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Relativistic multireference many-body perturbation theory for quasidegenerate systems:
Energy levels of ions of the oxygen isoelectronic sequence
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A relativistic multireference many-body perturbation theory for quasidegenerate systems with multiple open
valence shells is developed and implemented with analytic basis sets of Gaussian spinors. The theory employs
a general class of multiconfigurational Dirac-Fock self-consistent-field wave functions as reference functions,
and thus is applicable to open-shell systems with near degeneracy of a manifold of strongly interacting
configurations. A procedure is described by which to perform multireference second-order Møller-Plesset
perturbation calculations for a general class of reference functions constructed from one-particle Dirac spinors.
Multireference perturbation calculations are reported for the ground and low-lying excited states of oxygen and
oxygenlike ions with up to a nuclear charge ofZ560 in which the near degeneracy of a manifold of strongly
interacting configurations mandates a multireference treatment.@S1050-2947~99!03110-8#

PACS number~s!: 31.25.2v, 31.30.Jv, 31.25.Jf
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I. INTRODUCTION

Over the years most relativistic atomic structure calcu
tions have been carried out by either a finite-difference m
ticonfiguration ~MC! Dirac-Fock self-consistent-field~DF
SCF! @1–4# or a relativistic many-body perturbation theo
~MBPT! based on single-configuration DF SCF wave fun
tions expanded in analytic basis sets@5–10#. Each of these
methods has strengths and weaknesses because their
racy is restricted to different sectors of a many-electron c
relation. The MCDFSCF method is most effective in treati
nondynamic correlation~i.e., near degeneracy in the valen
shells!, but fails to account for the bulk of dynamic correl
tion. The single-reference many-body perturbation the
has exactly the opposite characteristic; it is effective in
curately describing dynamic correlation but fails to acco
for nondynamic correlation. Dynamic correlation is a sho
range effect that arises from electron-electron interaction
is the major correction to the Dirac-Fock independent p
ticle model, while nondynamic correlation is a conseque
of the existence of nearly degenerate excited states tha
teract strongly with the reference state@11–16#. Systems in
which only the dynamic correlation is important may be d
scribed by a single configuration DF wave function, where
systems with significant nondynamic correlation cannot
correctly described within single-configuration DF wa
functions.

Near degeneracy in the valence spinors gives rise t
manifold of strongly interacting configurations, i.e., stro
configuration mixing within a relativistic complex@11#, and
makes a MC treatment mandatory. The classic example
atomic physics are the near-degeneracy effects in grou
state beryllium@11,12,17# and openshell atoms with two o
more open valence shells@11,13–16#. For reactive and
excited-state energy surfaces of molecules, the single
figuration SCF theory also fails to properly describe t
separated fragments because of the near degeneracy tha
PRA 601050-2947/99/60~4!/2808~14!/$15.00
-
l-

-

ccu-
r-

y
-
t
-
d

r-
e
in-

-
s
e

a

in
d-

n-

fol-

lows the separation process@18–20#. As Weiss and Kim
showed@11#, relativity alters the magnitude of configuratio
mixing among the configuration-state functions~CSFs! asZ
increases in an isoelectronic sequence. For low-Z ions en-
ergy levels are clustered together according to theirn quan-
tum number occupancy~i.e., nonrelativistic complex@21#!,
but asZ increases, they cluster together according to b
their n and j quantum number occupancy~i.e., relativistic
complex @11#!. Strong configuration interaction within
complex due to asymptotic degeneracy is called asympt
configuration interaction~CI!. By including in a zero-order
multiconfiguration reference function all the CSFs genera
within a complex of given principal quantum numbern, rela-
tivistic multireference perturbation theory is capable of
covering dynamic correlation energy throughout the isoel
tronic sequence. Alteration in the clustering pattern, i
asymptotic CI, in increasingZ may be easily accounted fo
in zero order by relativistic MCDFSCF. Thus MCDFSC
based on all the CSFs generated within a nonrelativistic c
plex, is capable of accounting for nondynamic correlati
from low to highZ even when the configuration interactio
is altered asZ increases.

Once the near-degeneracy effects in a complex@11# are
accounted for by matrix MCDFSCF@22#, the remaining dy-
namic correlation may be recovered either by a relativis
generalization of a nonrelativistic multireference Mølle
Plesset~MRMP! perturbation theory@18#, or by a multiref-
erence configuration interaction based on the MCDFSCF
erence functions@16,22#. The multireference configuration
interaction approach@16,22#, however, becomes quickly
unwieldy in systems with large numbers of electrons beca
the order of the multireference configuration-interaction m
trix increases rapidly as the number of electrons increa
@15,18#. Hirao @18# argues that once the state-specific nond
namic correlation among valence electrons is treated by m
ticonfiguration Hartree-Fock wave functions, the remaini
2808 ©1999 The American Physical Society
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correlation may be recovered by second-order perturba
theory because it consists mainly of dynamic pair correlat
due to short-range fluctuation potentials. In the present st
we develop a relativistic MRMP theory that combines t
strengths of both
MCDFSCF and many-body perturbation methods in appli
tion to a general class of quasidegenerate systems with
tiple open valence shells. We extend the single-refere
relativistic many-body perturbation theory@5–8# to a relativ-
istic MR-MP perturbation theory for systems with a man
fold of strongly interacting configurations. The essential fe
ture of the theory is its treatment of the state-spec
nondynamic correlation in zero order through quadratica
convergent matrix MCDFSCF@22#, and recovery of the re
maining correlation, which is predominantly dynamic pa
correlation, by second-order MR-MP perturbation theory.

We report here the successful implementation and ap
cation of a relativistic MRMP perturbation theory, whic
takes a general class of MCDFSCF wave functions as re
ence functions. The multiconfiguration wave functions a
computed by a recently developed quadratically converg
matrix MCDFSCF method@22# in analytic basis sets ofG
spinors (G for Gaussian after Grant@23#!. A procedure is
described by which to perform a relativistic second-ord
MR-MP perturbation theory calculations for a general cla
of MC reference functions constructed from Dirac natu
spinors. The state-specific multireference perturbation ca
lations are reported for the ground and low-lying excit
states of ions of the oxygen isoelectronic sequence in wh
the near degeneracy of a manifold of strongly interact
configurations necessitates a relativistic multireference
turbation treatment.

II. THEORY

A. The relativistic no-pair Dirac-Coulomb-Breit Hamiltonian

The effectiveN-electron Hamiltonian~in atomic units! for
the development of our MRMP algorithm is taken to be t
relativistic ‘‘no-pair’’ Dirac-Coulomb ~DC! Hamiltonian
@24,25#,

HDC
1 5(

i

N

hD~ i !1L1S (
i . j

N
1

r i j
DL1 . ~1!

L15L1(1)L1(2),...,L1(N), whereL1( i ) is the projection
operator onto the spaceD (1) spanned by the positive-energ
eigenfunctions of the matrix DFSCF equation@25#. L1 is the
projection operator onto the positive-energy spaceD(1)

spanned by theN-electron CSFs constructed from th
positive-energy eigenfunctions (PD (1)) of the matrix
DF SCF. It takes into account the field-theoretic conditi
that the negative-energy states are filled and causes the
jected DC Hamiltonian to have normalizable bound-state
lutions. This approach is called the no-pair approximat
@24# because virtual electron-positron pairs are not permi
in the intermediate states. The eigenfunctions of the ma
DF SCF equation clearly separate into two discrete ma
folds, D (1) and D (2), respectively, of positive-energy an
negative-energy states. As a result, the positive-energy
jection operators can be accommodated easily in many-b
calculations. The formal conditions on the projection are
n
n
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tomatically satisfied when only the positive-energy spin
(PD (1)) are employed.hD is the Dirac one-electron Hamil
tonian ~in a.u.!,

hD~ i !5c~a i•pi !1~b i21!c21Vnuc~r i !. ~2!

Herea andb are the 434 Dirac vector and scalar matrice
respectively.Vnuc(r ) is the nuclear potential, which for eac
nucleus takes the form

Vnuc~r !5H 2
Z

r
, r .R

2
Z

2R S 32
r 2

R2 D , r<R.

~3!

The nuclei are modeled as spheres of a uniform prot
charge distribution;Z is the nuclear charge,R ~Bohr! is the
radius of that nucleus and is related to the atomic massA
~amu!, by R52.267731025 A1/3. Adding the frequency-
independent Breit interaction

B1252 1
2 @a1•a21~a1•r12!~a2•r12!/r 12

2 #/r 12 ~4!

to the electron-electron Coulomb interaction in Coulom
gauge results in the Coulomb-Breit potential, which is c
rect to ordera2 ~a being the fine-structure constant! @24#.
Addition of the Breit term yields the no-pair Dirac-Coulomb
Breit ~DCB! Hamiltonian@24,25#

HDCB
1 5(

i

N

hD~ i !1L1S (
i . j

N
1

r i j
1Bi j DL1 , ~5!

which is covariant to first order and increases the accurac
calculated fine-structure splittings and inner-electron bind
energies. Higher-order QED effects appear first in ordera3.

B. The matrix multiconfiguration Dirac-Fock SCF method

N-electron eigenfunctions of the no-pair DC Hamiltonia
are approximated by a linear combination ofM
configuration-state functions,$F I

(1)(g IJp); I 51,2,...,M %,
constructed from positive-energy eigenfunctions of the m
trix DFSCF equation. TheM configuration-state functions
form a subspaceB(1) of the positive-energy spaceD(1).

cK~gKJp!5(
I

M

CIKF I
(1)~g IJp!. ~6!

Here the MCDFSCF wave functioncK(gKJp) is an eigen-
function of the angular momentum and parity operators w
total angular momentumJ and parityp. g denotes a set o
quantum numbers other thanJ and p necessary to specify
the state uniquely. The total DC energy of the gene
MCDF stateucK(gKJp)& can be expressed as

EMC~gKJp!5^cK~gKJp!uHDC
1 ucK~gKJp!&

5 (
I ,J51

B(1)

CIKCJK

3^F I
(1)~g IJp!uHDC

1 uFJ
(1)~gJJp!&. ~7!
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Here it is assumed thatcK(gKJp) andF I
(1)(g IJp) are

normalized.
Given a trial orthonormal set of one-particle radial spino

$fnqkq

(0) (r )%(PD (1)øD (2)), the optimum occupied elec

tronic radial spinors$fnpkp

(1) (r )%(PD (1)) can be found by a

unitary transformationU511T via

fnpkp

(1) ~r !5
1

r S Pnpkp
~r !

Qnpkp
~r !D

5 (
qPD(1)øD(2)

2Nk

fnqkq

(0) ~r !Uqp

5(
q

2Nk

fnqkq

(0) ~r !~Tqp1dqp!. ~8!

Here, the summation extends over bothNk negative andNk
positive energy spinors.Pnpkp

(r ) andQnpkp
(r ) are the large

and small radial components and are expanded inNk G
spinors,$xk i

L % and$xk i
L %, that satisfy the boundary condition

associated with the finite nucleus@26#,

Pnk~r !5(
i

Nk

xk i
L jki

L and Qnk~r !5(
i

Nk

xk i
S jki

S . ~9!

Here$jki
L % and$jki

S % are linear variation coefficients. Secon
order variation of the MCDF energy@Eq. ~7!# with respect to
the parameters$Tqp% and configuration mixing coefficient
$CIK% leads to the Newton-Raphson~NR! equations for
second-order the MC DFSCF,

S gpe
o

gg
c D 1 (

q fg9
S hpe,g f

oo hpe,g9
oc

hg8,g f
co hg8,g9

cc D S Tq f

Bg9
D5S 0

0D . ~10!

Heregpe
o , gg

c , hpe,g f
oo , etc. are those defined in previous wo

@22#. Intermediate coupling is built in through the MCD
SCF process. The quadratically convergent NR algorithm
relativistic MCDFSCF calculations has been discussed in
tail in previous work@22# and is not discussed further. T
remove the arbitrariness of the MC SCF spinors and den
weighting, the canonical SCF spinors are transformed
natural spinors$vnpkp

(1) % for subsequent perturbation calcul

tions @18#. The key to successful implementation of the su
sequent MRMP perturbation theory calculations is rapid c
vergence of our quadratically convergent matrix MCDFS
method@22# for a general class of MCDF wave functions f
openshell quasidegenerate systems.

C. Relativistic multireference many-body perturbation theory

The no-pair DC HamiltonianHDC
1 is partitioned into an

unperturbed Hamiltonian and a perturbation term followi
Møller and Plesset@27#,

HDC
1 5H01V, ~11!

where the unperturbed model HamiltonianH0 is a sum of
‘‘average’’ DF operatorsFav,
s

r
e-

ty
to

-
-

H05(
i

N

Fav~ i ! and V5HDC
1 2(

i

N

Fav~ i !. ~12!

Here, the one-body operatorFav diagonal in$vnpkp

(1) % may

be defined by

Fav5 (
pPD(1)

uvnpkp

(1) &^vnpkp

(1) u f avuvnpkp

(1) &^vnpkp

(1) u

5 (
pPD(1)

uvnpkp

(1) &«p
1^vnpkp

(1) u, ~13!

where

«p
15^vnpkp

(1) u f avuvnpkp

(1) & and f av5hD1(
p

occ

ñp~Jp2Kp!.

~14!

The generalized fractional occupationñp is related to diago-
nal matrix elements of the first-order reduced density ma
constructed in natural spinors by

ñp5Dpp5 (
I

B(1)

CIKCIKnnpkp
@ I #, ~15!

wherennpkp
@ I # is the occupation number of thek-symmetry

shell in the CSFF I(g IJp). Jp and Kp are the usual Cou-
lomb and exchange operators constructed in natural spin

The unperturbed HamiltonianH0 may be given in second
quantized form,

H05 (
pPD(1)

$ap
†ap%«p

1 , ~16!

where$ap
†ap% is a normal product of creation and annihil

tion operators,ap
† and ap , respectively. The zero-orde

HamiltonianH0 is arbitrary but should be chosen as close
the full HamiltonianHDC

1 as possible so that the perturbatio
series converges rapidly in low order. The zero-order Ham
tonian is usually chosen to be a sum of effective one-elec
operators~Møller-Plesset partitioning@27#!. For closed-shell
systems, the best results have been obtained with Mø
Plesset partitioning, i.e., the sum of closed-shell Fock ope
tors asH0 . An effective one-body operator for a gener
MC DFSCF closely related to the closed-shell Fock opera
is the ‘‘average’’ DF operatorFav , a relativistic generaliza-
tion of a nonrelativistic average Fock operator@18#. The
theory provides a hierarchy of well-defined algorithms th
allows one to calculate relativistic correlation corrections
noniterative steps and, in low order, yields a large fraction
the dynamical correlation. In this form of partitioning, pe
turbation corrections describe relativistic electron corre
tion, including cross contributions between relativistic a
correlation effects.

Many-electron wave functions correct toa2 may be ex-
panded in a set of CSFs that spans the entireN-electron
positive-energy spaceD(1), $F I

(1)(g IJp)%, constructed in
terms of Dirac one-electron spinors. Individual CSFs a
eigenfunctions of the total angular momentum and parity
erators and are linear combinations of antisymmetrized pr
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ucts of positive-energy spinors (PD (1)). The one-electron
spinors are mutually orthogonal so the CSFs$F I

(1)(g IJp)%
are mutually orthogonal. The unperturbed Hamiltonian is
agonal in this space;

H05 (
I

D(1)

uF I
(1)~g IJp!&EI

CSF^F I
(1)~g IJp!u, ~17!

so that

H0uF I
(1)~g IJp!&5EI

CSFuF I
(1)~g IJp!& ~ I 51,2,...!.

~18!

Since the zero-order Hamiltonian is defined as a sum
one-electron operatorsFav @Eq. ~12!#, EI

CSF is a sum of the
products of one-electron energies defined by«q

1 and an oc-
cupation numbernnqkq

@ I # of the kq-symmetry shell in the

CSFF I
(1)(g IJp);

EI
CSF5 (

q

D(1)

«q
1nnqkq

@ I #. ~19!

The subset,$F I
(1)(g IJp);I 51,2,...,M %, with which we

expand the MCDFSCF functioncK(gKJp) @Eq. ~6!# also
defines an active subspaceB(1) spanned bycK(gKJp) and
its M21 orthogonal complements, $cK(gKJp);K
51,2,...,M %. The matrix ofHDC

1 in this subspace is diagona

^cK~gKJp!uHDC
1 ucL~gLJp!&5dKL~EK

(0)1EK
(1)!

5dKLEMC~gKJp!,

~20!

where

EK
(0)5^cK~gKJp!uH0ucK~gKJp!&

5(
I

M

CIKCIKEI
CSF5(

p

occ

«p
1ñp
t-
at
n
c-
ra
C
it

on
i-

f

and

EK
(1)5^cK~gKJp!uVucK~gKJp!&.

The residual space in the positive-energy subspace isQ(1)

5D(1)2B(1), which is spanned by CSF
$F I

(1)(g IJp); I 5M11,M12,...%.
Application of Rayleigh-Schro¨dinger perturbation theory

provides order-by-order expressions of the perturbation
ries for the state approximated byucK(gKJp)&,

EK~gKJp!5EMC~gKJp!1EK
(2)1EK

(3)1¯ , ~21!

where

EK
(2)5^cK~gKJp!uVRVucK~gKJp!& ~22!

and

EK
(3)5^cK~gKJp!uVR~H02EK

(1)!RVucK~gKJp!&.
~23!

Here,R is the resolvent operator,

R5
Q (1)

EK
(0)2H0

with

Q(1)5 (
I

Q(1)

uF I
(1)~g IJp!&^F I

(1)~g IJp!u. ~24!

The projection operatorQ (1) projects onto the subspac
Q(1) spanned by CSFs $F I

(1)(g IJp); I 5M11,M
12,...%. Using the spectral resolution of the resolvent ope
tor acting onVuF I

(1)(g IJp)&, the second-order correctio
may be expressed as
EK
(2)5(

IJ
CIKCJK^F I

(1)~g IJp!uVRVuFJ
(1)~gJJp!&

5 (
L5M11

Q(1)

(
I ,J51

B(1)

CIKCJK

^F I
(1)~g IJp!uVuFL

(1)~gLJp!&^FL
(1)~gLJp!uVuFJ

(1)~gJJp!&

EJ
CSF2EL

CSF . ~25!
l-

-
-
n

s.
In this form, all perturbation corrections beyond firs
order describe relativistic electron correlation for the st
approximated by the MCDFSCF wave functio
ucK(gKJp)&. When the effective electron-electron intera
tion is approximated by the instantaneous Coulomb inte
tion 1/r i j , relativistic electron correlation is termed a D
correlation@8#. Inclusion of the frequency-independent Bre
interaction in the effective electron-electron interacti
e

c-

yields the no-pair DCB Hamiltonian@Eq. ~5!#, and the rela-
tivistic electron correlation arising from the DCB Hami
tonian is the DCB correlation@8#.

Summations over the CSFs in Eqs.~17!–~25! are re-
stricted to CSFs (PD(1)) constructed from the positive
energy branch (D (1)) of the spinors, effectively incorporat
ing into the computational scheme the ‘‘no-pair’’ projectio
operatorL1 contained in the DC and DCB Hamiltonian
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Further, the CSFsFL
(1)(gLJp)(PQ(1)) generated by exci-

tations higher than double, relative to the reference C
F I

(1)(g IJp)(PB(1)), do not contribute to the second- an
third-order because for them

^F I
(1)~g IJp!uVuFL

(1)~gLJp!&50

and

^F I
(1)~g IJp!uHDC

1 uFL
(1)~gLJp!&50.

Neglecting interactions with the filled negative-ener
sea, i.e., neglecting virtual electron-positron pairs in su
ming the MBPT diagrams, we have a straightforward ext
sion of nonrelativistic MBPT. Negative-energy stat
(PD (1)), as part of the complete set of states, do play a r
in higher-order QED corrections. Studies have appea
which go beyond the ‘‘no-pair’’ approximation wher
negative-energy states are needed to evaluate the hig
order QED effects@28–33#. Contributions from the negative
energy states due to creation of virtual electron-posit
pairs are of the ordera3 @28–33#, and estimations of the
radiative corrections are necessary in order to achieve s
troscopic accuracy for higherZ. In the present study, th
lowest-order radiative corrections were estimated for e
state to achieve better accuracy.

III. COMPUTATION

The large radial component is expanded in a set
Gaussian-type functions~GTFs! @26#,

xk i
L ~r !5Ak i

L r n[k] exp~2zk i r
2!, ~26!

with n@k#52k for k,0 andn@k#5k11 for k.0. Ak i
L is

the normalization constant. The small component basis
$xk i

S (r )% is constructed to satisfy the boundary condition
sociated with the finite nucleus with a uniform proton char
distribution @26#. With the finite nucleus, GTFs of intege
power ofr are especially appropriate basis functions beca
the finite nuclear boundary results in a solution that is Gau
ian at the origin@26#. Basis functions, which satisfy th
nuclear boundary conditions, are also automatically kin
cally balanced. Imposition of the boundary conditions resu
in particularly simple forms with sphericalG spinors@26#.

For all the oxygenlike systems studied, even-tempered
sis sets@34# of 26s22p Gaussian-type were used for th
MCDFSCF. In basis sets of even-tempered Gaussians
exponents,$zk i% are given in terms of the parameters,a and
b, according to the geometric series

zk i5ab i 21, i 51,2,...,Nk ~27!

In MCDFSCF calculations on oxygenlike species, the
rametersa andb are optimized until a minimum in the DF
total energy is found. The optimala and b values thus de-
termined for, e.g., oxygenlike neon (Z510) are, respec-
tively, 0.148055 and 2.11. The radial functions that posse
different k quantum number but the same quantum num
l are expanded in the same set of basis functions~e.g., the
radial functions ofp1/2 andp3/2 symmetries are expanded
the same set ofp-type radial Gaussian-type functions!. The
s

-
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le
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er-

n
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e
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i-
s

a-
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-
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nuclei were again modeled as spheres of uniform pro
charge in every calculation. The nuclear model has been
cussed in detail in Ref.@26#.

Virtual spinors used in the MRMP perturbation calcul
tions were generated in the field of the nucleus and all e
trons (VN potential! by employing the ‘‘average’’ DF opera
tor Fav @Eq. ~13!#. The order of the partial-wave expansio
Lmax, the highest angular momentum of the spinors includ
in the virtual space, is Lmax57 ~a
26s22p20d18f 16g16h16i16j G spinor basis set! throughout
this study. All-electron MRMP perturbation calculations i
cluding the frequency-independent Breit interaction in t
first and second orders of perturbation theory are based
the no-pair Dirac-Coulomb-Breit Hamiltonian,HDCB

1 . The
speed of light was taken to be 137.035 989 5 a.u. Radia
corrections, or the Lamb shifts, were estimated for each s
by evaluating the electron self-energy and vacuum polar
tion following an approximation scheme discussed by Ind
cato, Gorceix, and Desclaux@33#. The code described in
Refs. @33# and @35# was adapted to our basis-set expans
calculations for this purpose. In this scheme@35#, the screen-
ing of the self-energy is estimated by employing the cha
density of a spinor integrated to a short distance from
origin, typically an 0.3 Compton wavelength. The ratio
the integral computed with an MCDFSCF spinor and th
obtained by using the corresponding hydrogenic spino
used to scale the self-energy correction for a bare nuc
charge computed by Mohr@28#. The effect on the term en
ergy splittings of mass polarization and reduced mass
non-negligible. In the present study, however, we negl
these effects.

IV. RESULTS AND DISCUSSIONS

A substantial number of ground-state atoms are opens
systems with complicated multiplet structures. With six v
lence electrons, ground and low-lying excited states of o
genlike ions exhibit the near degeneracy characteristic o
manifold of strongly interacting configurations within then
52 complex@3,11,36#. We first give a detailed account o
the MCDFSCF and MRMP calculations applied to oxyge
like ions with Z520 andZ530. Table I displays the com
puted MCDFSCF energies,ESCF, of the lowestJ50 (3P0),
J51 (3P1), andJ52 (3P2) even-parity states of Ca121 (Z
520) and Zn221 (Z530), in increasing number of configu
rations within then52 complex. In each entry in the table
we give the number of CSFs,NCSF, that arises from the
electronic configurations displayed in the second colum
The MCDF energy,ESCF, computed with each of theNCSF
CSFs is given in the third column. In the MCDFSCF calc
lations, the 1s spinor was kept doubly occupied and the r
maining six electrons were treated as active electrons in g
erating CSFs within then52 shells. MCDFSCF calculation
on Ca121 were performed to obtain a single set of spinors
all the 3PJ50,1,2 fine-structure states by optimizing th
J-averaged MC energies: EJ-ave

MC (gKp)5(J50,1,2(2J
11)EMC(gKJp)/(J8(2J811) instead of performing state
specific MCDFSCF calculations on each fine-structure st
For low-Z ions with small fine-structure splittings~i.e., near
degeneracy among 2p1/2 and 2p3/2 spinors!, the approach is
more effective in computing the fine-structure splittings. F
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TABLE I. MCDFSCF and second-order MRMP energies~a.u.! of the lowestJ52 (3P2), J50 (3P0),
and J51 (3P1) even-parity states of Ca121 (Z520) and Zn221 (Z530) computed in increasing CSF
expansion length. Notations 2p252p1/2 and 2p152p3/2 were used.

NCSF CSF ESCF
a Ecorr

MC b EDC
~2! c Ecorr

MC1EDC
~2!

Ca121

3P2

1 2s22p2
2 2p1

2 2597.364 573 0.0 20.302 030 20.302 030
2 2s22p2

2 2p1
2 ,2s22p22p1

3 2597.440 366 20.075 793 20.282 744 20.358 537
3P0

1 2s22p2
2 2p1

2 2596.911 937 0.0 20.396 032 20.396 032
2 2s22p2

2 2p1
2 ,2s22p1

4 2597.303 633 20.391 696 20.285 847 20.677 543
3 2s22p2

2 2p1
2 ,2s22p1

4 ,2p2
2 2p1

4 2597.308 649 20.396 712 20.282 744 20.679 456
3P1

1 2s22p22p1
3 2597.328 018 0.0 20.283 400 20.283 400

Zn221

3P2

1 2s22p2
2 2p1

2 21428.718 893 0.0 20.315 314 20.315 314
2 2s22p2

2 2p1
2 ,2s22p22p1

3 21428.775 842 20.056 949 20.297 610 20.354 559
3P0

1 2s22p2
2 2p3/2

2 21427.982 733 0.0 20.442 840 20.442 840
2 2s22p2

2 2p1
2 ,2s22p1

4 21428.232 123 20.249 390 20.324 875 20.574 265
3 2s22p2

2 2p1
2 ,2s22p1

4 ,2p2
2 2p1

4 21428.290 915 20.308 182 20.288 872 20.597 054
3P1

1 2s22p22p1
3 21427.952 955 0.0 20.295 526 20.295 526

aMCDFSCF energy.
bCorrelation energy recovered from the MCDFSCF by substracting the single configuration DFSCF
from the MCDFSCF energies.
cSecond-order DC correlation correction obtained by MR-MP.
o
DF

nd
a
n.
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Zn221, an optimized set of spinors was obtained for each
the J50,1,2 fine-structure states by state-specific MC
SCF calculations.

The configuration mixing coefficients for the ground a
low-lying excited J50, 1, and 2 even-parity states of
Ca121 and Zn221 are reproduced in Table II for compariso
The magnitude of the configuration mixing coefficients is
fmeasure of configuration interaction. The electronic confi
rations, 2s22p1/2

2 2p3/2
2 , 2s22p3/2

4 , and 2p1/2
2 2p3/2

4 , give rise
to threeJ50 even-parity states~one 3P0 state and two1S0
states!, and they do interact strongly. As we stated earli
2p1/2 and 2p3/2 spinors are nearly degenerate in a lowZ
Ca121 ion because relativistic effects are very small~i.e.,
weak spin-orbit coupling!, and consequently the CSFs ari
TABLE II. Configuration-mixing coefficients for the ground and low-lying excitedJ50, J51, andJ
52 even-parity states of Ca121 and Zn221.

State Configuration-mixing coefficient
C2s22p

1/2
2 2p

3/2
2 C2s22p

1/2
1 2p

3/2
3 C2s22p

3/2
4 C2p

1/2
2 2p

3/2
4

Ca121

3P2 0.903 954 0.427 629 0.0 0.0
3P0 0.737 246 0.0 20.674 943 0.030 330
3P1 0.0 1.000 000 0.0 0.0
1D2 20.427 629 0.903 954 0.0 0.0
1S0 0.663 871 0.0 0.732 027 0.153 008
1S0 20.125 474 0.0 20.092 669 0.987 759

Zn221

3P2 0.976 913 0.213 639 0.0 0.0
3P0 0.945 764 0.0 20.316 661 0.072 506
3P1 0.0 1.000 000 0.0 0.0
1D2 20.213 639 0.976 913 0.0 0.0
1S0 0.307 382 0.0 0.944 532 0.115 653
1S0 20.105 107 0.0 20.087 093 0.990 640
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TABLE III. MC DF SCF energies,ESCF; second-order DC correlation energies,EDC
~2! ; first- and second-order Breit correlation corre

tions, B(1) andB(2); and LSs~a.u.! of six even-parity (2s22p4 and 2p6) and four odd-parity (2s2p5) states of representative oxygenlik
ions.

State ESCF EDC
~2! B(1) B(2) LS Etotal

Z510
2s22p4 3P2 2126.519 812 20.261 388 0.016 270 20.001 873 0.010 731 2126.756 072
3P1 2126.516 848 20.261 428 0.016 205 20.001 876 0.010 737 2126.753 210
3p0 2126.515 452 20.261 447 0.016 067 20.001 882 0.010 740 2126.751 974
1D2 2126.392 459 20.271 229 0.016 161 20.001 911 0.010 734 2126.638 703
1S0 2126.277 142 20.251 763 0.016 428 20.001 965 0.010 712 2126.503 729
2p6 1S0 2124.126 219 20.512 837 0.016 416 20.002 184 0.010 093 2124.614 732
2s2p5 3P2

o 2125.542 229 20.306 242 0.016 257 20.001 869 0.010 398 2125.823 684
3P1

o 2125.539 384 20.306 129 0.016 037 20.001 872 0.010 404 2125.820 944
3P0

o 2125.537 947 20.306 189 0.016 029 20.001 863 0.010 407 2125.819 564
1P1

o 2125.089 614 20.362 225 0.016 223 20.001 958 0.010 401 2125.427 173
Z520

2s22p4 3P2 2597.440 366 20.283 435 0.164 755 20.008 954 0.125 293 2597.442 707
3P1 2597.328 018 20.283 400 0.163 172 20.008 931 0.125 556 2597.331 620
3P0 2597.308 649 20.282 744 0.163 454 20.008 995 0.125 526 2597.311 408
1D2 2597.025 259 20.293 144 0.161 220 20.009 086 0.125 489 2597.040 781
1S0 2596.642 389 20.267 296 0.164 764 20.009 476 0.125 315 2596.629 082
2p6 1S0 2590.666 278 20.498 793 0.170 554 20.010 915 0.114 552 2590.890 880
2s2p5 3P2

o 2594.582 179 20.320 326 0.166 486 20.009 064 0.119 679 2594.625 404
3P1

o 2594.488 081 20.320 288 0.163 482 20.009 080 0.119 875 2594.534 092
3P0

o 2594.433 960 20.320 088 0.162 899 20.009 063 0.120 003 2594.480 209
1P1

o 2593.459 504 20.383 958 0.165 373 20.009 311 0.119 809 2593.567 591
Z530

2s22p4 3P2 21428.775 842 20.297 610 0.611 680 20.021 373 0.502 292 21427.980 852
3P1 21427.952 955 20.295 526 0.600 502 20.021 250 0.504 167 21427.165 062
3P0 21428.290 915 20.288 872 0.621 636 20.021 862 0.502 388 21427.477 626
1D2 21427.527 764 20.304 812 0.587 395 20.021 276 0.504 008 21426.762 449
1S0 21426.432 811 20.281 786 0.586 579 20.021 496 0.504 932 21425.644 582
2p6 1S0 21416.254 678 20.477 711 0.632 397 20.023 761 0.454 263 21415.669 490
2s2p5 3P2

o 21423.362 007 20.326 416 0.616 724 20.021 490 0.477 514 21422.615 674
3P1

o 21422.864 295 20.331 233 0.609 975 20.021 512 0.478 262 21422.128 804
3P0

o 21422.418 578 20.325 536 0.601 741 20.021 421 0.479 479 21421.684 314
1P1

o 21421.239 706 20.386 455 0.605 864 20.021 582 0.478 675 21420.563 205
Z542

2s22p4 3P2 22922.340 138 20.304 231 1.791 013 20.045 187 1.559 323 22919.339 220
3P1 22918.371 995 20.300 300 1.747 678 20.044 564 1.567 306 22915.401 874
3P0 22921.450 700 20.290 081 1.837 186 20.046 866 1.558 758 22918.391 702
1D2 22917.803 309 20.308 348 1.701 775 20.044 156 1.566 875 22914.887 163
1S0 22913.501 287 20.292 188 1.681 969 20.043 281 1.573 033 22910.581 754
2p6 1S0 22897.999 767 20.482 228 1.847 015 20.050 019 1.400 032 22895.284 967
2s2p5 3P2

o 22911.388 620 20.333 063 1.803 053 20.045 322 1.478 029 22908.485 923
3P1

o 22910.117 037 20.357 288 1.807 954 20.045 848 1.478 532 22907.233 686
3P0

o 22907.202 211 20.331 319 1.753 990 20.044 890 1.486 050 22904.338 381
1P1

o 22906.050 135 20.372 589 1.739 755 20.044 721 1.484 806 22903.242 884
te
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ing from 2s22p1/2
2 2p3/2

2 and 2s22p3/2
4 configurations are

nearly degenerate, and there is a strong configuration in
action between them~see Table II!. Three-configuration
MCDFSCF calculations yield the configuration mixing coe
ficients, 0.737 246,20.674 943, and 0.030 330, for the low
est J50 (3P0) state of Ca121, yielding coefficients nearly
equal in magnitude for the two CSFs arising from t
r-
2s22p1/2

2 2p3/2
2 and 2s22p3/2

4 . As Z increases, relativity lifts
the near degeneracy and significantly weakens the confi
ration interaction between the two CSFs because it induc
large separation between the 2p1/2 and 2p3/2 spinor energies
and simultaneously a smaller separation between the 2s1/2
and 2p1/2 spinor energies~the 2s1/2 and 2p1/2 spinor energies
become asymptotically degenerate in the hydrogenic lim!.
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Table II displays just such a trend as the nuclear cha
increases. A three-configuration MCDFSCF on theJ50
state Zn221 yields the configuration mixing coefficients
0.945 76 and20.316 66, respectively, for the two CSFs ar
ing from the 2s22p1/2

2 2p3/2
2 and 2s22p3/2

4 . The configuration
interaction between the two CSFs for Zn221 (Z530) is re-
duced dramatically by relativity making 2s22p1/2

2 2p3/2
2 the

dominant configuration. On the other hand, then52 com-
plex gives rise to only one CSF for theJ51, even-parity
state, which comes from the electronic configurati
2s22p1/2

1 2p3/2
3 . Thus, theJ51 state does not exhibit nea

degeneracy.
Within the n52 complex, the electronic configuration

2s22p1/2
2 2p3/2

2 and 2s22p1/2
1 2p3/2

3 , give rise to twoJ52,
even-parity CSFs (3P2 and 1D2), and these interac
strongly. Two-configuration MCDFSCF calculations on t
ground 3P2 state, including the twoJ52 CSFs of Ca121,
yield configuration mixing coefficients of 0.903 95 an
0.427 63, indicating near degeneracy, while the configura
mixing coefficients become 0.976 91 and 0.213 64 for
heavier Zn221 with the configuration 2s22p1/2

2 2p3/2
2 being

more dominant. Again, asZ increases, relativity causes
large separation of the 2p1/2 and 2p3/2 spinor energies and
weakens the configuration interaction between
2s22p1/2

2 2p3/2
2 and 2s22p1/2

1 2p3/2
3 CSF.

In the fourth column of Table I, we present the correlati
energies,Ecorr

MC , recovered from MCDFSCF for the lowestJ

FIG. 1. Second-order Dirac-Coulomb correlation correctio
EDC

~2! of five selected states as functions of nuclear chargeZ.
e

n
e

e

52 (3P2) and J50 (3P0) even-parity states of Ca121 and
Zn221 computed in increasing CSF expansion lengths. T
correlation energies were computed by subtracting the sin
configuration DFSCF energies from the MCDFSCF energ
@8#. Because of near degeneracy and strong configura
interaction of CSFs, theJ50 (3P0) state yields the larges
correlation energy in each MC expansion. AtNCSF53, the
J50 (3P0) state yields correlation energies (Ecorr

MC) of
20.396 712 a.u. and20.308 182 a.u., respectively, for Ca121

and Zn221, the bulk of which are nondynamic correlatio
energies. The nondynamic correlation becomes noticea
smaller in magnitude in Zn221 than in Ca121 because relativ-
ity tends to lift near degeneracy in theJ50 state asZ in-
creases.

The bulk of the experimentally determined fine-structu
term energies are reproduced by the MCDFSCF calculat
within the n52 complex for both Ca121 and Zn221. In
Ca121, the lowestJ50 (3P0) andJ51 (3P1) state energies
computed in the three-configuration MCDFSCF and o
configuration DFSCF calculations are, respective
0.131 717 a.u. and 0.112 348 a.u. above the groundJ52
(3P2) state computed in a two-configuration MCDFSC

s

FIG. 2. First-order Breit interaction energiesB(1) of five se-
lected states as functions of nuclear charge. Filled circles, triang
and squares represent, respectively, 2s22p4 3P2 , 2s2p5 1P1 ,
2s22p4 1S0 . Open circles, triangles, and squares represent, res
tively, 2s22p4 1D2 , 2p6 1S0 , and 2s2p5 3P2 .
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while experimental values are, respectively, 0.131 59
and 0.11 147 a.u.@37,38#. For Zn221, the lowestJ50 (3P0)
and J51 (3P1) state energies computed in a thre
configuration MCDFSCF and one-configuration DFSCF c
culations are, respectively, 0.484 927 a.u. and 0.822 887
above the groundJ52 (3P2) state computed by a two
configuration MCDFSCF while the corresponding expe
mental values are, respectively, 0.503 188 a.u. and 0.815
a.u. @37,38#. The residual discrepancy is primarily due
dynamic correlation unaccounted for in the MCDFSCF c
culations.

To accurately account for dynamic correlation, state-
state second-order MRMP calculations were performed
each of the three fine-structure states with increasing C
expansion lengths. All electrons were included in the cor
lation calculations. Computed second-order DC correlat
corrections are given in the fifth column of Table I. The to
DC correlation energies,Ecorr

MC1EDC
~2! , are given in the last

column of the table. Because of near degeneracy and st
configuration mixing of CSFs, theJ50 even-parity state
yields the largest total DC correlation energy. AtNCSF53,
the J50 (3P0) states of Ca121 and Zn221 yield total DC
correlation corrections of 20.679 456 a.u. and
20.597 054 a.u., respectively. In contrast, single-refere

FIG. 3. LSs as functions of nuclear charge. Filled circles,
angles, and squares represent, respectively, 2s22p4 3P2 ,
2s2p5 1P1 , and 2s22p4 1S0 . Open circles, triangles, and squar
represent, respectively, 2s22p4 1D2 , 2p6 1S0 , and 2s2p5 3P2 .
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(NCSF51) second-order MP calculations for theJ50 (3P0)
states of Ca121 and Zn221 yield total correlation energies o
only 20.396 032 a.u. and20.442 840 a.u., respectively
These account for only 58% and 74%, respectively, of
total DC correlation energies of Ca121 (520.679 456 a.u.)
and Zn221 (520.597 054 a.u.) obtained by a second-ord
MRMP based on three-configuration MCDF reference wa
functions. Failure to treat nondynamic correlation in ze
order causes difficulty in recovering a large fraction of d
namic correlation energy. As we have stated earlier, the b
of the experimentally determined fine-structure separati
among the lowest three (3P2 , 3P0 , and 3P1) states, are
reproduced by the MCDFSCF calculations, which prope
treat state-specific nondynamic correlation due to interac
configurations. Once the nondynamic correlation is
counted for by the MCDFSCF, the dynamic DC correlati
energiesEDC

~2! computed by MR-MP are similar in magnitud
for all three fine-structure states, i.e.,EDC

~2! '20.28 a.u. and
'20.29 a.u., respectively, for Ca121 and Zn221.

MCDFSCF and MRMP calculations were carried out
the ground state and nine low-lying excited states of oxyg
and 20 oxygenlike ions withZ59, 10, 11, 12, 13, 14, 15, 17

- FIG. 4. Second-order Breit correlation correctionsB(2) as func-
tions of nuclear charge. Filled circles, triangles, and squares re
sent, respectively, 2s22p4 3P2 , 2s2p5 1P1 , and 2s22p4 1S0 .
Open circles, triangles, and squares represent, respecti
2s22p4 1D2 , 2p6 1S0 , and 2s2p5 3P2 .
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20, 22, 25, 26, 30, 32, 35, 36, 40, 42, 50, and 60. These
lowest states consist of twoJ52 ( 3P2 and 1D2) and two
J50 ( 3P0 and 1S0) even-parity states arising from 2s22p4

configuration, oneJ50 (1S0) even-parity state arising from
the 2p6, and oneJ52 (3P2

o), two J51 ( 3P1
o and 1P1

o), and
one J50 (3P0

o) odd-parity states arising from the 2s2p5.
Two different MC DF SCF methods,J-averaged and state
specific, were employed to obtain the basis spinors
MRMP calculations. J-averaged MCDFSCF calculation
were employed for oxygen and oxygenlike ions withZ
59 – 26, and a state-specific MCDFSCF forZ530– 60.
Critically evaluated experimental data are available for th
ions up toZ542 @37,38#. In Table III, we illustrate our cal-
culations on seven representative ions withZ510, 15, 20,
25, 30, 35, and 42. The table displays the MCDFSCF en
gies,ESCF, MRMP second-order Dirac-Coulomb correlatio
energies,EDC

~2! , first- and second-order Breit interaction ene
gies,B(1) andB(2), radiative corrections, and total energi
of the ten lowest states. The radiative corrections, or
electron self-energy and vacuum polarization, estimated
employing the method described in Refs.@33# and @35#, are
given in the sixth column of the table under the head
‘‘LS’’ ~LS for Lamb shift!. Figures 1–4 show variations o
the computedEDC

~2! , B(1), B(2), and LS of several represen
tative states as functions of the atomic numberZ. The MC
DF energies of the excited1D2 and 1S0 even-parity states
are those obtained in the3PJ50,2 state MC energy optimiza

FIG. 5. Deviations from the experiment of the computed te
energy separations for the 2s2p5 3P2

o22s22p4 3P2 as a function of
nuclear chargeZ. Deviation (cm21) and percentage deviation ar
given, respectively, on the left and right ordinates. Atomic numb
are given on the abscissa. Filled circles, triangles, and squares
resent, respectively, deviations of the MCDF, MRMP, and non
ativistic many-body perturbation-theoretical levels. Open circ
triangles, and squares represent, respectively, percentage devi
of the MCDF, MRMP, and nonrelativistic many-body perturbatio
theory calculations.
en
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tion; state-by-state MCDFSCF calculations for the exci
states were not done. Thus spinors and configuration-mix
coefficients employed in MRMP calculations for the excit
states were those obtained in the3PJ50,2 MCDF calcula-
tions. Note again that the configuration mixing coefficien
displayed in Table II for the ground and excited even-par
states of Ca121 and Zn221 are representative of those ob
tained in the3PJ50,1,2 MCDF calculations. ForZ 5 8 – 26
and Z 5 30– 60, respectively,J-averaged and state-by-sta
MCDFSCF calculations were performed for the excitedJ
50,1,2 (3P0,1,2

o ) odd-parity states. The numbers of referen
CSFs for the MCDFSCF and MRMP calculations were,
spectively, 3, 1, and 2 for theJ50, 1, and 2 even-parity
states. For the odd-parityJ50,1,2 states, they were, respe
tively, 1, 2, and 1; these account for all the CSFs aris
from then52 complex. All electrons were correlated in th
MRMP calculations. MCDFSCF calculations including th
frequency-independent Breit interaction in the configuratio
mixing step of the MCSCF algorithm have also been p
formed to study the effect of the Breit interaction on fin
structure term energies. Energy shifts due to the first-or
Breit interactionsB(1) thus obtained are given in the fourt
column of Table III. The relativistic many-body shiftsB(2)

@5,6,8# that arise from including the Breit interaction in th
effective electron-electron interaction in the second-or
MRMP perturbation calculations are also displayed in
fifth column of the table.B(2) is computed as the differenc
between the second-order correlation correction evalua
with B12 @Eq. ~4!# in the effective electron-electron interac
tion and the second-order DC correlation correction,EDC

~2! .
Table IV displays the contribution from each order

perturbation theory to energy separation~a.u.! of nine low-
lying excited states relative to the ground 2s22p4 3P2 state
of Zn221. These contributions were computed by subtract
the energy of the ground 2s22p4 3P2 even-parity state from
that of the excited state in each order of perturbation the
displayed in Table III. The last column of Table IV contain
the term energy splittings obtained in this study along w
those obtained in previous correlated calculations by Che
Froese Fischer, and Kim@39# and by experiment for com
parison. The MCDFSCF and MRMP calculations, which
clude the Breit interaction in the effective electron-electr
interaction, as well as the Lamb shifts, result in significa
corrections and yield close agreement between the calcul
and experimental term energy separations, while DC co
lation correctionsDEDC

~2! alone do not. For the lowest3P0 ,
3P1 , 1D2 , and 1S0 states, the first-order correctionDB(1) is
much larger thanDEDC

~2! . TheB(1) for the ground and excited
states are displayed in Fig. 2 as functions of the atomic nu
ber Z. The Lamb shift correction,DLS, is comparable or
even larger for most states than the relativistic many-bo
shift DB(2). Because radiative corrections are significan
smaller in higher excited states,DLS becomes negative an
increases by an order of magnitude for these states. Figu
shows the importance ofDLS in accurately predicting term
energy separations. Radiative corrections are noticeably
ferent from state to state. The difference,DLS, becomes as
large as a few tenths of an a.u. in large-Z ions and results in
significant correction to term energy separations, as d
DB(1).
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TABLE IV. Contribution from each order of perturbation theory to energy separation~a.u.! of nine low-lying excited states relative to th
ground 2s22p4 3P2 state of Zn221. The term energy separations are compared with previous work and with the experiment.

DESCF DEDC
~2! DB(1) DB(2) DLSa DEtotal

2s22p4 3P0

MRMP 0.484 927 0.008 738 0.009 956 20.000 489 0.000 096 0.503 226
Z-expansionb 0.484 389 0.0 0.010 174 0.000 096 0.4947
Experimentc 0.503188

2s22p4 3P1

MRMP 0.822 887 0.002 084 20.011 178 0.000 123 0.001 875 0.815 790
Z-expansionb 0.822 883 0.0 20.011 213 0.001 875 0.8135
Experimentc 0.815 461

2s22p4 1D2

MRMP 1.248 078 20.007 202 20.024 285 0.000 097 0.001 716 1.218 403
Z-expansionb 1.247 716 20.0107 20.024 427 0.001 716 1.2250
Experimentc 1.218 022

2s22p4 1S0

MRMP 2.343 031 0.015 824 20.025 101 20.000 123 0.002 640 2.336 270
Z-expansionb 2.340 612 0.0248 20.025 010 0.002 640 2.3430
Experimentc 2.335 380

2s2p5 3P2
o

MRMP 5.413 835 20.028 806 0.005 044 20.000 117 20.024 778 5.365 178
Z-expansionb 5.413 855 20.0298 0.005 035 20.024 778 5.3643
Experimentc 5.359 280

2s2p5 3P1
o

MRMP 5.911 547 20.033 623 20.001 705 20.000 139 20.024 030 5.852 048
Z-expansionb 5.911 589 20.0298 20.001 649 20.024 030 5.8561
Experimentc 5.845 582

2s2p5 3P0
o

MRMP 6.357 264 20.027 926 20.009 939 20.000 048 20.022 813 6.296 538
Z-expansionb 6.357 317 20.0298 20.009 946 20.022 813 6.2948
Experimentc 6.290 367

2s2p5 1P1
o

MRMP 7.536 136 20.088 845 20.005 816 20.000 209 20.023 617 7.417 647
MR-MP~opt!d 7.533 364 20.086 134 20.005 735 20.001 136 20.023 864 7.416 495
Z-expansionb 7.531 790 20.0924 20.006 456 20.023 864 7.4091
Experimentc 7.409 740

2p6 1S0

MRMP 12.521 164 20.180 101 0.020 717 20.002 388 20.048 029 12.311 362
MR-MP~opt!d 12.498 537 20.157 495 0.016 288 20.001 876 20.048 812 12.306 642
Z-expansionb 12.498 391 20.1604 0.015 956 20.048 812 12.3051
Experimentc 12.290 107

aDLS is from this work.
bCheng, Froese Fischer, and Kim@39#, Z-expansion calculations.
cEdlen,@37#, Experimental data, Ref.@38#.
dOptimized spinors from state-specific MC DF.
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Cheng, Froese Fischer, and Kim@39# computed the ener
gies of the ground and excited states of oxygenlike ions
the finite-difference MCDFSCF within then52 complex
and estimated the leading nonrelativistic dynamic correla
corrections using theZ-expansion theory of Layzer@21#. In-
clusion of the nonrelativistic correlation correction alo
with the first-order Breit interaction and the Lamb shifts s
nificantly improved agreement between theory and exp
ment. The term energy separations computed by our MR
method are in better agreement with the experiment t
those obtained by Cheng, Froese Fischer, and Kim@39# for
the lowest four excited states. Referring to the last two
y
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tries in Table IV, the MR-MP term energy separations de
ate from experiment by as much as 0.008 a.u. and 0.0
a.u., respectively, for the 2s2p5 1P1

o and 2p6 1S0 states
whereas those computed by Cheng, Froese Fischer, and
@39# are in better agreement with the experiment. The res
suggest that use of the spinors and configuration-mixing
efficients from ground-state MCDFSCF calculations
MRMP calculations for the excited states are less appropr
for higher excited states. State-specific MCDFSCF a
MRMP calculations were performed on the excit
2s2p5 1P1

o and 2p6 1S0 states to examine if the optimum
spinors for the excited states improve the term energy se
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TABLE V. Energies (cm21) of low-lying even-parity states of oxygen and oxygenlike ions relative to the ground 2s22p4 3P2 state. The
term energy separations,Etheor, computed by MRMP are compared with the experiment.

Z 2s22p4 3P1 2s22p4 3P0 2s22p4 1D2 2s22p4 1S0 2p6 1S0

Etheor Eexpt Etheor Eexpt Etheor Eexpt Etheor Eexpt Etheor Eexpt

60 4338 200 358 573 4479 456 8948 972 14 291 249
50 1906 359 272 808 2033 780 4039 624 8232 842
42 864 147 862 684 207 956 214 010 977 113 975 974 1922 041 1924 137 5279 298 526
40 690 130 191 215 799 796 1567 153 4724 041
36 424 185 423 933 160 088 162 011 525 210 525 066 1020 232 1020 595 3784 241 377
35 371 858 371 663 152 035 153 478 470 804 470 699 912 282 912 501 3579 486 3573
32 243 652 243 568 127 401 127 793 336 308 336 229 647 012 646 933 3026 366 3021
30 179 045 178 973 110 445 110 437 267 408 267 325 512 752 512 557 2702 031 2697
26 89 251 89 439 75 218 75 188 168 792 168 848 324 949 325 149 2132 810 2134
25 73 622 73 800 66 524 66 505 150 806 150 851 291 748 291 899 2006 359 2007
22 39 180 39 277 42 290 42 309 108 731 108 717 215 516 215 509 1654 291 1656
20 24 380 24 465 28 816 28 880 88 212 88 202 178 570 178 568 1437 959 1440
17 10 785 10 847 14 056 14 127 64 796 64 782 135 152 135 206 1133 381 1136
15 5701 5748 7763 7817 52 266 52 256 110 696 110 799 939 739 943
14 3989 4028 5524 5568 46 571 46 568 99 215 99 343 844 854 849 0
13 2702 2733 3791 3827 41 140 41 147 88 052 88 206 750 880 755 6
12 1758 1783 2491 2521 35 901 35 925 77 097 77 287 657 503 662 9
11 1086 1107 1549 1576 30 793 30 841 66 249 66 496 564 276 570 8
10 628 643 899 921 25 759 25 841 55 382 55 751 469 969 478 8
9 331 341 475 490 20 736 20 873 44 593 44 918 399 337
8 150 158 216 227 15 574 15 868 32 722 33 793 310 737

TABLE VI. Energies (cm21) of low-lying odd-parity states of oxygen and oxygenlike ions relative to the ground 2s22p4 3P2 state. The
term energy separations,Etheor, computed by MRMP are compared with the experiment.

Z 2s2p5 3P2
o 2s2p5 3P1

o 2s2p5 3P0
o 2s2p5 1P1

o

Etheor Eexpt Etheor Eexpt Etheor Eexpt Etheor Eexpt

60 6760 441 7261 260 11 170 598 11 440 327
50 3802 980 4181 481 5767 222 6015 455
42 2382 023 2381 708 2656 857 2650 483 3292 303 3291 573 3532 737 3529 5
40 2117 877 2365 097 2851 851 3092 405
36 1676 282 1675 351 1866 459 1864 603 2136 839 2135 798 2380 149 2377 7
35 1580 945 1579 903 1756 684 1755 028 1987 396 1986 274 2231 636 2229 3
32 1325 473 1324 308 1458 828 1457 440 1598 310 1597 034 1844 637 1842 7
30 1177 520 1176 226 1284 376 1282 957 1381 930 1380 576 1627 985 1626 2
26 922 855 922 845 984 791 984 692 1029 992 1029 966 1267 771 1267 5
25 866 836 866 813 919 624 919 516 956 445 956 409 1190 112 1189 9
22 712 320 712 268 742 960 742 838 762 079 762 020 978 198 978 0
20 618 326 618 280 638 367 638 266 650 193 650 149 850 489 850 2
17 486 964 486 894 496 384 496 276 501 614 501 554 672 888 672 6
15 403 882 403 784 409 018 408 890 411 787 411 701 560 834 560 4
14 363 286 363 160 366 927 366 774 368 866 368 752 506 096 505 6
13 323 159 323 005 325 653 325 476 326 966 326 824 451 972 451 3
12 283 403 283 212 285 044 284 831 285 898 285 715 398 303 397 4
11 243 929 243 682 244 955 244 688 245 482 245 238 344 928 343 6
10 204 635 204 288 205 236 204 872 205 539 205 195 291 659 289 4
9 165 438 164 798 165 761 165 107 165 918 165 279 238 393 239 60
8 125 731 126 267 125 879 126 340 125 948 126 384 184 216
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rations. The results are given in the second row, denoted
MRMP~opt!, in each of the last two entries. Use of the op
mum spinors does not significantly improve the compu
term energy separation, 2s2p5 1P1

o22s22p4 3P2 , while the
computed separation, 2p6 1S022s22p4 3P2 , improves ap-
preciably and becomes comparable in accuracy with that
tained by Cheng, Froese Fischer, and Kim.

In Tables V and VI, a detailed comparison of theoretic
and experimental data is made on the term energies of
low-lying even- and odd-parity states of oxygen and oxyg
like ions with Z59 – 60, given relative to the groun
2s22p4 3P2 state. Theoretical term energy separatio
Etheor, of the low-lying excited states were computed by su
tracting the total energy of the ground 2s22p4 3P2 state from
those of the excited levels. Experimental term energy se
rationsEexpt @37,38# are reproduced in an adjacent colum
for comparison. Experimental data are not available for io
with Z540, 50, and 60.

Figure 5 illustrates the differences and percentage de
tions, 100uEtheor2Eexptu/Eexpt, between theoretical and exper
mental term energy separations, 2s2p5 3P2

o22s22p4 3P2 ,
as functions of the atomic numberZ. We see that the theo
retical term energy separations differ from the experiment
amounts ranging from 10 cm21 at Z526 to 1294 cm21 at Z
530 in the range 8<Z<42. Although the percentage devia
tion between theory and experiment increases to the leve
a few tenths of a percent near the low-Z end, it is consis-
tently below 0.1% in the range 10<Z<42, quite good agree
ment. The differences between the term energy separa
computed by the nonrelativistic many-body perturbat
theory @40# and those obtained by the experiment are a
given for comparison. In the nonrelativistic calculations, t
multireference second-order perturbation theory was
ployed to account for electron correlation for the ions w
10<Z<26. Relativistic corrections were included in th
Breit-Pauli approximation. The term energy separatio
computed by relativistic MRMP differ from experiment b
0.1% or less for intermediateZ up to Z542, except at the
low-Z end where the discrepancy increases up to 0.4%. N
relativistic many-body perturbation calculations deviate
s
,

s,

l.

ys
by
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b-

l
he
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of
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3% from the experiment atZ510. The percentage deviatio
reduces monotonically in the range 11<Z<20 and increases
again asZ approaches 26, again due to the inadequacy of
Breit-Pauli approximation. The accuracy of the nonrelativ
tic and relativistic calculations for the low-Z ions is limited
by the approximate treatment of electron correlation. T
deviations between theory and experiment computed so
at the MCDFSCF level~filled circles in Fig. 5! are large
throughout Fig. 5. However, subsequent inclusions of
namic correlation by MRMP and of radiative corrections s
nificantly reduce the deviation.

V. CONCLUSIONS

We have developed a relativistic multireference Mølle
Plesset perturbation theory for a general class of opens
systems with a manifold of configurations, which intera
strongly due to asymptotic degeneracy. The multirefere
perturbation theory for electron correlation is designed
treat a general class of openshell systems with two or m
valence electrons that often exhibit quasidegeneracies.
essential features of the theory are its treatment of the s
specific nondynamic correlation in zero order through a M
DFSCF, and recovery of the remaining correlation, which
predominantly dynamic pair correlation, by second-ord
perturbation theory. We have reported the first succes
implementation and application of relativistic multireferen
Møller-Plesset perturbation theory based on MCDFSCF
erence functions to ions of oxygen isoelectronic sequen
Accurate calculation of term energy separations in such s
tems requires a method flexible enough to account for st
correlation ~near degeneracy!, which varies considerably
from state to state.
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