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Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases:
A Green’s-function approach
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Spontaneous emission and Lamb shift of atoms in absorbing dielectrics and dense atomic gases are dis-
cussed using a microscopic Green’s-function approach. Uncorrelated and random atomic positions are as-
sumed, and the associated unphysical interactions between different atoms at the same location are eliminated
(local field correction For the case of an atom in a purely dispersive medium, the spontaneous-emission rate
is altered by the well-known Lorentz local-field factor. When the mean distance between atoms becomes less
than the resonance wavelength, results different from previously suggested expressions are found. In particular,
it is shown that nearest-neighbor interactions become important. The results suggest that, for large densities,
absorbing disordered dielectrics cannot accurately be described by a macroscopic approach that neglects
correlations between atomic positiofi$1050-29479)08309-2

PACS numbgs): 42.50.Ct, 32.80-t, 41.20.Jb

[. INTRODUCTION The modification of the rate of spontaneous emisdion
by the local environment was first noted by PurddlL].

The theoretical description and experimental investigatiorAlterations of this rate have been demonstrated experimen-
of the interaction of light with dense atomic media regainedtally near dielectric interfacegl2], in quantum-well struc-
considerable interest in recent years. Various experiments dnres[13], and in cavitied14]. Based on an analysis of the
level shifts[1,2], intrinsic bistability[3,4], and spontaneous density of radiation states Nienhuis and Alkemade predicted
emission[5,6] in dense gases have supported and refined thfor an atom embedded in a homogeneous transparent dielec-
concept of local fields known for more than a centily. tric with refractive indexn [15]

Nevertheless, some questions in this context are still not an-

swered satisfactory even on a fundamental level. In the I'=Tyn, D
present paper | want to discuss one of these questions,

namely the effect of ambsorbingdielectric on spontaneous wherel', is the free-space decay rate,

emission and level shifts of an embedded atom using a

Green's-function approach. szsb
The interaction of light with dilute gases is usually well To=———, )
described in terms of macroscopic classical variables such as 3mhenc

electric field and polarization. In the macroscopic approach
the polarization is given by the expectation value of thep being the electric dipole moment of the transition with
single-atom dipole moment multiplied by the density of at-frequencyw,,. The alteration of spontaneous emission by
oms[8]. Apart from the coupling to the common classical the index of refraction leads to interesting potential applica-
radiation field, the atoms are assumed distinguishable anigons as the suppression or enhancement of decay in photonic
independent. This means quantum-statistical correlations ak@&nd-gap materialsl6]. The approach of Ref15] took into
neglected, which is a very good approximation as long as th@ccount neither local-field corrections nor absorption, how-
temperatures are not too small. It is also implicitly assumedVver.
that vacuum fluctuations of the field affect the atoms only There has been a considerable amount of theoretical work
individually and that the atom positions are independent oPn local-field corrections to spontaneous emission of an atom
each other. The latter assumptions are, however, no longét lossless homogeneous dielectrics. Essentially all ap-
valid in dense samples. proaches assume a small cavity around the radiating atom
If the resonant absorption length of some atomic transiand the theoretical predictions depend substantially on the
tion becomes comparable to the medium dimensipne.,  details of this local-cavity model. Approaches based on
for NA2d~1, N being the number density andthe resonant  Lorentz’s “virtual” cavity [17,18 lead to
wavelength, reabsorption and multiple scattering of sponta-

neous photons and associated effects such as radiation trap- n?+2\2

ping [9] or, if atomic excitation is present, amplified sponta- FLor:FO”( 3 ' 3
neous emission need to be taken into account. If the atomic

density is further increased, such thék3~1, one can no  hile those based on a real empty cavitg] predict
longer disregard the fact that the independent-atom approxi-

mation allows for an unphysical interaction of different at- 3n2 |2

oms at thesameposition and Lorentz-Lorenz local-field cor- Tem=Ton| —— (4)
rections are needdd]. 2n’+1
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For pure systems or impurities in disordered nonabsorbing Il. RADIATIVE INTERACTIONS
dielectrics, Eq.(3) is believed to be correct. On the other IN DENSE ATOMIC MEDIA

2:”2,8 r\?gr?f?éde)éﬁg”rr;]:Ir-]ct;sa\Yi\{[ltheEurng;()lg %BaFSIC@lIgAan The present analysis is based on a description of the atom-
g Y €Xp o field interaction in the dipole approximation using the mul-

explanation for the different results was very recently given,. o T
by de Vries and Lagendijk20]. Applying a rigorous micro- tipolar Hamiltonian in the radiation gaug4}
scopic scattering theory for impurities in nonabsorbing di-

electric cubic crystals, they showed that the local environ- o 1 D 3_.8(;)
ment determines whether E@) or Eq. (4) should be used. int €5 ! s

For a substitutional impurity the empty-cavity result applies,
while for an interstitial impurity the virtual-cavity formula is

correct. The latter also supports the belief that @yis the ~ Hered; is the dipole operator of an atom at positign D is

correct one for disordered systems such as gases. the operator of the electric displacement withD =0.
While the effect of a transparent dielectric on spontaneous |t was shown in[10] that the effects of radiative atom-
emission is rather well studied, this it not the casedbr  4tom interactions in a dense medium can be described in the

sorbing media. A first step in this direction was made by pmarkov approximation with a nonlinear density-matrix equa-
Barnett, Huttner, and Louddi21]. Based on a discussion of o,

the retarded Green’s function in an absorbing bulk dielectric,

they showed that the index of refraction in E@) is to be : o

replaced by the real part’ of the complex refractive index b=——[H +illrg &7 +otet
n=n’+in". They also argued that the square of the Lorentz = pHoplt 15708 Tul Ly p]
local-field factor in Eq.(3) should be replaced by the abso-

(6)

i t _ihC T
lute square, leading to ihyLoyou.pl=ihyllo,,0ulp]
r
N%(wap) +2|? - L elo ptpoto,—20,p0l)
I =Ton’ (wap) ——3 — (5) 2 B S
Cc
__mr T t
In order to derive this equation, Barnedt al. postulated in 2 {low.[oy.pll+ Lo, [ou.p]l)- v

[22] an operator equivalent of the Lorentz-Lorenz relation
between the Maxwell and local field. This assumption has . . . o .
. Here p , is the dipole matrix element for a polarization di-
however, some conceptual problems. As pointed out very — ~"#4 T ) )
recently by Scheett al. [23], an operator Lorentz-Lorenz reéctione, ando, o, are the corresponding atomic lower-

relation cannot hold, since both quantities, the Maxwell fieldind and razing operators. The first term describes the free
and the local field, have to fulfill the same commutation re-atomic evolution and the second the interaction with some

lations. local classical field¢, . h,, andT',, are matrices, whose

In a recent paper, we have developed an approach thgigenvalues vyield Lamb shifts of excited states and
takes into account local-field corrections as well as multipleSPontaneous-emission ratéy,, andh;,, describe collective
scattering and reabsorption of spontaneous photons in modi€laxation rates and light shifts due to the incoherent back-
fied single-atom Bloch equatio40]. The modified Bloch ground radiation generated by absorption and reemission of
equations provide a way of including dense-medium effect§pontaneous photorigadiation trapping
in a macroscopic approach. In the present paper, expressions It should be noted that the incoherent background radia-
for the spontaneous-emission rate and Lamb shift of an atofion causes a decay as well as an incoherent excitation with
in a densebsorbingdielectric or a gas of identical atoms are equal ratel'®. ThusT"®, which is proportional to the excita-
derived following the approach ¢10]. The starting point is  tion of the host medium10], describesnducedmixing pro-
the multipolar-coupling Hamiltonian in the dipole approxi- cesses, whilé" can be interpreted as the ratespontaneous
mation. The retarded Green’s function of the electric dis-decay. Similarlyh® describes a light shift, which for a two-
placement field, which determines the decay rate and Lamlgvel system is equal in strength and opposite in sign for the
shift, is calculated from a Dyson equation in the self-ground and excited state. It is also proportional to the exci-
consistent Hartree approximation. As the atom positions artation of the host medium and can thus be interpreted as an
assumed to be independent from each other, local-field cotnducedlight shift. In contrasth is a frequency shift of an
rections are needed to remove unphysical interactions bexcited state only and does not require excitation of the host
tween atoms at zero distance. This is done in the preseigedium.
approach by an appropriate modification of the free-space The matriced’,, andh,,, are given by{10]

Green’s functions rather than by introducing a cavity. The

rate of spontaneous emission derived coincides with the 0.0

virtual-cavity result(3) for a transparent dielectric, but dif- r,,=2 L VRG[DW(O.wab)], (8)
fers from Eq.(5) in the case of absorption. It will be shown h?

that in the presence of absorption, near-field interactions with

neighboring atoms become very important, the correct de-

scription of which requires, however, a fully microscopic h =%Im[D (0,0ap)] 9
approach. A pr e
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whereD ,,(x,0)=J"..d7D,,,(x,7)€'“T is the Fourier trans- lll. LOCAL-FIELD CORRECTION
form of the retarded Green’s functioiGF) of the electric OF THE FREE-SPACE GREEN'S-FUNCTION

displacement field defined here as AND LORENTZ-LORENZ RELATION
The retarded Green’s function in free spdbﬂy(l,Z)
D,.,(X,7)=0(7)(0|[D,(r1,t1),D,(r2,t,)1|0) € 2, = 9(t1—t§)(0|[§)2(1),58(2)]|O>552, where 1;2;...
(10) stand forr,t1;r»,t5; ..., etc., is a solution of the homoge-
neous Maxwell equation with &-like source term,
with x=r,—r, and r=t;—t,. In the case of randomly ori-

2
ented' tvvo-l'evel atoms, one can rep'laa:,gap and perform (i (9—+V><V>< D%(1,2)
an orientation average yielding a single decay fatand a c2 ot2
single excited-state level shift
The dense atomic medium affects the spontaneous emis- it w? . .
sion of a single probe atom due to multiple scattering of =—6—0g5(r1—r2)5(t1—t2)1. (19

virtual photons. The scattering process can formally be de-

scribed by a Dyson equation for the exact retarded GF, D° has a particularly simple form in reciprocal sp4es),

; 2
D(l,2)=D°(1,2)—f f d3d4D%(1,3)T1(3,4D(4,2). D%(q,0")= i Zk—z (16)
€ i —
(11) 0 (k“+i0)1-0g°A,
_ o i k? q°q
Here the integration is overfrom —< to +9 and the whole =—| 55 Agt— | (17)
sample volumeD? is the (dyadig GF in free space anH is €| k°—qg“+i0 q

a formal (dyadig self-energy. As shown if10], the self- .

energy can be described for randomly oriented two-level atwhere k=w/c and Ay=1-qeq/g®. Note that D% is not

oms in the self-consistent Hartree approximation by transverse althougW,-D°(1,2)=0 for r;#r,. The corre-
sponding function in coordinate space red?is|

2

2 19 i ik x >
M(1.2=2 35 0t —t)([o](tr),0(t2)]) DO 0= — 9 & o+ Otk <
J ! 6002 44X X2
X 8(ry—r1;)8(rp—r)l. (12) in
+—8(x)1. (18
360

1 is the unity matrix andr=|b)(a| is the atomic spin-flip
operator from the excited stafe) to the lower statéb) in Herex=|x| and
the Heisenberg picture, i.e., it contains all interactions. The
factor 2/3 results from an orientation average. 1 1 3
We now make a continuum approximation and assume a P(z)=1— -+ =y Q(z)=—1+—-— = (19
homogeneous medium, such that zZ z zZ z

. One recognizes from E@18) that the retarded GF of the
II(1,2)—p(ty,ty) o(r1—ra)l, (13 dipole-dipole interaction contains &type point contribu-
tion. In order to eliminate the unphysical interactions be-
where tween different atoms at the same position, one has to re-
move this term from the GFs in the scattering part of the

5 Dyson equatior(11),

2 -
Pty 1) = 5 5Nt~ ) ([0 (1) o(t)]). (14 . . i
h D°(x,w+)—»|:°(x,w+)=Do(x,w+)—gé(x)l. (20)

0

The overbar denotes an average over some possible inhom@ith this local-field corrections we obtain a modified Dyson
geneous distribution and is the number density of atoms. equation(in reciprocal spade

With the above-made approximations, the Dyson equation
(11) contains also scattering processes between atoms at the D=D%-FpF°+ FOpFpFo— +. - -, (21)
same position. In a continuum approximation, the probability
of two point dipoles being at the same position is of measurginq introducingF(q, ») =D(q, w) — (i%/3€,) 1 we arrive at
zero. This nevertheless leads to a nonvanishing contribution,
since the dipole-dipole interaction hassaype point inter- F(d,0")=F(q,0")—F%g,0")p(e™)F(d,0").
action. This unphysical contribution needs to be removed by (22)
a local-field corrections, which will be discussed in the fol-
lowing section. In reciprocal space one finds
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- - ih
Fo(q,0")=D%q,w")—z—1 (23
360
1 2 - s
A2 12 — Ao
i% (3Q+3k>1 a°d o
€0 q°—k?>—i0
Equation(22) can easily be solved to yield
1 ) 2k2 2 - -
A i% §q +§ 1+ §Na(w) 1-qgeq
F(qo")=——
%l g?—k2—Na(w) 1q2+ 22| —io
3 3
1
><2—, (25
1+ §Na(w)

where we have introduced the dynamic polarizability of the

atoms

ih
Na(w)= e—op(w). (26)

The poles=*qq of Eq. (25) determine thé€in general nonlin-
ean complex dielectric function

Qo _ n Na(w) @7

1 1N .
3 a(w)
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the singular behavior at—0 is due to the fact that atoms
very close to the atom under consideration can have a large
effect on spontaneous emission and level shifts. One cannot
expect the continuum approximation used here to yield ac-
curate results on length scales comparable to the mean atom
distance. Here rather a fully microscopic description of very
close atoms including their motioftollisions is needed.
This is, however, beyond the scope of the present paper and
we therefore restrict the analysis to a regularization of the
Green’s function. There is no unique regularization proce-
dure, and here we just choose a convenient one,

- -~ - R A
F(q,w+)—>F(q,w+):F(q,er)m. (29)

With this we find in the limitA>|q|,

ﬁwS 2

ol

6megC

e(w)+2

F(x=00")= 3

ifhws 2

67760C3

1

R

g(w)+2
3

1 2(s(w)+2
%5 3e(w)

[S(w)—l]], (30)

whereR=k/(\/2A). It is important to note thaf is exactly
causal, ife(w) fulfills the Krames-Kronig relations. This
would not have been the case if, according to the result of
Barnettet al.[21,22, the absolute squafée + 2)/3? would

be present instead ¢fe +2)/3]°.

This is the well-known Lorentz-Lorenz relation between the  with this result we find for the decay rate and excited
microscopic polarizabilityr and the complex dielectric func- state Lamb shift
tion e(w). Thus we have shown that the local-field correc-

tion of the free-space Green'’s functi@0) is exactly the one

that reproduces the well-known Lorentz-Lorenz relation.

IV. MODIFICATION OF SPONTANEOUS EMISSION
AND LAMB SHIFT

Equation (25 can be transformed back into coordinate

space usingF(x,w*)=(2m) 3[d3qF(q,w*)e 9% The
Fourier transform of the projectord((i) yields spherical

Bessel function$25]. For the present purpose, however, we

need only the orientation-averaged quantity

1, 5 2
oi gq Na(w)+k 1+ §Na(w)
- oL 2%
F(qaw )_ 360 ) 5 1 ) 2 ) .
g°—k‘“—Na(w) §q +§k —i0
1
><2—. (28)
1+§Na((u)

One recognizes that the Fourier transform (g, w*)
diverges forx—0, which is due to the largg-behavior of

e(w)+2 2

3

F=FOR%M(

2 T 1l/e(w)+2
+ OmR—3

+

12/e(w)+2
—§( : (31

21T, 1/e(w)+2
}_TR{ﬁ(T

[s(a))—l]l.

e(w)+2 2

-_9
h= Im 3

2

e

1 Z(S(w)-l-Z (32

R 3l 3e(w)

For an atom in a pureldispersivedisordered medium, i.e.,
for ¢”"=0, the second term in Eq31) for the spontaneous
decay rate vanishes identically and we are left with the “vir-
tual” cavity result Eq.(3). Likewise there are no contribu-
tions from the first term in Eq32) to the Lamb shift in this
case.

In the presence of absorption, that is, if the probe-atom
transition frequency comes closer to a resonance of the sur-
rounding material(as it would naturally be the case for a
collection of identical atoms I is different from the result

the GF. In order to remove these singularities, one cambtained in[21,22,28. In this case there are also nonvanish-
modify the GF by introducing a regularization. Physically ing terms that contain the regularization param&et and
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R~ 3. These terms must be interpreted as contributions due ttaneous emission and the excited-state level shift of a two-
resonant energy transfer with nearest neighbors. This procesvel type probe atom inside a homogeneous, disordered ab-
cannot accurately be described in the present approacberbing dielectric. The dielectric was modeled by a collec-
which ignores correlations between atom positions generategbn of atomic point dipoles, which also includes the case of
by hard-core repulsion and dipole forces associated with thg dense gas of identical atoms. The multiple scattering of
level shifts. photons between the atontdipole-dipole interactionwas

As the Lamb shift is concerned, E€§2) shows thatin a  described by a Dyson integral equation for the exact retarded
purely dispersive medium, that is, far away from any resoGreen’s function of the electric displacement field in self-
nances, only nearest-neighbor interactions matter. This is INsonsistent Hartree approximation. The atoms were assumed

titively clear since_ in thi_s case the trgnsition frequenc_y 'Sdistinguishable with random independent positions. The lat-
only affected by dipole-dipole interactions of close neigh- er assumption made a continuum approximation possible

bors. Only in the presence of absorption is there also a bul nd the Dyson equation could be solved analytically. In or-

fnog;'b(%tgm to the Lamb shift as described by the first termder to exclude unphysical dipole-dipole interactions of dif-

For a dense gas of identical atoms or of atoms of the Samfgrent ‘?“O”TS at t.he same position ansing m_t_he continuum
kind but with some inhomogeneous broadening, HG4) approximation with independent atomic positions, a local-

and(32) are only implicit, since the complex polarizabiliy field .correction of the free-space retarded Green'’s function
depends on the decay rate and level shift as well as shorfY@s _mtroduced. This led to the \_/vell-kr_wwn Lqrentz-Lorenz
range correlations of atomic positions. Hence a selfrelation between the complex dielectric functie(w) and
consistent determination &f andh is necessary. If the den- the nonlinear atomic polarizability(w). The expression for
sity is much less than one atom per cubic wavelength, on#e spontaneous-decay rate found by this method agrees with
can consider an expansion ®f and h in powers of the the virtual cavity resul{17] in the absence of absorption.
atomic densityN. Defininga=a’+ia”, one finds with Eq.  This is an expected result for atoms in disordered dielectrics
(27) for the bulk contributions [20Q]. It was shown that the excited-state Lamb shift is in this
case only affected by nearest-neighbor interactions, which
could not be treated accurately within the present approach,
however. In the presence of absorption, the spontaneous-
emission rate differs from the results obtained 24,22,2§
Lol 7 o 3 in two ways. First, there are important nearest-neighbor con-
h= S g N+ pa’a’N +O(NT) . (34 tributions, which were absent in the models[21,27). Sec-
ond, the bulk contribution is different form Ref®1,22,2§,
In the case of radiatively broadened two-level atoms, the readince causality of the exact retarded GF requires the Lorentz-
part of atomic polarizability vanishes at resonance, €., field factor to enter as a square and not as an absolute square.
=0. Thus in lowest order of the density there is only a con-lt is interesting to note that apart from an overall numerical
tribution to the excited-state frequency proportional to theprefactor(which depends on the details of the regularization
population difference between the excited and the groungrocedurg the decay rate derived here is identical to one
state. For an inverted population the transition frequency isery recently obtained by Scheel and Weld@9] on the
redshifted, for balanced population the level shift vanishesbasis of a completely different approach, namely a quantiza-
and for more atoms in the lower state the transition fretion of the electromagnetic field in a linear dielectric. The
guency is blueshifted. As a result, spontaneously emitted rgpresence of nearest-neighbor contributions suggests that a
diation from an initially inverted system will have a chirp macroscopic description that ignores correlations between
very similar to the chirp in Dicke superradian¢26]. It  atomic positions is no longer valid when the mean distance
should also be mentioned that the shift of the transition frebetween atoms becomes comparable to the resonance wave-
guency discussed here is physically different from the famildength of a dipole transition.
iar Lorentz-Lorenz shift. The LL shift is due to the disper-
sion of the index of refraction at an atomic resonance and is
thus in contrast to the absorptiarf independent on Doppler ACKNOWLEDGMENTS
broadenind 27].

7 17
1+ za'N+ 5 (a'?—a"?)N?+ O(NS)}, (33

=Tl 1t 5 24
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