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Heterodyne and adaptive phase measurements on states of fixed mean photon number

D. Berry, H. M. Wiseman, and Zhong-Xi Zhang
Centre for Laser Science, Department of Physics, The University of Queensland, St. Lucia 4072, Australia

~Received 22 December 1998!

The standard technique for measuring the phase of a single-mode field is heterodyne detection. Such a
measurement may have an uncertainty far above the intrinsic quantum phase uncertainty of the state. Recently
it has been shown@H. M. Wiseman and R. B. Killip, Phys. Rev. A57, 2169~1998!# that an adaptive technique
introduces far less excess noise. Here we quantify this difference by an exact numerical calculation of the
minimum measured phase variance for the various schemes, optimized over states with a fixed mean photon
number. We also analytically derive the asymptotics for these variances. For the case of heterodyne detection
our results disagree with the power law claimed by D’Ariano and Paris@Phys. Rev. A49, 3022~1994!#.
@S1050-2947~99!04009-3#

PACS number~s!: 42.50.Dv, 03.67.Hk, 42.50.Lc
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I. INTRODUCTION

It is well known that it is not possible to make quantum
limited measurements of the phase of an electromagn
field using linear optics and photodetectors@1#. The standard
method of making a~non-quantum-limited! phase measure
ment is by heterodyne detection. Heterodyne detection
volves combining the field to be measured with a mu
stronger local oscillator field which has a frequency detun
by a small amountD, and measuring the intensity of th
resultant field. In a typical experimental implementation,
mode to be measured is passed through a 50/50 beam
ter, in order to combine it with the local oscillator. The d
ference photocurrent from the two output ports of the be
splitter yields a measurement of the phase quadratureXF

5ae2 iF1a†eiF, wherea is the annihilation operator of th
mode to be measured andF is the phase of the local osci
lator. In heterodyne measurement the detuningD is typically
chosen to be large enough that the phase of the local o
lator cycles many times over the course of the measurem
so as to measure all quadratures with equal accuracy.

In a heterodyne phase measurement of a coherent sta
amplitudea, the variance in the measured phasef scales as
@2#

Vhet~f!5
1

2uau2
. ~1.1!

This is twice the intrinsic uncertainty of the coherent sta
An improved phase measurement can be made if one ha
initial estimate of the phase. Then one would choose
local oscillator phaseF to be equal tow1p/2, wherew is
the initial estimated phase of the field to be measured. Th
known as homodyne detection. If the phase is unknown
fore the measurement, then one can still apply this idea
adjusting the phase of the local oscillator during the cou
of the measurement based on an estimate of the phase
the measurement results so far.

These adaptive phase measurements have been disc
in a series of papers by Wiseman@3# and Wiseman and Kil-
PRA 601050-2947/99/60~3!/2458~9!/$15.00
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lip @2,1#. In Ref. @2# it was shown that via adaptive measur
ments of a coherent state one can obtain a phase uncert
of

Vadapt~f!5
1

4a2
1

1

8a3
. ~1.2!

Here we have taken the coherent amplitudea to be real. The
first term above is the intrinsic uncertainty of the cohere
state, and the second term is the extra phase uncertaint
troduced by the phase measurement. This result implies
even though there is not much improvement in using ad
tive phase measurements on coherent states, if the input
has reduced phase uncertainty then adaptive measurem
will produce a phase measurement with far less uncerta
than a heterodyne measurement.

To better quantify the improvement offered by adapti
measurements, it is necessary to consider the varianc
states that have been optimized for minimum phase varia
under various measurement schemes. There must be a
straint placed on optimizing states, otherwise a phase eig
state will be obtained. The two main ways in which to co
strain the states are by truncating the photon number an
fixing the mean photon number. The case of truncated p
ton number was considered analytically in Ref.@2#, and nu-
merically in Ref.@1#. The case of a fixed mean photon num
ber is determined analytically in Sec. IV below.

General optimized states are difficult to work with,
they cannot be generated experimentally. Also, in numer
integration of the stochastic differential equations aris
from the various measurement schemes~to be considered in
future work!, calculations must be performed on the ent
state for general optimized states. This becomes proh
tively time consuming for large photon numbers. Squee
states are far more practical, as they are routinely gener
experimentally, and in numerical integration only the tw
squeezing parameters need be considered. The theory fo
timized squeezed states is considered in Sec. V. The ana
cal results for both general states and squeezed state
tested numerically in Sec. VI, and the implications discus
in Sec. VII.
2458 ©1999 The American Physical Society
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II. POMs AND PHASE MEASUREMENTS

In quantum-mechanical systems, the most general wa
obtaining the probability of some measurement resultE is by
the expectation value of an operatorF(E), i.e.,

P~E!5Tr@rF~E!#, ~2.1!

wherer is the state matrix for the system. If the set of
possible measurement results isV, it is evident thatP(V)
51 for all r, which implies thatF(V)51. ThusF(E) can
be called a probability operator, and the mappingE°F de-
fines a probability operator measure~POM! on V @4,5#.

For phase measurements on a single-mode field, the
eral form of the POM is@2#

F~f!5
1

2p (
n,m50

`

um&^nueif(m2n)Hmn , ~2.2!

whereH is a positive-semidefinite symmetric matrix with a
entries positive, andum& is a number state of the field. In thi
caseV5@0,2p) and the completeness relation is

E
0

2p

df F~f!5diag@H00,H11,H22, . . . #51. ~2.3!

For ideal phase measurements all elements of theH matrix
are equal to 1, whereas for physical measurements the
diagonal elements will generally be less than 1@2#.

The accuracy of phase measurements can be quantifi
a number of ways@6,7# which agree in the limit of smal
phase variance provided the phase distribution is narro
peaked~as it will be in the examples we consider!. When the
mean phase is zero it is easiest to define the phase var
as

V~f!5222^cosf&52~12Rê eif&!. ~2.4!

If we evaluate^eif& using Eq.~2.2! for an arbitrary pure
quantum stateuc&, we obtain

^eif&5 (
m50

`

^cum&^m11uc&Hm,m11 . ~2.5!

Therefore, the phase variance only depends on the
diagonal elementsHm,m11, and we may characterize a pha
measurement by the vector

h~m!512Hm,m11 . ~2.6!

For most phase measurements, we have for large ph
numbers@2#

h~m!'cm2p. ~2.7!

Then for states with a reasonably well-defined mean pho
numbern̄ the total phase variance is given approximately
@2#

V~f!'Vintrinsic~f!12h~ n̄!, ~2.8!

whereVintrinsic(f) is the phase variance which would resu
from an ideal or canonical measurement of the phase@8,9#.
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Evidentlyh(n̄) is a measure of the excess phase noise in
duced by the measurement, and it would be desirable
make this as small as possible.

III. ADAPTIVE MEASUREMENTS

In a real optical experiment one cannot directly meas
the phase, but would rather estimate it from a photocurr
record. Here the photocurrent would be derived by comb
ing the mode to be measured with a local oscillator via
50/50 beam splitter. Such measurements have been c
dyne measurements, as they include homodyne and he
dyne as well as adaptive measurements@1#. The signal of
interest is the difference between the photocurrents at
two ports, which we define by

I ~ t !5 lim
dt˜0

lim
b˜`

dN1~ t !2dN2~ t !

bdt
, ~3.1!

wheredN6 are the increments in the photocounts at the t
detectors in the interval@ t,t1dt) andb is the amplitude of
the local oscillator.

Say the mode to be measured has an~assumed positive!
envelopeu(t) normalized such that*0

`u(t)dt51. For sim-
plicity, define a scaled timev by

v5E
0

t

u~s!ds, ~3.2!

so thatvP@0,1). Then it turns out that at timev there are
two sufficient statistics for the measurement record:

Av5E
0

v
I ~u!eiF(u)du, Bv52E

0

v
e2iF(u)du. ~3.3!

These are sufficient statistics in the sense that the POM
the measurement is a function ofAv andBv only @10#. This
means that the best estimate for the phase at timev need
depend on the measurement record only through the com
numbersAv andBv .

Consider the simple case where the mode is initially in
coherent stateua&. We can then take the limits in Eq.~3.1! to
obtain

I ~v !52 Re~ae2 iF(v)!1j~v !, ~3.4!

wherej(v)5dW(v)/dv is the shot noise@2#. From this we
can evaluateAv as

Av5av2a* Bv1E
0

v
e2iF(u)dW~u!. ~3.5!

If one ignores the final term~which has zero expectatio
value!, it is easy to see that arga5arg(vAv1BvAv* ). Other
arguments@10# suggest that this is generally the best estim
for the phase at timev. If Bv is small~as it is in heterodyne
detection!, this can be approximated by argAv . The adaptive
phase measurements that were analyzed in Refs.@2# and @1#
use argAv as the phase estimate during the measurem
setting

F~v !5argAv1p/2. ~3.6!
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The main motivations for this choice are that it gives a fe
back algorithm which would be easy to implement expe
mentally, and that it is mathematically tractable.

If the phase estimate argA is used at the end of the ada
tive measurement, the resultant phase measurement is
ally worse than a heterodyne phase measurement. This p
measurement is called an adaptive mark I phase meas
ment, and it was found@2# that

hI~m!'
1

8m1/2
, ~3.7!

which compares with

hhet~m!'
1

8m
. ~3.8!

If the phase estimate arg(A1BA* ) is used at the end of th
phase measurement, a far better phase measurement
tained. This phase measurement is called an adaptive ma
phase measurement, and yields@2#

hII~m!'
1

16m3/2
, ~3.9!

which is considerably better than the standard~heterodyne!
result. However, as noted Sec. I, this dramatic improvem
can only be seen if one starts with a state having intrin
phase variance much less than that of a coherent state
which Vintrinsic52hhet(a

2).
In practice, imperfections in the equipment can introdu

phase uncertainties that scale asn̄21 @2#. The main problems
are inefficient detectors and time delays. From Ref.@2#, the
extra phase variance introduced by inefficient detectors

dVII~f!5
12h

4hn̄
, ~3.10!

where h is the efficiency. Again from Ref.@2# the extra
phase variance introduced by a time delaydv is

dVII~f!;
dv

n̄
. ~3.11!

This means that when the photon number is sufficien
large, above (12h)22 or (dv)22, the introduced phase var
ance will always scale asn̄21. Nevertheless, adaptive me
surements will always give more accurate results than
erodyne measurements, and it is of interest to know h
accurate phase measurements can be made in principle,
future technological advances may greatly reduce the p
lems of detector inefficiencies and time delays.

IV. GENERAL OPTIMIZED STATES

The fairest way to compare different phase measurem
schemes is to consider the phase variances for states
mized for minimum total phase variance for the particu
measurement under consideration. The two alternative c
straints which can be put on the optimization are~i! an upper
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limit on the photon number, or~ii ! a fixed mean photon
number. The case where an upper limitN is put on the pho-
ton number was considered in Refs.@2,1#, where the mini-
mum phase variance was found to be

V~f!'2cN2p1~2z1!~2cp!2/3N22(11p)/3, ~4.1!

wherez1 is the first zero of the Airy function, and is equal t
approximately22.338.

Here we will be considering the case of fixed mean ph
ton number. Let us take the phase to be zero and use
operator for the phase variance

Ŝ5222 cosf̂ ~4.2a!

522 (
m50

`

@12h~m!#~ um&^m11u1H.c.!.

~4.2b!

In order to optimize for minimum phase variance with
fixed mean photon number, we use the method of unde
mined multipliers. We have two constraints on the state: t
the mean photon number is fixed and that the state is
malized. This then gives us an equation with two undet
mined multipliers

~Ŝ1mN̂!uc&5nuc&. ~4.3!

We solve this as an eigenvalue equation forn with a fixed
value ofm, and the eigenstate corresponding to the minim
eigenvalue is the optimized state. The mean photon num
can then be found from the state. The mean photon num
can be varied by varyingm, but cannot be easily predicte
from m.

This method was used by Summy and Pegg@11# to find
states with fixed mean photon number optimized for mi
mum intrinsic phase variance. They found that the minim
phase uncertainty was approximately

^~Df!2& intrinsic
min 5

C

~ n̄1e!2
, ~4.4!

whereC'1.88 ande'0.86. Therefore, the minimum intrin
sic phase variance scales asn̄22.

If the state is expressed in the number states basis

uc&5 (
n50

`

bnun&, ~4.5!

then in terms ofbn , Eq. ~4.3! becomes

2bn2@12h~n!#~bn111bn21!5~n2mn!bn . ~4.6!

In the case of very large mean photon number, we can u
continuous approximation

2h~x!y2@12h~x!#
d2y

dx2
5~n2mx!y, ~4.7!

where we are takingx5n and y(x)5bn . For largen, @1
2h(n)#'1, so



i

s
r

-

ly

-

als

n-

ho-

n an
rm

for

ult

PRA 60 2461HETERODYNE AND ADAPTIVE PHASE MEASUREMENTS . . .
2
d2y

dx2
1y@2h~x!2n1mx#'0. ~4.8!

Now define

f ~x!52h~x!2n1mx. ~4.9!

Then, expandingf (x) in a Taylor series around

x05~m/2cp!21/(p11), ~4.10!

we find

f ~x0!52h~x0!2n1mx0 , ~4.11a!

f 8~x0!52h8~x0!1m522cpx0
2p211m50,

~4.11b!

f 9~x0!52h9~x0!52cp~p11!x0
2p22 , ~4.11c!

f-~x0!522cp~p11!~p12!x0
2p23 . ~4.11d!

This technique requires that the number distribution has
maximum nearx0, which will be justified below.

Using the Taylor series forf (x), and defining f 0
5 f (x0), f 25 f 9(x0)/2, and f 35 f-(x0)/6, the differential
equation~4.8! becomes

2
d2y

dx2
1@ f 2~x2x0!21 f 3~x2x0!3#y'2 f 0y. ~4.12!

Note that2 f 05n2@2h(x0)1mx0#, so the above equation i
equivalent to solving Eq.~4.3! as an eigenvalue equation fo
n with a fixed value ofm. Now Eq.~4.12! is equivalent to the
time-independent Schro¨dinger equation with energy eigen
value E52 f 0 for a perturbed harmonic HamiltonianĤ
5Ĥ01Ĥ1, where

Ĥ05Af 2F2
d2

dj2
1j2G , ~4.13a!

Ĥ15bj3, ~4.13b!

where

b52
p12

3
@cp~p11!#1/4x0

2p/423/2, ~4.14a!

j5 f 2
1/4~x2x0!. ~4.14b!

The unperturbed solution is

yj
(0)~j!5~p1/22 j j ! !21/2exp~2j2/2!H j~j!, ~4.15!

where H j are Hermite polynomials. This solution is on
valid for Af 2x0

2@1, which requires thatp,2 in addition to
x0@1. The energy eigenvalues are

Ej
(0)5~2 j 11!Af 2. ~4.16!
ts

The lowest energy eigenvalueE0 and corresponding eigen
statey0 will minimize n and therefore minimizêŜ&. From
perturbation theory they can be expressed as

E0'E0
(0)1^0uĤ1u0&2

b2

2Af 2
(
k51

` u^kuj3u0&u2

k
,

~4.17a!

y0'y0
(0)2

b

2Af 2
(
k51

`
^kuj3u0&

k
yk

(0) , ~4.17b!

where u j & is the state corresponding toyj
(0)(j). Now it is

easily shown using the properties of Hermite polynomi
that the only nonzero terms arê1uj3u0&53/2A2 and
^3uj3u0&5A3/2. This then gives the lowest energy eige
value and eigenstate as

E0'E0
(0)2b2

11

16
f 2

21/2, ~4.18a!

y0'y0
(0)2

b

4A2 f 2
F3y1

(0)1A2

3
y3

(0)G . ~4.18b!

Now we can use these expressions to find the mean p
ton number as

n̄5^x&5E y0~j!~x01 f 2
21/4j!y0~j!dj ~4.19a!

'x01
p12

4Acp~p11!
x0

p/2. ~4.19b!

As we are assumingp,2,

x0'n̄F12
p12

4Acp~p11!
n̄p/221G , ~4.20!

so that the mean photon number is close tox0, justifying the
previous expansion aroundx0. Now we can find the mini-
mum phase variance using

^Ŝ&min5~n2mn̄!min , ~4.21!

andn52 f 012h(x0)1mx0 , m52cpx0
2p21, and f 052E0.

We obtain the first two terms as

^Ŝ&min'2cn̄2p1Acp~p11!n̄2p/221. ~4.22!

Note that the first term here is the same as the result whe
upper limit is put on the photon number, but the second te
scales as a different power ofn̄.

A particular case of interest is heterodyne detection,
which we find

^Ŝ&het
min'

1

4n̄
1

1

2n̄3/2
. ~4.23!

This is interesting because it differs radically from the res
claimed by D’Ariano and Paris@12# of
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^~Df!2&het
min5

1.0060.02

n̄1.3060.02
. ~4.24!

As the quoted errors suggest, this result was obtained
tirely numerically, in contrast to our analytical result. In Se
VI we present our own numerical results and show that
analytical result is a far better fit than the power law
D’Ariano and Paris.

V. OPTIMIZED SQUEEZED STATES

As an alternative to considering general optimized sta
we can consider optimized squeezed states. There are
reasons for this.

~1! Squeezed states are relatively easily generated in
laboratory, whereas there is no known way of produc
general optimized states experimentally.

~2! Squeezed states can be treated numerically far m
easily than general optimized states.

~3! It has been found numerically~see Sec. VI! that the
phase uncertainties of optimized squeezed states are
close to those of optimized general states, and a partial
oretical explanation can be obtained by the following ana
sis.

Squeezed states optimized for minimum intrinsic ph
variance were previously considered by Collett@13#, who
found that the minimum phase uncertainty was appro
mately given by

^~Df!2& intrinsic'
ln~ n̄!1D

4n̄2
, ~5.1!

where D5 3
2 12 ln 221

4 ln(2p). The scaling of optimized
squeezed states is therefore worse than the scaling of
mized general states when we consider intrinsic phase v
ance. The difference is only a factor of lnn̄, however.

We consider squeezed states of the form

ua,z&5exp~aa†2a* a!exp@~z* a22za†2!/2#u0&.
~5.2!

Now we will take the phase to be 0, soa is real. Phase
squeezed states havez real and negative, so we can takez to
be real. Then using the definition of phase uncertainty in
~2.4! gives

^~Df!2&5222(
n50

`

^a,zun&^n11ua,z&

12(
n50

`

h~n!^a,zun&^n11ua,z&. ~5.3!

In estimating the intrinsic phase uncertainty, Collett@13#
found the first two terms on the right-hand side to be
proximately (n011)/4n̄212 erfc(A2n0), where n05n̄e2z.
We therefore only have to determine an expression for
third term. Usingh(n)'cn2p as usual, the result we requir
is derived in the Appendix:
n-
.
r

f

s,
ree

he
g
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e
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ti-
ri-

.

-

e

(
n50

`

n2p^a,zun&^n11ua,z&'n̄2pF11
p~p11!

2n0
G .

~5.4!

The phase uncertainty is therefore given by

^~Df!2&'
n011

4n̄2
12 erfc~A2n0!12cn̄2pF11

p~p11!

2n0
G .

~5.5!

Taking the derivative with respect ton0 gives

]^~Df!2&
]n0

'
1

4n̄2
2A 8

pn0
e22n012cn̄2pF2p~p11!

2n0
2 G .

~5.6!

As the second term falls exponentially withn0, it can be
omitted. Then we find that the minimum phase variance
curs for

n0'2Acp~p11!n̄12p/2. ~5.7!

Thus we find thatn0}n̄12p/2, as was used in the Appendix
Substituting this result into Eq.~5.5! gives

^~Df!2&min'2cn̄2p1Acp~p11!n̄2p/221. ~5.8!

We therefore obtain exactly the same first two terms for
phase uncertainty when considering squeezed states as w
when considering general states.

VI. NUMERICAL RESULTS

The analytic results from Secs. IV and V have been ve
fied numerically by calculating the optimized states for h
erodyne measurements and adaptive mark I and II meas
ments. For moderate mean photon numbers the calculat
were exact, except in that a cutoff at large photon numb
was used.

For larger photon numbers an additional approximat
was that asymptotic expressions forh(m) were used. For
heterodyne measurements there is an exact expressio
h(m) @1#,

hhet~m!512
G~m13/2!

AG~m11!G~m12!
. ~6.1!

This form of the equation is very inconvenient for use
numerical work due to roundoff error. It is more convenie
to use the asymptotic expansion. From the asymptotic exp
sion of lnG(m) @14# it is simple to find an expansion o
hhet(m) in powers of 1/(m11) to as many terms as require
The first few terms are given by

hhet~m!5
1

8~m11!
2

1

27~m11!2
1O~m23! ~6.2!

An expansion up to 12th order was used to determ
hhet(m). This expansion was found to be more accurate th
using the formula directly for values ofm*12.
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For adaptive mark I and adaptive mark II measureme
h(m) can be determined using methods discussed in Ref.@1#.
For the mark I casehI(m) was determined exactly up tom
53000. Further values were extrapolated by fitting
asymptotic expansion to the results below 3000. The fi
three terms of the asymptotic expansion used were

hI~m!5
1

8m1/2
2

0.101562

m
2

0.0508

m3/2
1O~m22!. ~6.3!

The uncertainties in these numbers were estimated u
various methods of fitting, and are indicated by the num
of significant figures quoted.

For the mark II casehII(m) was determined exactly up t
m51000. Fitting techniques did not consistently give a
higher-order terms than that obtained by the semiclass
theory, so form.1000 the formulahII(m)5 1

16 m23/2 was
used.

For very large mean photon numbers*105, it was not
feasible to solve the exact eigenvalue problem, but an
proximate solution was obtained by using the continuous
proximation of the eigenvalue problem and discretizing it.
order to reduce the number of intervals required in the d
cretized equation, the equation was solved for three diffe
numbers of intervals. The result for the continuous case
then estimated by projecting to zero step size, assuming
error is quadratic in the step size. For optimized squee
states the full calculation was performed up to a mean p
ton number of about 106, beyond which roundoff error be
came too severe.

The results of the numerical calculation for the gene
optimized states are shown in Fig. 1, along with the anal
cal results obtained in Sec. IV and the power law of E
~4.24! published by D’Ariano and Paris@12#. It is seen that
the results for heterodyne measurements agree reaso
well with the power law of D’Ariano and Paris for modera
photon numbers~up to about 100!. Above this, however, the
agreement is extremely poor. This is presumably due to
fact that the numerical data used by D’Ariano and Pa
seems to have been limited to maximum photon numb
only of order 100. In contrast, our analytical result agre
very well for mean photon numbers above about 100. T
analytical result also agrees well with the numerical res
for the adaptive mark I and II measurements.

On the log-log plot of the phase variance it is extrem
difficult to discriminate between different phase varianc
unless the difference is greater than a factor of 2. Theref
in Fig. 2 we plot the parameterz, defined by

z5~^~Df!2&min22cn̄2p!n̄p/211. ~6.4!

From the above analysis this parameter should converg
Acp(p11) for largen̄. The z parameter is plotted for opti
mized general states and optimized squeezed states fo
cases of mark II, heterodyne and mark I measurement
Figs. 2~a!, 2~b!, and 2~c!, respectively.

In the adaptive mark II and heterodyne results in Fig. 2~a!
and 2~b!, we can see that the results using the full eigenva
solution match up very well with the continuous approxim
tion results, demonstrating the accuracy of this technique
addition, the squeezed-state results are extremely close t
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FIG. 1. Plot of the phase variance for general optimized sta
via complete eigenvalue solution~crosses! and continuous approxi-

mation~circles! vs mean photon numbern̄. The asymptotic analyti-
cal expression from Sec. IV is also plotted~continuous lines!. The
three phase detection schemes are~a! mark II adaptive,~b! hetero-
dyne, and~c! mark I adaptive. The power law claimed by D’Arian
and Paris for heterodyne detection is also plotted in~b! ~dash-dot
line!.
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FIG. 2. Plot ofz parameter from Eq.~6.4! for general optimized
states via the complete eigenvalue solution~crosses! and continuous
approximation ~circles!, and optimized squeezed states~dashed

lines!, vs mean photon numbern̄. The theoretical asymptotic valu
of Acp(p11) is shown as the continuous horizontal lines. T
results shown are for mark II adaptive phase measurements in~a!,
heterodyne measurements in~b!, and mark I adaptive measuremen
in ~c!.
general optimized state results, far closer than indicated
the first two terms derived above. Also note that in Fig. 2~a!
the results do not agree closely~within 1%! with the

asymptotic value untiln̄.108, whereas the heterodyne re
sults converge at a much lower photon number, with go

agreement forn̄'104.
In the adaptive mark I results in Fig. 2~c!, there is again

good agreement between the squeezed-state results an
general optimized state results. However these results do
approach the asymptotic value at all in this case. The rea
for this is that there is a higher-order term inhI(m) which is
of order m21, as shown in Eq.~6.3!. This term is of lower
order than the second term in the expansion~4.22! of the
phase variance, which is of orderm25/4.

Although the adaptive mark I scheme has the poorest
formance for large mean photon numbers, note from Fig
that for small mean photon numbers~of order unity! it is
actually the best scheme, having the smallest minim
phase variance. This is to be expected from the results
previous work@3,1#, showing that for amaximumphoton
number of 1, the adaptive mark I scheme is actually the b
possible.

The significance of these results is, first, that the t
terms given by the theory for optimized general a
squeezed states are correct, and, second, that the phas
certainties of optimized squeezed states are extremely c
to those for optimized general states. This result is of gr
importance, as it means that in numerical and experime
work squeezed states can be used rather than general s

This is an advantage in numerical work because only
squeezing parameters need be considered, rather than th
tire state. This means that, for example, a numerical eva
tion of different feedback schemes is feasible, and this w
is being carried out now. In experimental work it is an a
vantage because squeezed states can be produced expe
tally, whereas arbitrary states cannot. This means that
possible to produce states experimentally that are very c
to optimized for the different measurement schemes.

VII. CONCLUSION

We have derived asymptotic analytical expressions for
minimum phase variances obtainable under various detec
schemes, for states constrained by their mean photon n
ber. The detection schemes considered were heterodyne
tection ~a standard scheme!, and two single-shot adaptiv
schemes~first proposed in Refs.@3,2#!, called mark I and
mark II. Numerical results confirm the correctness of the fi
two terms in the asymptotic expansion, except in one c
~adaptive mark I!, where the second term was not expect
to be correct. Furthermore, analytical and numerical res
show that essentially the same results may be obtained u
squeezed states, rather than completely general states. T
an important result from both theoretical and experimen
standpoints.

As expected, the minimum phase variance for adap
mark II measurements was much smaller than that for
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standard technique of heterodyne detection, for large m
photon numbern̄. In particular, the leading term in th
former scaled asn̄23/2 compared ton̄21 in the latter. The
claim by D’Ariano and Paris@12# that the heterodyne phas
variance scaled asn̄21.30 ~or, as stated in their abstrac
n̄24/3) was proven wrong. This reinforces the position
adaptive mark II phase measurements as the best kn
phase measurement scheme.

In Ref. @1# it was shown that a lower bound for the pha
uncertainty introduced by measurements is (lnn̄)/(4n̄2). For
large photon numbers this is a lot smaller than the ph
variance of 1/(8n̄3/2) introduced by mark II measurements.
therefore may be possible to obtain a higher power in
scaling law by modifying the measurement method. T
most promising modification is using a different feedba
phase, and this is currently under investigation numeric
via the solution of stochastic Schro¨dinger equations@15,10#.
This is possible even with very large photon numbers if o
uses squeezed states, because these remain squeezed
even under the stochastic evolution. The results obtaine
this paper justify this approach, as the variances obtained
the cases of general states and squeezed states were a
indistinguishable.
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APPENDIX: DERIVING EQ. „5.4…

We wish to evaluate the following sum:

(
n50

`

h~n!^a,zun&^n11ua,z&. ~A1!

We can do this in the following way. The number state re
resentation of squeezed states is given by@16#

^nua,z&5~n!m!21/2~n/2m!n/2Hn@b~2mn!21/2#

3exp@2ubu2/21~n* /2m!b2#, ~A2!

where

m5coshr , n5eif sinhr , b5am1a* n. ~A3!

Herer andf are the magnitude and phase, respectively, oz,
while Hn are Hermite polynomials and satisfy the recursi
relation @14#

Hn11~x!22xHn~x!12nHn21~x!50. ~A4!

This means that the number representation of squeezed s
satisfies the recursion relation

^n11ua,z&mAn112^nua,z&b1^n21ua,z&nAn50.
~A5!

Rearranging this and squaring gives
an

f
wn

e

e
e

ly

e
tates
in
or
ost

h

-

tes

u^n11ua,z&u2m2~n11!5u^nua,z&u2b21u^n21ua,z&u2n2n

22^a,zun&^n21ua,z&bnAn.

~A6!

This expression is only true for real squeezing paramet
Multiplying this by nk and summing gives

2bn (
n50

`

~n11!k11/2^a,zun&^n11ua,z&

5b2^nk&1n2^~n11!k11&2m2^n~n21!k&.

~A7!

Now let us take2p5k1 1
2 . In this case we find that the shif

of indices cannot be performed exactly, but the contribut
from terms nearn50 will be negligible. Also some of the
terms above diverge nearn50; however, the divergent term
are the extra terms produced by the shift of indices, and
the following expansions the behavior nearn50 is ignored.

Taking2p5k1 1
2 and considering the deviation from th

mean photon number gives

2bn (
n50

`

~n11!2p^bun&^n11ub&

'b2^~ n̄1Dn!2(p11/2)&1n2^~ n̄111Dn!2(p21/2)&

2m2^~ n̄211Dn!2(p21/2)&

2m2^~ n̄211Dn!2(p11/2)&. ~A8!

Expanding this in a series inDn gives

2bn (
n50

`

~n11!2p^bun&^n11ub&

'(
j 50

`
~21! j^Dnj&

j ! H ~p1 j 21/2!!

~p21/2!!
~b2n̄2(p1 j 11/2)

2m2~ n̄21!2(p1 j 11/2)!1
~p1 j 23/2!!

~p23/2!!

3@n2~ n̄11!2(p1 j 21/2)2m2~ n̄21!2(p1 j 21/2)#J .

~A9!

Now we have an expression we can use to evaluate
~A1!. Recall that for generalized measurements we have
asymptotic expressionh(n)'cn2p. This is equivalent to
h(n)'c(n11)2p, as the difference is of higher order. It
easily shown that for squeezed states^Dn2&5a2(m2n)2

12m2n2. Therefore, using the first three terms of Eq.~A9!
above, we find
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2bn (
n50

`

~n11!2p^a,zun&^n11ua,z&

'b2n̄2(p11/2)2m2~ n̄21!2(p11/2)

1n2~ n̄11!2(p21/2)2m2~ n̄21!2(p21/2)

1Fa2~m2n!2

2
1m2n2G H S p212p1

3

4D
3~b2n̄2(p15/2)2m2~ n̄21!2(p15/2)!

1S p22
1

4D @n2~ n̄11!2(p13/2)2m2~ n̄21!2(p13/2)#J .

~A10!

At this stage the main problem is to determine which ter
should be kept. This depends on hown0 scales withn̄. If the
state is optimized for minimum intrinsic phase uncertain
thenn0} ln(n̄) @13#. If we carry the derivation through usin
this result to estimate the order of the terms, then we ob
the resultn0}n̄12p/2. If we use this to estimate the order o
the terms, and omit all terms on the right-hand side of or
higher thann̄2(p21/2)/n0, then Eq.~A10! simplifies to

22bn (
n50

`

~n11!2p^a,zun&^n11ua,z&

'2n0n̄2(p11/2)1 n̄2(p21/2)H 11
1

2n0
Fp~p11!2

1

4G J .

~A11!
ry

e

in
s

,

in

r

The first term on the right-hand side is not of higher ord
than n̄2(p21/2)/n0 if p<1. If we were estimating the orde
from the parameters optimized for minimum intrinsic pha
variance then the first term would be omitted. Now we c
expand22bn to give

22bn'n̄1/2S 12
1

4n0
D 1/2S 12

n0

n̄
D . ~A12!

If we were estimating the order from the parameters o
mized for minimum intrinsic phase variance, the termn0 /n̄
would be omitted. This then gives us

S 12
n0

n̄
D (

n50

`

~n11!2p^a,zun&^n11ua,z&

'2n0n̄2(p11)1n̄2pH 11
1

8n0
1

1

2n0
Fp~p11!2

1

4G J .

~A13!

The two terms that would be omitted if we were consideri
parameters optimized for minimum intrinsic phase varian
just cancel, giving the simple result

(
n50

`

~n11!2p^a,zun&^n11ua,z&'n̄2pF11
p~p11!

2n0
G .
.

m
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