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Semiclassical theory of emission spectra of optical microcavities

Ruo Peng Wang
Physics Department, Peking University, Beijing 100871, People’s Republic of China

M. M. Dumitrescu
Center for Information Science, Peking University, Beijing 100871, People’s Republic of China

~Received 9 February 1999; revised manuscript received 19 April 1999!

We developed a semiclassical theory for emission spectra of optical microcavities. The spontaneous emis-
sion is taken into consideration by adding a spontaneous-emission current term into the Maxwell’s equations.
The spontaneous-emission current is found to be equal to the element of the quantum current operator between
the initial and final states of the spontaneous-emission transition. We showed that the optical-field distribution
of the light emitted from optical cavities can be expressed as a superposition of eigenmodes, and the eigenvalue
equation for eigenmodes is established. A detailed expression for emission spectra is also obtained. Numerical
results for the emission spectra carried out for a microdisk laser match well with experimental data. By
applying this theory in the calculation of the spectral linewidth of conventional lasers, we found the modified
Schawlow-Townes spectral linewidth formula for gas lasers, and obtained an excellent agreement between the
theoretical and experimental results in the case of semiconductor laser diodes.@S1050-2947~99!04109-8#

PACS number~s!: 42.60.Da, 42.55.Ah
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I. INTRODUCTION

The emission spectra is an important topic in studies
optical microcavities. It is known that the spontaneous em
sion spectrum of optically active media can be strongly
tered in optical microcavities, and a large fraction of spon
neous emission can be coupled into the lasing mode@1#.
These properties of optical microcavities differ significan
from that of conventional laser cavities, thus the theory
spontaneous emission spectrum and lasing linewidth for c
ventional lasers may not be applicable for optical microca
ties. To the best of our knowledge, there is not a theory
the emission spectrum of optical cavities that take into c
sideration both the effect of the cavity and the effect of
spontaneous emission at the same time. Theory for con
tional laser cavities is frequently used in studies of emiss
spectra of optical microcavities@2,3#.

In this paper, we introduce a semiclassical theory for
emission spectra of optical microcavities. In this theory
spontaneous emission is explicitly considered. From
point of view of electrodynamics, any optical emission
generated by a certain current at optical frequencies. Th
fore, to include the spontaneous emission effect in t
theory, we add a spontaneous emission current term
Maxwell’s equations. This spontaneous emission curr
term is determined by using the quantum-transition theo

An expression for the spontaneous emission current t
is derived in Sec. II. We solve in Sec. III the wave equati
with a spontaneous emission current term by expanding
lutions in terms of eigenmodes. The formula for emiss
spectra of optical microcavities is established in Sec.
Numerical results for emission spectra of microdisk las
and spectral linewidth of conventional lasers are carried
and compared with experimental data in Sec. V.

II. WAVE EQUATION WITH A SPONTANEOUS EMISSION
CURRENT TERM

An optical cavity can be considered being formed fro
several homogeneous parts of continuous dielectric m
PRA 601050-2947/99/60~3!/2467~7!/$15.00
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without free electric charges. In each homogeneous dielec
medium the electromagnetic field satisfies the followi
Maxwell’s equations:

rotHW 5«
]EW

]t
1 jW, rotEW 52m0

]HW

]t
,

div HW 50, div~«EW !50, ~1!

in which m0 is the magnetic permeability of the vacuum a
« is the dielectric permittivity. At interfaces of differen
parts, the magnetic fieldHW , the tangential component of th
electric field EW , and the normal component of the electr
displacement vector«EW must be continuous.

It is convenient to present a real electromagnetic field
terms of its monochromatic components:

EW ~ t !5E
0

`

EW ve2 ivtdv1c.c., HW ~ t !5E
0

`

HW ve2 ivtdv1c.c.

~2!

By applying this transformation, the first two equations
Eq. ~1! become as

rotHW v52 iv«EW v1 jWv , rotEW v5 ivm0HW v . ~3!

In a dielectric medium with optical gain or absorption, th
current densityjWv should be proportional to the electric-fiel
intensityEW v . But, however, the existence of the spontaneo
emission implies that there must also exist a free curr
source, which is independent of the electric-field intens
We call this free current the spontaneous emission cur
and usejWv

sp to note it. The optical gain or absorption can b
taken into consideration in Eqs.~3! by means of a complex
refractive index.

Solutions of Eqs.~3! can be expressed in terms of th
vector potentialAW v and the scalar potentialfv as follows:
2467 ©1999 The American Physical Society
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HW v5rotAW v , EW v5 ivm0AW v2gradfv . ~4!

The vector potentialAW v satisfies the following wave equa
tion:

DAW v1n2k0
2AW v52 jWv

sp, ~5!

wheren is the complex refractive index of the medium,k0
5v/c, andc is the speed of light in the free space. There
a relation between the optical gain coefficient and the refr
tive indexn:

gv52k0 Im~n2!. ~6!

The scalar potentialfv is related to the vector potentia
AW v by the following expression:

fv52 i
m0c

n2k0

div AW v ~7!

To solve Eq.~5! for AW v , we need an explicit expressio
for the spontaneous emission currentjWv

sp . For obtaining such
an expression, we consider a small optical cavity with v
ume V much smaller than the cube of wavelength. In th
circumstance, we can writejWv

sp asJW vd(rW), whered(rW) is the
Dirac’s delta function, and

JW v5E
V

jWv
spdv. ~8!

We also have for this casen251. The solution of Eq.~5!
for this cavity is

AW v52
JW v

4pr
eik0r . ~9!

By using expression~9!, we can calculate the total optica
flux of spontaneous emission. We consider first a sys
with discrete spontaneous emission current spectrum:

JW v5(
m

JWmd~v2vm!. ~10!

The total optical flux at the circular frequencyvm is then

P~vm!5
m0~vm!2

3pc
uJWmu2. ~11!

On the other hand, the total optical flux of spontaneo
emission can also be obtained as the product of the spo
neous emission transition rate with the photon energy.
applying quantum-mechanic theory@4#, we obtain

P~vm!5
m0~vm!2

3pc
z^ f u jWu i & z2, ~12!

in which jW is the electric current-density operator, andu i &,
u f & are initial and final quantum states of the spontane
emission transition, respectively. The difference between
energy levels of the statesu i & andu f & must be equal tovm\.
s
c-

-

m

s
ta-
y

s
e

By comparing expressions~11! and ~12!, and neglecting
an arbitrary phase factor, we obtain

JWm5E
V
c f* jWc idv, ~13!

wherec i andc f are time-independent wave functions of th
quantum statesu i & and u f m&, respectively.

By substituting expression~13! into relation~10!, we ob-
tain

JW v5
1

2pE2`

`

dt eivt(
f
E

V
c f* ~ t ! jWc i~ t !dv, ~14!

in which c i(t) andc f(t) are time-dependent wave function
of the quantum statei and f, respectively. The summation i
taken over all possible quantum statesu f &.

Expression~14! is obtained for systems with discret
spectra of a spontaneous emission current. Because a
tinuous spectrum can be considered as a discrete spec
with infinitely closed spectral lines, expression~14! is also
valid for systems with continuous spectra.

Because of the small volume of the considered opti
cavity, from relation~14!, we have

jWv
sp5

1

2pE2`

`

dt eivt(
f

c f* ~ t ! jWc i~ t !. ~15!

III. EIGENMODES OF OPTICAL CAVITIES

The wave equation, Eq.~5!, can be solved by expandin
the vector potentialAW v into a linear combination of the
eigenmodes of the optical cavityuW v

l that satisfies the follow-
ing eigenvalue equation~see Appendix A!:

~D1n2k0
2!uW v

l 52rn2Lv
l uW v

l ~16!

and the orthogonality condition:

k0
3E n2r~uW v

l
•uW v

l 8!dv5d l l 8 . ~17!

Lv
l in Eq. ~16! is the eigenvalue andr(rW) is a step func-

tion:

r~rW !5H 1 if n~rW !Þ1 ~ in the cavity!

0 if n~rW !51 ~ in free space!.
~18!

We may write

AW v5(
l

av
l

Lv
l
uW v

l . ~19!

By substituting expression~19! into Eq. ~5! and applying
orthogonality relation~17! for uW v

l we find

av
l 5k0

3E ~ jWv
sp
•uW v

l !dv. ~20!
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The eigenvaluesLv
l are functions of the circle frequenc

v. This function is determined by a certain algebraic eq
tion derived from Eq.~16!. We write this equation formally
as

F~Lv
l ,v,l !50. ~21!

In the complex planṽ, the equation

F~0,ṽ l ,l !50 ~22!

admits one solutionṽ l for each model. For everyṽ l ob-
tained from Eq.~22!, the eigenvalueLṽ

l determined by Eq.

~21! is equal to zero. Letṽ l5v l1 iG l ; then we may write

Lv
l 5~v2v l2 iG l !h l . ~23!

We callv l the resonant frequency of the eigenmodel. h l
in the above expression is a function ofv. However, if we
are concerned about only a limit wavelength range, we m
take this function as a constant:

h l5
dLv

l

dv
U

v5ṽ

. ~24!

By using relation~23!, we now have

AW v5(
l

av
l

h l

uW v
l

v2v l2 iG l
. ~25!

IV. EMISSION SPECTRA

The total output optical power from an optical cavity c
be calculated by taking the average value, for a long ti
interval, of the surface integration of the Poynting’s vec
over a closed surface that contains the cavity. The sur
integration can be transformed into a integration of the
vergence of the Poynting’s vector over the volume of
cavity. After performing this calculation, we obtain

Pout5E
0

`

P~v!dv, ~26!

where

P~v!5 lim
T˜`

4pT21E ReS in2k0

m0c
EW v* •EW v,T2EW v,T• jWv

sp* Ddv

~27!

and

EW v,T5
1

2pE2T/2

T/2

EW ~ t !eivtdt. ~28!

The electric fieldEW (t) can be calculated from the vecto
potential AW v . By applying expression~25! for the vector
potential, we find that the output optical power spectrum
an optical cavity is an overlap of contributions from a
eigenmodes:
-

y

e
r
ce
i-
e

f

P~v!5(
l

Pl~v!, ~29!

with the power spectrum of an eigenmode given by the f
lowing expression~see Appendix B!:

Pl~v!5
\v

p H k0
2

uh l u2

gv
l l ~gv

l l 1av
l l !

~v2v l !
21G l

2
1ImF k0~ ḡv

l 1āv
l !

h l~v2v l2 iG l !
G

1ReF 2k0
2

h l~v2v l2 iG l !

3 (
l 8Þ l

gv
l 8 l

h l 8
*

gv
l 8 l1av

l 8 l

v l2v l 81 i ~G l1G l 8!
G J , ~30!

where

gv
l l 85k0

3E gv~uW v
l* •uW v

l 8!dv, av
l l 85k0

3E av~uW v
l* •uW v

l 8!dv,

~31!

and

ḡv
l 5k0

3E gv~uW v
l
•uW v

l !dv, āv
l 5k0

3E av~uW v
l
•uW v

l !dv.

~32!

The quantitiesgv andav in expressions~31! and~32! are
the optical gain coefficient and optical absorption coefficie
at the circle frequencyv, respectively.

The first term on the right side of Eq.~30! is proportional
to the optical gain coefficient in optical cavities. This ter
describes the contribution from the stimulated emission p
cess, or more exactly, it comes from the spontaneous e
sion amplified by the stimulated emission process. The s
ond term can be regarded as the contribution from
spontaneous emission process. Although the last term is
portional to the optical gain coefficient, it also depends
characteristics of other eigenmodes. This term is a resu
the coupling between different eigenmodes.

The stimulated emission term in Eq.~30! is a Lorentzian
distribution modulated by the spectral functiongv

l l (gv
l l

1av
l l ). The Lorentzian linewidth 2G l depends on the optica

gain coefficient in cavities. For each eigenmode, there ex
a threshold optical gain, which corresponds to a zero Lore
zian linewidth. Evidently, these threshold optical gain co
ficients can be approached, but never reached, as the op
power must remain finite.

V. NUMERICAL RESULTS

Numerical calculation of the spontaneous emission sp
trum was carried out for a disklike microcavity with a diam
eter of 2.2 mm and a thickness of 0.15mm. A frequency-
dependent refractive index n(v)5@3.34610.333(\v
20.866 eV)# is assumed@7#. The eigenvalue wave equatio
Eq. ~16! for this system is solved by using the method p
sented in Refs.@5,6#. For the reason of simplicity, the fol
lowing expression for the wavelength-dependent optical g
coefficient
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g5g12g2~l2l0!2 ~33!

is used. Whereg1 is a pumping power-dependent paramet
g259.0 mm23, l is the wavelength, andl051.55 mm.
The calculated emission spectra of this microdisk cavity
different total output power (Pout57.5, 17, 22, 47, and 82
mW! are presented in Fig. 1. One may compare these re
with the measured photoluminescence spectra of a micro
laser with the same parameters at different pumping po
@8#, and find good agreement between these theoretica
sults and the experimental data.

To make a more precise comparison with experimen
data, we consider the spectral linewidth of conventio
single-mode lasers.

In the case of conventional lasers, an unidimensio
model is appropriate. For an unidimensional cavity of len
L, with front and rear mirrors atz56L/2, the eigenvector
uW v

l has the following form within the cavity:

uW v
l 5eW lA 2

k0L
cos@n~k0

21Lv
l !1/2~z2zl !1f l #, ~34!

whereeW l is an unit vector perpendicular to thez direction,
uzl u,L/2, and zl and f l are determined by the bounda
conditions atz56L/2. In obtaining the normalization facto
the conditionk0L@1 is used. We emphasize the fact that t
refractive indexn is a complex number. In a lasing regime
a conventional laser, we have Re(n)@uIm(n)u. From the
boundary conditions atz56L/2, one can also determine th
eigenvalueLv

l . In fact, what is determined directly from th
boundary conditions is the quantityk0

21Lv
l . For a given

mode, this quantity varies slowly with the frequency, so
have

h l522
k0

c
. ~35!

In a single-mode conventional laser, only the lasing mo
has significant contribution to the laser spectrum, contri

FIG. 1. Calculated emission spectra of a 2.2-mm diameter mi-
crodisk laser at different total output powers. The disk thicknes
150 nm. The total output powers are 7.5 mW~curve 1!, 17 mW
~curve 2!, 22 mW ~curve 3!, 47 mW ~curve 4!, and 82 mW~curve
5!.
,
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tions from nonlasing modes can be neglected. Letl 50 for
the lasing mode, then relation~29! is reduced to

P~v!.P0~v!. ~36!

Expression~30! for P0(v) can also be simplified in this
case, because we need to keep the stimulated emission
only. Conventional lasers have very narrow laser linewid
therefore, we may replacegv

00 and av
00 with gv0

00 and av0

00 .

When lasing action taking place, the optical gain coefficie
of a conventional single-mode laser is very close the
threshold value of the lasing mode. Thus, in the followi
calculation, we can also replace the optical gain coeffici
with its threshold value, which is equal to the total optic
loss of the lasing mode. By applying relation~31!, we obtain

gv0

00~gv0

001av0

00 !5nspa t
2F 2

a tL
sinhS a tL

2 D cosh~a tz0!G2

,

~37!

wherea t is the total optical loss of the lasing mode andnsp
is the spontaneous emission factor defined as

nsp5
gv1av

gv
. ~38!

The condition Re(n)@uIm(n)u is used in obtaining expres
sion ~37!.

By applying these approximations, we find the followin
expression for the laser spectrum of a conventional sin
mode laser:

P~v!5
\v0

4p

nspa t
2c2

~v2v0!21G0
2 F 2

a tL
sinhS a tL

2 D cosh~a tz0!G2

.

~39!

The total output power can also be calculated:

Pout5
\v

4G0
nspa t

2c2F 2

a tL
sinhS a tL

2 D cosh~a tz0!G2

. ~40!

The spectral linewidth is determined by the relation

Dn5
2G0

2p
. ~41!

For gas lasers, the total optical loss is just the mirror lo
am . Due to the highQ value of optical cavities of gas laser
the quantitya tL is very small; thus we have

F 2

a tL
sinhS a tL

2 D cosh~a tz0!G2

.1. ~42!

From relations~41!, ~40!, and ~42!, we obtain exactly the
modified Schawlow-Townes relation for the laser linewid
that has been verified in detail for the He-Ne laser@9#:

Dn5
\v0nspam

2 c2

4pPout
. ~43!

In the case of semiconductor laser diodes with symme
facets, we havez050, and the total optical loss is the sum

is
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the mirror lossam and the waveguide lossaL . It is conve-
nient to express the laser linewidth in terms of single fa
output powerP0 . P0 is related toPout by the following
relation:

P05
am

2a t
Pout . ~44!

We obtain then the following relation for laser linewid
semiconductor laser diodes:

Dn5
\v0nspama tc

2

8pP0
F 2

a tL
sinhS a tL

2 D G2

. ~45!

By applying relation~45!, we may calculate the laser line
width of two GaAlAs single-mode laser diodes lasing
817.5 nm and 832 nm, with the following paramete
@10,11#: L5280 mm, nsp52.6, am539 cm21, aL
545 cm21, and a t5am1aL584 cm21. We obtain
DnP05115 MHz mW for the diode lasing at 817.5 nm, an
DnP05113 MHz mW for the other diode lasing at 832
nm. These values are in excellent agreement with the exp
mental results obtained by Fleming and Mooradian@10# for
these two laser diodes:DnP05(11465) MHz mW.

VI. CONCLUSION

In conformity with the classical electrodynamics, a
emission of an optical wave is caused by a certain cur
source at optical frequencies. Thus, the spontaneous e
sion must be generated by certain spontaneous-emission
rent. Because the spontaneous emission is a quantum
trodynamic phenomenon, the correct form for t
spontaneous-emission current cannot be obtained within
framework of the classical electrodynamics. We develope
semiclassical theory for emission spectra of lasers, in wh
the expression for the spontaneous-emission current is fo
by applying the criterion that this semiclassical theory m
give the same spontaneous-emission power as the quan
transition theory. We find that the spontaneous-emission
rent is equal to the element of quantum current operator
tween the initial and final states of the spontaneous-emis
transition. The optical-field distribution of the light emitte
from optical cavities, that is, the solution of the inhomog
neous wave equation with the spontaneous-emission cu
term, is obtained formally in terms of the eigenmodes. T
eigenvalue equation for eigenmodes of optical cavities is
tablished. The expression for emission spectra is derived.
calculated numerically the emission spectra of a microd
laser at different output powers, and the numerical res
match well with the measured photoluminescence spec
We also applied this theory to calculate the laser linewidth
conventional lasers. We obtained the modified Schawlo
Townes formula for spectral linewidth of gas lasers, and
the case of semiconductor laser diodes, we got an exce
agreement between our theoretical results and experime
data reported in the literature.
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APPENDIX A

The wave equation, Eq.~5!, can be rewritten formally as

AW v5Lv@n22~rW ! jWv
sp#. ~A1!

Lv in Eq. ~A1! is an operator defined by the following rela
tion:

Lv@XW ~rW !#52Dv
21@n2~rW !r~rW !XW ~rW !#, ~A2!

in which XW (rW) is an arbitrary vector function andDv is the
following operator:

Dv5D1n2k0
2 . ~A3!

The step functionr(rW) is introduced to ensure thatjWv
sp50

wheren2(rW)r(rW)XW (rW)50W .
A way to solve Eq. ~A1! is to expand the vecto

jWv
sp
•n22(rW) into a linear combination of eigenvectors of th

operatorLv :

n22~rW ! jWv
sp5(

l
av

l r~rW !uW v
l , ~A4!

in which the eigenvectoruW v
l satisfies the following equation

LvuW v
l 5

uW v
l

Lv
l

. ~A5!

After this expansion, we obtain the following expressi
for the vector potential:

AW v5(
l

av
l

Lv
l
uW v

l . ~A6!

Eigenvalue equation~A5! can be written explicitly as

~D1n2k0
2!uW v

l 52rn2Lv
l uW v

l . ~A7!

The vector functionsuW v
l satisfy the same boundary cond

tions as the vector potentialAW v . The term on the right side
of Eq. ~A7! should satisfy the condition of continuity for th
spontaneous emission currentjWv

sp , so we also request that th

divergence ofuW v
l be null:

div uW v
l 50. ~A8!

It is easy to obtain a solution of Eq.~A7!, which satisfies
condition ~A8!, from an arbitrary solutionu8W v

l of the same
equation:

uW v
l 5u8W v

l 1
grad~div uW 8v

l !

~Lv
l 1k0

2!n2
. ~A9!

The vector potentialAW v obtained in this way is in the
Coulomb gauge. We call the solutions of Eq.~A7!, which
satisfy condition~A8!, the eigenmodes of the cavity.

The orthogonality condition foruW v
l is
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k0
3E n2r~uW v

l
•uW v

l 8!dv5d l l 8 , ~A10!

whered l l 8 is the Kronecker symbol.

APPENDIX B

The output optical power spectrum is given by express
~27!:

P~v!5 lim
T˜`

4pT21E ReS in2k0

m0c
EW v* •EW v,T2EW v,T• jWv

sp* Ddv

~B1!

with EW v,T defined in Eq.~28!.
Evidently,

EW v5 lim
T˜`

EW v,T . ~B2!

In the limit T˜`, we have for the Coulomb gauge,

EW v,T5 im0vAW v,T ~B3!

in which

AW v,T5
1

2pE2T/2

T/2

dt eivtE
0

`

~AW v8e
2 iv8 t1c.c.!dv8;

~B4!

thus,

P~v!5 lim
T˜`

4pT21Fm0ck0
3E Im~2n2!uAW v,Tu2dv

1m0vE Im~AW v,T• jWv
sp* !dv G . ~B5!

From Eqs.~25! and ~20! we have

lim
T˜`

AW v,T5 lim
T˜`

(
l

bW v
l E dvE

2T/2

T/2

@ jWsp~ t !•uW v
l #eivtdt,

~B6!

where

bW v
l 5

k0
3

2ph l

uW v
l

v2v l2 iG l
~B7!

and

jWsp~ t !5E
0

`

jWv
spe2 ivtdv1c.c. ~B8!

We may write

uAW v,Tu25 (
b5x,y,z

u~AW v,T!bu2. ~B9!

According to the theory of quantum mechanics, the te
u(AW v,T)bu2/\2T, with (AW v,T)b given by expression~B6!,
n

gives a total stimulated transition rate in the cavity in t
presence of an electromagnetic field with an effective vec
potential

AW b,eq5(
l

~bW v
l !b*

uW v
l*

m0
e2 ivt. ~B10!

This transition rate must be equal to the sum of optical pow
emitted from and absorbed in the cavity divided by the ph
ton energy when such an electromagnetic field is pres
Thus, we have

lim
T˜`

T21u~AW v,T!bu25\k0m0E ~gv1av!uAW b,equ2dv,

~B11!

wheregv andav are the optical gain coefficient and optic
absorption coefficient at the circle frequencyv, respectively.
Generally,gv andav are also functions of coordinates.

By using relations~B9!, ~B11!, and~6! we obtain

lim
T˜`

4pT21m0ck0
3E Im~2n2!uAW v,Tu2dv

5
\v

p (
l ,l 8

k0
2gv

l l 8~gv
l l 81av

l l 8!

h l* h l 8~v2v l1 iG l !~v2v l 82 iG l 8!
,

~B12!

in which

gv
l l 85k0

3E gv~uW v
l* •uW v

l 8!dv, av
l l 85k0

3E av~uW v
l* •uW v

l 8!dv.

~B13!

According to relation~B6!, we have

lim
T˜`

4pT21m0vE Im~AW v,T• jWv
sp* !dv

5 lim
T˜`

(
l

4pT21m0vk0
3h l

21~v2v l2 iG l !
21

3E ~ jWv,T
sp*

•uW v
l !dvE ~ jWv,T

sp
•uW v

l !dv. ~B14!

In expression~B14!, the following notation was used:

jWv,T
sp 5

1

2pE2T/2

T/2

jWsp~ t !dt. ~B15!

But

E ~ jWv,T
sp*

•uW v
l !dvE ~ jWv,T

sp
•uW v

l !dv

5U E jWv,T
sp

•uW v,r
l dvU2

2U E jWv,T
sp

•uW v,i
l dvU2

1
i

2
U E jWv,T

sp
•~uW v,r

l 1uW v,i
l !dvU2
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U E jWvT

sp
•~uW v,r

l 2uW v,i
l !dvU2

, ~B16!

whereuW v,r
l 5Re(uW v

l ) anduW v,i
l 5Im(uW v

l ); so, in a similar way,
we may obtain

lim
T˜`

T21E ~ jWv,T
sp

•uW v
l !dvE ~ jWv,T

sp*
•uW v

l !dv

5
\k0

4p2m0
E ~gv1av!~uW v

l
•uW v

l !dv ~B17!

and, consequently,

lim
T˜`

4pT21m0vE Im~AW v,T• jWv
sp* !dv

5(
l

\vk0~ ḡv
l 1āv

l !

ph l~v2v l2 iG l !
. ~B18!
u,

tt.
In the above expressions, the following notations were use

ḡv
l 5k0

3E gv~uW v
l
•uW v

l !dv, āv
l 5k0

3E av~uW v
l
•uW v

l !dv,

~B19!

By substituting expressions~B12! and ~B19! into Eq.
~B5!, we obtain the following expression for the power spe
trum of an eigenmode:

Pl~v!5
\v

p H k0
2

uh l u2

gv
l l ~gv

l l 1av
l l !

~v2v l !
21G l

2
1ImF k0~ ḡv

l 1āv
l !

h l~v2v l2 iG l !
G

1ReF 2k0
2

h l~v2v l2 iG l !

3 (
l 8Þ l

gv
l 8 l

h l 8
*

gv
l 8 l1av

l 8 l

v l2v l 81 i ~G l1G l 8!
G J . ~B20!
n.

.J.
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