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A relativistic multireference many-body perturbation theory for quasidegenerate systems with multiple open
valence shells is developed and implemented with analytic basis sets of Gaussian spinors. The theory employs
a general class of multiconfigurational Dirac-Fock self-consistent-field wave functions as reference functions,
and thus is applicable to open-shell systems with near degeneracy of a manifold of strongly interacting
configurations. A procedure is described by which to perform multireference second-order Mgller-Plesset
perturbation calculations for a general class of reference functions constructed from one-particle Dirac spinors.
Multireference perturbation calculations are reported for the ground and low-lying excited states of oxygen and
oxygenlike ions with up to a nuclear charge# 60 in which the near degeneracy of a manifold of strongly
interacting configurations mandates a multireference treatrf@bh®50-294{©9)03110-9

PACS numbeg(s): 31.25-v, 31.30.Jv, 31.25.Jf

I. INTRODUCTION lows the separation proce$&8—20. As Weiss and Kim
showed[11], relativity alters the magnitude of configuration
Over the years most relativistic atomic structure calculamixing among the configuration-state functioi@SFsg asZ
tions have been carried out by either a finite-difference mulincreases in an isoelectronic sequence. For Zowns en-
ticonfiguration (MC) Dirac-Fock self-consistent-fieldDF ergy levels are clustered together according to thejuan-
SCB [1-4] or a relativistic many-body perturbation theory {ym number occupanci.e., nonrelativistic complex21]),
(MBPT) based on single-configuration DF SCF wave func-pyt 457 increases, they cluster together according to both
tions expanded in analytic basis sg¥-10. Each of these iheir n andj quantum number occupandie., relativistic

methods has strengths and weaknesses because their acgiiznjex [11]). Strong configuration interaction within a
racy IS restricted to different sectprs of a many-elgctron (.:Orbomplex due to asymptotic degeneracy is called asymptotic
Lﬂﬁgonéﬂf (I:vcl)?rglgtsioc(l":emergzgcrj ('jsemeonsérzfgecitr'lvgén\};?:;'ggconfiguration interactiorfCl). By including in a zero-order

y ) U 9 y . multiconfiguration reference function all the CSFs generated
shellg, but fails to account for the bulk of dynamic correla-

tion. The single-reference many-body perturbation theory)’_v'th'n a complex of given principal quantum numbgrrela-

has exactly the opposite characteristic; it is effective in acdivistic multireference perturbation theory is capable of re-

curately describing dynamic correlation but fails to accoun©Vering dynamic correlation energy throughout the isoelec-
for nondynamic correlation. Dynamic correlation is a short-[fONic sequence. Alteration in the clustering pattern, i.e.,
range effect that arises from electron-electron interaction an@Symptotic Cl, in increasing may be easily accounted for
is the major correction to the Dirac-Fock independent parin zero order by relativistic MCDFSCF. Thus MCDFSCF
ticle model, while nondynamic correlation is a Consequenc@ased on all the CSFs generated within a nonrelativistic com-
of the existence of nearly degenerate excited states that iflex, is capable of accounting for nondynamic correlation
teract strongly with the reference stdfiel—16. Systems in  from low to highZ even when the configuration interaction
which only the dynamic correlation is important may be de-is altered a<Z increases.
scribed by a single configuration DF wave function, whereas Once the near-degeneracy effects in a complely are
systems with significant nondynamic correlation cannot beaccounted for by matrix MCDFSCR2], the remaining dy-
correctly described within single-configuration DF wave namic correlation may be recovered either by a relativistic
functions. generalization of a nonrelativistic multireference Mgller-
Near degeneracy in the valence spinors gives rise to Rlessef MRMP) perturbation theory18], or by a multiref-
manifold of strongly interacting configurations, i.e., strongerence configuration interaction based on the MCDFSCF ref-
configuration mixing within a relativistic complgd 1], and  erence function$16,22. The multireference configuration-
makes a MC treatment mandatory. The classic examples iimteraction approach 16,22, however, becomes quickly
atomic physics are the near-degeneracy effects in groundmwieldy in systems with large numbers of electrons because
state beryllium[11,12,17 and openshell atoms with two or the order of the multireference configuration-interaction ma-
more open valence shellgl1,13—-16. For reactive and trix increases rapidly as the number of electrons increases
excited-state energy surfaces of molecules, the single cofi5,18. Hirao[18] argues that once the state-specific nondy-
figuration SCF theory also fails to properly describe thenamic correlation among valence electrons is treated by mul-
separated fragments because of the near degeneracy that fiiconfiguration Hartree-Fock wave functions, the remaining
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correlation may be recovered by second-order perturbatiotomatically satisfied when only the positive-energy spinors
theory because it consists mainly of dynamic pair correlatior{ e D(*)) are employedh, is the Dirac one-electron Hamil-
due to short-range fluctuation potentials. In the present studyonian (in a.u),

we develop a relativistic MRMP theory that combines the

strengths of both hp(i)=c(a;-pi) +(Bi—1)C%+ VoudTi). 2
MCDFSCF and many-body perturbation methods in applica- . .

tion to a general class of quasidegenerate systems with mufi€ré @ and are the 4<4 Dirac vector and scalar matrices,
tiple open valence shells. We extend the single-referencESPectivelyVy(r) is the nuclear potential, which for each

relativistic many-body perturbation theoi§—8] to a relativ-  nucleus takes the form

istic MR-MP perturbation theory for systems with a mani- 7

fold of strongly interacting configurations. The essential fea- - —, r>R

ture of the theory is its treatment of the state-specific Vo (1) = r 3
nondynamic correlation in zero order through quadratically nu Z r2

convergent matrix MCDFSCR22], and recovery of the re- - ﬁ(i’»— @) r<Rk.

maining correlation, which is predominantly dynamic pair

correlation, by second-order MR-MP perturbation theory. The nuclei are modeled as spheres of a uniform proton-
We report here the successful implementation and applicharge distributionZ is the nuclear charge® (Bohn is the

cation of a relativistic MRMPperturbation theory, which radius of that nucleus and is related to the atomic mass,
takes a general class of MCDFSCF wave functions as refefaymy, by R=2.2677<10 5AY3. Adding the frequency-

ence functions. The multiconfiguration wave functions arejpndependent Breit interaction
computed by a recently developed quadratically convergent

matrix MCDFSCF method22] in analytic basis sets db —_1 ) ) . 2

spinors G for Gaussian after GrarjR23]). A procedure is B1z zlevagt(anTi)(az T/l - (4)
described by which to perform a relativistic second-ordero the electron-electron Coulomb interaction in Coulomb
MR-MP perturbation theory calculations for a general classyauge results in the Coulomb-Breit potential, which is cor-
of MC reference functions constructed from Dirac naturalrect to ordera® (a being the fine-structure constari24].
spinors. The state-specific multireference perturbation calcuaddition of the Breit term yields the no-pair Dirac-Coulomb-
lations are reported for the ground and low-lying excitedBreit (DCB) Hamiltonian[24,25

states of ions of the oxygen isoelectronic sequence in which
the near degeneracy of a manifold of strongly interacting
configurations necessitates a relativistic multireference per- Hpce= 2 ho(i)+ L.
turbation treatment. '

N N

1
> —+B

i>j Tij

‘C+ 1 (5)

which is covariant to first order and increases the accuracy of
Il. THEORY calculated fine-structure splittings and inner-electron binding

A. The relativistic no-pair Dirac-Coulomb-Breit Hamiltonian energies. Higher-order QED effects appear first in oxefer

The effectiveN-electron Hamiltoniarin atomic units for

. . B. The matrix multiconfiguration Dirac-Fock SCF method
the development of our MRMP algorithm is taken to be the 9

relativistic “no-pair’ Dirac-Coulomb (DC) Hamiltonian N-electron eigenfunctions of the no-pair DC Hamiltonian
[24,25, are approximated by a linear combination of
" " configuration-state function$®d{*)(y,7m); 1=1,2,..,M},
. ) 1 constructed from positive-energy eigenfunctions of the ma-
HDC:Z ho()+ L. 2 E)Lf' (D) tix DFSCF equation. TheM configuration-state functions

form a subspac&(™) of the positive-energy spac@(*).
£+=L+(1)L+(2),...,L+((l\l)), whereL (i) is the projection M

operator onto the spa'™’) spanned by the positive-energy _ (+)

eigenfunctions of the matrix DFSCF equati@s]. £ is the Py Jm) = Z Cik®@ " (nJm). (6)
projection operator onto the positive-energy spage”)

spanned by theN-electron CSFs constructed from the Here the MCDFSCF wave functio (yx J7) is an eigen-
positive-energy eigenfunctions e@(*)) of the matrix function of the angular momentum and parity operators with
DF SCF. It takes into account the field-theoretic conditiontotal angular momentuny and paritys. y denotes a set of
that the negative-energy states are filled and causes the prgdantum numbers other thafi and 7 necessary to specify
jected DC Hamiltonian to have normalizable bound-state sothe state uniquely. The total DC energy of the general
lutions. This approach is called the no-pair approximationMCDF state| ik (ykJm)) can be expressed as

[24] because virtual electron-positron pairs are not permitted

in the intermediate states. The eigenfunctions of the matrix ~EMS(y«Jm) = (¢ (v Tm)|Hpcl (v Tm))

DF SCF equation clearly separate into two discrete mani- B(+)
folds, D(*) and D7), respectively, of positive-energy and -3 c.C
negative-energy states. As a result, the positive-energy pro- 152 KT

jection operators can be accommodated easily in many-body ) b ()
calculations. The formal conditions on the projection are au- X{( P (0 Tm)[Hpc @5 (ysTm)). (7)
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Here it is assumed thaf(ycJm) and®{*)(y,Jm) are N N
normalized. Ho=2> Fa (i) andV=Hgj.—> Fu(i). (12
Given a trial orthonormal set of one-patrticle radial spinors : :
{d’g?Kq(r)}( € DH)UD(:))’ the op:tir)num occupied elec-  pere. the one-body operatbr,, diagonal in{wgzzp} may
| . . . _
tro_nlc radial sp|nor_§{¢npkp(r)}(e_D ) can be found by a e defined by
unitary transformatiotJ=1+T via

F. = (+) (+) f (+) (+)
¢(+)( ) ]_( Pnpkp(r) av peg(ﬂ |wnpxp><wnpxp| avlwnpxp><wnp;<p|
ry=—
Mp*p r\ Qn (1)
o = 3 el el (el | (13
2N, p<Dl+) Npkp/ “P NpKp!?
= > 9.mu
qep(Mup) " P where
2N
= O, (1)(Tgpt 8qp)- ® (o) [f (o) P
=~ Pngiq ap™ qp sp—<wnpkp|fav|wnp,<p> and f,,=hp+ > p(Jp—Kp).

_ _ (14)
Here, the summation extends over bdth negative andN,,
positive energy spinor®,, . (r) andQ, . (r) are the large The generalized fractional occupatiyp is related to diago-
and small radial compoﬁepnts and arpepexpande(N,inG nal matrix elements of the first-order reduced density matrix
spinors{y5} and{xL}, that satisfy the boundary conditions constructed in natural spinors by
associated with the finite nucle{i26], B(+)
N, N, Rp=Dpp= 2| CchlKnnprU]. (15
Pod(N=2 Xuéa and Quu(r)=2 xZ&i- (9
! ! wheren, . [I] is the occupation number of thesymmetry
shell in the CSFDP(y,Jm). J, andK, are the usual Cou-
lomb and exchange operators constructed in natural spinors.

The unperturbed Hamiltoniad, may be given in second
quantized form,

Here{¢:} and{&5} are linear variation coefficients. Second-
order variation of the MCDF enerd¥q. (7)] with respect to
the parameter$T,,} and configuration mixing coefficients
{C\k} leads to the Newton-RaphsofNR) equations for
second-order the MC DFSCEF,

Ho= X {alaple,, (16)
o 00 hoe T 0 peD(+)
a5 b hj/?,gf h(;?,yn B,/ 10/ Where{agap} is a normal product of creation and annihila-

tion operators,a;g and a,, respectively. The zero-order
HeregS,, g%, h2, etc. are those defined in previous work HamiltonianH,, is arbitrary but should be chosen as close to

[22] Intermediate Coup"ng is built in through the MCDEF the full HamiltonianHSC as pOSSibIe so that the perturbation
SCF process. The quadratically convergent NR algorithm foferies converges rapidly in low order. The zero-order Hamil-
relativistic MCDFSCF calculations has been discussed in detonian is usually chosen to be a sum of effective one-electron
tail in previous work[22] and is not discussed further. To operatorSMgller-Plesset partitioning27]). For closed-shell
remove the arbitrariness of the MC SCF spinors and densit§ystems, the best results have been obtained with Mgller-
weighting, the canonical SCF spinors are transformed intd’lesset partitioning, i.e., the sum of closed-shell Fock opera-

natural spinors{wg:,l } for subsequent perturbation calcula- tors asHo. An effective one-body operator for a general

tions[18]. The key to successful implementation of the sub-!vIC DESCF cIoier related to the cIosed_-s_thI Fack operator
is the “average” DF operatoF,, , a relativistic generaliza-

sequent MRMP perturbation theory calculations is rapid con-ion of a nonrelativistic average Fock operafds]. The

vergence of our quadratically convergent matrix MCDFSCFt ) . ) .
method[22] for a general class of MCDF wave functions for theory provides a hierarchy of well-defined algorithms that

openshell quasidegenerate systems. alloyvs one to calculate.relanwstlc correlauon correcuo_ns in
noniterative steps and, in low order, yields a large fraction of

o ) ] the dynamical correlation. In this form of partitioning, per-

C. Relativistic multireference many-body perturbation theory  ,rpation corrections describe relativistic electron correla-

The no-pair DC HamiltoniarH ) is partitioned into an tion, including cross contributions between relativistic and
unperturbed Hamiltonian and a perturbation term followingcorrelation effects.

Mgller and Plessd27], Many-_electron wave functions correct t¢ may be ex-
panded in a set of CSFs that spans the enfirelectron
Hpc=Ho+V, (1))  positive-energy spac®("), {®{*)(y,77)}, constructed in

terms of Dirac one-electron spinors. Individual CSFs are
where the unperturbed model Hamiltoniély is a sum of  eigenfunctions of the total angular momentum and parity op-
“average” DF operators-,,, erators and are linear combinations of antisymmetrized prod-
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ucts of positive-energy spinorssD(*)). The one-electron and

spinors are mutually orthogonal so the CSBg ) (y, Jm)}

are mut_ually_ orthogo.nal. The unperturbed Hamiltonian is di- E(Kl):<¢K(yKJW)|V| Iy Tm)).
agonal in this space;

The residual space in the positive-energy subspac(i3
=" - which is spanned by CSFs
(T (yTm); 1=M+1M+2,..}.

Application of Rayleigh-Schidinger perturbation theory
so that provides order-by-order expressions of the perturbation se-
ries for the state approximated by (yxJm)),

D(+)
Ho=2 | Dy Tm)EFSK DD (nTm)|, (A7)

Hol @[ (7Jm) =EF¥T@( (3 Tm))  (1=12,..).
(18) Ex(yxJm) =EMC(y Jm) +ER+E@+--- . (2D)
Since the zero-order Hamiltonian is defined as a sum of
one-electron operatois,, [Eq. (12)], ECFis a sum of the Where
products of one-electron energies definedsljyand an oc-
cupation numbennqkq[l] of the k-symmetry shell in the E@ = (g (v Tm)|VRV| (v T7)) (22
CSF®{ ) (3 Tm);

and
D(+)
CSF_
B 2 eq g1 19 ER) = (v nTm)VR(Ho~ EQ)RV] wlreIm).
23
The subset{®{")(y,77);1=1,2,..,M}, with which we <th |
expand the MCDFSCF function(y«7m) [Eq. (6)] also  HE'€R Is the resolvent operator,
defines an active subspa®® ") spanned by (yxJ) and
its M-—1 orthogonal complements,{¢x(yxJm);K B o)
=1,2,..,M}. The matrix ofH 3 in this subspace is diagonal R= E(KOL Ho
(I (v Tm) Ho e (y . Tm)) = Sk (EQ+EQ) with
= 6k L EM (v Jm), )
(20) Q=2 [ nTmN @[V (nTm|. (24
where
The projection operato@ (") projects onto the subspace
E = (s (v Tm) | Hol (v Tm)) Q) spanned by CSFs{®{")(yJm); I=M+1M
Vv oce +2,...}. Using the spectral resolution of the resolvent opera-
B ; (+) i :
:Z C|KC|KE|CSF:2 8;% tor acting onV|®|"/(y,Jm)), the second-order correction

may be expressed as

ER= 3 CicCor(@f )0 Tm VRIS (757m)

)R (D (0 Tm) V| (y Tm)N DD (9 Tm) VDS (9, Tm))

= > 2 CikCx ECSF_ ECSF : (25
J= J L

In this form, all perturbation corrections beyond first- yields the no-pair DCB HamiltoniafEq. (5)], and the rela-
order describe relativistic electron correlation for the statdivistic electron correlation arising from the DCB Hamil-
approximated by the MCDFSCF wave function tonian is the DCB correlatiof8].
| (v Jm)). When the effective electron-electron interac- Summations over the CSFs in Eqd7)—(25 are re-
tion is approximated by the instantaneous Coulomb interacstricted to CSFs € ©(")) constructed from the positive-
tion 1kj;, relativistic electron correlation is termed a DC energy branch (")) of the spinors, effectively incorporat-
correlation[8]. Inclusion of the frequency-independent Breit ing into the computational scheme the “no-pair” projection
interaction in the effective electron-electron interactionoperator£, contained in the DC and DCB Hamiltonians.
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Further, the CSF@(L+)(ij77)(eQ(+)) generated by exci- nuclei were again modeled as spheres of uniform proton
tations higher than double, relative to the reference CSF§harge in every calculation. The nuclear model has been dis-

®()(y,Tm) (e BM), do not contribute to the second- and cussed in detail in Ref26]. _
third-order because for them Virtual spinors used in the MRMP perturbation calcula-

tions were generated in the field of the nucleus and all elec-
(DD (9, Tm) V| D ) (y Tm))=0 trons (VN potentia) by employing the “average” DF opera-
tor F,, [EQ. (13)]. The order of the partial-wave expansion,
and L max, the highest angular momentum of the spinors included
in the virtual space, IS Lnma=7 (a
(D (3 Jm)HE] 2 (y . Tm)) =0. 26522p20d18f16g16n16i 16] G spinor basis s¢throughout
) ] ) ) ] ) this study. All-electron MRMP perturbation calculations in-
Neglecting interactions with the filled negative-energy cjyding the frequency-independent Breit interaction in the
sea, i.e., neglecting virtual electron-positron pairs in SUMirst and second orders of perturbation theory are based on
ming the MBPT dl_agra_lms, we have a strglghtforward extenspe no-pair Dirac-Coulomb-Breit Hamiltoniai ;. The
sion (+O)f nonrelativistic MBPT. Negative-energy Statesspeed of light was taken to be 137.0359895 a.u. Radiative
(D), as part of the complete set of states, do play a rOI%orrections, or the Lamb shifts, were estimated for each state
in_higher-order QED corrections. Studies have appeareq, o\ a)yating the electron self-energy and vacuum polariza-
which go beyond the "no-pair” approximation where i, fo)10wing an approximation scheme discussed by Indeli-
hegative-energy states are ne.ede.d to evaluate the.h'gh%réto, Gorceix, and Desclaud3]. The code described in
order QED effect$28-33. Contributions from the negative- pots [33] and[35] was adapted to our basis-set expansion
energy states due to gcreation of virtual electron-positron5|qjations for this purpose. In this schef88], the screen-
pairs are of the order” [28-33, and estimations of the 4 of the self-energy is estimated by employing the charge
radiative corrections are necessary in order to achieve SPefensity of a spinor integrated to a short distance from the
troscopic accuracy for higheZ. In the present study, the qigin " typically an 0.3 Compton wavelength. The ratio of
lowest-order radiative corrections were estimated for eacly,, integral computed with an MCDFSCF spinor and that
state to achieve better accuracy. obtained by using the corresponding hydrogenic spinor is
used to scale the self-energy correction for a bare nuclear
lll. COMPUTATION charge computed by MoH28]. The effect on the term en-
£ray splittings of mass polarization and reduced mass are
non-negligible. In the present study, however, we neglect
these effects.

The large radial component is expanded in a set o
Gaussian-type function&GTFs [26],

Xa()=Agr"d exp(—£,ir?), (26)
IV. RESULTS AND DISCUSSIONS
with n[k]=— « for k<0 andn[k]=k+1 for k>0. A, is _
the normalization constant. The small component basis set  Substantial number of ground-state atoms are openshell

{Xfi(f)} is constructed to satisfy the boundary condition as-Systems with complicated multiplet structures. With six va-

sociated with the finite nucleus with a uniform proton chargeIence electrons, ground and low-lying excited states of oxy-

distribution [26]. With the finite nucleus, GTFs of integer genlike ions exhibit the near degeneracy characteristic of a

power ofr are especially appropriate basis functions becausg‘an'fmd of strongly interacting configurations within the

the finite nuclear boundary results in a solution that is Gauss-_2 complex[3,11,39. We first give a detailed account of

ian at the origin[26]. Basis functions, which satisfy the the MCDFSCF and MRMP calculations applied to oxygen-

i : ... like ions with Z=20 andZ=30. Table | displays the com-
nuclear boundary conditions, are also automatically kineti- .
y y uted MCDFSCF energieEgcr, of the lowest)=0 (°P),

cally balanced. Imposition of the boundary conditions result§’_ 3 o3 . +
in particularly simple forms with spheric& spinors[26]. ‘]__21 ( P(lj)’ 3293—_2 ( P2.) gven-pqnty stat(;s of fé%l (f.z

For all the oxygenlike systems studied, even-tempered ba- 20) @nd Zn™* (Z=30), in increasing number of configu-
sis sets[34] of 26s22p Gaussian-type were used for the ranon; within then=2 complex. In each ent_ry in the table,
MCDFSCF. In basis sets of even-tempered Gaussians, tH¢€ 9ive the number of CSF&\cs, that arises from the

exponents{{,} are given in terms of the parametessand electronic configurations displayed ir_1 the second column.
; ; : The MCDF energyEsce, computed with each of thEcge
BB, according to the geometric series e ; .
CSFs is given in the third column. In the MCDFSCF calcu-

Li=aB Y i=12,..N, (27)  lations, the 5 spinor was kept doubly occupied and the re-
maining six electrons were treated as active electrons in gen-

In MCDFSCF calculations on oxygenlike species, the paerating CSFs within tha=2 shells. MCDFSCF calculations
rameterse and 8 are optimized until a minimum in the DF on Ca?* were performed to obtain a single set of spinors for
total energy is found. The optimal and B values thus de- all the 3P,_q;, fine-structure states by optimizing the
termined for, e.g., oxygenlike neorZ{10) are, respec- J-averaged MC energies: Egﬂ_gve( Ym) =2 3-01A2J
tively, 0.148055 and 2.11. The radial functions that possess & 1)EMC(yJm)/=; (23’ +1) instead of performing state-
different k quantum number but the same quantum numbespecific MCDFSCF calculations on each fine-structure state.
/ are expanded in the same set of basis functiens., the  For low-Z ions with small fine-structure splittingse., near
radial functions ofp,,, andps, symmetries are expanded in degeneracy amongp2,, and 205, spinors, the approach is
the same set gp-type radial Gaussian-type functionghe  more effective in computing the fine-structure splittings. For
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TABLE |. MCDFSCF and second-order MRMP energi@su) of the lowest=2 (3P,), J=0 (®Py),
andJ=1 (°P;) even-parity states of & (Z=20) and ZR?" (Z=30) computed in increasing CSF-
expansion length. Notationgp2 =2p,,, and 2, =2p3, were used.

Nesr CSF Escé® Etorr” Ege EtortEbG
ca?
3P2
1 2s%2p? 2p2 —597.364 573 0.0 —0.302030 —0.302 030
2 2s?2p? 2p? 2s%2p_2p3 —597.440366 —0.075793 —0.282744 —0.358537
3
Po
1 2s%2p? 2p2 —596.911 937 0.0 —0.396 032 —0.396 032
2 2s72p? 2p? ,2572p’ —597.303633 —0.391696 —0.285847 —0.677543
3 2s?2p% 2p2 2s%2p* 2p?2p%  —597.308649 —0.396712 —0.282744 —0.679456
3
Py
1 2s%2p_2p° —597.328 018 0.0 —0.283400 —0.283 400
Zn22+
3P2
1 2s%2p2 2p2 —1428.718 893 0.0 -0.315314 —0.315 314
2 2s?2p? 2p? 25%2p_2p% —1428.775842 —0.056949 —0.297 610 —0.354 559
3
Po
1 2s%2p22p3, —1427.982 733 0.0 —0.442840 —0.442 840
2 2s72p® 2p°%,25%2p’ —1428.232123 —0.249390 —0.324875 —0.574265
3 2s%2p? 2p? 2s%2p* 2p? 2p%  —1428.290915 —0.308182 —0.288872 —0.597 054
3
Py
1 2s%2p_2p° —1427.952 955 0.0 —0.295526 —0.295 526

3ICDFSCF energy.
®Correlation energy recovered from the MCDFSCF by substracting the single configuration DFSCF energy
from the MCDFSCF energies.
¢Second-order DC correlation correction obtained by MR-MP.

Zn?%* an optimized set of spinors was obtained for each ofneasure of configuration interaction. The electronic configu-

the J=0,1,2 fine-structure states by state-specific MCDFrations, &22p7,2p3,, 2522p3,, and 23,2p5,, give rise

to threeJ=0 even-parity state@ne 3P, state and two'S,
The configuration mixing coefficients for the ground andstate$, and they do interact strongly. As we stated earlier,

low-lying excited J=0, 1, and 2 even-parity states of a 2p,, and 25, spinors are nearly degenerate in a l@w-

Ca?" and Zrf?" are reproduced in Table Il for comparison. Cat?" ion because relativistic effects are very sm@le.,

The magnitude of the configuration mixing coefficients is aweak spin-orbit coupling and consequently the CSFs aris-

SCF calculations.

TABLE Il. Configuration-mixing coefficients for the ground and low-lying excitéd 0, J=1, andJ

=2 even-parity states of & and Zrf?".

State Configuration-mixing coefficient
CZSZZPi/znglz C2$22pi,22p§/2 C2322pg/2 C2p§,22pg/2
Cal2+
°p, 0.903 954 0.427 629 0.0 0.0
3P, 0.737 246 0.0 —0.674 943 0.030 330
3P1 0.0 1.000 000 0.0 0.0
1D2 —0.427 629 0.903 954 0.0 0.0
180 0.663 871 0.0 0.732 027 0.153 008
180 —0.125474 0.0 —0.092 669 0.987 759
Zn22+
3p, 0.976 913 0.213 639 0.0 0.0
P, 0.945 764 0.0 —0.316 661 0.072 506
°p, 0.0 1.000 000 0.0 0.0
D, -0.213 639 0.976 913 0.0 0.0
150 0.307 382 0.0 0.944 532 0.115 653
180 —0.105 107 0.0 —0.087 093 0.990 640




2814 MARIUS J. VILKAS, YASUYUKI ISHIKAWA, AND KONRAD KOC PRA 60

TABLE lll. MC DF SCF energiesEscr; second-order DC correlation energi 2():; first- and second-order Breit correlation correc-
tions, B® andB?; and LSs(a.u) of six even-parity (8%2p* and 208) and four odd-parity (82p°) states of representative oxygenlike
ions.

State Escr E2 B B LS Evotal
Z=10
2s?2p* °p, —126.519 812 —0.261 388 0.016 270 —0.001 873 0.010 731 —126.756 072
3p, —126.516 848 —0.261 428 0.016 205 —0.001 876 0.010 737 —126.753 210
3po —126.515 452 —0.261 447 0.016 067 —0.001 882 0.010 740 —126.751 974
D, —126.392 459 —0.271 229 0.016 161 —0.001 911 0.010 734 —126.638 703
s, —126.277 142 —0.251 763 0.016 428 —0.001 965 0.010 712 —126.503 729
2p8 1s, —124.126 219 —0.512 837 0.016 416 —0.002 184 0.010 093 —124.614 732
2s2p°® 3P —125.542 229 —0.306 242 0.016 257 —0.001 869 0.010 398 —125.823 684
3p9 —125.539 384 —0.306 129 0.016 037 —0.001 872 0.010 404 —125.820 944
pg —125.537 947 —0.306 189 0.016 029 —0.001 863 0.010 407 —125.819 564
pg —125.089 614 —0.362 225 0.016 223 —0.001 958 0.010 401 —125.427 173
Z=20
2s%22p* 3P, —597.440 366 —0.283 435 0.164 755 —0.008 954 0.125 293 —597.442 707
3P, —597.328 018 —0.283 400 0.163 172 —0.008 931 0.125 556 —597.331 620
3P, —597.308 649 —0.282 744 0.163 454 —0.008 995 0.125 526 —597.311 408
D, —597.025 259 —0.293 144 0.161 220 —0.009 086 0.125 489 —597.040 781
s, —596.642 389 —0.267 296 0.164 764 —0.009 476 0.125 315 —596.629 082
2p8 15, —590.666 278 —0.498 793 0.170 554 —0.010 915 0.114 552 —590.890 880
2s2p°® 3P —594.582 179 —0.320 326 0.166 486 —0.009 064 0.119 679 —594.625 404
5pg —594.488 081 —0.320 288 0.163 482 —0.009 080 0.119 875 —594.534 092
3pg —594.433 960 —0.320 088 0.162 899 —0.009 063 0.120 003 —594.480 209
p9 —593.459 504 —0.383 958 0.165 373 —0.009 311 0.119 809 —593.567 591
Z=30
2s%2p* °P, —1428.775 842 —0.297 610 0.611 680 —0.021 373 0.502 292 —1427.980 852
3p, —1427.952 955 —0.295 526 0.600 502 —0.021 250 0.504 167 —1427.165 062
P, —1428.290 915 —0.288 872 0.621 636 —0.021 862 0.502 388 —1427.477 626
D, —1427.527 764 —0.304 812 0.587 395 —0.021 276 0.504 008 —1426.762 449
s, —1426.432 811 —0.281 786 0.586 579 —0.021 496 0.504 932 —1425.644 582
2p81s, —1416.254 678 —0.477 711 0.632 397 —0.023 761 0.454 263 —1415.669 490
2s2p°® %P9 —1423.362 007 —0.326 416 0.616 724 —0.021 490 0.477 514 —1422.615 674
3p9 —1422.864 295 —0.331 233 0.609 975 —0.021 512 0.478 262 —1422.128 804
pg —1422.418 578 —0.325536 0.601 741 —0.021 421 0.479 479 —1421.684 314
pg —1421.239 706 —0.386 455 0.605 864 —0.021 582 0.478 675 —1420.563 205
Z2=42
2522p* %P, —2922.340 138 —0.304 231 1.791 013 —0.045 187 1.559 323 —2919.339 220
5P, —2918.371 995 —0.300 300 1.747 678 —0.044 564 1.567 306 —2915.401 874
P, —2921.450 700 —0.290 081 1.837 186 —0.046 866 1.558 758 —2918.391 702
D, —2917.803 309 —0.308 348 1.701 775 —0.044 156 1.566 875 —2914.887 163
s, —2913.501 287 —0.292 188 1.681 969 —0.043 281 1.573 033 —2910.581 754
2p8 1s, —2897.999 767 —0.482 228 1.847 015 —0.050 019 1.400 032 —2895.284 967
2s2p°® 3P —2911.388 620 —0.333 063 1.803 053 —0.045 322 1.478 029 —2908.485 923
3p? —2910.117 037 —0.357 288 1.807 954 —0.045 848 1.478 532 —2907.233 686
3pg —2907.202 211 —0.331 319 1.753 990 —0.044 890 1.486 050 —2904.338 381
p9 —2906.050 135 —0.372 589 1.739 755 —0.044 721 1.484 806 —2903.242 884

ing from 2s22p?,2p3, and X%2p3, configurations are 2s?2p2.,2p3, and X%2p3,. As Z increases, relativity lifts
nearly degenerate, and there is a strong configuration intethe near degeneracy and significantly weakens the configu-
action between themsee Table . Three-configuration ration interaction between the two CSFs because it induces a
MCDFSCEF calculations yield the configuration mixing coef- large separation between the% and 25, spinor energies
ficients, 0.737 246;-0.674 943, and 0.030 330, for the low- and simultaneously a smaller separation between e 2
estJ=0 (3P,) state of C&", yielding coefficients nearly and 2, spinor energiegthe 2s,,, and 2,,, spinor energies
equal in magnitude for the two CSFs arising from thebecome asymptotically degenerate in the hydrogenic )limit
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FIG. 1. Second-order Dirac-Coulomb correlation corrections 0 10 20 30 40 50 60 70
E\2. of five selected states as functions of nuclear charge Atomic number

Table Il displays just such a trend as the nuclear charge FIG. 2. First-order Breit interaction energi&?Y of five se-
increases. A three-configuraton MCDFSCF on the 0 lected states as functions of nuclear charge. Filled circles, triangles,
state zA%* yields the configuration mixing coefficients, aNd sduares represent, respectivelg’2 °P,, 2s2p° 'Py,
0.945 76 and-0.316 66, respectively, for the two CSFs aris- 25 2P" "So. Open circles, triangles, and squares represent, respec-
ing from the 2%2p3,,2p3,, and Z%2p3,,. The configuration tively, 2s72p" "Dz, 2p" S, and 22p” P,

interaction between the two CSFs for22h (Z=230) is re- =2 (°P,) andJ=0 (®P,) even-parity states of ¢& and

duced dramatically by relativity makings22p3,2p3, the 722+ computed in increasing CSF expansion lengths. The
dominant configuration. On the other hand, tire2 com-  ¢qrrelation energies were computed by subtracting the single
plex gives rise to only one CSF for the=1, even-parity  configuration DFSCF energies from the MCDFSCF energies
state, which comes from the electronic configurationig] Because of near degeneracy and strong configuration
28°2p1;,2p3,- Thus, theJ=1 state does not exhibit near interaction of CSFs, thd=0 (3P,) state yields the largest

degeneracy. _ . . correlation energy in each MC expansion. Mgg—= 3, the
Within the n=2 complex, the electronic configurations, j—g (GP,) state yields correlation energiesEQﬂ)f,) of
25%2p7,2p3, and 2°2p1,2p3,, give rise to twoJ=2,  _0.396712a.u. and0.308 182 a.u., respectively, for &4

even-parity CSFs {P, and 'D,), and these interact and z#2*, the bulk of which are nondynamic correlation
Sth”Q'Yg- Two-configuration MCDFSCF calculations on theenergies. The nondynamic correlation becomes noticeably
ground °P, state, including the twd=2 CSFs of C&*,  smaller in magnitude in Z3* than in C4%" because relativ-

y|8|d Configuration miXing coefficients of 0.90395 and |ty tends to lift near degeneracy in tlle=0 state a<Z in-
0.427 63, indicating near degeneracy, while the configuratiogreases.

mixing coefficients become 0.97691 and 0.21364 for the The bulk of the experimentally determined fine-structure
heavier ZA*" with the configuration 822p%,2p5, being  term energies are reproduced by the MCDFSCF calculations
more dominant. Again, ag increases, relativity causes a within the n=2 complex for both C¥" and zrf?". In
large separation of the,, and o3, spinor energies and Ca'?*, the lowest)=0 (°P,) andJ=1 (3P,) state energies
weakens the configuration interaction between thecomputed in the three-configuraton MCDFSCF and one-
25?2p?,,2p3, and X%2p1,2p3, CSF. configuration DFSCF calculations are, respectively,
In the fourth column of Table |, we present the correlation0.131 717 a.u. and 0.112 348 a.u. above the grolmd@
energiesEM< | recovered from MCDFSCF for the lowedt (°P,) state computed in a two-configuration MCDFSCF
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FIG. 3. LSs as functions of nuclear charge. Filled circles, tri- F|G. 4. Second-order Breit correlation correcti®i® as func-

angles, and squares represent, feSP?CtiVe|3522F24 *P,, tions of nuclear charge. Filled circles, triangles, and squares repre-
2s2p° 'Py, and 2°2p* 'S,. Open circles, triangles, and squares sent, respectively, £2p* 3P,, 2s2p° P, and &22p* !S;.
represent, respectivelys22p* 'D,, 2p°® 'S, and 22p° °P,. Open circles, triangles, and squares represent, respectively,

_ . _ 2s?2p* 1D,, 2p® 1s,, and &2p° °P,.
while experimental values are, respectively, 0.13159 a.u.

and 0.11 147 a.y37,38. For Zrt?*, the lowest)=0 (°P,)
and J=1 (3P,) state energies computed in a three-(Ncse= 1) second-order MP calculations for the-0 (*Po)
configuration MCDFSCF and one-configuration DFSCF cal-States of C&" and Zrf?* yield total correlation energies of
culations are, respectively, 0.484 927 a.u. and 0.822887 a.anly —0.396032a.u. and—0.442840a.u., respectively.
above the ground=2 (°P,) state computed by a two- These account for only 58% and 74%, respectively, of the
configuration MCDFSCF while the corresponding experi-total DC correlation energies of €& (= —0.679456 a.u.)
mental values are, respectively, 0.503 188 a.u. and 0.815 46ind Zrf** (=—0.597 054 a.u.) obtained by a second-order
a.u.[37,39. The residual discrepancy is primarily due to MRMP based on three-configuration MCDF reference wave
dynamic correlation unaccounted for in the MCDFSCF cal-functions. Failure to treat nondynamic correlation in zero
culations. order causes difficulty in recovering a large fraction of dy-
To accurately account for dynamic correlation, state-by-namic correlation energy. As we have stated earlier, the bulk
state second-order MRMP calculations were performed fopf the experimentally determined fine-structure separations
each of the three fine-structure states with increasing CS&mong the lowest three®p,, 3Py, and °P,) states, are
expansion lengths. All electrons were included in the correveproduced by the MCDFSCF calculations, which properly
lation calculations. Computed second-order DC correlatiorireat state-specific nondynamic correlation due to interacting
corrections are given in the fifth column of Table I. The total configurations. Once the nondynamic correlation is ac-
DC correlation energies£MC+EZ2., are given in the last counted for by the MCDFSCF, the dynamic DC correlation
column of the table. Because of near degeneracy and stror@ergiefg(); computed by MR-MP are similar in magnitude
configuration mixing of CSFs, thd=0 even-parity state for all three fine-structure states, i.&\%~—0.28a.u. and
yields the largest total DC correlation energy. Mgse=3,  ~—0.29a.u., respectively, for 4 and zrf?*.
the J=0 (®P,) states of C¥" and Zrf>" yield total DC MCDFSCF and MRMP calculations were carried out on
correlation  corrections  of —0.679456a.u. and the ground state and nine low-lying excited states of oxygen
—0.597 054 a.u., respectively. In contrast, single-referencand 20 oxygenlike ions witd=9, 10, 11, 12, 13, 14, 15, 17,
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5 |- 10.000 tion; state-by-state MCDFSCF calculations for the excited

e Sa.0 .2 43 states were not done. Thus spinors and configuration-mixing
[e} 2s2p” “P7p-2s 2p “Pg F

coefficients employed in MRMP calculations for the excited
states were those obtained in ti@;_,, MCDF calcula-
- tions. Note again that the configuration mixing coefficients
- 1.000 displayed in Table Il for the ground and excited even-parity
j states of C¥" and Zrf?" are representative of those ob-
tained in the3PJ=o,1,2 MCDF calculations. FoZ = 8—26
and Z = 30-60, respectivelyJ-averaged and state-by-state
MCDFSCF calculations were performed for the excited
=0,1,2 Pg , ,) odd-parity states. The numbers of reference
CSFs for the MCDFSCF and MRMP calculations were, re-
spectively, 3, 1, and 2 for th@=0, 1, and 2 even-parity
states. For the odd-parity=0,1,2 states, they were, respec-
tively, 1, 2, and 1; these account for all the CSFs arising
from then=2 complex. All electrons were correlated in the
MRMP calculations. MCDFSCF calculations including the
frequency-independent Breit interaction in the configuration-
,_ mixing step of the MCSCF algorithm have also been per-
i I formed to study the effect of the Breit interaction on fine-
B P I A AL L structure term energies. Energy shifts due to the first-order
Atornic number Breit interactionsB(*) thus obtained are given in the fourth
column of Table IIl. The relativistic many-body shifg?®
[5,6,8 that arise from including the Breit interaction in the
effective electron-electron interaction in the second-order
MRMP perturbation calculations are also displayed in the
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FIG. 5. Deviations from the experiment of the computed term
energy separations for thes2p® 3P5—2s22p* 3P, as a function of
nuclear charg&. Deviation (cm?) and percentage deviation are
given, respectively, on the left and right ordinates. Atomic number 2
are given on the abscissa. Filled circles, triangles, and squares reéﬂ?wcecgﬂTEeOfS?CeO;%bloerg(e: I(':So?roerlrgﬁll(])tr?dcgrsrézﬁo(::ﬁ:\rlzrﬂfaete d
resent, respectively, deviations of the MCDF, MRMP, and nonrel-
ativistic many-body perturbation-theoretical levels. Open C|rclesW"[h B12 [Eq. (4)] in the effective electron-electron interac-
triangles, and squares represent, respectively, percentage deviatidih and the second-order DC correlation correctiBffe
of the MCDF, MRMP, and nonrelativistic many-body perturbation- ~ Table IV displays the contribution from each order of
theory calculations. perturbation theory to energy separati@u) of nine low-

lying excited states relative to the ground®2p* 3P, state
20, 22, 25, 26, 30, 32, 35, 36, 40342 50, ?nd 60. These tegr zn22*, These contributions were computed by subtracting
lowest states consist of twd=2 (*P, and “D) and tWo  the energy of the grounds32p* 3P, even-parity state from
J=0 (°Pg and 'S;) even-parity states arising froms2p®  that of the excited state in each order of perturbation theory
configuration, one=0 (*S;) even-parity state arising from gisplayed in Table IIl. The last column of Table IV contains
the 2p°, and oneJ=2 (°P9), two J=1 (*PS and'PY), and  the term energy splittings obtained in this study along with
oneJ=0 (®P) odd-parity states arising from thes2p®. those obtained in previous correlated calculations by Cheng,
Two different MC DF SCF methodsl-averaged and state- Froese Fischer, and Kif89] and by experiment for com-
specific, were employed to obtain the basis spinors foparison. The MCDFSCF and MRMP calculations, which in-
MRMP calculations. J-averaged MCDFSCF calculations clude the Breit interaction in the effective electron-electron
were employed for oxygen and oxygenlike ions with interaction, as well as the Lamb shifts, result in significant
=9-26, and a state-specific MCDFSCF fd@r=30-60. corrections and yield close agreement between the calculated
Critically evaluated experimental data are available for thesand experimental term energy separations, while DC corre-
ions up toZ=42[37,38. In Table IIl, we illustrate our cal- lation correchonsAE alone do not. For the lowestP,,
culations on seven representative ions wits 10, 15, 20, 3P, !D,, and'S, states the first-order correctiaB™) is
25, 30, 35, and 42. The table displays the MCDFSCF enermuch larger tha\E2.. TheB for the ground and excited
gies, ESCF! MRMP second-order Dirac-Coulomb correlation states are dlsplayed in Fig. 2 as functions of the atomic num-
energiesE(2., first- and second-order Breit interaction ener-ber Z. The Lamb shift correctionALS, is comparable or
gies,B® andB®), radiative corrections, and total energies even larger for most states than the relativistic many-body
of the ten lowest states. The radiative corrections, or thehift AB(?). Because radiative corrections are significantly
electron self-energy and vacuum polarization, estimated bgmaller in higher excited state&|.S becomes negative and
employing the method described in Ref83] and[35], are  increases by an order of magnitude for these states. Figure 3
given in the sixth column of the table under the headingshows the importance afLS in accurately predicting term
“LS” (LS for Lamb shify. Figures 1-4 show variations of energy separations. Radiative corrections are noticeably dif-
the computecEZ:, B, B?), and LS of several represen- ferent from state to state. The differenéd,S, becomes as
tative states as functions of the atomic numBerThe MC  large as a few tenths of an a.u. in largeens and results in
DF energies of the excitedD, and 1S, even-parity states significant correction to term energy separations, as does
are those obtained in théP;_ , state MC energy optimiza- AB®.
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TABLE IV. Contribution from each order of perturbation theory to energy separé&ion of nine low-lying excited states relative to the
ground %?2p* %P, state of ZR?". The term energy separations are compared with previous work and with the experiment.

AEgcr AEQ. ABW AB®@ ALS? AE

2s22p* 3p,

MRMP 0.484 927 0.008 738 0.009 956 —0.000 489 0.000 096 0.503 226

Z-expansioR 0.484 389 0.0 0.010 174 0.000 096 0.4947

Experiment 0.503188
2s22p* 3P,

MRMP 0.822 887 0.002 084 —0.011 178 0.000 123 0.001 875 0.815 790

Z-expansioﬁ 0.822 883 0.0 —0.011 213 0.001 875 0.8135

Experiment 0.815 461
2s?2p* 1D,

MRMP 1.248 078 —0.007 202 —0.024 285 0.000 097 0.001 716 1.218 403

Z-expansioh 1.247 716 —0.0107 —0.024 427 0.001 716 1.2250

Experiment 1.218 022
2822p* 1s,

MRMP 2.343 031 0.015 824 —0.025 101 —0.000 123 0.002 640 2.336 270

Z-expansioﬁ 2.340 612 0.0248 —0.025 010 0.002 640 2.3430

Experiment 2.335 380
2s2p°® 3P

MRMP 5.413 835 —0.028 806 0.005 044 —0.000 117 —0.024 778 5.365 178

Z-expansioh 5.413 855 —0.0298 0.005 035 —0.024 778 5.3643

Experiment 5.359 280
2s2p° 3P

MRMP 5.911 547 —0.033 623 —0.001 705 —0.000 139 —0.024 030 5.852 048

Z-expansioh 5.911 589 —0.0298 —0.001 649 —0.024 030 5.8561

Experiment 5.845 582
2s2p°® 3P}

MRMP 6.357 264 —0.027 926 —0.009 939 —0.000 048 —0.022 813 6.296 538

Z-expanSiOH 6.357 317 —0.0298 —0.009 946 —0.022 813 6.2948

Experiment 6.290 367
2s2p® P9

MRMP 7.536 136 —0.088 845 —0.005 816 —0.000 209 —0.023 617 7.417 647

MR-MP(Opt)d 7.533 364 —0.086 134 —0.005 735 —0.001 136 —0.023 864 7.416 495

Z-eXpanSiOH 7.531 790 —0.0924 —0.006 456 —0.023 864 7.4091

Experiment 7.409 740

2p6 1S0

MRMP 12.521 164 —0.180 101 0.020 717 —0.002 388 —0.048 029 12.311 362

MR-MP(opt)? 12.498 537 —0.157 495 0.016 288 —0.001 876 —0.048 812 12.306 642

Z-expansioR 12.498 391 —0.1604 0.015 956 —0.048 812 12.3051

Experiment 12.290 107

8ALS is from this work.

bCheng, Froese Fischer, and K{i89], Z-expansion calculations.
°Edlen,[37], Experimental data, Ref38].

doptimized spinors from state-specific MC DF.

Cheng, Froese Fischer, and K[®9] computed the ener- tries in Table IV, the MR-MP term energy separations devi-
gies of the ground and excited states of oxygenlike ions byte from experiment by as much as 0.008 a.u. and 0.0213
the finite-difference MCDFSCF within the=2 complex a.u., respectively, for the 2p° 'P$ and 2p° S, states
and estimated the leading nonrelativistic dynamic correlationwhereas those computed by Cheng, Froese Fischer, and Kim
corrections using th&-expansion theory of Layzg@1]. In-  [39] are in better agreement with the experiment. The results
clusion of the nonrelativistic correlation correction along suggest that use of the spinors and configuration-mixing co-
with the first-order Breit interaction and the Lamb shifts sig- efficients from ground-state  MCDFSCF calculations in
nificantly improved agreement between theory and experiMRMP calculations for the excited states are less appropriate
ment. The term energy separations computed by our MRMHFor higher excited states. State-specific MCDFSCF and
method are in better agreement with the experiment thaMRMP calculations were performed on the excited
those obtained by Cheng, Froese Fischer, and Kig for ~ 2s2p® 1P and 20° 1S, states to examine if the optimum
the lowest four excited states. Referring to the last two enspinors for the excited states improve the term energy sepa-



PRA 60

RELATIVISTIC MULTIREFERENCE MANY-BODY ...

2819

TABLE V. Energies (cm?) of low-lying even-parity states of oxygen and oxygenlike ions relative to the grosfjp2 3P, state. The
term energy separationg"*® computed by MRMP are compared with the experiment.

z 2s%2p* 3P, 2s%2p* 3P, 2s?2p* D, 2s%2p* 15, 2p® s,
Etheor Eexpt Etheor Eexpt Etheor Eexpt Etheor Eexpt Etheor Eexpt
60 4338 200 358 573 4479 456 8948 972 14 291 249
50 1906 359 272 808 2033 780 4039 624 8232 842
42 864 147 862 684 207 956 214010 977 113 975974 1922 041 1924 137 5279 298 5266 180
40 690 130 191 215 799 796 1567 153 4724 041
36 424185 423933 160 088 162 011 525 210 525 066 1020 232 1020 595 3784 241 3777 648
35 371858 371663 152 035 153 478 470804 470699 912 282 912501 3579 486 3573 416
32 243 652 243 568 127 401 127 793 336 308 336 229 647012 646 933 3026 366 3021 332
30 179 045 178 973 110 445 110437 267 408 267 325 512 752 512 557 2702 031 2697 367
26 89 251 89439 75218 75188 168 792 168 848 324 949 325149 2132 810 2134 090
25 73 622 73 800 66 524 66 505 150 806 150 851 291748 291 899 2006 359 2007 816
22 39180 39 277 42 290 42 309 108 731 108 717 215516 215509 1654 291 1656 253
20 24 380 24 465 28 816 28 880 88212 88 202 178570 178 568 1437 959 1440 313
17 10785 10 847 14 056 14 127 64 796 64 782 135152 135 206 1133 381 1136 464
15 5701 5748 7763 7817 52 266 52 256 110 696 110 799 939 739 943 504
14 3989 4028 5524 5568 46 571 46 568 99 215 99 343 844 854 849 058
13 2702 2733 3791 3827 41 140 41 147 88 052 88 206 750 880 755 634
12 1758 1783 2491 2521 35901 35925 77097 77287 657 503 662 973
11 1086 1107 1549 1576 30793 30 841 66 249 66 496 564 276 570 823
10 628 643 899 921 25759 25841 55382 55751 469 969 478 827
9 331 341 475 490 20736 20873 44 593 44918 399 337
8 150 158 216 227 15574 15 868 32722 33793 310737

TABLE VI. Energies (cm?) of low-lying odd-parity states of oxygen and oxygenlike ions relative to the grosf2i 3P, state. The
term energy separationg™, computed by MRMP are compared with the experiment.

z 2s2p° 3P3 2s2p° 3P9 2s2p° 3P§ 2s2p° P9
Etheor Eexpt Etheor Eexpt Etheor Eexpt Etheor Eexpt

60 6760 441 7261 260 11170598 11 440 327

50 3802 980 4181 481 5767 222 6015 455

42 2382 023 2381708 2656 857 2650 483 3292 303 3291573 3532737 3529 552
40 2117 877 2365 097 2851 851 3092 405

36 1676 282 1675 351 1866 459 1864 603 2136 839 2135798 2380 149 2377 764
35 1580 945 1579 903 1756 684 1755028 1987 396 1986 274 2231 636 2229 358
32 1325473 1324 308 1458 828 1457 440 1598 310 1597 034 1844 637 1842 732
30 1177 520 1176 226 1284 376 1282 957 1381 930 1380576 1627 985 1626 251
26 922 855 922 845 984 791 984 692 1029 992 1029 966 1267 771 1267 573
25 866 836 866 813 919 624 919516 956 445 956 409 1190 112 1189 924
22 712 320 712 268 742 960 742 838 762 079 762 020 978 198 978 007

20 618 326 618 280 638 367 638 266 650 193 650 149 850 489 850 299

17 486 964 486 894 496 384 496 276 501 614 501 554 672 888 672 630

15 403 882 403 784 409 018 408 890 411787 411701 560 834 560 476

14 363 286 363 160 366 927 366 774 368 866 368 752 506 096 505 643

13 323159 323 005 325653 325476 326 966 326 824 451972 451 383

12 283 403 283212 285044 284 831 285 898 285715 398 303 397 485

11 243929 243 682 244 955 244 688 245 482 245 238 344 928 343 688

10 204 635 204 288 205 236 204 872 205 539 205 195 291 659 289 480

9 165438 164 798 165 761 165 107 165918 165 279 238 393 239 605
8 125731 126 267 125879 126 340 125948 126 384 184 216
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rations. The results are given in the second row, denoted b3% from the experiment a=10. The percentage deviation
MRMP(opt), in each of the last two entries. Use of the opti- reduces monotonically in the rangetZ<20 and increases
mum spinors does not significantly improve the computedagain asZ approaches 26, again due to the inadequacy of the
term energy separations2p® P{—2s22p* P,, while the  Breit-Pauli approximation. The accuracy of the nonrelativis-
computed separation,pd 1S,—2s?2p*3P,, improves ap- tic and relativistic calculations for the lo&-ions is limited
preciably and becomes comparable in accuracy with that oddy the approximate treatment of electron correlation. The
tained by Cheng, Froese Fischer, and Kim. deviations between theory and experiment computed solely
In Tables V and VI, a detailed comparison of theoreticalat the MCDFSCF levelfilled circles in Fig. 5 are large
and experimental data is made on the term energies of tHéiroughout Fig. 5. However, subsequent inclusions of dy-
low-lying even- and odd-parity states of oxygen and oxygenfnamic correlation by MRMP and of radiative corrections sig-
like ions with Z=9-60, given relative to the ground nificantly reduce the deviation.
2s?2p* %P, state. Theoretical term energy separations,
E™eo" of the low-lying excited states were computed by sub-
tracting the total energy of the ground?2p* 3P, state from
those of the excited levels. Experimental term energy sepa- We have developed a relativistic multireference Mgller-
rations E®*P' [37,38 are reproduced in an adjacent column Plesset perturbation theory for a general class of openshell
for comparison. Experimental data are not available for ionsystems with a manifold of configurations, which interact
with Z=40, 50, and 60. strongly due to asymptotic degeneracy. The multireference
Figure 5 illustrates the differences and percentage devigserturbation theory for electron correlation is designed to
tions, 10QEMe°— E&PY/ESPL hetween theoretical and experi- treat a general class of openshell systems with two or more
mental term energy separationss2p® 3P5—2s?2p* °P,,  valence electrons that often exhibit quasidegeneracies. The
as functions of the atomic numb&c We see that the theo- essential features of the theory are its treatment of the state-
retical term energy separations differ from the experiment byspecific nondynamic correlation in zero order through a MC
amounts ranging from 10 cm at Z=26 to 1294cm® atZ DFSCF, and recovery of the remaining correlation, which is
=30 in the range & Z=<42. Although the percentage devia- predominantly dynamic pair correlation, by second-order
tion between theory and experiment increases to the level gferturbation theory. We have reported the first successful
a few tenths of a percent near the I@vend, it is consis- implementation and application of relativistic multireference
tently below 0.1% in the range ¥ <42, quite good agree- Maller-Plesset perturbation theory based on MCDFSCF ref-
ment. The differences between the term energy separatio§ence functions to ions of oxygen isoelectronic sequences.
computed by the nonrelativistic many-body perturbationAccurate calculation of term energy separations in such sys-
theory [40] and those obtained by the experiment are alsdems requires a method flexible enough to account for static
given for comparison. In the nonrelativistic calculations, thecorrelation (near degeneragy which varies considerably
multireference second-order perturbation theory was emfrom state to state.
ployed to account for electron correlation for the ions with
10<_Z$26_. Relat|v.|st|c_ corrections were included in t_he ACKNOWLEDGMENT
Breit-Pauli approximation. The term energy separations
computed by relativistic MRMP differ from experiment by ~ The authors thank Dr. Y.-K. Kim at the National Institute
0.1% or less for intermediaté up to Z=42, except at the of Standards and Technology for providing us with a code to
low-Z end where the discrepancy increases up to 0.4%. Norevaluate radiative corrections described in R¢8&3] and
relativistic many-body perturbation calculations deviate by[35].

V. CONCLUSIONS

[1] J. P. Desclaux, At. Data Nucl. Data Tabl&g 311 (1973; Rev. A 37, 307(1988; 42, 1087(1990.
Comput. Phys. Commun9, 31 (1979; in Atomic Theory [6] S. A. Blundell W. R. Johnson, and J. Sapirstein, Phys. Rev.
Workshop on Relativistic and QED Effects in Heavy Atoms Lett. 65, 1411(1991); S. A. Blundell, J. Sapirstein, and W. R.

Gaithersburg, MD, 1985, edited by H. P. Kelly and Y-K. Kim, Johnson, Phys. Rev. B5, 1602(1992.

AIP Conf. Proc. No. 13&AIP, New York, 1983, p. 162. [7] H. M. Quiney, I. P. Grant, and S. Wilson, Phys. S&8, 460
[2] I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, (1987; H. M. Quiney, I. P. Grant, and S. Wilson, Many-

and N. C. Pyper, Comput. Phys. Commad, 207 (1980; F. Body Methods in Quantum Chemistry, Lecture Notes in Chem-

A. Parpia, C. Froese Fischer, and I. P. Grahigl. 94, 249 istry edited by U. Kaldor(Springer, Berlin, 1989 H. M.

(1996. Quiney, I. P. Grant, and S. Wilson, J. Phys28 L271(1990.
[3] K. T. Cheng, Y.-K. Kim, and J. P. Desclaux, At. Data Nucl. [8] Y. Ishikawa, Phys. Rev. A2, 1142(1990; Y. Ishikawa and

Data Table4, 111(1979. H. M. Quiney,ibid. 47, 1732(1993; Y. Ishikawa and K. Koc,
[4] M. H. Chen, inX-Ray and Atomic Inner-Shell Physiegdited ibid. 50, 4733(1994).

by B. CrasemaniAIP, New York, 1982 p. 331; M. H. Chen [9] Y. Ishikawa and K. Koc, Phys. Rev. B3, 3966(1996; 56,

and B. Crasemann, Phys. Rev. 28, 2829 (1983; 30, 170 1295(1997).

(1984. [10] K. Koc and J. Migdalek, J. Phys. B3, L5 (1990; 25, 907
[5] W. R. Johnson and J. Sapirstein, Phys. Rev. L. 1126 (1992.

(1986; W. R. Johnson, S. A. Blundell, and J. Sapirstein, Phys.[11] A. W. Weiss and Y.-K. Kim, Phys. Rev. A1, 4487(1995.



PRA 60 RELATIVISTIC MULTIREFERENCE MANY-BODY ... 2821

[12] Z. W. Liu and H. P. Kelly, Phys. Rev. 43, 3305(1991). 189 (AIP, New York, 1989, p. 209.
[13] E. Avgoustoglou, W. R. Johnson, D. R. Plante, J. Sapirstein, §.24] J. Sucher, Phys. Rev. 22, 348(1980.
Sheinerman, and S. A. Blundell, Phys. Rev. 48, 5478 [25] M. H. Mittleman, Phys. Rev. 24, 1167 (1981J).
(1992; E. Avgoustoglou, W. R. Johnson, Z. W. Liu, and J. [26] Y. Ishikawa, H. M. Quiney, and G. L. Malli, Phys. Rev.48,

Sapirstein,ibid. 51, 1196 (1999; M. S. Safronova, W. R. 3270(199)); K. Koc and Y. Ishikawajbid. 49, 794(1994); Y.
Johnson, and U. |. Safronovibid. 53, 4036(1997. Ishikawa, K. Koc, and W. H. E. Schwarz, Chem. Phg25

[14] E. N. Avgoustoglou and D. R. Beck, Phys. Rev.5% 4286 239(1997.
(1998. [27] C. Mgller and M. S. Plesset, Phys. R&@, 618(1934.

[15] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Phys. Rev. [28] P. J. Mohr, Phys. Rev. A6, 4421 (1992; P. J. Mohr and
A 54, 3948(1996); V. A. Dzuba and W. R. Johnsoibid. 57, Y.-K. Kim, ibid. 45, 2727(1992; P. J. Mohr, G. Plunien, and
2459 (1998. G. Soff, Phys. Rep293 227 (1998.

[16] D. R. Beck, Phys. Rev. 87, 1847(1988; D. R. Beck and Z.  [29] S. A. Blundell, P. J. Mohr, W. R. Johnson, and J. Sapirstein,
Cai, ibid. 37, 4481(1988; Z. Cai and D. R. Beckjbid. 40, Phys. Rev. A48, 2615(1993.
1657(1989; D. R. Beck and D. Dattabid. 44, 758(1991); D. [30] J. Sapirstein, Phys. Sc86, 801(1987; Nucl. Instrum. Meth-
R. Beck,ibid. 45, 1399(1992; 56, 2428(1997); K. D. Dinov ods Phys. Res. B1, 70 (1988; S. Mallampalli and J. Sa-
and D. R. Beckjbid. 53, 4031(1996. pirstein, Phys. Rev. A4, 2714(1996; 57, 1548(1998.

[17] J. C. Morrison and C. Fischer, Phys. Rev3B, 2429(1987); [31] L. Labzowsky, V. Karasiev, I. Lindgren, H. Persson, and S.
S. Salomonson, I. Lindgren, and A.-M. Mansson, Phys. Scr. Salomonson, Phys. ScF46, 150(1993; I. Lindgren, H. Per-
21, 351 (1980; E. Lindroth and A.-M. Matensson-Pendrill, sson, S. Salomonson, V. Karasiev, L. Labzowsky, A. Mitrush-
Phys. Rev. A53, 3151(1996. enkov, and M. Tokman, J. Phys. B6, L503 (1993; I.

[18] K. Hirao, Chem. Phys. Lettl90, 374(1992; 201, 59 (1993; Lindgren, H. Persson, S. Salomonson, and L. Labzowsky,
H. Nakano, J. Chem. Phy89, 7983(1993. Phys. Rev. A51, 1167(1995.

[19] H.-J. Werner, Adv. Chem. Phy$9, 1 (1987%; H.-J. Werner  [32] G. W. F. Drake, Adv. At. Mol. Physl18, 399 (1982.
and W. Meyer, J. Chem. Phyg3, 2342(1980. [33] P. Indelicato, O. Gorceix, and J. P. Desclaux, J. Phy20B

[20] K. Wolinski, H. L. Sellers, and P. Pulay, Chem. Phys. Lett. 651 (1987).
140 225(1987; R. B. Murphy and R. P. Messmahid. 183 [34] M. W. Schmidt and K. Ruedenberg, J. Chem. Ph.3951

493 (199)); K. Andersson, P. Malmgvist, and B. O. Roos, J. (1979.
Phys. Chem96, 1218(1992; P. Kozlowski and E. R. David- [35] Y.-K. Kim, in Atomic Processes in Plasma&aithersburg,
son, J. Chem. Phy4.00, 3672(1994; K. G. Dyall, ibid. 102 MD, 1989, edited by Y. K. Kim and R. C. E Hon, AIP Conf.
4909(1995. Proc. No. 206(AIP, New York, 1990, p. 19.
[21] D. Layzer, Ann. Phys(N.Y.) 8, 271(1959; D. Layzer and J.  [36] T. Kagawa, Phys. Rev. &2, 2340(1980.
Bahcall,ibid. 17, 177 (1962. [37] B. Edlen, Phys. Scr28, 51 (1983.
[22] M. J. Vilkas, Y. Ishikawa, and K. Koc, Phys. Rev.3B, 5096 [38] J. R. Fuhr, W. C. Martin, A. Musgrove, J. Sugar, and W. L.
(1998; Chem. Phys. Lett280, 167 (1997). Wiese, NIST Atomic Spectroscopic Database, available at
[23] I. P. Grant, in Relativistic, Quantum Electrodynamic, and http://physics.nist.gov/PhysRefData/contents.html.
Weak Interaction Effects in AtomBroceedings of the Confer- [39] K. T. Cheng, C. Froese Fischer, and Y.-K. Kim, J. Phyd.5
ence on Relativistic, Quantum Electrodynamic, and Weak In- 181 (1982.

teraction Effects in Atoms, Santa Barbara, CA, 1988, edited byf40] G. Gaigalas, J. Kaniauskas, R. Kisielius, G. Merkelis, and M.
W. R. Johnson, P. Mohr, and J. Sucher, AIP Conf. Proc. No. J. Vilkas, Phys. Scr49, 135 (1994).



