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Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gas
A Green’s-function approach

Michael Fleischhauer
Sektion Physik, Ludwig-Maximilians Universita¨t München, D-80333 Mu¨nchen, Germany

~Received 1 March 1999!

Spontaneous emission and Lamb shift of atoms in absorbing dielectrics and dense atomic gases are dis-
cussed using a microscopic Green’s-function approach. Uncorrelated and random atomic positions are as-
sumed, and the associated unphysical interactions between different atoms at the same location are eliminated
~local field correction!. For the case of an atom in a purely dispersive medium, the spontaneous-emission rate
is altered by the well-known Lorentz local-field factor. When the mean distance between atoms becomes less
than the resonance wavelength, results different from previously suggested expressions are found. In particular,
it is shown that nearest-neighbor interactions become important. The results suggest that, for large densities,
absorbing disordered dielectrics cannot accurately be described by a macroscopic approach that neglects
correlations between atomic positions.@S1050-2947~99!08309-2#

PACS number~s!: 42.50.Ct, 32.80.2t, 41.20.Jb
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I. INTRODUCTION

The theoretical description and experimental investigat
of the interaction of light with dense atomic media regain
considerable interest in recent years. Various experiment
level shifts@1,2#, intrinsic bistability @3,4#, and spontaneou
emission@5,6# in dense gases have supported and refined
concept of local fields known for more than a century@7#.
Nevertheless, some questions in this context are still not
swered satisfactory even on a fundamental level. In
present paper I want to discuss one of these questi
namely the effect of anabsorbingdielectric on spontaneou
emission and level shifts of an embedded atom usin
Green’s-function approach.

The interaction of light with dilute gases is usually we
described in terms of macroscopic classical variables suc
electric field and polarization. In the macroscopic approa
the polarization is given by the expectation value of t
single-atom dipole moment multiplied by the density of
oms @8#. Apart from the coupling to the common classic
radiation field, the atoms are assumed distinguishable
independent. This means quantum-statistical correlations
neglected, which is a very good approximation as long as
temperatures are not too small. It is also implicitly assum
that vacuum fluctuations of the field affect the atoms o
individually and that the atom positions are independen
each other. The latter assumptions are, however, no lo
valid in dense samples.

If the resonant absorption length of some atomic tran
tion becomes comparable to the medium dimensiond, i.e.,
for Nl2d;1, N being the number density andl the resonant
wavelength, reabsorption and multiple scattering of spon
neous photons and associated effects such as radiation
ping @9# or, if atomic excitation is present, amplified spont
neous emission need to be taken into account. If the ato
density is further increased, such thatNl3;1, one can no
longer disregard the fact that the independent-atom appr
mation allows for an unphysical interaction of different a
oms at thesameposition and Lorentz-Lorenz local-field co
rections are needed@7#.
PRA 601050-2947/99/60~3!/2534~6!/$15.00
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The modification of the rate of spontaneous emissionG
by the local environment was first noted by Purcell@11#.
Alterations of this rate have been demonstrated experim
tally near dielectric interfaces@12#, in quantum-well struc-
tures@13#, and in cavities@14#. Based on an analysis of th
density of radiation states Nienhuis and Alkemade predic
for an atom embedded in a homogeneous transparent di
tric with refractive indexn @15#

G5G0n, ~1!

whereG0 is the free-space decay rate,

G05
`2vab

3

3p\e0c3
, ~2!

` being the electric dipole moment of the transition wi
frequencyvab . The alteration of spontaneous emission
the index of refraction leads to interesting potential appli
tions as the suppression or enhancement of decay in pho
band-gap materials@16#. The approach of Ref.@15# took into
account neither local-field corrections nor absorption, ho
ever.

There has been a considerable amount of theoretical w
on local-field corrections to spontaneous emission of an a
in lossless homogeneous dielectrics. Essentially all a
proaches assume a small cavity around the radiating a
and the theoretical predictions depend substantially on
details of this local-cavity model. Approaches based
Lorentz’s ‘‘virtual’’ cavity @17,18# lead to

GLor5G0nS n212

3 D 2

, ~3!

while those based on a real empty cavity@19# predict

Gemp5G0nS 3n2

2n211
D 2

. ~4!
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For pure systems or impurities in disordered nonabsorb
dielectrics, Eq.~3! is believed to be correct. On the oth
hand, recent experiments with Eu31 ions in organic ligand
cages verified the real-cavity expression Eq.~4! @5,6#. An
explanation for the different results was very recently giv
by de Vries and Lagendijk@20#. Applying a rigorous micro-
scopic scattering theory for impurities in nonabsorbing
electric cubic crystals, they showed that the local envir
ment determines whether Eq.~3! or Eq. ~4! should be used
For a substitutional impurity the empty-cavity result applie
while for an interstitial impurity the virtual-cavity formula i
correct. The latter also supports the belief that Eq.~3! is the
correct one for disordered systems such as gases.

While the effect of a transparent dielectric on spontane
emission is rather well studied, this it not the case forab-
sorbing media. A first step in this direction was made b
Barnett, Huttner, and Loudon@21#. Based on a discussion o
the retarded Green’s function in an absorbing bulk dielect
they showed that the index of refraction in Eq.~1! is to be
replaced by the real partn8 of the complex refractive index
n5n81 in9. They also argued that the square of the Lore
local-field factor in Eq.~3! should be replaced by the abs
lute square, leading to

G5G0n8~vab!Un2~vab!12

3 U2

. ~5!

In order to derive this equation, Barnettet al. postulated in
@22# an operator equivalent of the Lorentz-Lorenz relati
between the Maxwell and local field. This assumption h
however, some conceptual problems. As pointed out v
recently by Scheelet al. @23#, an operator Lorentz-Loren
relation cannot hold, since both quantities, the Maxwell fi
and the local field, have to fulfill the same commutation
lations.

In a recent paper, we have developed an approach
takes into account local-field corrections as well as multi
scattering and reabsorption of spontaneous photons in m
fied single-atom Bloch equations@10#. The modified Bloch
equations provide a way of including dense-medium effe
in a macroscopic approach. In the present paper, expres
for the spontaneous-emission rate and Lamb shift of an a
in a denseabsorbingdielectric or a gas of identical atoms a
derived following the approach of@10#. The starting point is
the multipolar-coupling Hamiltonian in the dipole approx
mation. The retarded Green’s function of the electric d
placement field, which determines the decay rate and La
shift, is calculated from a Dyson equation in the se
consistent Hartree approximation. As the atom positions
assumed to be independent from each other, local-field
rections are needed to remove unphysical interactions
tween atoms at zero distance. This is done in the pre
approach by an appropriate modification of the free-sp
Green’s functions rather than by introducing a cavity. T
rate of spontaneous emission derived coincides with
virtual-cavity result~3! for a transparent dielectric, but dif
fers from Eq.~5! in the case of absorption. It will be show
that in the presence of absorption, near-field interactions w
neighboring atoms become very important, the correct
scription of which requires, however, a fully microscop
approach.
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II. RADIATIVE INTERACTIONS
IN DENSE ATOMIC MEDIA

The present analysis is based on a description of the at
field interaction in the dipole approximation using the mu
tipolar Hamiltonian in the radiation gauge@24#,

Ĥ int52
1

e0
(

j
dŴ j•DŴ ~rW j !. ~6!

Hered̂ j is the dipole operator of an atom at positionrW j . D̂ is

the operator of the electric displacement with“•DŴ 50.
It was shown in@10# that the effects of radiative atom

atom interactions in a dense medium can be described in
Markov approximation with a nonlinear density-matrix equ
tion,

ṙ52
i

\
@H0 ,r#1 i

`m

\
@smE Lm

2 1sm
†E Lm

1 ,r#

2 ihmn@sn
†sm ,r#2 ihmn

c
†@sn

† ,sm#,r‡

2
Gmn

2
$sn

†smr1rsn
†sm22smrsn

†%

2
Gmn

c

2
$†sm ,@sn

† ,r#‡1†sn
† ,@sm ,r#‡%. ~7!

Here `m is the dipole matrix element for a polarization d
rection eWm and sm ,sm

† are the corresponding atomic lowe
ing and razing operators. The first term describes the
atomic evolution and the second the interaction with so
local classical fieldEL . hmn and Gmn are matrices, whose
eigenvalues yield Lamb shifts of excited states a
spontaneous-emission rates.Gmn

c andhmn
c describe collective

relaxation rates and light shifts due to the incoherent ba
ground radiation generated by absorption and reemissio
spontaneous photons~radiation trapping!.

It should be noted that the incoherent background rad
tion causes a decay as well as an incoherent excitation
equal rateGc. ThusGc, which is proportional to the excita
tion of the host medium@10#, describesinducedmixing pro-
cesses, whileG can be interpreted as the rate ofspontaneous
decay. Similarlyhc describes a light shift, which for a two
level system is equal in strength and opposite in sign for
ground and excited state. It is also proportional to the ex
tation of the host medium and can thus be interpreted a
inducedlight shift. In contrast,h is a frequency shift of an
excited state only and does not require excitation of the h
medium.

The matricesGmn andhmn are given by@10#

Gmn52
`m`n

\2
Re@Dmn~0,vab!#, ~8!

hmn5
`m`n

\2
Im@Dmn~0,vab!#, ~9!
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whereDmn(xW ,v)[*2`
` dtDmn(xW ,t)eivt is the Fourier trans-

form of the retarded Green’s function~GF! of the electric
displacement field defined here as

Dmn~xW ,t!5u~t!^0u@D̂m~rW1 ,t1!,D̂n~rW2 ,t2!#u0&e0
22 ,

~10!

with xW5rW12rW2 and t5t12t2. In the case of randomly ori
ented two-level atoms, one can replace`m˜` and perform
an orientation average yielding a single decay rateG and a
single excited-state level shifth.

The dense atomic medium affects the spontaneous e
sion of a single probe atom due to multiple scattering
virtual photons. The scattering process can formally be
scribed by a Dyson equation for the exact retarded GF,

D~1,2!5D0~1,2!2E E d3d4D0~1,3!P~3,4!D~4,2!.

~11!

Here the integration is overt from 2` to 1` and the whole
sample volume.D0 is the~dyadic! GF in free space andP is
a formal ~dyadic! self-energy. As shown in@10#, the self-
energy can be described for randomly oriented two-level
oms in the self-consistent Hartree approximation by

P~1,2!5(
j

2

3

`2

\2
u~ t12t2!^@s j

†~ t1!,s j~ t2!#&

3d~rW12rW j !d~rW22rW j !1. ~12!

1 is the unity matrix ands5ub&^au is the atomic spin-flip
operator from the excited stateua& to the lower stateub& in
the Heisenberg picture, i.e., it contains all interactions. T
factor 2/3 results from an orientation average.

We now make a continuum approximation and assum
homogeneous medium, such that

P~1,2!˜p~ t1 ,t2!d~rW12rW2!1, ~13!

where

p~ t1 ,t2!5
2

3

`2

\2
Nu~ t12t2!^@s†~ t1!,s~ t2!#&. ~14!

The overbar denotes an average over some possible inh
geneous distribution andN is the number density of atoms

With the above-made approximations, the Dyson equa
~11! contains also scattering processes between atoms a
same position. In a continuum approximation, the probabi
of two point dipoles being at the same position is of meas
zero. This nevertheless leads to a nonvanishing contribu
since the dipole-dipole interaction has ad-type point inter-
action. This unphysical contribution needs to be removed
a local-field corrections, which will be discussed in the fo
lowing section.
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III. LOCAL-FIELD CORRECTION
OF THE FREE-SPACE GREEN’S-FUNCTION

AND LORENTZ-LORENZ RELATION

The retarded Green’s function in free spaceDmn
0 (1,2)

5u(t12t2)^0u@D̂m
0 (1),D̂n

0(2)#u0&e0
22 , where 1;2; . . .

stand forrW1 ,t1 ;rW2 ,t2 ; . . . , etc., is a solution of the homoge
neous Maxwell equation with ad-like source term,

S 1

c2

]2

]t2
1“3“3 D D0~1,2!

52
i\

e0

v2

c2
d~rW12rW2!d~ t12t2!1. ~15!

D0 has a particularly simple form in reciprocal space@25#,

D0~qW ,v1!5
i\

e0

k2

~k21 i0!12q2Dq

~16!

5
i\

e0
F k2

k22q21 i0
Dq1

qW +qW

q2 G , ~17!

where k5v/c and Dq512qW +qW /q2. Note that D0 is not
transverse although“1•D0(1,2)[0 for rW1ÞrW2. The corre-
sponding function in coordinate space reads@25#

D0~xW ,v1!52
i\v2

e0c2

eik1x

4px F P~ ikx!11Q~ ikx!
xW +xW

x2 G
1

i\

3e0
d~xW !1. ~18!

Herex5uxW u and

P~z!512
1

z
1

1

z2
, Q~z!5211

3

z
2

3

z2
. ~19!

One recognizes from Eq.~18! that the retarded GF of the
dipole-dipole interaction contains ad-type point contribu-
tion. In order to eliminate the unphysical interactions b
tween different atoms at the same position, one has to
move this term from the GFs in the scattering part of t
Dyson equation~11!,

D0~xW ,v1!˜F0~xW ,v1!5D0~xW ,v1!2
i\

3e0
d~xW !1. ~20!

With this local-field corrections we obtain a modified Dyso
equation~in reciprocal space!,

D5D02F0pF01F0pF0pF021•••, ~21!

and introducingF(qW ,v)[D(qW ,v)2( i\/3e0)1 we arrive at

F~qW ,v1!5F0~qW ,v1!2F0~qW ,v1!p~v1!F~qW ,v1!.
~22!

In reciprocal space one finds
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F0~qW ,v1!5D0~qW ,v1!2
i\

3e0
1 ~23!

52
i\

e0

F S 1

3
q21

2

3
k2D12qW +qW

q22k22 i0
G . ~24!

Equation~22! can easily be solved to yield

F~qW ,v1!52
i\

e0F S 1

3
q21

2

3
k2D F11

2

3
Na~v!G12qW +qW

q22k22Na~v!S 1

3
q21

2

3
k2D2 i0

G
3

1

11
2

3
Na~v!

, ~25!

where we have introduced the dynamic polarizability of t
atoms

Na~v![
i\

e0
p~v!. ~26!

The poles6q0 of Eq. ~25! determine the~in general nonlin-
ear! complex dielectric function

«~v![
q0

2

k2
511

Na~v!

12
1

3
Na~v!

. ~27!

This is the well-known Lorentz-Lorenz relation between t
microscopic polarizabilitya and the complex dielectric func
tion «(v). Thus we have shown that the local-field corre
tion of the free-space Green’s function~20! is exactly the one
that reproduces the well-known Lorentz-Lorenz relation.

IV. MODIFICATION OF SPONTANEOUS EMISSION
AND LAMB SHIFT

Equation ~25! can be transformed back into coordina
space usingF̃(xW ,v1)5(2p)23*d3qW F̃(qW ,v1)e2 iqW •xW. The
Fourier transform of the projector (qW +qW ) yields spherical
Bessel functions@25#. For the present purpose, however, w
need only the orientation-averaged quantity

F~qW ,v1!52
2i\

3e0F 1

3
q2Na~v!1k2F11

2

3
Na~v!G

q22k22Na~v!S 1

3
q21

2

3
k2D2 i0

G
3

1

11
2

3
Na~v!

. ~28!

One recognizes that the Fourier transform ofF(qW ,v1)
diverges forx˜0, which is due to the large-q behavior of
the GF. In order to remove these singularities, one
modify the GF by introducing a regularization. Physica
-

n

the singular behavior atx˜0 is due to the fact that atom
very close to the atom under consideration can have a la
effect on spontaneous emission and level shifts. One ca
expect the continuum approximation used here to yield
curate results on length scales comparable to the mean
distance. Here rather a fully microscopic description of ve
close atoms including their motion~collisions! is needed.
This is, however, beyond the scope of the present paper
we therefore restrict the analysis to a regularization of
Green’s function. There is no unique regularization pro
dure, and here we just choose a convenient one,

F~qW ,v1!˜F̃~qW ,v1!5F~qW ,v1!
L4

q41L4
. ~29!

With this we find in the limitL@uq0u,

F̃~xW50,v1!5
\v3

6pe0c3
A«~v!S «~v!12

3 D 2

2
i\v3

6pe0c3 F 1

R S «~v!12

3 D 2

1
1

R3

2

3 S «~v!12

3«~v! D @«~v!21#G , ~30!

whereR5k/(A2L). It is important to note thatF̃ is exactly
causal, if «(v) fulfills the Krames-Kronig relations. This
would not have been the case if, according to the resul
Barnettet al. @21,22#, the absolute squareu(«12)/3u2 would
be present instead of@(«12)/3#2.

With this result we find for the decay rate and excit
state Lamb shift

G5G0 ReFA«~v!S «~v!12

3 D 2G1G0 ImF 1

R S «~v!12

3 D 2

1
1

R3

2

3 S «~v!12

3«~v! D @«~v!21#G , ~31!

h5
G0

2
ImFA«~v!S «~v!12

3 D 2G2
G0

2
ReF 1

R S «~v!12

3 D 2

1
1

R3

2

3 S «~v!12

3«~v! D @«~v!21#G . ~32!

For an atom in a purelydispersivedisordered medium, i.e.
for «9[0, the second term in Eq.~31! for the spontaneous
decay rate vanishes identically and we are left with the ‘‘v
tual’’ cavity result Eq.~3!. Likewise there are no contribu
tions from the first term in Eq.~32! to the Lamb shift in this
case.

In the presence of absorption, that is, if the probe-at
transition frequency comes closer to a resonance of the
rounding material~as it would naturally be the case for
collection of identical atoms!, G is different from the result
obtained in@21,22,28#. In this case there are also nonvanis
ing terms that contain the regularization parameterR21 and
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R23. These terms must be interpreted as contributions du
resonant energy transfer with nearest neighbors. This pro
cannot accurately be described in the present appro
which ignores correlations between atom positions gener
by hard-core repulsion and dipole forces associated with
level shifts.

As the Lamb shift is concerned, Eq.~32! shows that in a
purely dispersive medium, that is, far away from any re
nances, only nearest-neighbor interactions matter. This is
tuitively clear since in this case the transition frequency
only affected by dipole-dipole interactions of close neig
bors. Only in the presence of absorption is there also a b
contribution to the Lamb shift as described by the first te
in Eq. ~32!.

For a dense gas of identical atoms or of atoms of the s
kind but with some inhomogeneous broadening, Eqs.~31!
and~32! are only implicit, since the complex polarizability«
depends on the decay rate and level shift as well as sh
range correlations of atomic positions. Hence a s
consistent determination ofG andh is necessary. If the den
sity is much less than one atom per cubic wavelength,
can consider an expansion ofG and h in powers of the
atomic densityN. Defining a5a81 ia9, one finds with Eq.
~27! for the bulk contributions

G5G0F11
7

6
a8N1

17

24
~a822a92!N21O~N3!G , ~33!

h5
G0

2 F7

6
a9N1

17

12
a8a9N21O~N3!G . ~34!

In the case of radiatively broadened two-level atoms, the
part of atomic polarizability vanishes at resonance, i.e.,a8
50. Thus in lowest order of the density there is only a co
tribution to the excited-state frequency proportional to
population difference between the excited and the gro
state. For an inverted population the transition frequenc
redshifted, for balanced population the level shift vanish
and for more atoms in the lower state the transition f
quency is blueshifted. As a result, spontaneously emitted
diation from an initially inverted system will have a chir
very similar to the chirp in Dicke superradiance@26#. It
should also be mentioned that the shift of the transition
quency discussed here is physically different from the fam
iar Lorentz-Lorenz shift. The LL shift is due to the dispe
sion of the index of refraction at an atomic resonance an
thus in contrast to the absorptiona9 independent on Dopple
broadening@27#.

V. SUMMARY

In the present paper we have discussed the rate of s
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taneous emission and the excited-state level shift of a t
level type probe atom inside a homogeneous, disordered
sorbing dielectric. The dielectric was modeled by a colle
tion of atomic point dipoles, which also includes the case
a dense gas of identical atoms. The multiple scattering
photons between the atoms~dipole-dipole interaction! was
described by a Dyson integral equation for the exact retar
Green’s function of the electric displacement field in se
consistent Hartree approximation. The atoms were assu
distinguishable with random independent positions. The
ter assumption made a continuum approximation poss
and the Dyson equation could be solved analytically. In
der to exclude unphysical dipole-dipole interactions of d
ferent atoms at the same position arising in the continu
approximation with independent atomic positions, a loc
field correction of the free-space retarded Green’s funct
was introduced. This led to the well-known Lorentz-Lore
relation between the complex dielectric function«(v) and
the nonlinear atomic polarizabilitya(v). The expression for
the spontaneous-decay rate found by this method agrees
the virtual cavity result@17# in the absence of absorption
This is an expected result for atoms in disordered dielect
@20#. It was shown that the excited-state Lamb shift is in th
case only affected by nearest-neighbor interactions, wh
could not be treated accurately within the present approa
however. In the presence of absorption, the spontane
emission rate differs from the results obtained in@21,22,28#
in two ways. First, there are important nearest-neighbor c
tributions, which were absent in the models of@21,22#. Sec-
ond, the bulk contribution is different form Refs.@21,22,28#,
since causality of the exact retarded GF requires the Lore
field factor to enter as a square and not as an absolute sq
It is interesting to note that apart from an overall numeri
prefactor~which depends on the details of the regularizati
procedure!, the decay rate derived here is identical to o
very recently obtained by Scheel and Welsch@29# on the
basis of a completely different approach, namely a quant
tion of the electromagnetic field in a linear dielectric. Th
presence of nearest-neighbor contributions suggests th
macroscopic description that ignores correlations betw
atomic positions is no longer valid when the mean dista
between atoms becomes comparable to the resonance w
length of a dipole transition.
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