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Heterodyne and adaptive phase measurements on states of fixed mean photon number
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The standard technique for measuring the phase of a single-mode field is heterodyne detection. Such a
measurement may have an uncertainty far above the intrinsic quantum phase uncertainty of the state. Recently
it has been showfH. M. Wiseman and R. B. Killip, Phys. Rev. 87, 2169(1998] that an adaptive technique
introduces far less excess noise. Here we quantify this difference by an exact numerical calculation of the
minimum measured phase variance for the various schemes, optimized over states with a fixed mean photon
number. We also analytically derive the asymptotics for these variances. For the case of heterodyne detection
our results disagree with the power law claimed by D’Ariano and R&fiys. Rev. A49, 3022(1994)].
[S1050-2947@9)04009-3

PACS numbgs): 42.50.Dv, 03.67.Hk, 42.50.Lc

I. INTRODUCTION lip [2,1]. In Ref.[2] it was shown that via adaptive measure-
ments of a coherent state one can obtain a phase uncertainty
It is well known that it is not possible to make quantum- of
limited measurements of the phase of an electromagnetic
field using linear optics and photodetectpt$ The standard 1
method of making dnon-quantum-limitedphase measure- Vadapt #) = —+—.
ment is by heterodyne detection. Heterodyne detection in- 4a° Ba
volves combining the field to be measured with a much
stronger local oscillator field which has a frequency detunedHere we have taken the coherent amplitad® be real. The
by a small amountA, and measuring the intensity of the first term above is the intrinsic uncertainty of the coherent
resultant field. In a typical experimental implementation, thestate, and the second term is the extra phase uncertainty in-
mode to be measured is passed through a 50/50 beam splitoduced by the phase measurement. This result implies that
ter, in order to combine it with the local oscillator. The dif- even though there is not much improvement in using adap-
ference photocurrent from the two output ports of the beamive phase measurements on coherent states, if the input state
splitter yields a measurement of the phase quadraXye has reduced phase uncertainty then adaptive measurements
=ae '"+a'e'®, wherea is the annihilation operator of the will produce a phase measurement with far less uncertainty
mode to be measured ade is the phase of the local oscil- than a heterodyne measurement.
lator. In heterodyne measurement the deturiinig typically To better quantify the improvement offered by adaptive
chosen to be large enough that the phase of the local oscimeasurements, it is necessary to consider the variance of
lator cycles many times over the course of the measuremendtates that have been optimized for minimum phase variance
S0 as to measure all quadratures with equal accuracy. under various measurement schemes. There must be a con-
In a heterodyne phase measurement of a coherent state stfaint placed on optimizing states, otherwise a phase eigen-
amplitudea, the variance in the measured ph@secales as state will be obtained. The two main ways in which to con-
[2] strain the states are by truncating the photon number and by
fixing the mean photon number. The case of truncated pho-
ton number was considered analytically in Reg], and nu-
Vil )= —— (1.2) merically in Ref.[1]. The case of a fixed mean photon num-
© 2|al? ' ber is determined analytically in Sec. IV below.
General optimized states are difficult to work with, as
they cannot be generated experimentally. Also, in numerical
This is twice the intrinsic uncertainty of the coherent stateintegration of the stochastic differential equations arising
An improved phase measurement can be made if one has émom the various measurement scherftesbe considered in
initial estimate of the phase. Then one would choose théuture work, calculations must be performed on the entire
local oscillator phas@ to be equal top+ 7/2, wherep is  state for general optimized states. This becomes prohibi-
the initial estimated phase of the field to be measured. This igvely time consuming for large photon numbers. Squeezed
known as homodyne detection. If the phase is unknown bestates are far more practical, as they are routinely generated
fore the measurement, then one can still apply this idea bgxperimentally, and in numerical integration only the two
adjusting the phase of the local oscillator during the coursesqueezing parameters need be considered. The theory for op-
of the measurement based on an estimate of the phase fraimized squeezed states is considered in Sec. V. The analyti-
the measurement results so far. cal results for both general states and squeezed states are
These adaptive phase measurements have been discussested numerically in Sec. VI, and the implications discussed
in a series of papers by Wisemg8)] and Wiseman and Kil- in Sec. VII.
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Il. POMs AND PHASE MEASUREMENTS Evidentlyh(n) is a measure of the excess phase noise intro-

In quantum-mechanical systems, the most general way dfuced by the measurement, and it would be desirable to
obtaining the probability of some measurement reugtby =~ Make this as small as possible.

the expectation value of an operatofE), i.e.,
lIl. ADAPTIVE MEASUREMENTS

P(E)=TrpF(E)], (2.9) . : :

In a real optical experiment one cannot directly measure
wherep is the state matrix for the system. If the set of all the phase, but would rather estimate it from a photocurrent
possible measurement results(ls it is evident thatP(Q) ~ record. Here the photocurrent would be derived by combin-
=1 for all p, which implies thatF(Q)=1. ThusF(E) can Ing the mode to be measured with a local oscillator via a

be called a probability operator, and the mappiirg F de-  90/50 beam splitter. Such measurements have been called

fines a probability operator measuROM) on Q [4,5]. dyne measurements, as they include homodyne and hetero-
For phase measurements on a single-mode field, the geflyne as well as adaptive measuremeifs The signal of
eral form of the POM i42] interest is the difference between the photocurrents at the
two ports, which we define by
1 < ‘
= i¢(m—n) ON, (1) — SN _(t
Fl¢)=5— P2 Im)(nle Hnn, (2.2 I(t)=lim lim au ( ), (3.1)
5t—0 B—» ,35':

whereH is a positive-semidefinite symmetric matrix with all
entries positive, anfin) is a number state of the field. In this
case(1=[0,27r) and the completeness relation is

whereSN.. are the increments in the photocounts at the two
detectors in the intervdlt,t+ 6t) and B is the amplitude of
the local oscillator.
2m . Say the mode to be measured has(assumed positiye
. d¢ F(¢p)=diadHoo,H11,Hzo, ... 1=1. (2.3 envelopeu(t) normalized such thafju(t)dt=1. For sim-
plicity, define a scaled time by
For ideal phase measurements all elements oHhmatrix .
are equal to 1, whereas for physical measurements the off- V:j u(s)ds, (3.2)
diagonal elements will generally be less thaf2]. 0
The accuracy of phase measurements can be quantified in ) )
a number of wayg6,7] which agree in the limit of small SO thatve[0,1). Then it turns out that at time there are
phase variance provided the phase distribution is narrowljWO Sufficient statistics for the measurement record:
peakedas it will be in the examples we considlewhen the v v
mean phase is zero it is easiest to define the phase variance Av:f l(u)e'®Wdu, B,= _f e2®Wdy, (3.3
as 0 0

V(¢)=2—2(cos¢)=2(1—Rele'?)). (2.4y  These are sufficient statistics in the sense that the POM for
the measurement is a function Af andB, only [10]. This
If we evaluate(e'?) using Eq.(2.2) for an arbitrary pure means that the best estimate for the phase at tinmeed
quantum staté), we obtain depend on the measurement record only through the complex
numbersA, andB,, .

i - Consider the simple case where the mode is initially in a
(e')= mE:O (lm)(m+ 1) Hmms 1 (2.9 coherent statpx). We can then take the limits in E¢8.1) to
obtain

Therefore, the phase variance only depends on the off-
diagonal elementsl, .1, and we may characterize a phase

measurement by the vector where &(v) =dW(v)/dv is the shot nois¢2]. From this we
h(m)=1—Hp m1- (2.6) can evaluaté\, as

l(v)=2 R ae M)+ &(v), (3.9

For most phase measurements, we have for large photon A,=av—a* BV+JVe2“I’(”)dW(u). (3.5
numberg 2] 0

h(m)~cm™P. (2.77  If one ignores the final ternfwhich has zero expectation
value, it is easy to see that arg=arg(vA, +B,A}). Other
Then for states with a reasonably well-defined mean photoargument§10] suggest that this is generally the best estimate
numbern the total phase variance is given approximately byfor the phase at timg. If B, is small(as it is in heterodyne
(2] detection, this can be approximated by akg. The adaptive
. phase measurements that were analyzed in R&fand[1]
V() ~Vinninsid @) +2h(n), (2.9 use ar@\, as the phase estimate during the measurement,

. ) ) setting
where Vininsid @) is the phase variance which would result

from an ideal or canonical measurement of the pH&sdl. d(v)=argA,+ /2. (3.6
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The main motivations for this choice are that it gives a feeddimit on the photon number, ofii) a fixed mean photon

back algorithm which would be easy to implement experi-number. The case where an upper lildits put on the pho-

mentally, and that it is mathematically tractable. ton number was considered in Refg,1], where the mini-
If the phase estimate afgis used at the end of the adap- mum phase variance was found to be

tive measurement, the resultant phase measurement is actu-

ally worse than a heterodyne phase measurement. This phase V(¢)=~2cN P+ (—2z9)(2cp)? NP5 (4.7)

measurement is called an adaptive mark | phase measure- . ' . . .
ment, and it was founf2] that wherez, is the first zero of the Airy function, and is equal to

approximately— 2.338.
Here we will be considering the case of fixed mean pho-

h(m)~——: (3.7 ton number. Let us take the phase to be zero and use the

gm*/2’ operator for the phase variance
which compares with S=o— 2@ (4.2a
1
hpe(m)~ o~ (3.8

8m’ =2— > [1-h(m)](|m}{m+1|+H.c).

m=0
If the phase estimate ay(- BA*) is used at the end of the (4.2b
phase measurement, a far better phase measurement is ob-

tained. This phase measurement is called an adaptive mark ff order to orp])tlm|ze for minimum phr?se varzlanc? with a
phase measurement, and yield% ixed mean photon number, we use the method of undeter-

mined multipliers. We have two constraints on the state: that
the mean photon number is fixed and that the state is nor-
(3.9  malized. This then gives us an equation with two undeter-

hy(m)~——r,
16m°®? mined multipliers

which is considerably better than the standérdterodyng S+ uN _ 4.3
result. However, as noted Sec. |, this dramatic improvement (S+uN)¥)=vlg). “3

can Only be seen if one starts with a state haVing intrinSiQA/e solve this as an eigenva|ue equation fowith a fixed

phase variance much less than that of a coherent state, fQhjue of, and the eigenstate corresponding to the minimum

which Vintrinsic= 2hnef @?). eigenvalue is the optimized state. The mean photon number
In practice, imperfections in the equipment can introducecan then be found from the state. The mean photon number

phase uncertainties that scaleras [2]. The main problems can be varied by varying., but cannot be easily predicted

are inefficient detectors and time delays. From R2f, the  from w.

extra phase variance introduced by inefficient detectors is  This method was used by Summy and Pétd] to find

states with fixed mean photon number optimized for mini-

1-179 mum intrinsic phase variance. They found that the minimum
NVi(p)= 477?' (3.10 phase uncertainty was approximately
where 7 is the efficiency. Again from Ref[2] the extra ((Ag)2ymn _ — c (4.4
intrinsic :

phase variance introduced by a time defayis (n+e€)?’

whereC~1.88 ande~0.86. Therefore, the minimum intrin-

Vu(d)~ 7 (3.19 sic phase variance scales@s?.
If the state is expressed in the number states basis

This means that when the photon number is sufficiently "
large, above (+ )2 or (év) ~?, the introduced phase vari-
ge, above () ~ or (ov) pha 9= byln), .5
ance will always scale as™ ~. Nevertheless, adaptive mea- n=0
surements will always give more accurate results than het- ]
erodyne measurements, and it is of interest to know howhen in terms ob,, Eq.(4.3) becomes
accurate phase measurements can be made in principle, since B
future technological advances may greatly reduce the prob- 20, = [1=h(M)](by+1+0n-1)=(v=pn)b,. (4.6

lems of detector inefficiencies and time delays. In the case of very large mean photon number, we can use a

continuous approximation
IV. GENERAL OPTIMIZED STATES

2
The fairest way to compare different phase measurement 2h(x)y—[1—h(x)]d y =(v—px)y 4.7)
2 ! ’

schemes is to consider the phase variances for states opti-

mized for minimum total phase variance for the particular

measurement under consideration. The two alternative corwhere we are takinggk=n andy(x)=b, . For largen, [1
straints which can be put on the optimization éGjean upper —h(n)]=1, so
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d?y
—§+y[2h(x)—v+,ux]~0. 4.9
Now define
f(x)=2h(x)— v+ ux. (4.9
Then, expandind (x) in a Taylor series around
Xo=(u/2cp) ~YP+1), (4.10
we find
f(Xg)=2h(xg) — v+ uXq, (4.11a
f'(Xo)=2h" (o) +pu=—2cpx P '+ u=0,
(4.11h
"(xo)=2h"(xg)=2cp(p+1)x, P2,  (4.119
f"(xo)=—2cp(p+1)(p+2)x, P 3.  (4.119

This technique requires that the number distribution has its

maximum neax,, which will be justified below.

Using the Taylor series forf(x), and defining f,
=f(Xg), fo=1"(x0)/2, and f;=1"(xy)/6, the differential
equation(4.8) becomes

d 2 3
—@+[fz(X—Xo) +f3(x—Xg)°ly~—foy. (4.12
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The lowest energy eigenvall&, and corresponding eigen-

statey, will minimize » and therefore minimiz¢S). From
perturbation theory they can be expressed as

- b? |<k|§‘°’|0>|2
Eo~E{+(0[H,|0)— E

2./f, k=1 '
(4.173
b (k| £%|0)
~y(0) _ (0)
Yo=yo' = J—kil (4.17H

k l

where j) is the state corresponding $4%(¢). Now it is
easily shown using the properties of Hermite polynomials
that the only nonzero terms arél|¢%|0)=3/22 and
(3|£%0)=\/3/2. This then gives the lowest energy eigen-
value and eigenstate as

Eo~EQ - b2 6f vz (4.183

b 2
(0) _ (0)+ \/7 (0)} 4.18
Yo=~Yo p Tf 2y (4.18b

Now we can use these expressions to find the mean pho-
ton number as

n=(x)= f Yol &) (ot 5 M4€)yo(£)déE  (4.199

+2
P xp/2. (4.19b

+—
4\cp(p+1) 0

As we are assuming<2,

Note that—fo=v—[2h(x) + uXg], S0 the above equation is
equivalent to solving Eq4.3) as an eigenvalue equation for
v with a fixed value ofu. Now Eq.(4.12) is equivalent to the
time-independent Schdinger equation with energy eigen-
value E=—f, for a perturbed harmonic Hamiltoniad

~ PY2 oo
=Hy+H4, where

~nll- —— : 4.2
Xoﬁ[ 4vep(p+1) @20

. d? 5 so that the mean photon number is closedpjustifying the
Ho= Ty — 92 &, (4.133  previous expansion around,. Now we can find the mini-
3 mum phase variance using
|3|1=b§3, (4.130 <AS>min=(V_ﬂH)mina (4.21
where andv=—fo+2h(x) + uxg, p=2cpx P 1, andfy=—E,.
o We obtain the first two terms as
__b 1/4,,— pl4—3/2 _
b= 3 [ep(p+1)1%%, ’ (4.143 (S)min=2cn P+ cp(p+1)n P21, (4.22
£=134(x—xq). (4.14n  Note that the first term here is the same as the result when an
upper limit is put on the photon number, but the second term
The unperturbed solution is scales as a different power of
_ A particular case of interest is heterodyne detection, for
yJ(O)(g) = (720" Y2exp(— E42)H;(£), (415  which we find
where H; are Hermite polynomials. This solution is only 1 1

valid for \/—x0>1 which requires thap<2 in addition to (St~ = (4.23

Xo=>1. The energy eigenvalues are

E®=(2j+1)f,.

2n3/2'

This is interesting because it differs radically from the result

(416  claimed by D’Ariano and ParigL2] of
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)

- 1.00+0.02 — +1
<(A¢)2>hmé?=W- (4.24 ngo n e, fn)(n+1a,)~n"P 1+ p(gno )
(5.9
As the quot'ed errors suggest, this resul't was obtained e e phase uncertainty is therefore given by
tirely numerically, in contrast to our analytical result. In Sec.
VI we present our own numerical results and show that our not 1 - p(p+1)
analytical result is a far better fit than the power law of ((A¢>)2>~ o +2erfq\/2_no)+zcn—p 1+ )
D’Ariano and Paris. 4n? 2ng
(5.9
V. OPTIMIZED SQUEEZED STATES Taking the derivative with respect tg, gives

As an alternative to considering general optimized states, 2
we can consider optimized squeezed states. There are threef?«A(b) >~ i__ R /ie*Zno_i_ZCF*p —p(p+1)
reasons for this. dng 4n? N 2n3 '

(1) Squeezed states are relatively easily generated in the (5.6)
laboratory, whereas there is no known way of producing
general optimized states experimentally. As the second term falls exponentially witly, it can be

(2) Squeezed states can be treated numerically far moremitted. Then we find that the minimum phase variance oc-
easily than general optimized states. curs for

(3) It has been found numericallisee Sec. Vlthat the
phase uncertainties of optimized squeezed states are very np~2ycp(p+1)n*~P2 (5.7

close to those of optimized general states, and a partial the- N
oretical explanation can be obtained by the following analy-Thus we find thah,<cn®~P?2 as was used in the Appendix.

sis. Substituting this result into Ed5.5) gives
Squeezed states optimized for minimum intrinsic phase .

variance were previously considered by Collgt8], who ((Ap)®)min=2cn P+ cp(p+1)n P27l (58

found that the minimum phase uncertainty was approxi-

mately given by We therefore obtain exactly the same first two terms for the

phase uncertainty when considering squeezed states as we do
In(n)+ A when considering general states.
((A ¢)2>intrinsic~ = (5.0

4n VI. NUMERICAL RESULTS

where A=2+2In2—1In(2m). The scaling of optimized The analytic results from Secs. IV and V have been veri-

squeezed states is therefore worse than the scaling of opfied numerically by calculating the optimized states for het-

mized general states when we consider intrinsic phase varfrodyne meaSL(erements and ahdaptlve m?)rk ' ar:‘d I Imelas_ure-
ance. The difference is only a factor ofinhowever. ments. For moderate mean photon numbers the calculations

We consider squeezed states of the form were exact, except in that a cutoff at large photon numbers
was used.
For larger photon numbers an additional approximation
was that asymptotic expressions fofm) were used. For
heterodyne measurements there is an exact expression for

la,l)=exp(aa’— a*a)exd (£* a%— a'?)/2]|0).

Now we will take the phase to be 0, so is real. Phase h(m) 1],

squeezed states hayeeal and negative, so we can takéo I'(m+3/2)

be real. Then using the definition of phase uncertainty in Eq. hpe(m)=1— ) (6.2
(2.4) gives VI(m+21)T(m+2)

w This form of the equation is very inconvenient for use in
(Ap)D=2-22 (a,fIn}n+1]a,{) numerical work due to roundoff error. It is more convenient
n=0 to use the asymptotic expansion. From the asymptotic expan-
sion of InI'(m) [14] it is simple to find an expansion of

S hpe{m) in powers of 1/(n+ 1) to as many terms as required.
+2n§0 hin)edni(nt1a.d). - (53 The first few terms are given by

In estimating the intrinsic phase uncertainty, Collgl8] h _ 1 B

found the first two terms on the right-hand side to be ap- ned M) = 8(m+1) 27(m+1)2
proximately o+ 1)/4n?+ 2 erfc(y2n,), where ng=ne.

We therefore only have to determine an expression for thén expansion up to 12th order was used to determine
third term. Usingh(n)~cn™P as usual, the result we require hne(m). This expansion was found to be more accurate than
is derived in the Appendix: using the formula directly for values ofi=12.

+0(m™3) (6.2
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For adaptive mark | and adaptive mark Il measurements, 1¢*
h(m) can be determined using methods discussed in[REf. .
For the mark | casé,(m) was determined exactly up to I
=3000. Further values were extrapolated by fitting an 1w’}
asymptotic expansion to the results below 3000. The first
three terms of the asymptotic expansion used were

o
)\

Dn
&

1 0.101562 0.0508 -
(M= ™~ m e TO(M ). (63

)
o

o

o
L
S

T

Minimum phase variance

The uncertainties in these numbers were estimated using
various methods of fitting, and are indicated by the number
of significant figures quoted.

For the mark Il casé; (m) was determined exactly up to
m=1000. Fitting techniques did not consistently give any ‘0_‘150-2 X

O\
s

<
T

o
)

10 10° 16‘ 156 10 10"
higher-order terms than that obtained by the semiclassical Mean photon number
theory, so form>1000 the formulah;(m)=&m~3? was -
used.

For very large mean photon numbezsl(®, it was not
feasible to solve the exact eigenvalue problem, but an ap- w0 r
proximate solution was obtained by using the continuous ap- |
proximation of the eigenvalue problem and discretizing it. In
order to reduce the number of intervals required in the dis-
cretized equation, the equation was solved for three different %'10-“ |
numbers of intervals. The result for the continuous case was §
then estimated by projecting to zero step size, assuming theE
error is quadratic in the step size. For optimized squeezedZ1°
states the full calculation was performed up to a mean pho- ,
ton number of about 0 beyond which roundoff error be- 10° | “«
came too severe.

The results of the numerical calculation for the general , , , ,
optimized states are shown in Fig. 1, along with the analyti- 107? 10° 10° 10° 10° 10°
cal results obtained in Sec. IV and the power law of Eq. Mean photon number
(4.24) published by D’Ariano and Parigl2]. It is seen that 10’
the results for heterodyne measurements agree reasonabl
well with the power law of D’Ariano and Paris for moderate
photon numbersgup to about 100 Above this, however, the
agreement is extremely poor. This is presumably due to the
fact that the numerical data used by D’Ariano and Paris
seems to have been limited to maximum photon numbers
only of order 100. In contrast, our analytical result agrees
very well for mean photon numbers above about 100. The
analytical result also agrees well with the numerical results
for the adaptive mark | and Il measurements.

On the log-log plot of the phase variance it is extremely =10°f
difficult to discriminate between different phase variances
unless the difference is greater than a factor of 2. Therefore,
in Fig. 2 we plot the parameter defined by

3

ase variance
5]

Minimum phase variance
o

107 10 10’ 10° 10° 10 10
v Mean photon number
2= (((A$)?)min—2CN" P)nP2HL, (6.4 P

From the above analysis this parameter should converge to

vep(p+1) for Iargeﬁ The z parameter is plotted for opti-
mized general states and optimized squeezed states for the FIG. 1. Plot of the phase variance for general optimized states

C‘?‘S% of mark Il, heterodyne qnd mark | measurements a complete eigenvalue solutignrossesand continuous approxi-
Figs. da), 2(b),_and 4c), respectively. - mation(circles vs mean photon number. The asymptotic analyti-
In the adaptive mark Il and heterody_ne results |n_ Fig) 2 cal expression from Sec. IV is also plottécbntinuous lines The
and Z.{b)’ we can see that the rgsults using the full elgenyaluqﬁhree phase detection schemes @emark Il adaptive(b) hetero-
solution match up very well with the continuous approXima-gyne andc) mark | adaptive. The power law claimed by D'Ariano

tion results, demonstrating the accuracy of this technique. 1Bpg paris for heterodyne detection is also plottedbin(dash-dot
addition, the squeezed-state results are extremely close to thge).
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FIG. 2. Plot ofz parameter from Eq6.4) for general optimized
states via the complete eigenvalue solufiorossesand continuous
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lines), vs mean photon number. The theoretical asymptotic value

of Jep(p+1) is shown as the continuous horizontal lines. The
results shown are for mark Il adaptive phase measuremers, in
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general optimized state results, far closer than indicated by
the first two terms derived above. Also note that in Fi@) 2
the results do not agree closelyithin 1%) with the
asymptotic value untih>10®, whereas the heterodyne re-
sults converge at a much lower photon number, with good

agreement fon~10%,
In the adaptive mark | results in Fig(@, there is again

good agreement between the squeezed-state results and the
general optimized state results. However these results do not
approach the asymptotic value at all in this case. The reason
for this is that there is a higher-order termhf{m) which is

of orderm™1, as shown in Eq(6.3. This term is of lower

order than the second term in the expansidr22 of the
phase variance, which is of order .
Although the adaptive mark | scheme has the poorest per-

formance for large mean photon numbers, note from Fig. 1
that for small mean photon numbefsf order unity it is
actually the best scheme, having the smallest minimum
phase variance. This is to be expected from the results of
previous work[3,1], showing that for amaximumphoton
number of 1, the adaptive mark | scheme is actually the best
possible.

The significance of these results is, first, that the two
terms given by the theory for optimized general and
squeezed states are correct, and, second, that the phase un-
certainties of optimized squeezed states are extremely close
to those for optimized general states. This result is of great
importance, as it means that in numerical and experimental
work squeezed states can be used rather than general states.

This is an advantage in numerical work because only the
squeezing parameters need be considered, rather than the en-
tire state. This means that, for example, a numerical evalua-
tion of different feedback schemes is feasible, and this work
is being carried out now. In experimental work it is an ad-
vantage because squeezed states can be produced experimen-
tally, whereas arbitrary states cannot. This means that it is
possible to produce states experimentally that are very close
to optimized for the different measurement schemes.

VIlI. CONCLUSION

We have derived asymptotic analytical expressions for the
minimum phase variances obtainable under various detection
schemes, for states constrained by their mean photon num-
ber. The detection schemes considered were heterodyne de-
tection (a standard schemeand two single-shot adaptive

schemegd(first proposed in Refg[3,2]), called mark | and
mark Il. Numerical results confirm the correctness of the first

5
two terms in the asymptotic expansion, except in one case

(adaptive mark), where the second term was not expected
to be correct. Furthermore, analytical and numerical results
show that essentially the same results may be obtained using
squeezed states, rather than completely general states. This is
an important result from both theoretical and experimental
standpoints.

As expected, the minimum phase variance for adaptive
mark Il measurements was much smaller than that for the

heterodyne measurementsim, and mark | adaptive measurements

in (c).
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standard technique of heterodyne detection, for large meafin+1|a,¢)|2u?(n+1)=|(n|a,{)|?8%+|(n—1|a,{)|?»?n
photon numbem. In particular, the leading term in the

former scaled as %2 compared ton~! in the latter. The ~2(agm(n=1]a.)pryn.
claim by D’Ariano and Pari$12] that the heterodyne phase (AB6)
variance scaled as 13° (or, as stated in their abstract,

A H H it . . . .
n 43). was proven wrong. This reinforces the position of This expression is only true for real squeezing parameters.
adaptive mark Il phase measurements as the best knowgytiplying this by n* and summing gives

phase measurement scheme.
In Ref.[1] it was shown that a lower bound for the phase

uncertainty introduced by measurements isﬁlmﬁz). For - Kt 12

large photon numbers this is a lot smaller than the phase Z'BVZJO (n+ 1) "X a,ZInKn+1fe,d)

variance of 1/(8%?) introduced by mark Il measurements. It e 1 o ’
therefore may be possible to obtain a higher power in the =N )+ v((n+1)* )= u(n(n—1)%.
scaling law by modifying the measurement method. The (A7)

most promising modification is using a different feedback

phase, and this is currently under investigation numerically

via the solution of stochastic Schiinger equation$15,10. Now let us take— p=k+ 3. In this case we find that the shift

This is possible even with very large photon numbers if oneof indices cannot be performed exactly, but the contribution

uses squeezed states, because these remain squeezed sfenes terms nean=0 will be negligible. Also some of the

even under the stochastic evolution. The results obtained iterms above diverge near 0; however, the divergent terms

this paper justify this approach, as the variances obtained fare the extra terms produced by the shift of indices, and in

the cases of general states and squeezed states were alntbst following expansions the behavior nesr 0 is ignored.

indistinguishable. Taking —p=k+ 3 and considering the deviation from the
mean photon number gives
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APPENDIX: DERIVING EQ. (5.4) ~B%((N+An) (P2 4 12((n+ 1+ An)~(P~12)
We wish to evaluate the following sum: — u?((n—1+An)~(P~12)
* 2/ —(p+1/2)
pnA{(n—1+An) ). (A8)
2 hin){a,gm)(n+1]a,). (A1)

. . Expanding this in a series iin gives
We can do this in the following way. The number state rep-

resentation of squeezed states is giveri 18]

(nfa@,)=(ntw) " Y2(vi2p)"H [ B(2ur) 2] 2v3, (n+1)"X(Bln)(n+1]8)

— 8% * 2 , ) )
xexd —|Bl°12+ (v*/12p) B] (A2) (—1)I(AR) [(p+]—1/2)!

oo
~2
j=0

Bzﬁ—(pﬂ +1/2)

where j! (p—1/2)!
w=coshr, v=e?sinhr, B=au+a*v. (A3) 2(he 1)) (p+j—3/2)!
® (p—3/2)!
Herer and¢ are the magnitude and phase, respectively, of
while H,, are Hermite polynomials and satisfy the recursion X[Vz(ﬁJr 1)*(p+j71/2)_M2(F_ 1)~ (p+i-127}
relation[14]
(A9)
Hpt1(X) = 2xH(X) +2nH,,_1(x)=0. (A4)

This means that the number representation of squeezed statesNow we have an expression we can use to evaluate Eq.
satisfies the recursion relation (Al). Recall that for generalized measurements we have the
asymptotic expressiom(n)~cn~P. This is equivalent to
(n+1]a,O)un+1—(n|a,)B+(n—1|a,{)vyn=0. h(n)~c(n+1)"P, as the difference is of higher order. It is
(A5)  easily shown that for squeezed statesn?)=a?(u—v)?
+2u2v?. Therefore, using the first three terms of E49)
Rearranging this and squaring gives above, we find
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© The first term on the right-hand side is not of higher order
ZﬁVnZO (n+1) " Xa,¢In)(n+1]a,?) thann~(P~¥2/n, if p<1. If we were estimating the order

- from the parameters optimized for minimum intrinsic phase

~BZn~(+12)_ | 2(n 1)~ (p+12) variance then the first term would be omitted. Now we can

expand—2Bv to give
+ VZ(F‘F 1)—(p—1/2)_ ,LLZ(F— 1)—(p—1/2)

2+2+3
2 PPty

2 2
a“(u—v)
—+M2V2}

—i 1 1/2 No
—2[5’V~n 1_H 1-=]. (AlZ)
0 n

X (ﬁZF*(erS/Z)_MZ(F_ l)*(p+5/2))
If we were estimating the order from the parameters opti-

1 — _
p%- Z)[Vz(n+ 1)~ (P+32)— y2(n— 1)_(p+3/2)]]- mized for minimum intrinsic phase variance, the temgin
would be omitted. This then gives us

+

(A10)

should be kept. This depends on hoyscales witm. If the

At this stage the main problem is to determine which termS(
state is optimized for minimum intrinsic phase uncertainty,

1- n—_o) ngo (n+1)"Pa,In}n+1]a,f)

n

thenngecIn(n) [13]. If we carry the derivation through using _ _ 1 1 1
this result to estimate the order of the terms, then we obtain ~ ~—ngn~ P*Y+n"Pi 1+ an. + T p(p+1)— ZH
the resultngn! P2, If we use this to estimate the order of 0 0

the terms, and omit all terms on the right-hand side of order (A13)

higher thann—(P~Y2)/n,, then Eq.(A10) simplifies to

o The two terms that would be omitted if we were considering
—ZBVE (n+1)"P(a,Z[n)(n+1|a,) parameters o.pt.imized fqr minimum intrinsic phase variance
n=0 just cancel, giving the simple result

_ — 1 1
~— —(p+112) —(p—1/2) i i
Non +n 1+ 2r10{p(p%—l) 4H i s -yt e 1 o(p+1)
(A11) o “ “ 2N,
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