now, by using the expectation values for thdunctions
from Table I, we can calculate the total and one-photonU,(p,,p;,r 1)
annihilation rateganalytical expressions can be found, e.g.,

in [13] and[1]): T 1 -
[13] and[1]) T _2+_2)5(r20_2mq1£2r
17 197 m; m; 1Mzl 21
I'=2ma’cay|1—a| —— —=|[(53) - e .
™ - - TI(ra1rP1) P2
. X| PPt —p
=100.617 480 &10%531) sec !, s

(21)
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- tion W(N) determined above for thEl, nonrelativisticHq

- %(r}lx p1)- o+ %(Fﬂx Ps)- 0y Hamiltonian. In this approximation, allS terms equal zero
Amirs, mal2; identically (see, e.g.[27]). Furthermore, the ground-state
a0 Ps  ion wave function is represented in the form
- 1—23[(F21X P1) - To— (21X Po) - 01] Ds(r3z.r31,120) (@182~ aaB1) g, Where®g(rz;,r31,1 1) iS
4mimyr 5, the coordinatglor positional, or spatialfunction, which is
o R R symmetric with respect to the pair interchange of particles 1
Gz | 0102 (01 T2)(02:T2) and 2(i.e., electrons The function ; 8,— a,B1) a3 is the
3 2 5 appropriate spin function, which is antisymmetric with re-
4mimy| ¢ r . . . .
21 21 spect to the same interchan@e., it changes the signThe
8 definition of the basis spin functiong andg; (i=1,2,3) is
TS A

- 728(Fa0) |, (23) traditional:

~ .. . (o)iai=(+Dai, (0)iBi=(-1)Bi. (25
where o= (oy,0y,0,), and o,,0, and o, are the usual
Pauli (2X2) matrices(see, e.g.[26]). The other two opera-
tors U,(ps,P2,rs) and U,(p;,ps.ray) can be found from
Us(p2.p1.T21) by cyclic permutations. For the Pson, all
massesn; ,m,, andms are equal to each other, and further-
more, all of them equal 1in atomic unitg. This simplifies
the operatotJ(p,,p;.rq) Significantly: 2

a 4 4
Egp=(Hgp) = Eo_§[2<p1>+<p3>]

Now, by using the identityr;- o; =25 -3 (see, e.9.[26])

we can write the following expression for the expectation
value of the Breit-Pauli Hamiltonian, or in other words for
the Breit-Pauli energ¥gp:

Us(pa2,P1.r22)

2 i . N r : . n . N
_ P 0192| - - T21(r21-P1)- P2 —% <p1 p2>+<r21(r212p1) DZH
=~ mG2d(f2) 5 PPt =5 Fa1 r2
P1-P3 F31(Fa1 P1) - Pa
Q2. > % - - + 2< >+
+r§l[_(01+202)(r21><p1) a{ I3 ra
52+201) (FuXP +a? w7 S (617)
+(o21+207) - (r2Xp2)] 3 L 2
S35 O O 4 N R .
o B2 102 S0 T (02 M) —a"’(ZW—%(S%1+s§2>)<6<r31>>, (26)
4 (5 r51
8 where the symmetry between particles 1 an@l2ctrongis
w3 3

_ ?01-(}25(@1) _ (24)  taken into account. For tha?(lﬁz—;zﬁlz;g spin function
mentioned above, we havg,=0 and S5,+S5,=1. This
aProduces the final expression for thgp energy. The last

The first line in this equation represents the so-called orbit L oression contains a few expectation values. which have
(or L?) corrections. The second line corresponds to the spin- P P '

orbital (or LS) interaction, while the last line includes the never been calculated before. Their computation is our goal
. ) ; > . for the nearest future.

corrections related with the spin-sgior S°, or tensoy inter-
action. In principle, all terms in the last equation have the | am grateful to Dr. Garry T. SmitiQueen’s University,
same or quite comparable order of magnitude, artiori Ontarig for his valuable help and discussions, Professor
we cannot neglect any of them. Gordon W. F. DrakegUniversity of Windsor, Ontarip for

Now, in the first approximation we can calculate the ex-useful references, and the Natural Sciences and Engineering
pectation value of this Hamiltoniad gp using the eigenfunc- Research Council of Canada for financial support.
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