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Higher-order recoil corrections to energy levels of two-body systems
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We have calculated a correction of oraern’ In? « to energy levels of the general two-body system of spin-
% particles with arbitrary masses. The result allows for the improved theoretical predictions &-2f dand
2S-2P intervals in positronium. Further implications to the hydrogen-deuteri®23 isotope shift are dis-
cussed alsd.51050-29479)00610-1
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I. INTRODUCTION oretical predictions of the positronium Lamb shift and of the

The study of recoil corrections in hydrogenic systems hashydrogen-deutenum isotope shift.

a long history. In the nonrelativistic limit, both masses
andm, of a two-body system could be replaced by the single Il. THE METHOD OF THE CALCULATION
reduced masg =m; m,/(m;+m,). The treatment of rela- OF In?a TERM

tivistic effects is much more complicated. It would be incor- W I ati dered perturbation techni d cal
rect to use the Dirac equation with a reduced mass. In gen- € apply a ime-ordered perturbation technique and cal-

eral, recoil corrections could be described by the Bethe?mate diagrams presented in Fig. 1. Since the Coulomb

Salpeter equatiorf1] or some other two-body effective gauge is used, the exchange of Coulomb and transverse pho-
P " q 5 hich i v obt oy d by th tons is considered separately. We have checked and verified
equation(see, e.g.[2]), which is usually obtained by the that no further diagrams contribute to®ln, except for the

elimination of the relative time. Several corrections haveannihilation term. However, this term could be incorporated

been calculated in this approach. However, with the increasss an additional pointlike interaction in the Breit Hamil-
ing order ofa, the application of the BS equation increasesygnian [14]. Since we are concentrating on thé ta term

in complexity. In spite of these problems, it was possible topny, the calculation is relatively simple. One assumes that
calculate many higher-order corrections, for exampie,® 3l ‘momenta are of ordema, and identifies logarithmic
contributions to positronium hyperfine structuteFS [3].  terms as ultraviolet or infrared divergences in the corre-
In parallel, effective theories have been developed, to takeponding integrals. The actual regularizations of these diver-
advantage of a natural cancellation between various terms ilences are not relevant, since they lead to the safe In
the perturbation theory. Let us mention the NRQ&Dnrel-  term, so we will often not write these regularizations explic-
ativistic quantum electrodynamicsntroduced by Caswell itly. In the momentum space, the double-logarithmic term
and Lepagd4], which has inspired further developments In?a comes from the integration over two momenta. It is very
such as the effective Hamiltonian approdéii Using these convenient in the calculation to regularize separately these
methods, recoil corrections to ordef have been calculated momenta by some cutoffs. So, one has

for hydrogen, muonium, and very recenff~8| for the pos-

itronium atom. Recoil effects are especially dominant in pos- Sa Nt

itronium energy levels because of the absence of a heavy f dkf dq f(k,q), D
nucleus. On the other side, positronium has been intensively ea 0

investigated experimentally. Several transition frequencies

for the ground-state hyperfine splittif@], for the 1S-2S 5,4”‘41% {p/\"’\’\_% QJJ\N\/‘E e_p/\"“v.i
triplet interval [10], and for the fine structuren&=2) [11] _ : F%ILLL :

have been measured with high precision. In this paper we
calculate the complete double-logarithmic correction in the  { i
next order, i.e.ma’In?a, which we think is the leading CHER. :
correction beyond the known terms. The annihilation term
together with other spin-dependent terms have already bee
derived a few years ago ii2]. Very recently, a complete
result has also been obtained by Melnikov and Yelkhovsky
[13], and both our results and those[ k8] are in agreement.
This calculation significantly reduces the uncertainty of the- £ 1. Time-ordered diagrams contributing to energy levels in
orderma’ Ina. The wavy line is a transverse photon and the dotted
line denotes retardation, namely the terdftE) in the expansion in
*Electronic address: krp@fuw.edu.pl Eq. (4). Each diagram represents a whole class of diagrams that
Electronic address: sgk@onti.vniim.spb.su differ in time ordering of vertices.
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wheref is some function that comes from the matrix ele- The previous terms contribute at lower orderinAfter this
ments, which, for example, could be of the forfh  expansion the matrix elements become divergent. We can
=q/[k (g%+ «?)]. The parametee is assumed to be small. regularize the Coulomb potential by
Parameterss,\ are assumed to be large or infinitely large
with the assumption that first the limit i and next that ins a  « —anr

. . . . " . ——>—(1—e ) (5)
are performed. It is an assumption which is verified during r
the calculation that the lower cutoff is necessary only for one
momentum, which we denote here ky After all integra- t0 prevent these singularities. The retardation contribution
tions, one gets from self-energy diagrams the logarithmi¢hen takes the form
term of the form Inf/e)In \, which is to be replaced by . 5 o
For exchange diagrams, one getsufgln \, which is re- ES_ g2 J"sa d°k 5i K'k!
placed by: In a. Additionally, for the so-called self-energy q ca(2m)32K
seagull diagram we getd4, and it is replaced by fw. Itis
an assumption of our calculations that naSlim A terms ap-

J ——

k2

pl( ) e_lkrlpl

k-

pear for the exchange diagrams. We have verified it for some X (gl s m, K |[6)+(1-2).
diagrams, but were not able to prove it for the general case.

(6)

2
IIl. CONTRIBUTIONS TO In “« One can use the equation
In the following we neglect the spin-dependent terms. 5

These terms, C(_)ntributing to hyp_erfine structure, have al- ek (H-E)e Tkn=H—E+ K _ Pk @)
ready been obtained [12] and confirmed if13]. They also 2m; my

may contribute to energy levels, but due to various internal
cancellations they do not glvezlm In the framework of tO select in the numerator the terms proportional to the sec-

nonrelativistic QED, one derives the following expressionsond power ofk, since only these terms give i),
for the energy shift of a two-body system due to the self-

2 (S 3 il 2
energy f=c=1): Es:e_ b dk 5ij_% <¢|pi[_3k (H—E)?
, 4 m2)ea(2m)32K® k2 2m;
. zfaa d3k (5” k'k') .
E°=e —_— - K .k -k
(2m)32k k2 + p_) (H—E)+p—(H—E)p—
: L my m; my
- P1 _ Pl
X(ple'kn—_—— —e Tkn_=|g)+(1-2 k)2
(¢l m; E-H—K |¢> (1=2), +(H- E)(p ) pllo)+(1—2). (8)
2
By commutingH — E on the right and left one expresses all
and due to the exchange of the transverse photon, matrix elements by one term, whose logarithmic part is as
follows:
d3k kK]
EE= _ g2 f ij_
(2m)3%2k k2 1
( )4 ——=8In\, (9)
1 /.Lafr
><<¢|e'“1plm 'kr2p2|¢>+(1<—>2) '
my wherer=r;—r,, r=|r|, and u is a reduced mass. After
3 using the replacement lfi)in A—In’a, one obtains
In the following we consider all contributions to energy lev- 32 104 u® 16 u° \of
els of the ordema’ In?a that come from this expression and EqS: - g,u 3 3 —In a. (10
various relativistic corrections. We denote here and below by m1m2 m1m2

ES the contribution from the self-energy diagram andey
a corresponding contribution coming from the exchange dia-
gram.

The calculation of retardation in the photon exchange dia-
grams proceeds in a similar way. One starts from the nonrel-
ativistic formula for the energy shift due to the exchange of
the transverse photon in E(), expands the resolvent to the
third power ofH—E, and obtains the following expression
for the retardation contribution:

A. Retardation in the nonrelativistic self-energy
and photon exchange

The retardation contributiorES is obtained from the

fourth term in the following expansion of the resolvent: E_ e? J' d3k ( i k'k!
a  m.m ca 35915 T2
1 1 H-E (H-E? (H-E) ne (2m)=2k | k
E-H-k k g2 K3 K4 X (gp|py € H-E)% " 2p|p)+(1-2).

(4) (11)
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It is transformed to a more suitable form, using 3K KiKi 1
S_ 2 ij_
_ (2m)
el k~r1(H_E)3e |k-r2=el k-r/2 H-E+ —
8 u +(1—2), (18)
3
— p_k (i — i) glk-r2 (12 wherej, ¢, andH contain relativistic corrections, which are
2 \mp my described later on. The a” In?« term is obtained from the

second term in the expansiof). With the proper integration

Since we expect and search only for terms that contain In Ign its ES becomes

we select in the numerator only those containing the secon
power ofk. Other terms do not give &and therefore

s_o2 [P0 0k _E
E € fea(Zw)32k3 J <¢|J1(H E)Jl|¢>

+(1-2) (19)

Ik]

k
51]__)<¢|p e|k r/2

£ 2e? fua d3k
E =
49 mum 39Kk5
112 fa(27T) 2k

HE33k2HE211 1\2
(B g, (B alm, " m,

=3—|n( )<¢|D1 [H-E;ji]]l¢) +(1—-2).
X[p-k®(H—E)+p-k(H—E)p-k (20)

The analogous derivation for the exchange of single trans-

+(H=E) p-k?]{ e*"2pl|g). (13)  verse photons leads to

For the same reasons we changed the upper cuté&ffsimce E_ 2" d’k / T k' k! i g j
: i L Ef=-e ()1 (H—E) 3l ¢)
it does not affect the logarithmic singularity ian All the ca (277)321(3\

matrix elements, except for the first one, are calculated in the

same way as in the case of the self-energy diagram. Itis ~ +(1<2) (21)
because we can neglegt“ "2 factors. The first term in curly
brackets in Eq.13) is calculated as follows. One returns
with the expansion to the complete resolvent with the non-

T E'”( )<¢’|Ul?[H—E:Jz]]l¢>+(1H2).

regularized Coulomb potential, (22
2e? d3k KK One can consider now all relativistic corrections sepa-
AE5= j 3 " — — rately. By the correction to the current, we mean
miM; J (27)°2k k
A
1 =—+§ (23
i k-r/2 jaik-r/2 J I
><< pE H+kpe > (14 m
This matrix element is calculated using the Gavrila-Costescu Sie — p o4
formula from[15]. The corresponding logarithmic part is 1= 2md P- (24)
(y~— 2 —In( (pa)’+ k2/4) i (15 It is obtained by expansion imp/m of the expression
S k? k ' u(p)yu(p). The corresponding correction to electron self-
energy is
The integration ovek from u a“ to u gives
8w o Ef= 2”‘In((s)wl P, -[H E; le|¢>>
E_° & n2 iT 37 e 3 P T e
AE, 5 mm, = In“c. (16) m™ o\ € 2m; 1

+(1—-2). 25
After summing all terms, one derives the following expres- (1-2) 29

sion for the retardation in the transverse photon exchangghe commutators in the matrix element could be performed

diagram: with the result
16 w2 8 u® \af 5
EE=| - = +- —In2a. (17) Yl
q 2 2 ol -|P)=a (26)
15 mim, 3 mlm2 T < | | > 4<¢
B. Correction to the current and EJ becomes
For the further derivations we transform the initial expres- 16 u5  ub\a’
sion to the more convenient form. The self-energy contribu- EJ-S=§ —t—= —|n2a. (27
tion could now be calculated in the dipole approximation: m1 m;
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The calculation of the contribution coming from the ex-

change of the transverse photon is analogous and leads to the

result

5

m;m;

1 7

a
—In?a.

£ 1
2t
mp my) 7

r=

8
=3 (28)

C. Correction to the Hamiltonian

The correction to the Hamiltonian in the self-energy dia-

gram gives a contribution of the form

6 P1 P1
Ex =3 (;)<¢|m—' 5H-m—l}|¢>+(1ﬂ2) (29
and in the photon exchange diagram it is
E a P2
Eh=—3, ( )<¢| {5'*;@} ) +(1-2).
(30)
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8 s S\a’ (6
En== 'Z + 'L; —In(— In\
3\mim, mim,) 7™ €
8 uw® [ 1 1)\a’
s 2S5 St (35
3mmyimf mi 7

The analogous calculation for the photon exchange diagram
leads to

16 u® of ,u) 8 u® aof
S T 2
En 3 % % In ; In)\e3 % § In“a. (36)

D. Correction to the wave function

Correction to the wave function in the self-energy dia-
gram gives

Only a few terms survive the commutators but only one

gives the double log,

@ U AT
— | p!
oH= 2m1m2p s 3 p5. (31
When inserted in the expression B[, , it becomes
o\ «
s_ 22
B 37T|n(€)m§m2
} o)
X|PLi| 5| 8+ 5 ipL| P2l 6) + (12).
(32

The matrix element could be transformed to the form

(o] |dy=(o|p'ams](r)p|p)

SN LN
=(pa) <¢|T47T5ﬁ(f)7|¢>

2
H(Ma)2<¢|r—3|¢p8|n>\, (33
where
. d’k [ . KK ik
- 5'1—32) (34)
413 r

The correction froméH in the self-energy diagram is

s_2a ( ) 1 [pl _E.&H

Eg=3_In (¢|5H(E e e |b)
+(1-2) (37)

2a|<5) 1+1 - o, 0|

3 )| 2t ) (HH G AT O19)

(39

where 1/H—E)’ is a reduced Coulomb Green function and
6H here is the spin-independent part of the Breit Hamil-
tonian:

4
p p Tal 1 1
M= om et T(m—; s
1 2 1 2
a [8T
2mm,P | T T [P 39

The logarithmic correction in these matrix elements has al-
ready been calculated in the context of positronium hyperfine
structure in[5],

ml 1 1
J— _+_
<¢|5H mmy ————475%(r)|¢)=8u a®In\ 2\ 3
1/1 1 1
4\m2 m3/ mMm,
=2 uBa®in. (40)

The contribution from the correction to the wave function
becomes

(41)

The corresponding contribution from the exchange dia-
grams is calculated as a second-order correction to energy
coming fromsH=H® andH®),
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16 o’ 3

EE=2 H(4);H(5) (42 ES=— = —|In § In )\—Eln25 ®
¢ (E_ H)/ ' S 3 7 € 2 mym,
. . I . . 8 u® o
H® is an effective Hamiltonian that gives correction to en- S ~—In2« (49)
ergy at ordem «° In o due to photon exchange: 3mm, 7
2d%lna
O=—_ . F. Other diagrams
H 3 s 83(r) (43) 9

There are further diagrams, which may contribute to
Since the logarithmic singularities iRI®) are regularized ma’ In2a but they cancel out between themselves. The first
separately from singularities in the matrix elements, oneexample is a family of diagrams involving triple seagull in-
should include an additional factgr The matrix element in  sertions. It consists of six diagrams and contributes at order
Eq. (42 is the same as for the self-energy case, so one olma’, but the Irfe terms exactly cancel out. The second fam-

tains ily of diagrams involves the exchange of two photons. It has
s 7 been partially accounted for ii§; , namely as a part of the
e 1l Y nla (44y ~ contribution coming fromsH. The corrections beyond that
¢ 3mm, m ' do not show infrared singularity and therefore do not give
In?a. The third and last family of diagrams is self-energy
E. Retardation in the seagull contribution with the exchange of the transverse photon. There are alto-

Th I tributi ¢ the int tion gether 16 diagrams. Their sum gives a contribution which
€ seagull contribution comes Irom the Interaction termy,, ¢ een exactly included Eﬁ as a part of the Hamiltonian

A /(Z.m)' Let us Co.ns'de.r f|r§t the exchange Q|agrams: Ther%orrection. Therefore, we state that there are no further con-
are six of them, which differ in the time ordering of emission tributions to thema? InZe term

or absorption of two photons. The sum, after neglecting

terms with no 18, could be transformed to
IV. SUMMARY

e 1 € (uadq 1/, | @ The double-logarithmic correction coming from self-
ES__§ 2 343 P(H-B)p 2r energy diagrams is equal to
mimy,Jea (2)° q gy diag q
ol o) . S_ S, ES,. S ES. S
X 5Il+_2) +2;‘r(5”+_2)pl(H_E)pl> E _Eq+Ej+EH+E¢+ES
r r
32 u® )\ af 5
+(1-2). (45) =|—4pu+t 3 —~—r Eln adg, (50
After commuting H—E) on the left or right side of the
expression, it is transformed to and from the exchange diagrams
3 7 3 7
@ 1 8 o
3mmy 7€)\t 3mmy 7 Ef=Eq+E[+ER+E+ES=| — = —1In%aéd),
(46) 15 m1m2 ’7Tn3

(51
The self-energy diagrams with the seagull insertion after ne-
glecting terms with no Ifw and several transformations sum where we could restore the and | dependence, since all

to corrections were governed by?(0) or by ¢'(0)¢(0),
which vanish for states with#0 and have a h? depen-
) dence forn S states. These corrections sum to

o 1 fxadsql e_z(aik_ ULH

S mimy)  (2mB2a 92
. 149 42\ o
sadidy e [ L 030 1 E=EStEE=| -4t — -2 | % n2as,. (52
30012 " 2 |2 15 mymy/ 7n3
ea (2m)° 202 d; /d3(g;+0y)

.
r’p

X < e—iq1~r pi :

In comparison to the work of Melnikov and Yelkhovsky
+H.c.)+(1<2). 4
C> (1=2) “7) [13], we found an agreement separately for self-energy and
) ) ~exchange contributions, and it forms a significant test of
It could be further calculated using the following equation: these calculations. For the completion of results, we present
q wave function. We have verified that although the self-

. the spin-dependent contribution which was first calculated in
( J qq')< iar
o——1le 4
q X .
energy seagull diagrams also contribute separately to

>% Am (48) [12]. It is obtained as a spin dependeii correction to the
which holds in the limit of largey, so one obtains o, 0, In? a, their sum vanishes. This correction is equal to

ol pj.ﬁ
1 lr
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64 u® 112 Wb
—_— +_
9 mm, 9 mimj

Ents= —In%a So- @4‘ 8 7 m—3|n2a dlo- (57)

mns 4 mn

a’ o0, B (499 70'1'0'2) a’

(53

The spin-independent correction, which we derived here, aflt contributes 1.16 MHz to the 3S,-23S; transition. The
fects the B-2S transition in hydrogenic systems. In the limit final theoretical predictions and measurements for this tran-

of large nucleus mass, one obtains sition are
wul 29 m m\?] a’
Ens =" —1+ = Dol D) | jn2a2, V(15-29) eo=1 233607 222.0.6) MHz, (59
m2 60 M M) | 7nd
(54)

i ) o ) V(1S-29) yp=1 233607 216.43.2) MHz [10].  (59)
The first term in square brackets is in agreement with the

known Irf a2 term in the nonrecoil case. It was customary
to assume a coefficient®/m? [2], as one expected it to give  This correction affects also %5,-2°P; transitions by
the largest contribution to the recoil corrections. Our calcu-—0.17 MHz. Although current measurements are much less
lations confirms this assumption since 29/60 is indeedrecise[1l], a new project is underway by the Michigan
smaller than 3, as obtained by expansion of ##ém? coef- ~ group to remeasure&2P transitions with the much better
ficient in them/M mass ratio. Its contribution to thesl2S ~ accuracy, comparable with this correction. The natural con-
transition in hydrogen is about 1 kHz, which is relatively tinuation of this work would be the calculation of the single
small in comparison to the uncertainty of about 30 kHz orlog and the constant terms. We think, however, that it is a
more, Coming from the poor|y known proton Charge radiuspretty difficult task and the calculation presented here gives a
or unknown higher-order two-loop corrections. However, itrough estimate for remaining terms, which are assumed to be
is significant for the hydrogen-deuterium isotope shift of thehalf of the Irfa contribution. It gives a 0.24 kHz uncertainty
1S-2S transition, where the proton charge radius and twofor the H-D(1S-2S) isotope shift, 0.6 MHz for the $2S
loop corrections cancel out. This additional term contributedransition frequency in positronium, and 0.9 kHz fd8-2P

also in positronium.

Avyp(1S—2S)=0.48 kHz, (55)

which should be compared with the precision of the most ACKNOWLEDGMENTS
recent measurement by the Garching gro(p6] v
=670994 334.64(15) kHz.

There are further contributions specific to positronium.
They come from the annihilation diagrams and were ob
tained in[12],
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