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Semiclassical theory of emission spectra of optical microcavities
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We developed a semiclassical theory for emission spectra of optical microcavities. The spontaneous emis-
sion is taken into consideration by adding a spontaneous-emission current term into the Maxwell’s equations.
The spontaneous-emission current is found to be equal to the element of the quantum current operator between
the initial and final states of the spontaneous-emission transition. We showed that the optical-field distribution
of the light emitted from optical cavities can be expressed as a superposition of eigenmodes, and the eigenvalue
equation for eigenmodes is established. A detailed expression for emission spectra is also obtained. Numerical
results for the emission spectra carried out for a microdisk laser match well with experimental data. By
applying this theory in the calculation of the spectral linewidth of conventional lasers, we found the modified
Schawlow-Townes spectral linewidth formula for gas lasers, and obtained an excellent agreement between the
theoretical and experimental results in the case of semiconductor laser di8ti650-294{®9)04109-9

PACS numbdis): 42.60.Da, 42.55.Ah

[. INTRODUCTION without free electric charges. In each homogeneous dielectric
medium the electromagnetic field satisfies the following
The emission spectra is an important topic in studies oMaxwell's equations:

optical microcavities. It is known that the spontaneous emis- R R
sion spectrum of optically active media can be strongly al- JE JH
tered in optical microcavities, and a large fraction of sponta- rotH=e—- gt +J, rotE= THO
neous emission can be coupled into the lasing midde
These properties of optical microcavities differ significantly
from that of conventional laser cavities, thus the theory of
spontaneous emission spectrum and lasing linewidth for oMy, which 110 is the magnetic permeability of the vacuum and
ventional lasers may not be applicable for optical microcavi-
ties. To the best of our knowledge, there is not a theory foff is the dielectric permlttlvny At interfaces of different
the emission spectrum of optical cavities that take into conParts, the magnetic field, the tangential component of the
sideration both the effect of the cavity and the effect of theelectric field E, and the normal component of the electric
spontaneous emission at the same time. Theory for ConVeRisplacement vectarE must be continuous.
tional laser cavities is frequently used in studies of emission 1 is convenient to present a real electromagnetic field in

spectra of optical microcavitig,3]. terms of its monochromatic components:
In this paper, we introduce a semiclassical theory for the

emission spectra of optical microcavities. In this theory the o . o
spontaneous emission is explicitly considered. From theE(t)—f E,e "“dw+c.c., H(t)=f H, e "'do+c.c.
point of view of electrodynamics, any optical emission is 0 0
generated by a certain current at optical frequencies. There- )
fore, to include the spontaneous emission effect in this
theory, we add a spontaneous emission current term int
Maxwell's equations. This spontaneous emission curren
term is determined by using the quantum-transition theory.

An expression for the spontaneous emission current term
is derived in Sec. Il. We solve in Sec. lll the wave equation In a dielectri di ith ontical gai b tion. th
with a spontaneous emission current term by expanding so- h a dielectric medium with optical gain or absorption, the
lutions in terms of eigenmodes. The formula for emissioncurrent de”S'th should be proportional to the electric-field
spectra of optical microcavities is established in Sec. |V|ntenS|tyE But, however, the existence of the spontaneous
Numerical results for emission spectra of microdisk laseremission implies that there must also exist a free current
and spectral linewidth of conventional lasers are carried ousource, which is independent of the electric-field intensity.
and compared with experimental data in Sec. V. We call this free current the spontaneous emission current
and usej P to note it. The optical gain or absorption can be
taken into consideration in Egé3) by means of a complex
refractive index.

An optical cavity can be considered being formed from Solutions of Egs(3) can be expressed in terms of the
several homogeneous parts of continuous dielectric medigector potennalA and the scalar potentiat, as follows:

divH=0, diveE)=0, (1)

By applying this transformation, the first two equations in
Eq (1) become as

rotH,= —iweE, +],, rotliu,:iw,uoﬁw. 3

Il. WAVE EQUATION WITH A SPONTANEOUS EMISSION
CURRENT TERM
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>

H,=rotA,, E,=iwuoA,—gradd,. (4) By <_:omparing expressiond 1) ar_1d(12), and neglecting
an arbitrary phase factor, we obtain

w

The vector potentiaﬁw satisfies the following wave equa-
tion: Jm= f ¥F v, (13
\%

AA,+n%k32A, =P, (5)
wherey; and; are time-independent wave functions of the
wheren is the complex refractive index of the mediuky, ~ quantum statefi) and|fm), respectively.
=wl/c, andc is the speed of light in the free space. There is By substituting expressioflL3) into relation(10), we ob-
a relation between the optical gain coefficient and the refractain
tive indexn:

o

N 1 . R
g,=—koIm(n?). (6) Jo=5= dte""tZ jvlﬂ?(t)l'l//i(t)dv’ (14

27 ) o
The scalar potentiad,, is related to the vector potential ) ) )
i by the following expression: in which ¢;(t) and l//f(t) are tlme-dgpendent wave funptlons
@ ' of the quantum stateandf, respectively. The summation is
c taken over all possible quantum stajés
¢w:_i’“2_0div,&w 7) Expression(14) is obtained for systems with discrete
n<ko spectra of a spontaneous emission current. Because a con-
R tinuous spectrum can be considered as a discrete spectrum
To solve Eq.(5) for A,, we need an explicit expression with infinitely closed spectral lines, expressi@) is also
for the spontaneous emission currgfft. For obtaining such valid for systems with continuous spectra. _
an expression, we consider a small optical cavity with vol- Because of the small volume of the considered optical
ume V much smaller than the cube of wavelength. In thiscavity, from relation(14), we have

circumstance, we can writg? as.7, 5(r), wheres(r) is the

. . - 1 (= . -
Dirac’s delta function, and Psp_ T j ot kT
. 2Wf_mdte 2 Uiin®. a9
7.~ [ v ®
v IIl. EIGENMODES OF OPTICAL CAVITIES
We also have for this cag€=1. The solution of Eq(5) The wave equation, Ed5), can be solved by expanding
for this cavity is the vector potentialA, into a linear combination of the
- eigenmodes of the optical caviti}w that satisfies the follow-
i o ik ing eigenvalue equatiotsee Appendix A
A,= 477re o, (9
(A+n2k3)u! =—pn2A! Ul (16)

By using expressiof®), we can calculate the total optical
flux of spontaneous emission. We consider first a systempg the orthogonality condition:
with discrete spontaneous emission current spectrum:

- - kgf n2p(J' -J")dv——é ’. (17)
_ m _.m 0 o Yo 1
Jw—% J"(w— ™). (10

| . . . >y . _
The total optical flux at the circular frequenay" is then A, in Bq. (16) is the eigenvalue and(r) is a step func

tion:
wm 2 . . . _
P(o™) = MO(—)|J”‘|2. (11 _ 1 if n(r)#1 (inthe cavity
3me p(r)= ; | (18)
0 if n(r)=1 (infree spacg
On the other hand, the total optical flux of spontaneous
emission can also be obtained as the product of the sponta- \We may write
neous emission transition rate with the photon energy. By
applying guantum-mechanic thed|, we obtain al
F 5 Qoo
o pe(@™? A3 AL 9
P(w )—kam'ﬂ : (12

By substituting expressiofil9) into Eg. (5) and applying

in which | is the electric current-density operator, gipi  orthogonality relatior(17) for u' we find
|f) are initial and final quantum states of the spontaneous
emission transition, respectively. The difference between the

I — 3 7sp. !
energy levels of the statéy and|f) must be equal te™. A kof (Jo™ uy)dv. (20)



PRA 60 SEMICLASSICAL THEORY OF EMISSION SPECTRA OF ... 2469

The eigenvaluez,\'w are functions of the circle frequency

w. This function is determined by a certain algebraic equa- P(“’):Z Pi(w), (29
tion derived from Eq(16). We write this equation formally
as with the power spectrum of an eigenmode given by the fol-
lowing expressior(see Appendi
F(A! w,1)=0. (1) 'OWing expressiorisee Appendix B
5 A K2 o'(g"+ o ko(dl + o
In the complex planw, the equation P(w)= ho| K 9u(9ut @) o(9u a‘_")
™ |7]||2(w—w|)2+r|2 n(w—w—il")
F(0,w,1)=0 (22
(0,0, ) 22
~ ~ + PR —

admits one solutionn, for each modd. For everyw, ob- n(w—w—il")
tained from Eq.22), the eigenvalue!\'; determined by Eq. ” P
(21) is equal to zero. Lel; = w,+iT|; then we may write xS 9o 9o T, ] (30)

* .
. 12l 7, o—opHi(C+1)
A= (0=w=iT)7. (23) e
) where
We call w; the resonant frequency of the eigenmade,

in the above expression is a function ©f However, if we 0a S " S
- =k w*.uydv, o'=Kk3| a,0'*-u)dv
are concerned about only a limit wavelength range, we may 90 0| Yully, -Uy,)av, w 0 oy, ~Uy)av,

take this function as a constant: (3D
dA! and

0=k ol dav, ah=k [ a (il dav.
By using relation(23), we now have (32)
A - a_lw Ulw 25) The quantitieg,, anda,, in expression$31) and(32) are
T g wo—e—-ily’ the optical gain coefficient and optical absorption coefficient
at the circle frequencw, respectively.
The first term on the right side of E¢30) is proportional
to the optical gain coefficient in optical cavities. This term
The total output optical power from an optical cavity can describes the contribution from the stimulated emission pro-
be calculated by taking the average value, for a long timecess, or more exactly, it comes from the spontaneous emis-
interval, of the surface integration of the Poynting’s vectorsion amplified by the stimulated emission process. The sec-
over a closed surface that contains the cavity. The surfacend term can be regarded as the contribution from the
integration can be transformed into a integration of the di-spontaneous emission process. Although the last term is pro-
vergence of the Poynting’s vector over the volume of theportional to the optical gain coefficient, it also depends on
cavity. After performing this calculation, we obtain characteristics of other eigenmodes. This term is a result of
the coupling between different eigenmodes.
* The stimulated emission term in E(RO) is a Lorentzian
Pout= fo P(o)do, (26 gistribution modulated by the spectral functiog! (g
+ alul)). The Lorentzian linewidth B, depends on the optical
where gain coefficient in cavities. For each eigenmode, there exists
a threshold optical gain, which corresponds to a zero Lorent-
. _ in2k, =y - oS pi zian linewidth. Evidently, these threshold optical gain coef-
P(w)=lim4xT f R WEw' 0T By [dv ficients can be approached, but never reached, as the optical
= (27)  Power must remain finite.

IV. EMISSION SPECTRA

M

and V. NUMERICAL RESULTS
R 1 (TR . Numerical calculation of the spontaneous emission spec-
Ew,TZEf E(t)e'“'dt. (280  trum was carried out for a disklike microcavity with a diam-

-T2 eter of 2.2 um and a thickness of 0.1mm. A frequency-
N dependent refractive indexn(w)=[3.346+0.333¢ w

The electric fieldE(t) can be calculated from the vector —( 866 eV) is assumed7]. The eigenvalue wave equation
potential ,&w. By applying expressiori25) for the vector Eq. (16) for this system is solved by using the method pre-
potential, we find that the output optical power spectrum ofsented in Refs[5,6]. For the reason of simplicity, the fol-
an optical cavity is an overlap of contributions from all lowing expression for the wavelength-dependent optical gain
eigenmodes: coefficient
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tions from nonlasing modes can be neglected. llze0 for
the lasing mode, then relatig29) is reduced to

P(w)=Po(w). (36)

Expression(30) for Po(w) can also be simplified in this
case, because we need to keep the stimulated emission term
only. Conventional lasers have very narrow laser linewidth;
therefore, we may replaog(’ and «f’ with g, and ag) .
When lasing action taking place, the optical gain coefficient
of a conventional single-mode laser is very close the its
threshold value of the lasing mode. Thus, in the following
calculation, we can also replace the optical gain coefficient
with its threshold value, which is equal to the total optical

Light Output (arb. units)

Wavelength (um) loss of the lasing mode. By applying relati¢8il), we obtain
FIG. 1. Calculated emission spectra of a @& diameter mi- 2 al 2
crodisk laser at different total output powers. The disk thickness is g?oo(g?uo+ ago)= nspat2 —sin?(—) cosh{a;zp) | ,
150 nm. The total output powers are 7.5 m\@urve 0, 17 mW 0T 0 al 2
(curve 2, 22 mW (curve 3, 47 mW (curve 4, and 82 mW(curve (37)
5. wherea, is the total optical loss of the lasing mode amg)
) is the spontaneous emission factor defined as
g=01—92(A—X\o) (33
gw+ a(x)
is used. Wherg, is a pumping power-dependent parameter, Nsp= 9 . (39

9,=9.0 um 3, X\ is the wavelength, and,=1.55 um.

The calculated emission spectra of this microdisk cavity atrhe condition Re)>|Im(n)| is used in obtaining expres-
different total output powerR,,=7.5, 17, 22, 47, and 82 gjon (37).
mW) are presented in Fig. 1. One may compare these results By applying these approximations, we find the following

with the measured photoluminescence spectra of a microdiskxpression for the laser spectrum of a conventional single
laser with the same parameters at different pumping poweiode laser:

[8], and find good agreement between these theoretical re-

sults and the experimental data. w0 nspatzcz 2 al 2
To make a more precise comparison with experimental P(w)= ype > Esinl-<7) cosla;zp) | .
data, we consider the spectral linewidth of conventional (0—wo) "+ 5l

single-mode lasers. (39
In the case of conventional lasers, an unidimensionall-

model is appropriate. For an unidimensional cavity of length

L, with front and rear mirrors at=*L/2, the eigenvector hao

>, _ 2
u', has the following form within the cavity: Pout= 4T st ©

he total output power can also be calculated:

2

2 2 i atL 40
a—tLSIH T COSHatZO) . ( )

- 2 2 A1\1/2 The spectral linewidth is determined by the relation
u,=e \/ircognkg+A, )"(z—z)+ ¢, (39

koL

2,

N Av=—. (41
wheree' is an unit vector perpendicular to ttzedirection, 2m
|z|<L/2, andz and ¢, are determined by the boundary
conditions az= *+L/2. In obtaining the normalization factor,
the condlt[od(oL%l is used. We emphasize th.e fact that thethe quantitya,L is very small: thus we have
refractive indexn is a complex number. In a lasing regime of
a conventional laser, we have R¢g&|Im(n)|. From the
boundary conditions at= =L /2, one can also determine the

2 ) % atL
wl ™M 2
eigenvalue/\'w. In fact, what is determined directly from the %t

boundary conditions is the quantil_ySJrA'w. For a given  From relations(41), (40), and (42), we obtain exactly the
mode, this quantity varies slowly with the frequency, so wemodified Schawlow-Townes relation for the laser linewidth

For gas lasers, the total optical loss is just the mirror loss
ap, . Due to the highQ value of optical cavities of gas lasers,

2

cosha;zg) | =1. (42

have that has been verified in detail for the He-Ne la<#r
Ko h wohgpa?,c?
=—2—. 35 — P
7) c (35 Av 2P (43)

In a single-mode conventional laser, only the lasing mode In the case of semiconductor laser diodes with symmetric
has significant contribution to the laser spectrum, contribufacets, we havey,= 0, and the total optical loss is the sum of
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the mirror lossa,,, and the waveguide losg, . It is conve- APPENDIX A
nient to express the laser linewidth in terms of single facet
output powerP,. Pg is related toP,,; by the following
relation:

The wave equation, Eq5), can be rewritten formally as

A,=L,[n"4njsP]. (A1)
Po=amMp_ . (44 L, inEq.(Al) is an operator defined by the following rela-
2a tion:

We obtain then the following relation for laser linewidth Z T — 1 n2( 0 o PV
semiconductor laser diodes: LalX(1)] D, In*(N)p(NX(r)], (A2)
hwogNspamanc?| 2 al |2 in which X(r) is an arbitrary vector function aridl,, is the

= T 8aP, ﬂ&nr(T) (45  following operator:

D,=A+n%3. (A3)

By applying relation45), we may calculate the laser line-
width of two GaAlAs single-mode laser diodes lasing at . S 250
817.5 nm and 832 nm, with the following parametersThe stezp Iuncﬁtloﬁmﬁ(r) LS introduced to ensure thaf,’=0
[10,11: L=280 um, ng,=2.6, anp=39 cm?’, a Wheren(r)p(r)X(r)=0. .
=45 cm!, and ay=a,+e =84 cml. We obtain A way to solve Eq.(Al) is to expand the vector
AvPy=115 MHz mW for the diode lasing at 817.5 nm, and fff’- n‘Z(F) into a linear combination of eigenvectors of the
AvPy=113 MHz mW for the other diode lasing at 832.0 operatorL ,:
nm. These values are in excellent agreement with the experi-
mental results obtained by Fleming and Mooradia€] for /> Psp_ I

. = : A4
these two laser diode&vPy=(114=5) MHz mW. Nl Z up(MU,, (A4)

VI. CONCLUSION in which the eigenvectaﬁ'w satisfies the following equation:
In conformity with the classical electrodynamics, any a
emission of an optical wave is caused by a certain current Lwl]'w:_‘l”_ (A5)
source at optical frequencies. Thus, the spontaneous emis- A,

sion must be generated by certain spontaneous-emission cur- ) i i . _
rent. Because the spontaneous emission is a quantum elec-After this expansion, we obtain the following expression
trodynamic phenomenon, the correct form for thefor the vector potential:

spontaneous-emission current cannot be obtained within the |

framework of the classical electrodynamics. We developed a A = E ® = (A6)
semiclassical theory for emission spectra of lasers, in which U

the expression for the spontaneous-emission current is found

by applying the criterion that this semiclassical theory must Eigenvalue equatiofA5) can be written explicitly as
give the same spontaneous-emission power as the quantum-

transition theory. We find that the spontaneous-emission cur- (A+n2k3)u! =—pn2A! Ul . (A7)
rent is equal to the element of quantum current operator be-

tween the initial and final states of the spontaneous-emission The vector functions!', satisfy the same boundary condi-
transition. The optical-field distribution of the light emitted tjons as the vector potentiﬂw. The term on the right side

from optical cavities, that is, the solution of the inhomoge-q¢ £ (A7) should satisfy the condition of continuity for the
neous wave equation with the spontaneous-emission current

term, is obtained formally in terms of the eigenmodes. Thespontaneous ?Im'SS'On currg)f, so we also request that the

eigenvalue equation for eigenmodes of optical cavities is esdivergence ol,, be null:

tablished. The expression for emission spectra is derived. We -

calculated numerically the emission spectra of a microdisk divu,=0. (A8)

laser at different output powers, and the numerical results | . ) i o

match well with the measured photoluminescence spectra. It iS €asy to obtain a solution of EGA7), which satisfies

We also applied this theory to calculate the laser linewidth ofcondition (A8), from an arbitrary solutionu”,, of the same

conventional lasers. We obtained the modified Schawlowequation:

Townes formula for spectral linewidth of gas lasers, and in .

the case of semiconductor laser diodes, we got an excellent . graddivu"w)

agreement between our theoretical results and experimental u,=u w+m- (A9)
w

data reported in the literature.

The vector potential&w obtained in this way is in the
Coulomb gauge. We call the solutions of E&7), which
This work was supported by the Natural Science FoundaSatisfy condition(A8), the eigenmodes of the cavity.
tion of China under Project No. 69896260. The orthogonality condition fou'w is
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gives a total stimulated transition rate in the cavity in the
presence of an electromagnetic field with an effective vector
potential

ks f n2p(U,,- U, )dv= 4y, (AL0)

where §,: is the Kronecker symbol. .

*

- Lo uy
Aﬁyeq=2| (b'w);%e—'w‘. (B10)

APPENDIX B
5 T_he output optical power spectrum is given by EXPresSIOnrys transition rate must be equal to the sum of optical power
(27): emitted from and absorbed in the cavity divided by the pho-
ton energy when such an electromagnetic field is present.

_ |n2k0 e
P(a)):||m47TT f w wT_EwT Ji)p* dv
(B1)
with E,, 1 defined in Eq.(28).
Evidently,
E,=limE, . (B2)
T—oo

In the limit T—, we have for the Coulomb gauge,

E,r=imowA, 1 (B3)
in which
A 1 jm i wt 7 iw't
A,1=5— dte“’f A,e ' +c.c)do’;
T2m) e o( ydw
(B4)
thus,
P(w)=lim47T 1 ,uockgf Im(—n?)|A,, 1|2dv
Toox
+/,L0(1)f |m(AwT JSp*)dV . (BS)

From Egs.(25) and(20) we have

T2 . )
lim A, 7= lim 2 b, f dVJ [7P(1)- €' di,
-T2

T—w T—w
(B6)
where
k3 u!
5 ©
b 27y o—o—il B7)
and
fSp(t)zf jSPeieldew +c.c. (B8)
0
We may write
Autl?= 2 1(A,1)4l (BY)
B=xy.z

According to the theory of quantum mechanics, the term

|(A,1) gl 2/%2T, with (A, 1)z given by expression(B6),

Thus, we have

limT~

T—ooo

Y ('&w,T),B|2= ﬁkoﬂof (9ot aw)|'&ﬂ,eq| %dv,
(B11)

whereg, and«,, are the optical gain coefficient and optical

absorption coefficient at the circle frequensyrespectively.
Generally,g, and «,, are also functions of coordinates.
By using relationgB9), (B11), and(6) we obtain

lim 47TT_1,U,OC|(S

T—

Im(—n?)|A,, 7/%dv

o k3g"' (9! +a!")

T g (e— o+l (e— e —iT))
(B12)
in which
gg':kgf g, (UL -U,,)dv, aL',’=k8J (U Uy, )V
(B13)

According to relationB6), we have

lim 477T71,u,0wf Im(AwYT-j*Swp*)dv

T—oo

= lim E 4WT_1MOwkgnf1(w—w|—iF,)_l

T—w

< [ ey [ oy

In expression(B14), the following notation was used:

(B14)

Jor=5- f jeh(tydt. (B15)

But

| e | <fz?T-J;>dv

‘f JwT uwrdv

f JwT (uwl’+uwl)dv

j Ja)T uwldv
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2 In the above expressions, the following notations were used:

I,
—5f ol (Ui = Uy, )V

, (B16)

R R R R T _ .3 -l 1 _ .3 ST
whereu!, ,=Re(ul,) andu!, ;=Im(u.,); so, in a similar way, gw_kOJ 9,(U,-U,)av, %—kof a,(U,-U,)dv,
we may obtain (B19)

lim T’lf (J?i,?rl]'u))dvf (fi?:~ﬁ;)dv By substituting expressionéB12) and (B19) into Eq.
T (B5), we obtain the following expression for the power spec-
ik trum of an eigenmode:
-2 e iy 817
e ooy 0] K8 Gulgutal) ko(gl, + a,)
and, consequently, ne)= |72 (0—w)2+T2 n(o—w—il))
lim 4WT-1Mowf Im(A, 17 )dv LR 2k§
T n(o—o—il)
fiwko(gl,+ al,) 1l NN
= . . 818 gw gw +aw
Z Ty (w—w—il)) ( ) X E — - . (B20)
A/ w|—w|r+|(F|+F|,)
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