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Quantum entanglement cannot be used to achieve direct communication between remote parties, but it can
reduce the communication needed for some problems. Let eaktpafties hold some partial input data to
some fixeck-variable functionf. The communication complexity dfis the minimum number of classical bits
required to be broadcasted for every party to know the valueaf their inputs. We construct a functi@
such that for the one-round communication model and three pa@iesn be computed with+1 bits of
communication when the parties share prior entanglement. We then show that without entangled particles, the
one-round communication complexity Gfis (3/2)n+ 1. Next we generalize this function to a functibn We
show that if the parties share prior quantum entanglement, then the communication compl&xisyedfactly
k. We also show that, if no entangled particles are provided, then the communication complekitis of
roughlyk log, k. These two results prove communication complexity separations better than a constant number
of bits. [S1050-294{@9)05209-9

PACS numbe(s): 03.67.Hk

[. INTRODUCTION casts one bit to everybody, on the total cost of one bit of
communication.

Suppose each df parties holds some data that is un- We are interested in determining the minimum number of
known to the others, and they want to evaluate some fixe®its required to be broadcasted in the worst case for every
k-variable function on those data. If the function is non-party to know the value of. This number is called the
trivial, then this cannot be done unless the parties communicommunication complexity ofénd is denote@(f,k,n). We
cate. want to compare this number witQ(f,k,n), the communi-

In Ref. [1], Cleve and Buhrman raised the question ofcation complexity off with prior quantum entanglement.
whether or not less communication is needed if the partied hat is, the situation where we allow the parties to share a set
possess entangled particles. They demonstrated that, for% €ntangled particles before they learn their ingutz].
specific problem, prior quantum entanglement decreases the, 70" €xample, with this terminology, the separation ob-
need for communication by one bit from three to two bits. A@ined in[2] reads: there exists a three-variabke=3) Bool-
one-bit saving was also obtained by Buhrman, Cleve, an an functiong whose inputs are two-bit strings € 2), and

van Dam in Ref[2] for another problem where each party t%nghf: s(:e(gérséﬁt); Sét b;ht ici(gfs’gi)bzlez' Flz?res),(c;Tne Ifeungeve
initially holds a two-bit input-string. In both of these prob- ' b b : p'e,

: . et al. [3] showed that prior quantum entanglement does not
lems, there are three partiels=3). They left open the im- help in computing the so-called inner product function.

portant question if a separation larger than one bit is pos- Reference$l,2] left open the very interesting question of
sible. In particular, is a separation in an asymptotic setting, hather a separation in an asymptotic setting is possible.
possible? In this article we show that this is indeed the casepyig question can be phrased more formally as: Does there
Let f be ak-variable Boolean function whose inputs are qyists a functiorf for which C(f,k,n) grows ink or n, and
n-bit binary strings (that is, f: X*~{0,3} where X  for which the ratio betweerC(f,k,n) and Q(f,k,n) is
={0,"). There arek parties, denotedP,, ... ,P,, where  pounded from below by some constant larger than 1?
party P; holds input date; (i=1, ... k). Initially, party P; In this paper, we first study the case where the number of
only knowsx;, so, to evaluatd, the parties have to com- parties is threeK=3). In this setting we consider thane-
municate with each other. The communication is done byound communication model where each party is allowed to
broadcasting classical bits, where, each time, a party broadommunicate at most once. We construct a Boolean function
G for which C(G,3n)=(3/2)n+1 whereasQ(G,3n)=n
+ 1. This gives a separation by a factor of 3/2 in terms of the

*Electronic address: Harry.Buhrman@cwi.nl number of bits hold by each of the three parties.

"Electronic address: wimvdam@qubit.org Next we relax the requirement that only one round of
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function G to F. We demonstrate that the communication
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Theorem 1With prior quantum entanglemefd,, can be

complexity of F with prior guantum entanglement is exactly solved with one-round communication usingn2 1 bits.

k [that is,Q(F,k,n)=k], but that, ifn=log, k, then without
guantum entanglement it is roughlklog,k [that is,

In Sec. IIB below, we prove the following lower bound
for the case in which we do not allow quantum entangle-

C(F,k,n)~klog,k]. We prove this by giving upper and ment.
lower bounds in both cases. This implies a separation by a Theorem 2Without quantum entanglement, there is no

logarithmic factor ink, the number of parties.

one-round protocol fo6G,, that uses less tham+ 1 bits of

This paper thus presents a function with a separation by eommunication.
constant factor in terms of the number of bits, and a function For one-round protocols we thus archive a separation of
with a separation by a logarithmic factor in terms of the2m+ 1 bits against &1+ 1 bits. We do not know the classi-
number of parties. Very recently, much more impressivecal communication complexity of computinG,, without
separations have been obtained in terms of the number @y restriction on the number of rounds.

bits. Buhrman, Cleve, and Wigdersa], Ambainis et al.

[5], and Raz[6] have all found two-party computational

problems for which an exponential separation holds.

Il. MODULO-4 SUM PROBLEM

In this section, we fix the number of parties to thrée (
=3). As is common, we name the parties Alice, Bob, an

Carol.

In Ref.[2], Buhrman, Cleve, and van Dam considered the
modulo-4 sum problerdefined as follows. Alice, Bob, and

Carol receivex, y, and z, respectively, where,y,ze U
={0,1,2,3, and they are promised that

(X+y+2z)mod 2=0. (1)

A. Classical upper bound

The lower bound in theorem 2 is tight as there is a
straightforward one-round protocol that compug with
3m+1 bits of communication. It is instructive for under-

dstanding the proof of our lower bound, first to understand

that protocol.

Consider an inpuke U™ to Alice. We can think ofx
=(Xq, ... Xy as consisting of two parts, the high bits and
the low bits. That is, we identifx with the pair &pign,Xiow) »
where theith coordinate inxpg,e{0,4™ is (x;div2), and
where theith coordinate inx,, €{0,1}™ is (x;mod2). We
think of Bob’s inputy=(yq, ....,yyn) and Carol's inputz
=(24, ...,Zy) in a similar manner.

The common goal is for every party to learn the value of the The 3m+1 one-round protocol works as follows: First

function

f(x,y,z)=%[(x+y+z)mod4}. (2
We say that X,y,z) e UXU XU is avalid input if Eq. (1)
holds. The functionf:UXUXU—{0,1} can be viewed as
computing the second-least significant bit in the sum,of,
and z. Note that for all inputsy,ze U to Bob and Carol,
there exists a unique inpute U for Alice such that X,y,2)
is a valid input andf(x,y,z)=1.

For every integerm=1, we generalizef to G,,:U™
xXUMxU™—{0,1} by setting

Gn(x,y,2)=1 if and only if for all

1<i=m we havef(x,y;,z)=1,

where  x=(X{, ... Xn), Y=1,.---Ym), and z
=(21, ... Zm), and with the condition that
(Xj+y;+z)mod2=0 (1<i=m). 3

Thus, we give Alice, Bob, and Carat valid instances of,

Bob broadcasts all i2 bits of his input §pign,Yiow). Then
Carol broadcasts then high bits z,y, of her input. Now
Alice is capable of computing the value 6fon all m in-
stances, that is, she can compute;,y;,z) for all 1<i
<m. Due to the promise thatx(+y;+z)mod2=0, she
does not need the low bitg,, of Carol’s input. Finally Alice
checks iff(x;,y;,z)=1 for all 1<i=m. If so, G,,(x,Y,2)
=1 and Alice therefore broadcasts 1, otherwise she broad-
casts 0.

Intuitively, Alice has to have all of Bob’s high bits, all
of Carol’'sm high bits, but jusim of the 2m low bits. Hence,
intuitively, if there exists a protocol fo6G,, in which Bob
broadcastssg bits and Carol broadcasts: bits, thensg
should be at leasn, s at leastm, andsg+ S at least 3n.

It is the result of the following subsection that this intuition
is valid.

B. Classical lower bound

We now prove our lower bound stated in theorem 2. Since
we only consider one-round protocols, we can without loss
of generality assume that any protocol computi@g, is
made up of the following three parts.

(1) Bob (knowing only his inputy) broadcasts the mes-

all at the same time, and ask if they all evaluate to 1. Againsageog=og(y).

we say that X,y,2z) is avalid input if Eq. (3) holds.
Buhrmanet al. [2] showed thawith prior entanglement,

function f can be solved with one-round communication us-

(2) Carol (knowing her inputz and Bob’s messageg)
broadcasts the message=oc(z,03).
(3) Alice (knowingx, og, andoc) computes the answer

ing 3 bits. In their protocol, Bob and Carol each broadcaswua(x,05,0¢) € {0,1} which she then broadcasts to Bob and
one bit, where after Alice is capable of computing the valueCarol. Since this protocol comput€s,,, we can without loss

of f and then broadcasting the resulting liee Sec. Il A
for a direct generalization of their protocpllheir protocol
therefore immediately yields an2+ 1 bits protocol forG,,.

of generality assume that,=G,, on all valid inputs.
In agreement with our intuition described above, the fol-
lowing key lemma explicitly specifies®? different inputs on
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which Bob and/or Carol have to send different messages. It is worthy noticing that, by lemma 1, for Alice to cor-

Theorem 2 is immediate. rectly output the value o&,,, she has to be able to correctly
Lemma 1.Consider the above one-round protocol for computef on every one of then instances off. This is in

computingG,,. Let og and o denote Bob’s and Carol's general not so, and it is a deep open question in communi-

messages on iNPuts= (Yhigh.Yiow) and z=(Znigh.Yiow), '€~  cation complexity to characterize the functions that possess

spectively. Letog and o denote Bob’s and Carol's mes- this property.

sages on inputg’ = (Yrign,Yiow) @ndz" = (Z{gnYiow) respec-

tively. Then the following holds. [1l. MULTIROUNDS AND MULTIPARTIES

(M) 11 Yhign Ynigh ANAYiow=Yiow» thenog# o We now generalizd defined in Eq.(2) to a functionF

(i) If Zpign? Zhigh andy'OW:y'O‘ﬁv’ thenacalﬁac. which we shall use to prove a separation in terms of the
(iii) If Yiow? Yiow, thenog# og Or oc# oc. number of parties. There ateparties, where partP; ob-
We first prove(i) by contradiction. ASSUMign#Yrign:  tains input data; e V=10, ...,2—1} (i=1,... k). We say
Yiow=Yiow @Ndog=07p. Letx be the unique input to Alice that an inputx=(x,, . .. ) is valid if it satisfies that
such thatG,(x,y,z)=1. Then Q(,y’,z)z(x,(ygigh,y,ow),z) is
a valid input on whichG,, takes the value 0. But, sinagg K .
=0}, we also haverg(z,0) = 0((z,05), and hence Alice izl X;|mod 2"~ *=0. 4
incorrectly outputs the same answeoa(X,05,0¢)
=oa(X,05,0¢) in both cases. Thus, the assumption isLet F: V—{0,1} denote the Boolean function on the valid
wrong and(i) holds. The proof ofii) is almost identical to inputs defined by
the proof of(i), and we therefore omit it.
We also proveiii) by contradiction. ASSUM®|ou# Yiow s 1 K
og=o0p, andoc=o0¢. Letx=(Xyg,0) be the unique input F(x)= on-1 21 X; |[mod 2"
to Alice such that3,,,(x,y,z) = 1. Since the protocol correctly
computesG,,, then Alice must answer 1 on the input \we say that a valid input is b-valid if F(x)=b (b=0,1).
(x,y,2). But then &y’,z) is also a valid input on which The functionF can be viewed as computing tmh least
Alice answers 1. Further, let' = (Xqgn. Xjow) b€ the unique  significant bit of the sum of the;'s.
input to Alice such thaG,(x’,y’,z)=1. Since the protocol We first show that with prior quantum entanglemeht,
correctly computes,,, then Alice must answer 1 on the bits of communication are necessary and sufficient for every

input (x',y’,z). But then &’,y,z") is also a valid input on party to evaluatd=. That is, for allk=2 andn=1,
which Alice answers 1.

Thus, Alice answers 1 on all of these 4 valid inputs: Q(F,k,n)=k. (6)
xv,2), (xy',z2"), (x'y,z), and &’,y,z'). But, since ) _
Yiow” Yiow. then (as we show in the next paragrapB,, Then, we show how thg pames can evalqatwnh roughly
takes the value 0 on at least one of the valid inputy’(z’) klogzk bits of communication without using any entangled
and &',y,z'), and thus the protocol incorrectly computes Particles. Specifically, for ak=2 andn=1,
G,,. Hence, the assumption is wrong afiid) follows.

"To see thaG,, has toptake the valge 0 on at least one of C(F.kn)<(k=1){[logy(k—1)]+1}+1. @)
the valid inputs %,y’,z’') and ’,y,z’), assume otherwise. Finally,
Let 1<i<m be a coordinate whemg,,, andy,,, differ. For
ease of notation, we lgf,,, denote theth coordinategbit) of
Yiowe {0,11™, and we use similar notation for theh coordi- C(F,k,n)>klog,(k) — k. )
nate of the other vectors. Sin€,(x,y,z) =1, then

. (5

we prove that this is optimal up to low order terms
by showing that, for alk=2 andn=log,k,

By comparing the bounds of Eq&®) and(8), we see that we
(Xhight Yhigh™ Znight Yiow) Mod 2= 0. have established a separation by a factor of(kig).
SinceG(x',y’,2)=1, then )
! m(Xy"2) A. With entanglement
(Xnight Yhight Znign+ 1)mod 2=0. We first show that if the parties share entangled particles,
then in a straightforward manner, tkeparties can evaluate
F using only one bit of communication each. This is ob-
tained by a direct generalization of the idea used both in Sec.
2.1 of Ref.[2] (which itself is based on the work of Mermin
[7]) and in Ref[8]. The prior quantum entanglement shared
by the k parties is the cat statég,...q)=(]0...0)
(Xpight Yhigh+ Ziign+ 1)mod 2= 0. +]1...2))/y2, where party P; holds qubit g; (i
=1,...k).
But all of these four equations cannot hold at the same time, Each partyP; uses the following procedure. First pafy
and thus the assumption th&,, takes the value 1 on applies a phase-change operafdix;) defined by|0)—|0)
(x,y',2") and (x’,y,z’) is wrong. This completes our proof and |1)—exp(2mx\—1/2")|1) on her qubitg;. Thanks to
of lemma 1, from which theorem 2 immediately follows. the promise on the inputs, these phase rotations add

SinceG(x,y',z')=1, then
(Xhight Yhight Zhight Yiow)mod 2=0.

SinceG(x',y,Z')=1, then
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up so that the resulting state is |0(..0) the cardinality of the possiblE-monochromatic rectangles
+(—1)F™W|1...2))/V2. Then she applies the Walsh- imply alower bound on the communication complexityFof
Hadamard transform that mag8) to (|0)+|1))/+2, and In the Appendix, we prove that if a rectangRcC V¥ is
|1) to (|o>_|1>)/\/§_ Finally, she measures her quhjtin F-monochromatic and iR contains a valid input, then its
the computational basi§0),/1)} and broadcasts the out- cardinality is upper bounded by a valugfor which
coming bit. n

Let b; be the outcome of partl;’s measurement. Simple r=<2 —2 +1
calculations show thab,® - - - @b, equalsF(Xy, ... X, k
where® denotes addition in modulo-2 arithmetic. It follows ) )
that every party can compute the value Bffrom the k Slnce. there are™ input values to be covered, this bound on
communicated bits. On the other handbits of communi-  the olze of the rectangles_shokw_s that we need at least
cation are necessary since if one of the parties does ngt2 /I rectangles to partitio/ in the above described
broadcast any bits, then none of the others can determine tAgshion. _ _
value of F. To see this, note that if we toggle the most 'f n=log;k andk=2, then basic algebra gives that
significant bit of any one of the inputs, then the valueFof nk

changes. Equatiof6) follows. log, t= Iog2< —
;

k

. 9)

>klogy(k)—Kk.

B. Without entang| t . —
fthout entanglemen From this, the lower bound on the communication complex-

The simplest way to evaluate the functibris for all but ity of Eq. (8) follows.
one of the parties to broadcast their inputs. The last party

then evaluate$(xy, ... x,) and communicates the result- ACKNOWLEDGMENTS
ing bit to the others. Hence, the communication complexity _ o
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so party P, knows the value of the surﬁg‘zlxi up to an quantum computation.

additional non-negative term strictly smaller thafi™2.

Since the sum is divisible by"2? for all valid inputs, party APPENDIX: UPPER BOUND ON THE CARDINALITY

Py can determine it exactly and thus compute the value.of OF A MONOCHROMATIC RECTANGLE

It follows that (k—1)d+1 bits of communication suffice, as  Equip the seV={0, ...,2—1} with the natural addition

stated as Eq(7). operation, denotedd> and given byx@y=(x+y)mod 2".
A good method to prove lower bounds for the communi-ThenV:<V’@> is a cyclic group of order 2

cation complexity of functions comes from a combinatorial | gt RCV* be a fixed rectangle. By definitiorR=R;

view on the protocol for the communication. Consider they . . XR; for some subset® CV, i=1,... k. For any

SpaCer Of all kp(_)SSib'G inputs, WQEI’V:{O, e ,21— 1} A two SUbsetg\,BgV, defineAéBB={a€B b|aEA,bE B} We

rectanglein V" is a subseRCV® such thatR=RyX - now define a family of subsets of. SetS,={0}CV and

X Ry for someR,CV (i=1,... k). If a rectangle contains S=S_,®R, for i=1,...k. Then for each element

no O-valid inputs or no 1-valid inputs, then it is said to be(Xl %) R, the value EX X)mod2' is in S,. We
e , i .

F-monochromatic _ L hall use Kneser's theorefi0] to give an upper bound on
We now use the observation that every deterministic an he cardinality ofR

errorless communication protocol corresponds to a covering Kneser's theoremLet G=(G,®) be an Abelian group

. . - k .
of all the valid Inputs ".N by F_-monochromanq re(_:tangles with finite subsets\ andB. Then there exists a subgrotip
(see Ref[9]). Without increasing the communication com- of G such that

plexity, such a protocol can always be transformed into a

protocol that uses a partitioning that covers alMf and for AGBSH=A®B

which each monochromatic rectangle contains at least one

valid input. By proving that every such partition requires atgnd

leastt rectangles, we also prove that the communication

complexity ofF is at least logt [9]. Hence, upper bounds on |A®B|=|AdH|+|BeH|—|H|.
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Let H; be the largest subgroup of for which S=S;  Since 21« S, then|S|<2"-1, so
®H;, (i=0,... k). Since® is associative, theRl;_;CH;
for all 1<i<k. k

Supposer is a monochromatic rectangle that contains a 2 |R|<2"-2+k,
valid input. Without loss of generality, assume that it is a =1

0-valid input, that is, that @ S,. ThenH,; is the trivial sub- and therefore

group {0} for all i, since otherwise we have that"2

e H;CH, and henceR would not be monochromatic. This K | .
shows that if we identifyA=S,_, and B=R; in Kneser's RI=TT |R-|s(2 -2 +1)
theorem, it follows thaH is the trivial subgroup. We there- =1 k '

fore have thatS|=|S,_4|+|Ri|—1, so
K It follows that the right hand side of Eq9) is an upper
|Sk|>z IR|— (k—1). bound on the cardinality of anlj-monochromatic rectangle
= that contains a valid input.
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