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Hypersurface Bohm-Dirac models
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We define a class of Lorentz-invariant Bohmian quantum models forN entangled but noninteracting Dirac
particles. Lorentz invariance is achieved for these models through the incorporation of an additional dynamical
space-time structure provided by a foliation of space time. These models can be regarded as the extension of
Bohm’s model forN Dirac particles, corresponding to the foliation into the equal-time hyperplanes for a
distinguished Lorentz frame, to more general foliations. As with Bohm’s model, there exists for these models
an equivariant measure on the leaves of the foliation. This makes possible a simple statistical analysis of
position correlations analogous to the equilibrium analysis for~the nonrelativistic! Bohmian mechanics.
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I. INTRODUCTION

Among the different approaches to resolving the conc
tual problems of quantum theory, Bohm’s approach is p
haps the simplest. In a nutshell, it consists in adding the m
basic dynamical variables, obeying additional evoluti
equations, to the description of a quantum system provi
by its wave functionc. For nonrelativistic quantum theor
the additional variables are the positions of the partic
which evolve according to a ‘‘guiding equation’’ natural
suggested by the Schro¨dinger evolution. This theory—
usually called Bohmian mechanics or the pilot-wa
theory—is well understood. It has been analyzed, and
connection with the predictions of orthodox quantum the
explained, in the original papers of Bohm@1# as well as in
later works~see, e.g.,@2–4#!. One of the main problems re
maining for the Bohmian~or any other! approach is to find a
satisfactoryrelativistic quantum theory, a theory that is ful
Lorentz-invariant while avoiding the profound conceptu
difficulties of orthodox quantum theory.

In his original papers, Bohm had an outline for a ‘‘Bohm
ian’’ field theory, with fields on space time as the addition
variables. A year later he proposed a ‘‘Bohmian’’ model f
one Dirac particle@5#, which was subsequently extended
Bohm and coworkers toN Dirac particles @6#. For this
N-particle model the additional variables are, as in Bohm
mechanics, the positionsQk , k51, . . . ,N of the particles.
However, in contrast with Bohmian mechanics, the guid
equation for this theory

dQk

dt
5

c†akc

c†c
~1!

is ultralocal on configuration space: The right-hand side
PRA 601050-2947/99/60~4!/2729~8!/$15.00
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Eq. ~1! depends only upon the value ofc at the positions of
the particles and not upon spatial derivatives ofc there. Here
c5c(q1 , . . . ,qN ,t), taking values in theN-particle spin
space (C4) ^ N, solves theN-particle Dirac equation (\5c
51),

i
]c

]t
5 (

k51

N

@2 i ak•“k2eak•A~qk ,t !1eF~qk ,t !1bkm#c,

~2!

where ak5(ak
1 ,ak

2 ,ak
3), ak

i 5I ^ •••^ I ^ a i
^ I ^ •••^ I ,

with the i th Diraca matrix a i at thekth of theN places, and
bk is defined analogously.F andA are external electromag
netic potentials.~We may, of course, consider particle
dependent massesmk , chargesek , and external potentials
Fk andAk , but for simplicity we shall not do so.! We shall
call this model the Bohm-Dirac~BD! model. Just as with
Bohm’s proposal for a field theory, the BD model requir
for its formulation the specification of a distinguished fram
of reference—in terms of which the actual configurati
(Q1 , . . . ,QN) and the generic configuration (q1 , . . . ,qN) at
time t is defined—and, in fact, the model is not Lorent
invariant if N.1 @6#.

However, forN51 this model is Lorentz-invariant, an
may be formulated in a covariant way: WritingX5X(t) for
the space-time point along a trajectory, with~scalar! param-
etrizationt, the guiding equation may be written as

dX

dt
5 j [c̄gc ~3!

with c satisfying the Dirac equation

~ ig•]2eg•A2m!c50, ~4!
2729 ©1999 The American Physical Society
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whereg•][gm]m andg•A[gmAm(x). Note that the right-
hand side of Eq.~3!, the Dirac currentj 5 j m[c̄gmc, is the
simplest four-vector that can be constructed from the Di
spinorc.

Note also that the parametert has no intrinsic physica
significance, so that Eq.~3! is equivalent to

dX

dt
5a j

with arbitrary positive scalar fielda5a(x). It is not the field
of four-vectors j ~having direction and length! that deter-
mines the particle motion, but rather the field of directio
defined byj. In other words, the law for the particle motio
could be formulated in a purely geometrical manner as
condition that the Dirac currentj at every point along the
trajectory be tangent to the trajectory at that point.

Because the Dirac current is timelike and divergen
free,1

]• j 50,

there is a dynamically distinguished probability distributi
on the set of particle pathsX(t) arising from Eq.~3!. Any
distribution on this space of paths can be defined by sp
fying for the path the crossing probability for some giv
equal-time surfaceS0 in some Lorentz frame.~By this cross-
ing probability we mean the distribution of the point throu
which the path crossesS0, which is the same thing as th
probability distribution for the position of the particle in th
frame at the given time.! The distinguished distribution is
then defined by the crossing probability forS0 given by %
5 j 05c†c on S0 ~with c suitably normalized!, which can
be written in a covariant manner asj •n wheren is the future-
oriented unit normal to the surface. For this distribution t
crossing probability for any other equal-time surface w
also be given byj •n, both for the original frame and an
other Lorentz frame. We may roughly summarize the sit
tion by saying that for the distinguished probability distrib
tion, quantum equilibrium holds in all Lorentz frames at
times, with the quantum equilibrium distribution given b
%5c†c.

More generally, the crossing probability for any spacel
hypersurfaceS will also be given byj •n, with n5n(x) the
future-oriented unit normal field toS. Moreover, for any
oriented hypersurfaceS, the crossing measure~a signed
measure that need not be normalized!, which describes the
expected number of signed crossings through area elem
of S, with negatively oriented crossings counted negative
is, for the distinguished distribution, also given byj •n, with
n5n(x) now the positively oriented unit normal field toS.2

1The claims in this and the next paragraph follow directly fro
the application of the divergence theorem~or Stokes’ theorem! to
an infinitesimally thin tube of paths betweenS0 ~see below! and the
relevant hypersurfaceS.

2In this regard it is perhaps worth noting the following:
Minkowski space there is a natural duality between divergence-
vector fields and closed three-forms. Such a vector field defin
‘‘deterministic’’ random path, whose ‘‘law’’ is given directly by the
vector field, as in Eq.~3!, and whose statistics are governed by t
dual three-form, in the manner just described.
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The N-particle BD model~1! also has a dynamically dis
tinguished probability distribution on paths. As a cons
quence of Eq.~2! %5c†c satisfies, in the Lorentz frame in
which the dynamics is defined, the continuity equation

]%

]t
1 (

k51

N

“k•Jk50, ~5!

where

Jk5%vk5c†akc. ~6!

Thus, if the joint probability distribution for the positions o
theN particles is given%5c†c at some timet5t0, then, for
the corresponding distribution on paths, it will be given
%5c†c at all timest. However, even for this distinguishe
distribution, quantum equilibrium will not, in general, hol
in other Lorentz frames: The joint distribution of crossings
equal-time surfaces for other frames will in general not
given by c8†c8 ~wherec8 is the wave function in the rel-
evant Lorentz frame! @7,8#. Nonetheless, Bohm and co
workers have argued that the observational content of
model is as Lorentz-invariant as the covariant formalism
relativistic quantum theory: Since the predictions for resu
of measurements for this model can be regarded as refle
in the configuration of various devices and registers—a
hence can be derived from probabilities for positions giv
by %5c†c—at a common time in the distinguished fram
these predictions must agree with those of the usual inter
tation. Thus, no violation of Lorentz invariance can be d
tected in experiments@6#. ~In particular, the identity of the
distinguished Lorentz frame cannot be ascertained by me
of any possible observation.!

Lorentz invariance is, however, a delicate issue. Inde
any theory can be made trivially Lorentz-invariant~or invari-
ant under any other space-time symmetry!, even on the mi-
croscopic level, by the incorporation of suitable addition
structure @8#. For this reason Bell has stressed that o
should consider what he has called ‘‘serious Lorentz inva
ance,’’ a notion, however, that is extremely difficult to ma
precise in an adequate way@2#. Lacking a general criterion
we may nonetheless begin to get a handle on ‘‘serious L
entz invariance’’ by analyzing some specific models. If t
models involve additional structure, then whether or not
have serious Lorentz invariance will depend, of course, u
the detailed nature of this structure.

In @8# we have considered a model for which the ad
tional structure for a system ofN ~noninteracting! Dirac par-
ticles is provided by a global synchronization among t
particles: The trajectories of the particles are such that e
one of them at some given space-time point is tangent
vector field determined, given the wave function, by th
point and those points along the trajectories of the other p
ticles with which that point has been ‘‘synchronized.’’ Th
additional synchronization structure is defined implicitly b
the equation of motion and the model is not amenable t
statistical analysis in any obvious way. In other words, t
model is not statistically transparent~see Sec. IV of@8#!.
Nonetheless, even this model provides a counterexamp
the widely held belief that a Lorentz-invariant Bohmia
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PRA 60 2731HYPERSURFACE BOHM-DIRAC MODELS
theory for many particles is impossible~unless only product
states are allowed!. In this regard, see also the local model
Squires@9#.

In this paper we shall analyze a statistically transpar
counterexample, the ‘‘hypersurface Bohm-Dirac~HBD!
model.’’ The basic idea was proposed in@10# in the context
of bosonic quantum field theory: In addition to the wa
function and field variables, a distinguished foliation
space time—a new element of geometrical structure defin
simultaneity surfaces—is suggested as an additional dyn
cal variable of the theory. These surfaces need not be hy
planes. The defining~Lorentz-invariant! equations of the
theory should describe the evolution of the wave functi
the field variables, and the simultaneity surfaces. For a c
ful philosophical discussion of how this may be compatib
with some appropriate notion of relativity, even if the simu
taneity surfaces should turn out to be unobservable,
Maudlin @11#.

Here we shall consider such a theory, not for fields but
N ~noninteracting! Dirac particles. We shall discuss an as y
incomplete hypersurface Bohm-Dirac model: The law for
evolution of the foliation is not specified beyond the requi
ment that it not involve the positions of the particles. W
present no hypothesis concerning the origin of the foliati
but have in mind that the foliation should ultimately be go
erned by a Lorentz-invariant law; one that may, for examp
involve the N-particle wave function.~For definiteness we
shall give some very tentative and less than compelling
amples of laws for the foliation in Sec. IV.! However, we
show in Sec. III A that regardless of how the foliation
determined, the dynamics of the HBD model preserves
quantum equilibrium distribution on the leaves of the fol
tion. Thus the model is amenable to the same sort of sta
tical analysis as for nonrelativistic Bohmian mechanics. T
is discussed briefly in Sec. III B.

II. THE HYPERSURFACE BOHM-DIRAC MODEL

A general foliationF of codimension one on Minkowsk
spaceM can approximately be thought of as a partition ofM
into three-dimensional hypersurfaces. These hypersurf
are the leaves of the foliation. The simplest way to obtai
foliation is by a smooth functionf :M→R without critical
points, i.e.,d fÞ0 everywhere. The level setsf 21(s) are
smooth hypersurfaces and form a foliation ofM. With the
one-formd fx , which vanishes on the tangent space of
hypersurface throughxPM , we may associate by the Lor
entz metric the normal vector field] f (x). If this is timelike
everywhere, and thus the foliation hypersurfaces space
we may normalize] f (x) to obtain a unit normal vector field
n(x) associated with the foliationF.

We shall consider in this paper only spacelike foliation
i.e., foliations by spacelike hypersurfaces. While obviou
different f ’s may generate the same foliationF, the future-
oriented unit normal vector fieldn is uniquely determined by
F. When does a vector fieldv(x) determine a foliationF
such that for allxPM , v(x) is normal to the tangent spac
of the foliation hypersurface throughx? If we denote byV
the one-form associated withv by the Lorentz metric, then
by Frobenius’ theorem, the necessary and sufficient co
tion is thatV be completely integrable,V`dV50.
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Apart from the foliation, the other dynamical variables
the hypersurface Bohm-Dirac model are the usual ones:
wave functionc, here forN Dirac particles, and theN path,
the N-tuple of ~everywhere either timelike or lightlike!
space-time paths, which describes the trajectories of thN
Dirac particles. Covariant laws for these dynamical variab
suggest themselves when we write those of the Bohm-D
model, defined by Eqs.~1! and~2!, in a coordinate-free, i.e.
covariant manner.

To achieve this we consider first of all thec function in
the multitime formalism: ForN Dirac particles the wave-
function c5c(x1 ,x2 , . . . ,xN), xkPM , takes values in
the N-particle spin space (C4) ^ N and satisfiesN Dirac equa-
tions

@ igk•]k2egk•A~xk!2m#c50, ~7!

k51, . . . ,N. Here,gk5I ^ •••^ I ^ g ^ I ^ •••^ I , with g at
thekth of theN places, andA is an external electromagneti
potential.@Just as with Eq.~2!, we may, of course, conside
particle-dependent massesmk , chargesek , and external po-
tentialsAk .# The system of equations~7! is a covariant ver-
sion of Eq.~2!; in this multitime form the Lorentz invariance
of the law forc is manifest@6#.3 The N Dirac particles are
coupled by the common wave-functionc. If this is en-
tangled, we have nonlocal correlations between theN par-
ticles, despite the fact that the particles are noninteractin

We shall now develop the guiding law for theN path.
Note that the numerator of the right-hand side of Eq.~1! is
given by a currentj k ,

j k5c̄g1
0 . . . gk . . . gN

0 c,

which involves matrix elements of an operator having
factors the 0 componentg0 of a four-vector for all but the
kth particle. Therefore,j k can be expressed in a covaria
manner by replacinggk

0 in the above expression withgk•n,
wheren is the future-oriented unit normal to thet 5 const
hyperplanes,

j k5c̄~g1•n! . . . gk . . . ~gN•n!c. ~8!

Moreover, the denominator of the right-hand side of Eq.~1!
can be expressed covariantly asj k•n. Then, the covariant
velocity of the kth particle—with respect to the time of
Lorentz frame withn as time axis—is

dXk

dt
5

j k

j k•n
. ~9!

Since j k•n5c̄(g1•n) . . . (gN•n)c is independent ofk, we
may reparametrize the paths with a parameters so related to
t that t8(s)5 j k•n to obtain

dXk

ds
5 j k . ~10!

3Note that in the single-time form~2! we can easily add an ex
plicit interaction potentialV(q1 , . . . ,qN ,t) for the N Dirac par-
ticles, while in the multitime form this is impossible.
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More generally, by further reparametrization we may obt
dXk /dt5a jk , where a is any positive scalar field. The
physical particle dynamics—i.e., theN space-time paths de
fined by the equations of motion~and initial conditions!—is
invariant under reparametrization.

A manifestly ‘‘parametrization-invariant’’ formulation o
the dynamics—that is, such that a time parameter plays
role—is easily obtained: The space-time paths for theN par-
ticles are constrained by the currentsj k by requiring that the
path for thekth particle at the pointxk be tangent to the
currentj k evaluated atxk and at the intersection points of th
paths of the N21 other particles with the
t5const-hyperplaneS t containing xk . If we denote by
Xk(S t) the intersection point of the pathXk with the hyper-
planeS t , and byẊk(S t) a tangent of~or the tangent line to!
the pathXk at Xk(S t), we may write the law for theN path as

Ẋk~S t! i j k„X1~S t!, . . . ,XN~S t!…, ~11!

using the symboli for ‘‘is parallel to.’’ In this geometric
formulation the Bohm-Dirac dynamics depends upon
Lorentz frame only via its associated foliation into simult
neity hypersurfacesS t , and thus naturally extends to an a
bitrary foliation F of Minkowski space-timeM by curved
spacelike hypersurfaces.4

Given such a foliationF and SPF, let Xk(S) be the
intersection of the pathXk with S,5 and letẊk(S) be a tan-
gent of~or the tangent line to! the pathXk at Xk(S). The law
of the N pathX5(X1 , . . . ,XN) for the hypersurface Bohm
Dirac model is defined by the currentsj k naturally extending
Eq. ~8!,

j k5c̄~g1•n1! . . . gk . . . ~gN•nN!c, ~12!

wheren1[n(x1), . . . ,nN[n(xN), with n the future-oriented
unit normal vector field associated withF, via the HBD tan-
gency condition~see also Fig. 1!

Ẋk~S! i j k„X1~S!, . . . ,XN~S!…. ~13!

„By considering the action of a suitable Lorentz transform
tion ong0g•n for arbitrary timelike unit vectorn @transform-
ing n to (1,0,0,0)#, one sees thatg0g•n is a positive operator
in spin space C4. Hence, (g1

0g1•n1) . . . (gk
0gk

•n) . . . (gN
0 gN•nN) is also positive, i.e.,j k•n>0 with ‘‘ 5’’

4This is in marked contrast with the parametrized dynamics s
as given by Eq.~9! or Eq. ~10!, which need not extend in anythin
like the same form to a general foliation since the parametri
paths generated by the dynamics need not, in general, respec
foliation.

5Note that the pathsXk comprising anN path, since they are
nowhere spacelike, can intersectS at most once. This is the mai
reason why it is important that the foliationF be spacelike. Of
course, also from the physical point of view a synchronizat
along spacelike hypersurfaces yields a picture which perhaps m
most sense. We shall assume without further ado global existe
that a fragment of anN path locally satisfying the HBD tangenc
condition, see Eq.~13!, can be continued in such a manner that ea
of its pathsXk intersects everySPF.
n

o

e

-

only if c50. This means that where it is nonzero,j k is
future-oriented and, like the pathXk , nowhere spacelike.…

We may also write down the equations of motion in t
parametrized form analogous to Eq.~9! or Eq.~10!. To do so
it is convenient to label the hypersurfaces of the foliati
using a functionf :M→R that generates the foliation as d
scribed above, and use this hypersurface labeling as the
rameter for the particle trajectories—so thatXk(s) is on the
hypersurfacef 21(s). From the geometrical characterizatio
of the dynamics~13! we know thatdXk /ds is parallel to
j k„X1(s), . . . ,XN(s)…, and the scale factor required to ensu
f „Xk(s)…5s for all k and s is easily seen to be 1/(] f • j k).
Therefore,

dXk

ds
5

j k„X1~s!, . . . ,XN~s!…

] f „Xk~s!…• j k„X1~s!, . . . ,XN~s!…
. ~14!

For a flat foliation we may choose a Lorentz frame such t
the foliation hyperplanes are thex05 const planes, i.e.
f (x)5x0 for all x. Thenn5] f 5(1,0,0,0) and Eq.~14! re-
duces to the Bohm-Dirac law~1!.

III. STATISTICAL ANALYSIS OF THE HBD MODEL

A. Quantum equilibrium

We shall show now that for the hypersurface Bohm-Dir
model with foliationF, there is a distinguished probabilit
measure onN pathsX satisfying the HBD tangency conditio
~13!, one for which the distribution of hypersurface crossin

h

d
the

es
e:

h

FIG. 1. Geometrical formulation of the dynamics for a system
three particles: For each particle the path of that particle, say,
ticle 1 atx1, must be tangent to the four-vectorj 1 which is deter-
mined by ~i! the intersectionsx2 and x3 of the trajectories of the
other two particles with the hypersurfaceS containingx1, ~ii ! the
future-oriented unit normalsn2 andn3 at these points, and~iii ! the
wave function of the system evaluated atx1 , x2, and x3 : j 1

5c̄(x1 ,x2 ,x3)g1(g2•n2)(g3•n3)c(x1 ,x2 ,x3).
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X1(S), . . . ,XN(S) for SPF depends only uponc re-
stricted toS ~or, more precisely, toSN) for c satisfying Eq.
~7!. We shall say that such a distinguished measure, as
as the corresponding hypersurface crossing distribution
equivariant, definingquantum equilibrium. The physical sig-
nificance of the hypersurfacesSPF is thus twofold: They
serve@via Eq.~13!# to define the motion of the particles an
for a quantum equilibriumN path, it is ‘‘on these hypersur
faces’’ that manifestly the ‘‘particles are in quantum equili
rium.’’

The natural candidate for the equivariant crossing pr
ability density% of the HBD model is given by the obviou
covariant extension of the equivariant densityc†c

(5c̄g1
0 . . . gN

0 c) of the BD model:

%5c̄~g1•n1! . . . ~gN•nN!c. ~15!

To see that this is in fact equivariant, note the following:
view of Eq. ~12!, ~i! %5 j k•nk and

j k•nk is independent ofk. ~16!

Furthermore,~ii ! the currentsj k are divergence-free:

]k• j k50, ~17!

which follows immediately from Eq.~12! using the Dirac
equation~7! and its adjoint. These two properties of the cu
rents, Eqs.~16! and~17!, are the key ingredients for the proo
of the equivariance of%. For any current satisfying Eqs.~16!
and ~17!, for the particle dynamics defined by Eq.~13!, %
5 j k•nk is an equivariant probability density for crossings
the leaves of the foliation.6

The proof of this assertion consists of two steps: First,
determine how an arbitrary probability densityR on cross-
ings of a foliation hypersurfaceS evolves under the dynam
ics ~13!, i.e., we formulate the continuity equation of th
hypersurface dynamics. In the second step, we show thR
5% solves the continuity equation. It then follows that if th
probability distribution of the ‘‘positions of theN particles’’
on SPF is given by% restricted toS, then for any other
hypersurfaceS8PF, the probability distribution of the ‘‘po-
sitions of theN particles’’ on S8, which emerges by trans
port according to the dynamics~13!, is given by% restricted
to S8. Thus,% is equivariant.
it-
ell
is

-

-

e

Consider thus two infinitesimally close hypersurfacesS
and S8 belonging to the foliationF. The probability distri-
bution of the positions of theN particles onS is given by a
densityRS :SN→R such that

Prob~particlei crossesS in dxi , i 51, . . . ,N)

5RS~x1 , . . . ,xN!dx1 . . . dxN .

By dx we denote simultaneously an infinitesimal region
S aroundx and its area~i.e., three-volume!. Now we com-
pareRS evaluated at (x1 , . . . ,xN)PSN with RS8 evaluated
at (x18 , . . . ,xN8 )P(S8)N, wherex8PS8 is obtained fromx
PS via displacement fromS to S8 in the normal direction,
see Fig. 2. Letdx8 be the area of the image of the regiondx
under this correspondence.~Since the projection of the Lor
entz metric onS8 need not agree with the image, und
x°x8, of its projection onS, dx anddx8 need not agree.!

Recall from elementary physics that a continuity equat
such as Eq.~5! is an expression of a local conservation la
that on the infinitesimal level can be stated as follows: T
difference between the probability densitiesRS on SN and
RS8 on (S8)N ~with S8 infinitesimally later thanS) is ac-
counted for by the flux through the lateral sides—to whi
the hypersurface normals are tangent—of the configurat
space-time box betweendx13•••3dxN,SN and the corre-
sponding set of~primed! points in (S8)N, see Fig. 3;

FIG. 2. Motion of two particles in one space dimension fro
hypersurfaceS to S8: space-time view. We have indicated the p
sitions of the primed pointsxk8 obtained fromxk via displacement
from S to S8 in the normal direction, and the imagesdxk8 of the
regionsdxk under this correspondence. The point onS8 to which
particlek moves when starting atxkPS is given~to leading order!
by xk1vkdtk with vk5 j k /( j k•nk), wheredtk is the Minkowski
distance betweenxk andxk8 .
RS8~x18 , . . . ,xN8 !dx18 . . . dxN8 2RS~x1 , . . . ,xN!dx1 . . . dxN

52 (
k51

N

dx1 . . . dxk̂ . . . dxNE
](dxk)

~RSvk!~x1 , . . . ,xk21 ,y,xk11 , . . . ,xN!•~ukdt!~y!dSk , ~18!
-

where the hat ondxk̂ indicates that this term should be om
ted from the product. Here,y is the integration variable on
](dxk), the~two-dimensional! boundary ofdxk regarded as a
region inS, dSk is the area element of](dxk), uk is the

6In contrast, the currentj k5c̄gkc we considered in@8# satisfies
Eq. ~17! but not Eq.~16!.
outward unit normal vector field inS to ](dxk), dt(y) is
the Minkowski distance betweenyPS and the correspond
ing y8PS8 @so thaty85y1dt(y)n(y)#, and

vk5
j k

j k•nk
~19!

is the covariant velocity of thekth particle relative toS, see
Fig. 2.
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Equation ~18! is the continuity equation for the HBD
model in the ‘‘infinitesimally integrated form.’’ It is valid for
any hypersurface dynamics defined by Eq.~13!, regardless of
whether the currentsj k satisfy Eqs.~16! and~17!. However,
as we shall now show, if the currents do satisfy Eqs.~16! and
~17!, thenRS5%uS5( j k•nk)uS satisfies Eq.~18!.

Since7

%~x18 , . . . ,xN8 !dx18 . . . dxN8 2%~x1 , . . . ,xN!dx1 . . . dxN

5%~x18 , . . . ,xN8 !dx18 . . . dxN8

2%~x1 ,x28 , . . . ,xN8 !dx1dx28 . . . dxN8

1%~x1 ,x28 , . . . ,xN8 !dx1dx28 . . . dxN8

2%~x1 ,x2 ,x38 , . . . ,xN8 !dx1dx2dx38 . . . dxN8

7Note that this decomposition is possible because% is defined on
MN ~with M Minkowski space!, in contrast with an arbitraryR
5(RS)SPF , defined only forN-tuples belonging toSN for some
SPF , for which, therefore, such a decomposition is impossibl

FIG. 3. Conservation of probability for a system of tw
particles in one space dimension: configuration-space-t
view with, for simplicity, the hypersurfaces drawn straightened o
@Note that the figure fails to convey the fact—displayed in F
2—that the areasdxk anddxk8 may differ, and that alsodt(yk) may

differ from dt( ȳk), where yk and ȳk are the boundary points
of dxk .# The change of the probability of particle 1 being indx1

and particle 2 being indx2 from hypersurfaceS to S8 is
accounted for by the single-particle fluxes through the lateral s
of the configuration space-time box betweendx13dx2,S2

and the corresponding set of primed points on (S8)2,
i.e.,

RS8~x18 ,x28!dx18dx282RS~x1,x2!dx1dx2

52@~RSv1!~ȳ1,x2!•~u1dt!~ȳ1!1~RSv1!~y1,x2!•~u1dt!~y1!#dx2

2@~RSv2!~x1,ȳ2!•~u2dt!~ȳ2!1~RSv2!~x1,y2!•~u2dt!~y2!#dx1.

Equation~18! is the natural extension of this formula toN particles
in Minkowski space.
1•••1%~x1 , . . . ,xN21 ,xN8 !dx1 . . . dxN21dxN8

2%~x1 , . . . ,xN!dx1 . . . dxN , ~20!

we obtain in this case for the left-hand side of Eq.~18! ~to
leading order!,

(
k51

N

dx1 . . . dxk̂ . . . dxN@ j k~x1 , . . . ,xk8 , . . . ,xN!•n~xk8!dxk8

2 j k~x1 , . . . ,xk , . . . ,xN!•n~xk!dxk#, ~21!

while the integrand on the right-hand side of Eq.~18! be-
comes (j k•uk)dt dSk . Thus, subtracting the right-hand sid
of Eq. ~18! from Eq. ~21!, we obtain~to leading order! the
sum overk of the integral ofj k over the~outward-oriented!
boundary of the space-time region abovedxk betweenS and
S8. But since j k is divergence-free@Eq. ~17!#, each such
term, and hence the sum, vanishes. Thus Eq.~18! is satisfied,
establishing the equivariance of%.

We may also write the continuity equation~18! in a
purely local form: Writing

dRS~x1 , . . . ,xN!5RS8
8 ~x18 , . . . ,xN8 !2RS~x1 , . . . ,xN!,

where

RS8
8 ~x18 , . . . ,xN8 !dx1 . . . dxN

5RS8~x18 , . . . ,xN8 !dx18 . . . dxN8 , ~22!

and applying Gauss’ theorem to the right-hand side of
~18!,

E
](dxk)

RSvk•ukdt dSk5div k
S@RSvk

Sdt~xk!#dxk ,

where divk
S is the divergence with respect to thekth coordi-

natexk on the Riemannian manifoldS andvk
S is the projec-

tion of vk on S, yields

dRS1 (
k51

N

div k
S~RSvk

Sdtk!50, ~23!

wheredtk[dt(xk).
Using this form we may also check the equivariance of%.

To do so, we first ‘‘smoothly’’ label the hypersurfaces of th
foliation F by a parametersPR, increasing in the future
direction, that may be called a ‘‘time parameter,’’ in terms
which Eq.~23! becomes a standard differential equation. T
function f :M→R that maps any pointxPM to the labels of
the hypersurfaceSs to which x belongs generates the folia
tion in the manner described in Sec. II. In particular,] f
5i] f in, wheren is the future-oriented unit normal vecto
field of F. With ds5i] f kidtk , where] f k[] f (xk), we get
from Eq. ~19! that

vkdtk5
j k

j k•] f k
ds[ v̂kds, ~24!

with v̂k5dXk /ds the velocity of thekth particle in the pa-
rametrized formulation of the dynamics~14!.

e
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Consider now a coordinate system adapted to our par
etrized foliationSs : one coordinate is clearly given bys, and
on one foliation hypersurface we introduce an~arbitrary! co-
ordinate systemp, which is transported to the other foliatio
hypersurfaces by the flow along the normal field, yieldi
the system of coordinates (s,p), allowing us to writex
5(s,p) for xPM . Then xk5(sk ,pk)PSs⇔sk5s, and the
relation betweenx5(s,p) andx85(s8,p8) from Fig. 2 be-
comesp5p8. Let dp be the volume element defined by th
p coordinates and letdx5g(p,s)dp. In these adapted coor
dinates the continuity equation~23! assumes, using Eqs.~22!
and ~24!, the more standard form

1

g1 . . . gN

]~g1 . . . gNRs!

]s
1 (

k51

N

div k
Ss~Rsv̂k

Ss!50,

~25!

with Rs(p1 , . . . ,pN)5RSs
„(s,p1), . . . ,(s,pN)… and gk

5g(s,pk), k51, . . . ,N ~and wherev̂k
Ss is the projection of

v̂k on Ss).
8

For Rs5%s , Eq. ~20! is what lies behind the usual~im-
plication of the! chain rule

1

g1 . . . gN

]~g1 . . . gN%s!

]s

5 (
k51

N
1

gk

]@g~sk ,pk!%~s1 ,p1 , . . . ,sk ,pk!#

]sk
U

sk5s

. ~26!

Splitting the four-divergence into pieces corresponding
variations orthogonal to and variations withinSs , we obtain

div j 5i] f i S 1

g

]

]s
~g j0!1div Ss~ i] f i21 j Ss! D ,

where j 0 is the normal component ofj , j 05 j •n. Setting
j 5 j k and using divj k50 @Eq. ~17!# we then find with Eq.
~24! that

1

gk

]~gk% !

]sk
1div k

Ss~% v̂k
Ss!50

for all k. Therefore, in view of Eq.~26!, summation overk
establishes thatRs5%s satisfies the HBD continuity equatio
~25!.

B. Comparison with quantum mechanics

The statistical analysis of the hypersurface Bohm-Di
model can be based on the assumption that the probab
distribution onN paths is given by the equivariant density%
@Eq. ~15!# on some simultaneity surfaceS belonging to the
foliation F. Then, by equivariance, the statistical predictio
of the HBD model~i.e., the crossing probabilities! agree with

8This evolution equation depends upong only through the area-
expansion factor arising from the normal flow between hypers
faces, and thus does not really depend upon the choice of co
nates on the hypersurfaces.
-

o

c
ity

s

the quantum predictions for positions for any hypersurface
F. But what can be said about the statistical predictions c
cerning a hypersurface which is not part of a member ofF?

For one particle the situation is very simple: From t
geometrical formulation of the HBD model~Sec. II! it fol-
lows immediately that the HBD model for one particle
foliation-independent, and, in fact, is the usual one-parti
Bohm-Dirac theory given by Eqs.~3! and ~4!, with current

j 5c̄gc. Thus, in this case the statistical predictions of t
model agree with the quantum predictions for position alo
any hypersurface.

The situation is analogous forN independent particles: I
the wave-function c is a product wave-function,c
5c1(x1)•••cN(xN), then it follows from the multitime
Dirac equation~7! that ck satisfies the usual one-partic
Dirac equation. Furthermore, the path of thekth particle is

tangent to the one-particle currentc̄kgck and thus indepen-
dent of the paths of the other particles. Moreover,% is the
product of the corresponding one-particle distribution
Therefore, a product wave function indeed generate
foliation-independent motion, the motion ofN independent
Bohm-Dirac particles, and we thus have agreement with
the quantum position distributions in this case.

In the general case the situation is more subtle: If
N-particle wave function is entangled, it will not, in genera
be the case that the distributions of crossings of hyper
faces not belonging to the foliation agree with the cor
sponding quantum position distributions@7,8# ~which, in
fact, may be incompatible with the crossing statistics for a
trajectory model whatsoever!. However, this disagreemen
does not entail violations of the quantum predictions, as
been discussed for the case of the multitime translati
invariant Bohmian theory in@8#. In fact, insofar as results o
measurement are concerned, the predictions of our mode
the same as those of orthodox quantum theory, for positi
or any other quantum observables, regardless of whethe
not these observables refer to a common hypersurface
longing toF.9

This is because the outcomes of all quantum meas
ments can ultimately be reduced to the orientations of ins
ment pointers, counter readings, or the ink distribution
computer printouts, if necessary brought forward in time t
common hypersurface inF, or even to a single common
location, for which agreement is assured. Nonetheless,
situation may seem paradoxical if we forget the nonpass
character of measurement in quantum mechanics. The p
is that for Bohmian quantum theory, measurement can af
even distant systems, so that the resulting positions—
hence their subsequently measured values—are diffe
from what they would have been had no measurement
curred.

r-
di-

9This conclusion requires the rather dubious assumption that
relevant measurements can be understood in terms of nonintera
Dirac particles. However, in order to talk coherently about t
quantum predictions for a model, it must be possible to underst
measurement processes in terms of that model. The remarks w
making here would also be appropriate for the more realistic mo
for which this would be true.
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IV. PERSPECTIVE

We have presented a hypersurface Bohm-Dirac mode
N entangled but noninteracting Dirac particles. This mode
a covariant extension of the Bohm-Dirac model, which
volves a foliation by equal-time~flat! hypersurfaces, to arbi
trarily shaped~smooth! hypersurfaces. How natural is th
model?

When looking for a relativistic extension of nonrelativi
tic Bohmian mechanics one inevitably encounters two c
tral, very different problems: that such an extension m
involve a mechanism for nonlocal interactions between
particles, and that quantum equilibrium cannot hold in
Lorentz frames. For both of these problems the additio
space-time structure provided by a foliation yields the m
obvious solution: The motion of each particle at a poinx
PM depends upon the paths of the other particles via
points at which they intersect the leaf of the foliation co
taining x, and we have an equivariant density on the lea
of the foliation.

And the simplest way to achieve this, in a covariant ma
ner, for a Dirac wave-functionc, is via the current@Eq.
~12!#: Form the natural tensorc̄g1 . . . gNc, evaluated atx
and the other intersection points, and contract in the s
corresponding to the other particles with theN21 unit nor-
mals to the hypersurface at the corresponding points, to
tain the divergence-free four-vectorj k , the tangent to the
trajectory atx. Thus,the dynamics of the HBD model is th
simplest Lorentz-invariant dynamics compatible with t
structure at hand, namely, the Dirac wave function and
foliation. Furthermore, the simultaneous normal compon
%5 j k•nk is an equivariant density on the leaves of the
liation.

It should be stressed, however, that the Lorentz invaria
of the HBD model is—in Bell’s sense—‘‘serious’’ only i
the foliation is regarded as an additional objectivedynamical
~in contrast to absolute! structure in the theory~and in the
world, if the theory is to describe the world!. It is this struc-
ture that is the innovation of what has been proposed h
and in @10#, not the model per se, which is indeed a rath
straightforward covariant extension of the BD model.

However, in this paper we shall not try to find a ‘‘ser
ous’’ law for the foliationF or, what amounts to the sam
ic

-
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thing, its normal vector fieldn. As a toy example, however
the foliation law could be given by an autonomous equat
for n, such as]nnm50. Another class of toy examples in
volves a vector fieldn constructed from the wave functio
c(x1 , . . . ,xN): Consider the space-time vector field

vkl
m (x)5(c̄gk

mc)(x1̂, . . . ,xl 21̂,x,xl 11̂, . . . ,xN̂), where

(x1̂, . . . ,xN̂) is a point fixed in a Lorentz-invariant way, fo

example, as a maximum ofc̄c. @Simply consideringvk
m(x)

5(c̄gk
mc)(x, . . . ,x) is not a good idea, since this will b

zero for antisymmetric~fermion! wave functions.# Now one
may setn equal to the integrable10 part of somevkl .

A further possibility, which may be more serious, is
have, in addition to the particle degrees of freedom, an in
pendent quantum fieldfm that determines the foliation. As
sume that for any quantum stateF of the field, (F,fmF) is
timelike and completely integrable. Then for any stateC of
the particle-field system, setnm5(C,fmC). Suppose that
the particle and the field degrees of freedom are both
namically and statistically independent, i.e., that there is n
ther quantum interaction nor entanglement between these
grees of freedom, so that in particular the full wave functi
C5c ^ F. Then we may define the foliation by the norm
field nm . Thef field can be regarded as very roughly ana
gous to a Higgs field, producing a kind of spontaneous sy
metry breaking, where by the choice ofF a particular folia-
tion is determined, and relativistic invariance is there
broken.
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10For an arbitrary vector fieldvm(x), the Fourier-transformed

v̂m(k) may be split into v̂ i
m(k)5 v̂n(k)knkm/(klkl) and v̂'

m(k)

5 v̂m(k)2 v̂ i
m(k). The inverse Fourier-transformedv i

m(x) satisfies
the integrability condition]mv in2]nv im50.
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@8# K. Berndl, D. Dürr, S. Goldstein, and N. Zanghı`, Phys. Rev. A

53, 2062~1996!.
@9# E. Squires, Phys. Lett. A178, 22 ~1993!.
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