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Quantum entanglement cannot be used to achieve direct communication between remote parties, but it can
reduce the communication needed for some problems. Let each ofk parties hold some partial input data to
some fixedk-variable functionf . The communication complexity off is the minimum number of classical bits
required to be broadcasted for every party to know the value off on their inputs. We construct a functionG
such that for the one-round communication model and three parties,G can be computed withn11 bits of
communication when the parties share prior entanglement. We then show that without entangled particles, the
one-round communication complexity ofG is (3/2)n11. Next we generalize this function to a functionF. We
show that if the parties share prior quantum entanglement, then the communication complexity ofF is exactly
k. We also show that, if no entangled particles are provided, then the communication complexity ofF is
roughlyk log2 k. These two results prove communication complexity separations better than a constant number
of bits. @S1050-2947~99!05209-9#

PACS number~s!: 03.67.Hk
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I. INTRODUCTION

Suppose each ofk parties holds some data that is u
known to the others, and they want to evaluate some fi
k-variable function on those data. If the function is no
trivial, then this cannot be done unless the parties comm
cate.

In Ref. @1#, Cleve and Buhrman raised the question
whether or not less communication is needed if the par
possess entangled particles. They demonstrated that,
specific problem, prior quantum entanglement decreases
need for communication by one bit from three to two bits.
one-bit saving was also obtained by Buhrman, Cleve,
van Dam in Ref.@2# for another problem where each par
initially holds a two-bit input-string. In both of these prob
lems, there are three parties (k53). They left open the im-
portant question if a separation larger than one bit is p
sible. In particular, is a separation in an asymptotic sett
possible? In this article we show that this is indeed the ca

Let f be ak-variable Boolean function whose inputs a
n-bit binary strings ~that is, f : Xk→$0,1% where X
5$0,1%n). There arek parties, denotedP1 , . . . ,Pk , where
party Pi holds input dataxi ( i 51, . . . ,k). Initially, party Pi

only knowsxi , so, to evaluatef , the parties have to com
municate with each other. The communication is done
broadcasting classical bits, where, each time, a party bro
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casts one bit to everybody, on the total cost of one bit
communication.

We are interested in determining the minimum number
bits required to be broadcasted in the worst case for ev
party to know the value off . This number is called the
communication complexity of fand is denotedC( f ,k,n). We
want to compare this number withQ( f ,k,n), the communi-
cation complexity of f with prior quantum entanglemen
That is, the situation where we allow the parties to share a
of entangled particles before they learn their inputs@1,2#.

For example, with this terminology, the separation o
tained in@2# reads: there exists a three-variable (k53) Bool-
ean functiong whose inputs are two-bit strings (n52), and
for which C(g,3,2)53, but Q(g,3,2)52. For some func-
tions, no separation at all is possible. For example, Cl
et al. @3# showed that prior quantum entanglement does
help in computing the so-called inner product function.

References@1,2# left open the very interesting question o
whether a separation in an asymptotic setting is possi
This question can be phrased more formally as: Does th
exists a functionf for which C( f ,k,n) grows ink or n, and
for which the ratio betweenC( f ,k,n) and Q( f ,k,n) is
bounded from below by some constant larger than 1?

In this paper, we first study the case where the numbe
parties is three (k53). In this setting we consider theone-
round communication model where each party is allowed
communicate at most once. We construct a Boolean func
G for which C(G,3,n)5(3/2)n11 whereasQ(G,3,n)5n
11. This gives a separation by a factor of 3/2 in terms of
number of bits hold by each of the three parties.

Next we relax the requirement that only one round
communication be allowed and consider an arbitrary num
of parties. To this end we generalize the communicat
2737 ©1999 The American Physical Society
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function G to F. We demonstrate that the communicati
complexity ofF with prior quantum entanglement is exact
k @that is,Q(F,k,n)5k#, but that, ifn> log2 k, then without
quantum entanglement it is roughlyk log2 k @that is,
C(F,k,n)'k log2 k#. We prove this by giving upper an
lower bounds in both cases. This implies a separation b
logarithmic factor ink, the number of parties.

This paper thus presents a function with a separation b
constant factor in terms of the number of bits, and a funct
with a separation by a logarithmic factor in terms of t
number of parties. Very recently, much more impress
separations have been obtained in terms of the numbe
bits. Buhrman, Cleve, and Wigderson@4#, Ambainis et al.
@5#, and Raz@6# have all found two-party computationa
problems for which an exponential separation holds.

II. MODULO-4 SUM PROBLEM

In this section, we fix the number of parties to threek
53). As is common, we name the parties Alice, Bob, a
Carol.

In Ref. @2#, Buhrman, Cleve, and van Dam considered
modulo-4 sum problemdefined as follows. Alice, Bob, and
Carol receivex, y, and z, respectively, wherex,y,zPU
5$0,1,2,3%, and they are promised that

~x1y1z!mod 250. ~1!

The common goal is for every party to learn the value of
function

f ~x,y,z!5
1

2
@~x1y1z!mod 4#. ~2!

We say that (x,y,z)PU3U3U is a valid input if Eq. ~1!
holds. The functionf :U3U3U→$0,1% can be viewed as
computing the second-least significant bit in the sum ofx, y,
and z. Note that for all inputsy,zPU to Bob and Carol,
there exists a unique inputxPU for Alice such that (x,y,z)
is a valid input andf (x,y,z)51.

For every integerm>1, we generalizef to Gm :Um

3Um3Um→$0,1% by setting

Gm~x,y,z!51 if and only if for all

1< i<m we have f ~xi ,yi ,zi !51,

where x5(x1 , . . . ,xm), y5(y1 , . . . ,ym), and z
5(z1 , . . . ,zm), and with the condition that

~xi1yi1zi !mod 250 ~1< i<m!. ~3!

Thus, we give Alice, Bob, and Carolm valid instances off ,
all at the same time, and ask if they all evaluate to 1. Aga
we say that (x,y,z) is a valid input if Eq. ~3! holds.

Buhrmanet al. @2# showed thatwith prior entanglement,
function f can be solved with one-round communication u
ing 3 bits. In their protocol, Bob and Carol each broadc
one bit, where after Alice is capable of computing the va
of f and then broadcasting the resulting bit.~See Sec. III A
for a direct generalization of their protocol.! Their protocol
therefore immediately yields a 2m11 bits protocol forGm .
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Theorem 1.With prior quantum entanglementGm can be
solved with one-round communication using 2m11 bits.

In Sec. II B below, we prove the following lower boun
for the case in which we do not allow quantum entang
ment.

Theorem 2.Without quantum entanglement, there is n
one-round protocol forGm that uses less than 3m11 bits of
communication.

For one-round protocols we thus archive a separation
2m11 bits against 3m11 bits. We do not know the classi
cal communication complexity of computingGm without
any restriction on the number of rounds.

A. Classical upper bound

The lower bound in theorem 2 is tight as there is
straightforward one-round protocol that computesGm with
3m11 bits of communication. It is instructive for unde
standing the proof of our lower bound, first to understa
that protocol.

Consider an inputxPUm to Alice. We can think ofx
5(x1 , . . . ,xm) as consisting of two parts, the high bits an
the low bits. That is, we identifyx with the pair (xhigh,xlow),
where thei th coordinate inxhighP$0,1%m is (xidiv 2), and
where thei th coordinate inxlowP$0,1%m is (ximod 2). We
think of Bob’s input y5(y1 , . . . ,ym) and Carol’s inputz
5(z1 , . . . ,zm) in a similar manner.

The 3m11 one-round protocol works as follows: Firs
Bob broadcasts all 2m bits of his input (yhigh,ylow). Then
Carol broadcasts them high bits zhigh of her input. Now
Alice is capable of computing the value off on all m in-
stances, that is, she can computef (xi ,yi ,zi) for all 1< i
<m. Due to the promise that (xi1yi1zi)mod 250, she
does not need the low bitszlow of Carol’s input. Finally Alice
checks if f (xi ,yi ,zi)51 for all 1< i<m. If so, Gm(x,y,z)
51 and Alice therefore broadcasts 1, otherwise she bro
casts 0.

Intuitively, Alice has to have all of Bob’sm high bits, all
of Carol’sm high bits, but justm of the 2m low bits. Hence,
intuitively, if there exists a protocol forGm in which Bob
broadcastssB bits and Carol broadcastssC bits, then sB
should be at leastm, sC at leastm, andsB1sC at least 3m.
It is the result of the following subsection that this intuitio
is valid.

B. Classical lower bound

We now prove our lower bound stated in theorem 2. Sin
we only consider one-round protocols, we can without lo
of generality assume that any protocol computingGm is
made up of the following three parts.

~1! Bob ~knowing only his inputy) broadcasts the mes
sagesB5sB(y).

~2! Carol ~knowing her inputz and Bob’s messagesB)
broadcasts the messagesC5sC(z,sB).

~3! Alice ~knowing x, sB , andsC! computes the answe
sA(x,sB ,sC)P$0,1% which she then broadcasts to Bob a
Carol. Since this protocol computesGm , we can without loss
of generality assume thatsA5Gm on all valid inputs.

In agreement with our intuition described above, the f
lowing key lemma explicitly specifies 23m different inputs on



e

or

-

is

t

l
e

ts

es

o
.

m

f

-
ly

uni-
ess

the

id

ery

d

s

les,

b-
ec.

n
ed

add

PRA 60 2739MULTIPARTY QUANTUM COMMUNICATION COMPLEXITY
which Bob and/or Carol have to send different messag
Theorem 2 is immediate.

Lemma 1.Consider the above one-round protocol f
computingGm . Let sB and sC denote Bob’s and Carol’s
messages on inputsy5(yhigh,ylow) and z5(zhigh,ylow), re-
spectively. LetsB8 and sC8 denote Bob’s and Carol’s mes
sages on inputsy85(yhigh8 ,ylow8 ) andz85(zhigh8 ,ylow8 ), respec-
tively. Then the following holds.

~i! If yhighÞyhigh8 andylow5ylow8 , thensBÞsB8 .
~ii ! If zhighÞzhigh8 andylow5ylow8 , thensCÞsC8 .
~iii ! If ylowÞylow8 , thensBÞsB8 or sCÞsC8 .
We first prove~i! by contradiction. AssumeyhighÞyhigh8 ,

ylow5ylow8 , andsB5sB8 . Let x be the unique input to Alice
such thatGm(x,y,z)51. Then (x,y8,z)5„x,(yhigh8 ,ylow),z… is
a valid input on whichGm takes the value 0. But, sincesB

5sB8 , we also havesC(z,sB)5sC8 (z,sB8 ), and hence Alice
incorrectly outputs the same answersA(x,sB ,sC)
5sA(x,sB8 ,sC8 ) in both cases. Thus, the assumption
wrong and~i! holds. The proof of~ii ! is almost identical to
the proof of~i!, and we therefore omit it.

We also prove~iii ! by contradiction. AssumeylowÞylow8 ,
sB5sB8 , andsC5sC8 . Let x5(xhigh,0) be the unique input
to Alice such thatGm(x,y,z)51. Since the protocol correctly
computesGm , then Alice must answer 1 on the inpu
(x,y,z). But then (x,y8,z8) is also a valid input on which
Alice answers 1. Further, letx85(xhigh8 ,xlow8 ) be the unique
input to Alice such thatGm(x8,y8,z)51. Since the protoco
correctly computesGm , then Alice must answer 1 on th
input (x8,y8,z). But then (x8,y,z8) is also a valid input on
which Alice answers 1.

Thus, Alice answers 1 on all of these 4 valid inpu
(x,y,z), (x,y8,z8), (x8,y8,z), and (x8,y,z8). But, since
ylowÞylow8 , then ~as we show in the next paragraph! Gm

takes the value 0 on at least one of the valid inputs (x,y8,z8)
and (x8,y,z8), and thus the protocol incorrectly comput
Gm . Hence, the assumption is wrong and~iii ! follows.

To see thatGm has to take the value 0 on at least one
the valid inputs (x,y8,z8) and (x8,y,z8), assume otherwise
Let 1< i<m be a coordinate whereylow andylow8 differ. For
ease of notation, we letylow denote thei th coordinate~bit! of
ylowP$0,1%m, and we use similar notation for thei th coordi-
nate of the other vectors. SinceGm(x,y,z)51, then

~xhigh1yhigh1zhigh1ylow!mod 250.

SinceGm(x8,y8,z)51, then

~xhigh8 1yhigh8 1zhigh11!mod 250.

SinceGm(x,y8,z8)51, then

~xhigh1yhigh8 1zhigh8 1ylow8 !mod 250.

SinceGm(x8,y,z8)51, then

~xhigh8 1yhigh1zhigh8 11!mod 250.

But all of these four equations cannot hold at the same ti
and thus the assumption thatGm takes the value 1 on
(x,y8,z8) and (x8,y,z8) is wrong. This completes our proo
of lemma 1, from which theorem 2 immediately follows.
s.

:

f

e,

It is worthy noticing that, by lemma 1, for Alice to cor
rectly output the value ofGm , she has to be able to correct
computef on every one of them instances off . This is in
general not so, and it is a deep open question in comm
cation complexity to characterize the functions that poss
this property.

III. MULTIROUNDS AND MULTIPARTIES

We now generalizef defined in Eq.~2! to a functionF
which we shall use to prove a separation in terms of
number of parties. There arek parties, where partyPi ob-
tains input dataxiPV5$0, . . . ,2n21% ( i 51, . . . ,k). We say
that an inputx5(x1 , . . . ,xk) is valid if it satisfies that

S (
i 51

k

xi Dmod 2n2150. ~4!

Let F: Vk→$0,1% denote the Boolean function on the val
inputs defined by

F~x!5
1

2n21 F S (
i 51

k

xi Dmod 2nG . ~5!

We say that a valid inputx is b-valid if F(x)5b (b50,1).
The functionF can be viewed as computing thenth least
significant bit of the sum of thexi ’s.

We first show that with prior quantum entanglement,k
bits of communication are necessary and sufficient for ev
party to evaluateF. That is, for allk>2 andn>1,

Q~F,k,n!5k. ~6!

Then, we show how the parties can evaluateF with roughly
k log2 k bits of communication without using any entangle
particles. Specifically, for allk>2 andn>1,

C~F,k,n!<~k21!$ d log2~k21!e11%11. ~7!

Finally, we prove that this is optimal up to low order term
by showing that, for allk>2 andn> log2 k,

C~F,k,n!.k log2~k!2k. ~8!

By comparing the bounds of Eqs.~6! and~8!, we see that we
have established a separation by a factor of log2(k/2).

A. With entanglement

We first show that if the parties share entangled partic
then in a straightforward manner, thek parties can evaluate
F using only one bit of communication each. This is o
tained by a direct generalization of the idea used both in S
2.1 of Ref.@2# ~which itself is based on the work of Mermi
@7#! and in Ref.@8#. The prior quantum entanglement shar
by the k parties is the cat stateuq1 . . . qk&5(u0 . . . 0&
1u1 . . . 1&)/A2, where party Pi holds qubit qi ( i
51, . . . ,k).

Each partyPi uses the following procedure. First partyPi
applies a phase-change operatorf(xi) defined byu0&°u0&
and u1&°exp(2pxiA21/2n)u1& on her qubitqi . Thanks to
the promise on the inputs, these phase rotations
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up so that the resulting state is (u0 . . . 0&
1(21)F(x)u1 . . . 1&)/A2. Then she applies the Walsh
Hadamard transform that mapsu0& to (u0&1u1&)/A2, and
u1& to (u0&2u1&)/A2. Finally, she measures her qubitqi in
the computational basis$u0&,u1&% and broadcasts the ou
coming bit.

Let bi be the outcome of partyPi ’s measurement. Simple
calculations show thatb1% •••% bk equalsF(x1 , . . . ,xk),
where% denotes addition in modulo-2 arithmetic. It follow
that every party can compute the value ofF from the k
communicated bits. On the other hand,k bits of communi-
cation are necessary since if one of the parties does
broadcast any bits, then none of the others can determine
value of F. To see this, note that if we toggle the mo
significant bit of any one of the inputs, then the value ofF
changes. Equation~6! follows.

B. Without entanglement

The simplest way to evaluate the functionF is for all but
one of the parties to broadcast their inputs. The last p
then evaluatesF(x1 , . . . ,xk) and communicates the resul
ing bit to the others. Hence, the communication complex
~without entanglement! is at most (k21)n11.

Now, consider that all but one of the parties broadcast
d most significant bits of their inputs, for some integerd
>1. The last party, sayPk , then computes the sum
(( i 51

k xi)2d, where

d5 (
i 51

k21

~ximod 2n2d!.

Supposen>d whered511 d log2(k21)e. Then

0<d<~k21!~2n2d21!,2n21,

so partyPk knows the value of the sum( i 51
k xi up to an

additional non-negative term strictly smaller than 2n21.
Since the sum is divisible by 2n21 for all valid inputs, party
Pk can determine it exactly and thus compute the value oF.
It follows that (k21)d11 bits of communication suffice, a
stated as Eq.~7!.

A good method to prove lower bounds for the commu
cation complexity of functions comes from a combinator
view on the protocol for the communication. Consider t
spaceVk of all possible inputs, whereV5$0, . . . ,2n21%. A
rectangle in Vk is a subsetR#Vk such thatR5R13•••

3Rk for someRi#V ( i 51, . . . ,k). If a rectangle contains
no 0-valid inputs or no 1-valid inputs, then it is said to
F-monochromatic.

We now use the observation that every deterministic
errorless communication protocol corresponds to a cove
of all the valid inputs inVk by F-monochromatic rectangle
~see Ref.@9#!. Without increasing the communication com
plexity, such a protocol can always be transformed into
protocol that uses a partitioning that covers all ofVk, and for
which each monochromatic rectangle contains at least
valid input. By proving that every such partition requires
least t rectangles, we also prove that the communicat
complexity ofF is at least log2 t @9#. Hence, upper bounds o
ot
the

ty

y

e

-
l
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g

a

ne
t
n

the cardinality of the possibleF-monochromatic rectangle
imply a lower bound on the communication complexity ofF.

In the Appendix, we prove that if a rectangleR#Vk is
F-monochromatic and ifR contains a valid input, then its
cardinality is upper bounded by a valuer , for which

r 5S 2n22

k
11D k

. ~9!

Since there are 2nk input values to be covered, this bound o
the size of the rectangles shows that we need at leat
52nk/r rectangles to partitionVk in the above described
fashion.

If n> log2 k andk>2, then basic algebra gives that

log2 t5 log2S 2nk

r D.k log2~k!2k.

From this, the lower bound on the communication comple
ity of Eq. ~8! follows.
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APPENDIX: UPPER BOUND ON THE CARDINALITY
OF A MONOCHROMATIC RECTANGLE

Equip the setV5$0, . . . ,2n21% with the natural addition
operation, denoted% and given byx% y5(x1y)mod 2n.
ThenV5^V,% & is a cyclic group of order 2n.

Let R#Vk be a fixed rectangle. By definition,R5R1
3•••3Rk for some subsetsRi#V, i 51, . . . ,k. For any
two subsetsA,B#V, defineA% B5$a% buaPA,bPB%. We
now define a family of subsets ofV. Set S05$0%,V and
Si5Si 21% Ri for i 51, . . . ,k. Then for each elemen
(x1 , . . . ,xk)PR, the value (( i 51

k xi)mod 2n is in Sk . We
shall use Kneser’s theorem@10# to give an upper bound on
the cardinality ofR.

Kneser’s theorem.Let G5^G,% & be an Abelian group
with finite subsetsA andB. Then there exists a subgroupH
of G such that

A% B% H5A% B

and

uA% Bu>uA% Hu1uB% Hu2uHu.
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Let Hi be the largest subgroup ofV for which Si5Si
% Hi , (i 50, . . . ,k). Since% is associative, thenHi 21#Hi
for all 1< i<k.

SupposeR is a monochromatic rectangle that contains
valid input. Without loss of generality, assume that it is
0-valid input, that is, that 0PSk . ThenHi is the trivial sub-
group $0% for all i , since otherwise we have that 2n21

PHi#Hk and henceR would not be monochromatic. Thi
shows that if we identifyA5Si 21 and B5Ri in Kneser’s
theorem, it follows thatH is the trivial subgroup. We there
fore have thatuSi u>uSi 21u1uRi u21, so

uSku>(
i 51

k

uRi u2~k21!.
h

um

ing
,

A.
on

o

Since 2n21¹Sk , thenuSku<2n21, so

(
i 51

k

uRi u<2n221k,

and therefore

uRu5)
i 51

k

uRi u<S 2n22

k
11D k

.

It follows that the right hand side of Eq.~9! is an upper
bound on the cardinality of anyF-monochromatic rectangle
that contains a valid input.
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