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We define a class of Lorentz-invariant Bohmian quantum modelslfentangled but noninteracting Dirac
particles. Lorentz invariance is achieved for these models through the incorporation of an additional dynamical
space-time structure provided by a foliation of space time. These models can be regarded as the extension of
Bohm’s model forN Dirac particles, corresponding to the foliation into the equal-time hyperplanes for a
distinguished Lorentz frame, to more general foliations. As with Bohm’s model, there exists for these models
an equivariant measure on the leaves of the foliation. This makes possible a simple statistical analysis of
position correlations analogous to the equilibrium analysis (fhe nonrelativistit Bohmian mechanics.
[S1050-2947@9)07910-X

PACS numbd(s): 03.65.Bz

[. INTRODUCTION Eq. (1) depends only upon the value gfat the positions of
the particles and not upon spatial derivativeg/dhere. Here
Among the different approaches to resolving the concep#=(q,, . .. ,dn,t), taking values in theN-particle spin

tual problems of quantum theory, Bohm’s approach is perspace (*)®N, solves theN-particle Dirac equation#=c
haps the simplest. In a nutshell, it consists in adding the most 1),

basic dynamical variables, obeying additional evolution

equations, to the description of a quantum system provideddis i

by its wave functiony. For nonrelativistic quantum theory 'E:gfl [—ie Vi—eac Al +eP(ac,t) + Bamly,
the additional variables are the positions of the particles, ®)
which evolve according to a “guiding equation” naturally

suggested by the Schfinger evolution. This theory— \here ay=(al,a?,ad), ai=1® --2l2d®la-- 3,

usually called Bohmian mechanics or the pilot-wave,yith theith Dirac« matrix a' at thekth of theN places, and

theory—is well understood. It has been analyzed, and it is gefined analogouslyb andA are external electromag-
connection with the predictions of orthodox quantum theoryp,atic potentials.(We may, of course, consider particle-
explained, in the original papers of Bohih] as well as in  gependent masses,, chargese,, and external potentials

later works(see, e.g.[2—4]). One of the main problems re- ¢, "anda, | but for simplicity we shall not do spWe shall
maining for the Bohmiarior any othey approachis to find @ 4| this model the Bohm-Dira¢BD) model. Just as with

satisfactoryrelativistic quantum theory, a theory thatis fully gopms proposal for a field theory, the BD model requires

Lpr_ent;—invariant while avoiding the profound conceptualy; jts formulation the specification of a distinguished frame
difficulties of orthodox quantum theory. B of reference—in terms of which the actual configuration
In his original papers, Bohm had an outline for a “Bohm- (Qy, ... ,Qn) and the generic configurationy, . . . ,qx) at

ian” field theory, with fields on space time as the additionaltime£ is defined—and. in fact. the model is not Lorentz-

variables. A year later he proposed a “Bohmian” model forivariant it N> 1 [6].

one Dirac particld 5], which was subsequently extended by However, forN=1 this model is Lorentz-invariant, and

Bohm'and coworkers t(.j\.l Dirac .particles[ﬁ]. Eor this . may be formulated in a covariant way: Writing= X(r) for
N-particle model the additional variables are, as in Bohmlaqhe space-time point along a trajectory, wiitalay param-

mechanics:, the positio@k, k= 1 ... N of the particles._ etrization r, the guiding equation may be written as
However, in contrast with Bohmian mechanics, the guiding
equation for this theory ax = —
: q,; 1=y )
A _ ¥y 0
dt i with ¢ satisfying the Dirac equation
is ultralocal on configuration space: The right-hand side of (iy-d—ey-A—m)y=0, 4
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wherey- 9= y*3,, andy-A=y"A (X). Note that the right- The N-particle BD model1) also has a dynamically dis-

hand side of Eq(3), the Dirac currenf = j#= ", is the  tinguished probability distribution on paths. As a conse-
simplest four-vector that can be constructed from the Diragluence of Eq(2) o=y satisfies, in the Lorentz frame in

spinor . which the dynamics is defined, the continuity equation
Note also that the parameterhas no intrinsic physical
significance, so that E¢3) is equivalent to (9_9+ 2'\‘: Vo1 —0 -
ax ot ey KTk
ar

with arbitrary positive scalar field=a(x). It is not the field where

of four-vectorsj (having direction and lengihthat deter-

mines the particle motion, but rather the field of directions J=ovi= ¥ ayp. (6)
defined byj. In other words, the law for the particle motion

could be formulated in a purely geometrical manner as th@hus, if the joint probability distribution for the positions of
condition that the Dirac currerjtat every point along the theN particles is giverp = ¢y at some time=t,, then, for

trajectory be tangent to the trajectory at that point. the corresponding distribution on paths, it will be given by
Because the Dirac current is timelike and divergenceo = 'y at all timest. However, even for this distinguished
freel distribution, quantum equilibrium will not, in general, hold
9-j=0, in other Lorentz frames: The joint distribution of crossings of

equal-time surfaces for other frames will in general not be

there is a dynamically distinguished probability distribution given by ¢’ Ty’ (where ¢ is the wave function in the rel-
on the set of particle paths(7) arising from Eq.(3). Any  evant Lorentz frame[7,8]. Nonetheless, Bohm and co-
distribution on this space of paths can be defined by speciyorkers have argued that the observational content of this
fying for the path the crossing probability for some given model is as Lorentz-invariant as the covariant formalism of
equal-time surfac&, in some Lorentz framéBy this cross- relativistic quantum theory: Since the predictions for results
ing probability we mean the distribution of the point through of measurements for this model can be regarded as reflected
which the path crosseX,, which is the same thing as the in the configuration of various devices and registers—and
probability distribution for the position of the particle in this hence can be derived from probabilities for positions given
frame at the given timg.The distinguished distribution is py o= yy—at a common time in the distinguished frame,
then defined by the crossing probability fbg given by these predictions must agree with those of the usual interpre-
=j%=y"y on 3, (with ¢ suitably normalizell which can  tation. Thus, no violation of Lorentz invariance can be de-
be written in a covariant manner gsn wheren is the future-  tected in experimentfg]. (In particular, the identity of the
oriented unit normal to the surface. For this distribution thedistinguished Lorentz frame cannot be ascertained by means
crossing probability for any other equal-time surface will of any possible observation.
also be given byj-n, both for the original frame and any  Lorentz invariance is, however, a delicate issue. Indeed,
other Lorentz frame. We may roughly summarize the situaany theory can be made trivially Lorentz-invaridat invari-
tion by saying that for the distinguished probability distribu- ant under any other space-time symmgtgyven on the mi-
tion, quantum equilibrium holds in all Lorentz frames at all croscopic level, by the incorporation of suitable additional
times, with the quantum equilibrium distribution given by structure [8]. For this reason Bell has stressed that one
e=y'y. should consider what he has called “serious Lorentz invari-

More generally, the crossing probability for any spacelikeance,” a notion, however, that is extremely difficult to make
hypersurfaces, will also be given byj -n, with n=n(x) the  precise in an adequate w§g]. Lacking a general criterion,
future-oriented unit normal field t&. Moreover, for any we may nonetheless begin to get a handle on “serious Lor-
oriented hypersurfac&., the crossing measuré signed entz invariance” by analyzing some specific models. If the
measure that need not be normaligedhich describes the models involve additional structure, then whether or not we
expected number of signed crossings through area elemertiave serious Lorentz invariance will depend, of course, upon
of X, with negatively oriented crossings counted negativelythe detailed nature of this structure.
is, for the distinguished distribution, also given pyn, with In [8] we have considered a model for which the addi-
n=n(x) now the positively oriented unit normal field .2  tional structure for a system ®f (noninteracting Dirac par-
ticles is provided by a global synchronization among the
particles: The trajectories of the particles are such that each
one of them at some given space-time point is tangent to a

the application of the divergence theorgor Stokes’ theoremto vector field determined, given the wave function, by that

an infinitesimally thin tube of paths betwe&g (see belowand the point and thos_e points al_ong the trajectories of the other Par'
relevant hypersurfacs. ticles with which that point has been “synchronized.” This

2In this regard it is perhaps worth noting the following: In additionallsynchroni;ation structure is Qefined implicitly by
Minkowski space there is a natural duality between divergence-freée equation of motion and the model is not amenable to a
vector fields and closed three-forms. Such a vector field defines §tatistical analysis in any obvious way. In other words, this
“deterministic” random path, whose “law” is given directly by the model is not statistically transparefgee Sec. IV of8]).
vector field, as in Eq(3), and whose statistics are governed by the Nonetheless, even this model provides a counterexample to
dual three-form, in the manner just described. the widely held belief that a Lorentz-invariant Bohmian

The claims in this and the next paragraph follow directly from



PRA 60 HYPERSURFACE BOHM-DIRAC MODELS 2731

theory for many particles is impossib{anless only product Apart from the foliation, the other dynamical variables of
states are allowedIn this regard, see also the local model of the hypersurface Bohm-Dirac model are the usual ones: the
Squires[9]. wave functionys, here forN Dirac particles, and thal path,

In this paper we shall analyze a statistically transparenthe N-tuple of (everywhere either timelike or lightlike
counterexample, the “hypersurface Bohm-DirdeiBD)  space-time paths, which describes the trajectories of\the
model.” The basic idea was proposed[i0] in the context Dirac particles. Covariant laws for these dynamical variables
of bosonic quantum field theory: In addition to the wavesuggest themselves when we write those of the Bohm-Dirac
function and field variables, a distinguished foliation of model, defined by Eqg$1) and(2), in a coordinate-free, i.e.,
space time—a new element of geometrical structure definingovariant manner.
simultaneity surfaces—is suggested as an additional dynami- To achieve this we consider first of all theefunction in
cal variable of the theory. These surfaces need not be hypethe multitime formalism: FolN Dirac particles the wave-
planes. The definingLorentz-invariant equations of the function = (X1,Xs, ... XN), XceM, takes values in
theory should describe the evolution of the wave functionthe N-particle spin space()®N and satisfiedN Dirac equa-
the field variables, and the simultaneity surfaces. For a cargions
ful philosophical discussion of how this may be compatible

with some appropriate notion of relativity, even if the simul- [ vk d— ey A(X) —m]y=0, (7)
taneity surfaces should turn out to be unobservable, see )
Maudlin [11]. k=1,... N.Here,y,=1®-- -0l y®l®---&I, with y at

Here we shall consider such a theory, not for fields but fothe kth of theN places, and\ is an external electromagnetic
N (noninteractiny Dirac particles. We shall discuss an as yetpotential.[Just as with Eq(2), we may, of course, consider
incomplete hypersurface Bohm-Dirac model: The law for theParticle-dependent masseg, chargese,, and external po-
evolution of the foliation is not specified beyond the require-tentialsA..] The system of equation§) is a covariant ver-
ment that it not involve the positions of the particles. Wesion of Eq.(2); in this multitime form the Lorentz invariance
present no hypothesis concerning the origin of the foliationof the law for ¢ is manifest[6].°> The N Dirac particles are
but have in mind that the foliation should ultimately be gov-coupled by the common wave-functiop. If this is en-
erned by a Lorentz-invariant law; one that may, for exampletangled, we have nonlocal correlations between Nhpar-
involve the N-particle wave function(For definiteness we ticles, despite the fact that the particles are noninteracting.
shall give some very tentative and less than compelling ex- We shall now develop the guiding law for thé path.
amples of laws for the foliation in Sec. IVHowever, we Note that the numerator of the right-hand side of Eg.is
show in Sec. llIA that regardless of how the foliation is given by a currenf,,
determined, the dynamics of the HBD model preserves the _
guantum equilibrium distribution on the leaves of the folia- k= lM(l) s Yk yﬁllﬂ,
tion. Thus the model is amenable to the same sort of statis-

tical analysis as for nonrelativistic Bohmian mechanics. Thigvhich involves matrix elements of an operator having as
is discussed briefly in Sec. 11l B. factors the 0 component’ of a four-vector for all but the

kth particle. Thereforej, can be expressed in a covariant
manner by replacingfﬁ in the above expression with, - n,
wheren is the future-oriented unit normal to the= const

A general foliation of codimension one on Minkowski hyPerplanes,
spaceM can approximately be thought of as a partitionvbf -
into three-dimensional hypersurfaces. These hypersurfaces K=y n) oy (v ®
are the leaves of the foliation. The simplest way to obtain
foliation is by a smooth functiori:M— R without critical

Il. THE HYPERSURFACE BOHM-DIRAC MODEL

al\/loreover, the denominator of the right-hand side of &g.
can be expressed covariantly gsn. Then, the covariant

oints, i.e.,df#0 everywhere. The level sefs %(s) are . . . :
gmooth hypersurfaces );nd form a foliation Mf V\git% the velocity of the kth particle—with respect to the time of a
Lorentz frame withn as time axis—is

one-formdf,, which vanishes on the tangent space of the

hypersurface throughe M, we may associate by the Lor- dXe  x

entz metric the normal vector fieldf (x). If this is timelike —_=

everywhere, and thus the foliation hypersurfaces spacelike,

we may normalizef(x) to obtain a unit normal vector field ) — o

n(x) associated with the foliatiorF. Sinceji-n=4(y,-n) ... (yn-n)¢ is independent ok, we
We shall consider in this paper only spacelike foliations,MaY reparametrize the paths with a parametso related to

i.e., foliations by spacelike hypersurfaces. While obviouslyt thatt’(s)=ji-n to obtain

different f’'s may generate the same foliatidh the future-

oriented unit normal vector field is uniquely determined by —— =

F. When does a vector field(x) determine a foliationF ds

such that for alke M, v(x) is normal to the tangent space

of the foliation hypersurface througk? If we denote by

the one-form associated with by the Lorentz metric, then,  3Note that in the single-time forr2) we can easily add an ex-

by Frobenius’ theorem, the necessary and sufficient condplicit interaction potentiaN(qy, . .. qy,t) for the N Dirac par-

tion is thatV be completely integrablé//\dV=0. ticles, while in the multitime form this is impossible.

at jen’ ©)

(10
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More generally, by further reparametrization we may obtain
dX./dr=aj,, where a is any positive scalar field. The
physical particle dynamics—i.e., thé space-time paths de-
fined by the equations of motiof@nd initial conditiong—is
invariant under reparametrization.

A manifestly “parametrization-invariant” formulation of
the dynamics—that is, such that a time parameter plays no
role—is easily obtained: The space-time paths forNhzar-
ticles are constrained by the currefptsby requiring that the
path for thekth particle at the poink, be tangent to the ny
currentj, evaluated ax, and at the intersection points of the
paths of the N—-1 other particles with the
t=const-hyperplaneX, containing x,.. If we denote by
X (Z) the intersection point of the patk, with the hyper- L2

plane3.,, and byX,(3,) a tangent ofor the tangent line to
the pathX, atX,(2), we may write the law for th&l path as

X
1 B

X2 [ 1K (Sh), - Xn(S0), (11)

>
using the symbol|| for “is parallel to.” In this geometric
formulation the Bohm-Dirac dynamics depends upon the
Lorentz frame only via its associated foliation into simulta- /

neity hypersurface&,, and thus naturally extends to an ar-
bitrary foliation F of Minkowski space-timeM by curved
spacelike hypersurfacés. . . .
. . FIG. 1. Geometrical formulation of the dynamics for a system of
Given such a foliation” and > e 7, let X(X) be the three particles: For each particle the path of that particle, say, par-

intersection of the patiX, with 3% and letX(2) be atan-  ticle 1 atx,, must be tangent to the four-vectpr which is deter-
gent of (or the tangent line tothe pathX, at X, (). The law  mined by (i) the intersection, andx; of the trajectories of the

of theN pathX=(Xy, ... Xy) for the hypersurface Bohm- other two particles with the hypersurfa&econtainingx, (i) the
Dirac model is defined by the currerjtsnaturally extending future-oriented unit normals, andn; at these points, angii) the
Eq. (8), wave function of the system evaluated »f, x,, and X3: j;
= (Y100 - Ve (v ) W, (12) (X1, %2,%3) Y1(v2 N2) (¥3- N3) (X1, X2, X3) -
only if =0. This means that where it is nonzeilg, is
wheren;=n(xy), ... ,Ny=n(Xy), with nthe future-oriented  future-oriented and, like the patk,, nowhere spacelikg.
unit normal vector field associated wiffj via the HBD tan- We may also write down the equations of motion in the
gency conditionsee also Fig. 11 parametrized form analogous to Ef) or Eq.(10). To do so
it is convenient to label the hypersurfaces of the foliation
X (S) [ X1 (D), - oo Xn(D)). (13)  Uusing a functionf:M—R that generates the foliation as de-

scribed above, and use this hypersurface labeling as the pa-
rameter for the particle trajectories—so thg{s) is on the
hypersurfacef ~1(s). From the geometrical characterization
of the dynamics(13) we know thatdX,/ds is parallel to

(By considering the action of a suitable Lorentz transforma
tion ony°y- n for arbitrary timelike unit vecton [transform-
ing nto (1,0,0,0), one sees that’y-n is a positive operator

nspin’ space G Hence, Gying . (Ofy (). Xy(©) and he scal factor equred o enure
. 0 . H e H P = 5 “wo_n k - “Jk/)-

n) ... (ynyn-Ny) IS also positive, i.e.j - n=0 with Therefore,

“This is in marked contrast with the parametrized dynamics such ds  IfF(Xk(8) jk(Xq(s), ... Xn(S)©

as given by Eq(9) or Eq.(10), which need not extend in anything o
like the same form to a general foliation since the parametrized OF 2 flat foliation we may choose a Lorentz frame such that

paths generated by the dynamics need not, in general, respect ttee foliation hyperplanes are the’= const planes, i.e.,
foliation. f(x)=x° for all x. Thenn=¢9f=(1,0,0,0) and Eq(14) re-
Note that the path, comprising anN path, since they are duces to the Bohm-Dirac lad).
nowhere spacelike, can interséttat most once. This is the main
reason why it is important that the foliatiaA be spacelike. Of lll. STATISTICAL ANALYSIS OF THE HBD MODEL
course, also from the physical point of view a synchronization
along spacelike hypersurfaces yields a picture which perhaps makes
most sense. We shall assume without further ado global existence: We shall show now that for the hypersurface Bohm-Dirac
that a fragment of aiN path locally satisfying the HBD tangency model with foliation F, there is a distinguished probability
condition, see E¢(13), can be continued in such a manner that eachmeasure ol pathsX satisfying the HBD tangency condition
of its pathsX, intersects every, e F. (13), one for which the distribution of hypersurface crossings

A. Quantum equilibrium
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X1(2), ... Xy(2) for T eF depends only upony re-
stricted toX (or, more precisely, t&N) for ¢ satisfying Eq.

(7). We shall say that such a distinguished measure, as well
as the corresponding hypersurface crossing distribution, is

equivariant definingquantum equilibriumThe physical sig-
nificance of the hypersurfacése F is thus twofold: They
servelvia Eq.(13)] to define the motion of the particles and,
for a quantum equilibriunN path, it is “on these hypersur-
faces” that manifestly the “particles are in quantum equilib-
rium.”

The natural candidate for the equivariant crossing prob
ability densityp of the HBD model is given by the obvious
covariant extension of the equivariant density'y

(=492 ... y3) of the BD model:
e=¢(y1-ny) ... (yn-NN) Y.

To see that this is in fact equivariant, note the following: In
view of Eq.(12), (i) =] ny and

(15

jk- Nk is independent ofk. (16
Furthermore(ii) the currentg, are divergence-free:
I k=0, 17

which follows immediately from Eq(12) using the Dirac
equation(7) and its adjoint. These two properties of the cur-
rents, Eqs(16) and(17), are the key ingredients for the proof
of the equivariance of. For any current satisfying Eq&L6)
and (17), for the particle dynamics defined by EA.3), ¢
=], Ny is an equivariant probability density for crossings of
the leaves of the foliatiof.
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dx}

FIG. 2. Motion of two particles in one space dimension from
hypersurface to X.': space-time view. We have indicated the po-
sitions of the primed points,, obtained fromx, via displacement
from 3, to 3’ in the normal direction, and the imagés, of the
regions ox, under this correspondence. The point bhto which
particlek moves when starting ag e 3. is given(to leading order
by X+ v o7 with vi=j,/(jx-nx), where 7, is the Minkowski
distance betweer, andx .

Consider thus two infinitesimally close hypersurfades
and,’ belonging to the foliationF. The probability distri-
bution of the positions of th&l particles on is given by a
densityRy :3N—R such that

Prokparticlei crosses in 8x;, i=1,..

. ,XN)5X1. . '§)(N'

'N)
= RE(X]_, N

By 6x we denote simultaneously an infinitesimal region on
3 aroundx and its aredi.e., three-volumeg Now we com-
pareRy evaluated atXy, ... xy) e 2N with Ry, evaluated

at (x1, ... x4 e(E)N, wherex’ €3’ is obtained fromx

e Y via displacement front, to 3’ in the normal direction,
see Fig. 2. Letx’ be the area of the image of the regiéx

The proof of this assertion consists of two steps: First, wg,nder this correspondendSince the projection of the Lor-

determine how an arbitrary probability densiyon cross-
ings of a foliation hypersurfacE evolves under the dynam-
ics (13), i.e., we formulate the continuity equation of the
hypersurface dynamics. In the second step, we showRhat
= o solves the continuity equation. It then follows that if the
probability distribution of the “positions of th&l particles”
on X e F is given byp restricted to2,, then for any other
hypersurface:’ e F, the probability distribution of the “po-
sitions of theN particles” on,’, which emerges by trans-
port according to the dynamic43), is given byg restricted
to 3'. Thus,g is equivariant.

|
. XN

Ry (X1, -« XQ)OXq - .. OXG— Rs(Xq, - -

N
— > Xy Xy .. Xy
k=1

where the hat orﬁlx\i< indicates that this term should be omit-
ted from the product. Hergj is the integration variable on

(8%,), the (two-dimensionglboundary ofsx, regarded as a

region in%, dSisthe area element @ 5x,), uyisthe

8In contrast, the currerjq(zZykzﬂ we considered i8] satisfies
Eq. (17) but not Eq.(16).

f (REVk)(XlI e Xk=10Y o Xkt 1y - s :XN)'(Uk5T)(Y)dS<,
(%)

entz metric onY’ need not agree with the image, under
x—X', of its projection onX, 6x and 8x’ need not agreg.

Recall from elementary physics that a continuity equation
such as Eq(5) is an expression of a local conservation law
that on the infinitesimal level can be stated as follows: The
difference between the probability densitigs on =N and
Ry on (") (with 3" infinitesimally later thar®) is ac-
counted for by the flux through the lateral sides—to which
the hypersurface normals are tangent—of the configuration-
space-time box betweeafx; X - - - X SxyC SN and the corre-
sponding set ofprimed points in ')V, see Fig. 3;

)OXq . .. OXp

(18

outward unit normal vector field i& to 9(5x,), J7(y) is
the Minkowski distance betweene 3 and the correspond-
ingy’ e’ [so thaty’ =y+ &r(y)n(y)], and

Jk
=- 19
Jk- Nk 19

is the covariant velocity of thkth particle relative t&,, see
Fig. 2.
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El /\951/_\ / +"'+Q(X1, ...,XN_l,X,'\,)ﬁxl...é\XN_lﬁx,’\‘
7 X —0(Xq,s oo XN)OXy . . . OXy, (20)
Y //;1 o/ J’1 / we obtain in this case for the left-hand side of E4g8) (to
(particle 0 X leading order,
// //// // Il/r N
V<8T2 7/v161:1 *2 k§=:1 X1 oo O OXNL (XL« oo Xis -+ - X)) - N(X) OXe
U ;
v 2 / y2 _Jk(xlv vxkv CRC 1XN)' n(Xk)5Xk], (21)
\ ' up / _xzf/ﬁxz while the integrand on the right-hand side of E#8) be-
P Y2 comes {,-u,) 87 dS.. Thus, subtracting the right-hand side
' of Eqg. (18) from Eq. (21), we obtain(to leading orderthe
> sum overk of the integral ofj, over the(outward-orientefl
boundary of the space-time region aba%g between®, and
> ) 3. But sincej is divergence-fredEq. (17)], each such
(particle 2) term, and hence the sum, vanishes. Thus(E8).is satisfied,

. . establishing the equivariance pf

FIG. 3. Conservation of probability for a system of two g may also write the continuity equatioil8) in a
particles in one space dimension: conflguratlon-space-tlmepurely local form: Writing
view with, for simplicity, the hypersurfaces drawn straightened out. '
[Note that the figure fails to convey the fact—displayed in Fig.
2—that the area#x, and 5x, may differ, and that alsé7(y,) may
differ from &7(y,), wherey, andy, are the boundary points \yhere
of 8x,.] The change of the probability of particle 1 being dw;

SRy (Xq, ... XN)=RE/(X], - X)) —Rs(Xq, .. Xn),

and particle 2 being indx, from hypersurface> to X’ is RL, (X, X)Xy .. OX

accounted for by the single-particle fluxes through the lateral sides A NI N

of the configuration space-time box betweafx;X 8x,C 32 =Rs/(X], -« XN)OX] - . . OXY s (22

and the corresponding set of primed points o),

e, and applying Gauss’ theorem to the right-hand side of Eq.
Ry (Xq %) 3% % — Ry (Xq ,X2) X1 8%, (18),

=—[(ReV1)(Y1.%2) (U167)(Y1) + (ReVa)(Y1.,%0) - (U1 67)(Y1) 1%

—[(ReV2)(XyY2)- (Up87)(Y2) + (Rs Vo) (X1 Y2) - (UpST)(Y2) 18y

Equation(18) is the natural extension of this formula tbparticles
in Minkowski space.

J Ry Vi Ud7 dS=divi[ Ry Vi 87(Xi) 16X,
(9(5Xk)

where divE is the divergence with respect to thth coordi-
natex, on the Riemannian manifold andvf is the projec-

. . o ) tion of v, on %, yields
Equation (18) is the continuity equation for the HBD

model in the “infinitesimally integrated form.” It is valid for N
any hypersurface dynamics defined by Ep), regardless of ORs + > divE(szE o1)=0, (23
whether the currentg, satisfy Eqs(16) and(17). However, k=1
as we shall now show, if the currents do satisfy Ed§) and
(17), thenRs = p|s = (jx-ny)|s satisfies Eq(18).

Since

where 57 = 67(Xy).

Using this form we may also check the equivariance of
To do so, we first “smoothly” label the hypersurfaces of the
, o, ) foliation F by a parametese R, increasing in the future
O(Xy, - XN)OXg .« OXy— @(Xq, oo XN)OXg - .. OXN direction, that may be called a “time parameter,” in terms of
which Eq.(23) becomes a standard differential equation. The

=00 X)Xy Xy functionf:M — R that maps any pointe M to the labels of
—0(X1,Xh, « oo X)) OXLOXY ... OXN the hypersurfac& g to which x belongs generates the folia-

tion in the manner described in Sec. Il. In particulaf,
FO(X1, X5, « o X)) OX1 Xy . . . OXy =||af|In, wheren is the future-oriented unit normal vector

, , , , field of F. With 8s=|df, /|57, wheredf, =df(x,), we get

Ik o~
Vk5Tk: - 5S=Vk5s, (24)
"Note that this decomposition is possible becaass defined on Ji ok

MN (with M Minkowski spacg in contrast with an arbitranR A . _ .
=(Rs)s. ., defined only forN-tuples belonging t&N for some  with vi,=dX,/ds the velocity of thekth particle in the pa-
> e F, for which, therefore, such a decomposition is impossible. rametrized formulation of the dynami¢§4).
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Consider now a coordinate system adapted to our paranthe quantum predictions for positions for any hypersurface in
etrized foliation : one coordinate is clearly given lsyand  F. But what can be said about the statistical predictions con-
on one foliation hypersurface we introduce @nbitrary) co-  cerning a hypersurface which is not part of a membefFaf
ordinate systenp, which is transported to the other foliation  For one particle the situation is very simple: From the
hypersurfaces by the flow along the normal field, yieldinggeometrical formulation of the HBD modéSec. 1) it fol-
the system of coordinatess,p), allowing us to writex  |ows immediately that the HBD model for one particle is
=(s,p) for xe M. Thenx,=(sk,pw) € 2s=s=s, and the  foliation-independent, and, in fact, is the usual one-particle

relation betweerx=(s,p) andx’=(s’,p") from Fig. 2 be-  gohm-Dirac theory given by Eq€3) and (4), with current
comesp=p’. Let 5p be the volume element defined by the .

p coordinates and lefx=g(p,s) op. In these adapted coor- J:EW" Thus,.in this case the stati;tical predictiqps of the
dinates the continuity equatic’(3) assumes, using EG2) model agree with the quantum predictions for position along

and(24), the more standard form any hypersurface.
24 The situation is analogous fdt independent particles: If
1 9(gy . . - gnRs) N s s the wave-function s is a product wave-function,y
9 9 P +k21 div, (Rsv, ®) =0, =1(Xq) - - - n(Xyn), then it follows from the multitime
l P N =

Dirac equation(7) that ¢, satisfies the usual one-particle
Dirac equation. Furthermore, the path of tktl particle is

with  Rg(p1, . ...pPn)= st((s,pl), ...,(s,pn)) and gy  tangent to the one-particle curreﬁyaﬂk and thus indepen-

(29

—g(s,pW), k=1,... N (and wherev>s is the projection of dent of the paths of the other particles. Moreoweris the
- 8 K product of the corresponding one-particle distributions.
Vi on X). ) ) ) ] Therefore, a product wave function indeed generates a
ForRs=gs, Eq.(20) is what lies behind the usuaim- foliation-independent motion, the motion &Ff independent
plication of the chain rule Bohm-Dirac particles, and we thus have agreement with all
1 o ) the quantum position distributions in this case.
91 - - -OnCs In the general case the situation is more subtle: If the
919N Js N-particle wave function is entangled, it will not, in general,
be the case that the distributions of crossings of hypersur-
_ 5 1 dlg(sk.pe(siipas - - - SkiPi)] (2¢)  faces not belonging to the foliation agree with the corre-
k=1 Ok ISk sponding quantum position distributior§,8] (which, in

S,=S
« fact, may be incompatible with the crossing statistics for any

Splitting the four-divergence into pieces corresponding tdrajectory model whatsoeverHowever, this disagreement

variations orthogonal to and variations within, we obtain ~ does not entail violations of the quantum predictions, as has
been discussed for the case of the multitime translation-

. 19 s “1:3 invariant Bohmian theory ifi8]. In fact, insofar as results of

divj=||af| 5(9_5(91 )+divEs([lof]~H=s) |, measurement are concerned, the predictions of our model are

the same as those of orthodox quantum theory, for positions
wherej® is the normal component gf  j°=j-n. Setting  Or any other quantum observables, regardless of whether or
j=j and using di\j,=0 [Eq. (17)] we then find with Eq. not these observables refer to a common hypersurface be-

(24) that longing to F.°

This is because the outcomes of all quantum measure-

1 ad(go) . So Ao ments can ultimately be reduced to the orientations of instru-

O IS¢ +diviX(ev,9)=0 ment pointers, counter readings, or the ink distribution of

computer printouts, if necessary brought forward in time to a

for all k. Therefore, in view of Eq(26), summation ovek ~ common hypersurface itF, or even to a single common

establishes tha,= o, satisfies the HBD continuity equation location, for which agreement is assured. Nonetheless, this
(25). situation may seem paradoxical if we forget the nonpassive

character of measurement in quantum mechanics. The point
is that for Bohmian quantum theory, measurement can affect
even distant systems, so that the resulting positions—and
The statistical analysis of the hypersurface Bohm-Dirathence their subsequently measured values—are different
model can be based on the assumption that the probabilituom what they would have been had no measurement oc-
distribution onN paths is given by the equivariant density  curred.
[Eg. (15)] on some simultaneity surface belonging to the
foliation F. Then, by equivariance, the statistical predictions
of the HBD model(i.e., the crossing probabilitieagree with

B. Comparison with quantum mechanics

®This conclusion requires the rather dubious assumption that the
relevant measurements can be understood in terms of noninteracting
Dirac particles. However, in order to talk coherently about the

8This evolution equation depends upgronly through the area- quantum predictions for a model, it must be possible to understand
expansion factor arising from the normal flow between hypersurmeasurement processes in terms of that model. The remarks we are
faces, and thus does not really depend upon the choice of coordinaking here would also be appropriate for the more realistic models
nates on the hypersurfaces. for which this would be true.
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IV. PERSPECTIVE thing, its normal vector fielah. As a toy example, however,

We have presented a hypersurface Bohm-Dirac model fot e foliation law could be given by an autonomous equgtlon
or n, such asd,n*=0. Another class of toy examples in-

N entangled but noninteracting Dirac particles. This model i ) .
a covariant extension of the Bohm-Dirac model, which in-volves a vector fielch constructed from the wave function
. Xyn): Consider the space-time vector fields

volves a foliation by equal-timéflat) hypersurfaces, to arbi- SR b S
trarily shaped(smooth hypersurfaces. How natural is this V{j(X) =) (Xe, -« Xi— 1, X X410+« - XN), where
model? (X4, ... Xy) is a point fixed in a Lorentz-invariant way, for

When looking for a relativistic extension of nonrelativis- . — . L
. . . oo example, as a maximum . [Simply consideringv{ (x
tic Bohmian mechanics one inevitably encounters two cen-"" P afy. [Simply o (x)

tral, very different problems: that such an extension must= (¥ 7 ¥)(X, ... X) is not a good idea, since this will be

involve a mechanism for nonlocal interactions between th&ero for antisymmetri¢fermion) wave functions. Now one

particles, and that quantum equilibrium cannot hold in allmay setn equal to the integrabt@ part of somev.

Lorentz frames. For both of these problems the additional A further possibility, which may be more serious, is to

space-time structure provided by a foliation yields the moshave, in addition to the particle degrees of freedom, an inde-

obvious solution: The motion of each particle at a point Ppendent quantum fielgb, that determines the foliation. As-

e M depends upon the paths of the other particles via théume that for any quantum stateof the field, @, ,®) is

points at which they intersect the leaf of the foliation con-timelike and completely integrable. Then for any stdteof

taining x, and we have an equivariant density on the leaveshe particle-field system, set,=(W,¢, V). Suppose that

of the foliation. the particle and the field degrees of freedom are both dy-
And the simplest way to achieve this, in a covariant man-nhamically and statistically independent, i.e., that there is nei-

ner, for a Dirac wave-functiony, is via the currenf{Eq. ther quantum interaction nor entanglement between these de-

(12)]: Form the natural tenso?yl ... ynt, evaluated ak grees of freedom, so that in particular the full wave function

and the other intersection points, and contract in the sloty = ¥®®. Then we may define the foliation by the normal
corresponding to the other particles with te-1 unit nor-  1eld n, . The ¢ field can be regarded as very roughly analo-

mals to the hypersurface at the corresponding points, to of10US {0 @ Higgs field, producing a kind of spontaneous sym-
tain the divergence-free four-vectgg, the tangent to the MeWry breaking, where by the choice ®fa particular folia-
trajectory atx. Thus,the dynamics of the HBD model is the tion is determined, and relativistic invariance is thereby
simplest Lorentz-invariant dynamics compatible with theProken.

structure at hand, namely, the Dirac wave function and the

foliation. Furthermore, the simultaneous normal component

0=j«- Ny is an equivariant density on the leaves of the fo- ACKNOWLEDGMENTS

liation. . . .
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It should be stressed, however, that the Lorentz 'nva”ancﬁlorkew;sagupp?)rt:(rj icpg:??ay ?hre ISIEJGU btillsﬁg?:gg?;m N(I)S

of the HBD model is—in Bell's sense—"serious” only if r\;5 9504556, by Swiss NF Grant No. 20-55648.98, and by
the foliation is regarded as an additional objectiy@amical the INEN

(in contrast to absolujestructure in the theoryand in the

world, if the theory is to describe the woyjldt is this struc-

ture that is the innovation of what has been proposed here

and in[10], not the model per se, which is indeed a rather 1%0r an arbitrary vector field/#(x), the Fourier-transformed

straightforward covariant extension of the BD model. v#(k) may be split intovf‘(k)=v"(k)kk*/(kKk") and v (k)
However, in this paper we shall not try to find a “seri- =v*(k)—vf'(k). The inverse Fourier-transformed(x) satisfies

ous” law for the foliation 7 or, what amounts to the same the integrability conditiory,v,—d,v,=0.
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