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State determination in continuous measurement
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The possibility of determining the state of a quantum system after a continuous measurement of position is
discussed in the framework of quantum trajectory theory. The initial lack of knowledge of the system and
external noises are accounted for by considering the evolution of conditioned density matrices under a sto-
chastic master equation. It is shown that after a finite time the state of the system is a pure state, and can be
inferred from the measurement record alone. The relation to emerging possibilities for the continuous experi-
mental observation of single quanta, as for example in cavity quantum electrodynamics, is discussed.
@S1050-2947~99!09008-3#
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I. INTRODUCTION

There is currently great interest in experiments which
tain useful information about a quantum system or state
single runs of an experiment. Very recently it has been p
sible to distinguish the quantum-mechanical and class
models of the interaction of an atom with a mode of a h
finesse optical cavity as the result of continuous monitor
of the output light while a single atom passes through
cavity @1#. As a result of this continuous monitoring th
quantum-mechanical backaction of the measurement pro
may be expected to have a significant effect on the evolu
of individual runs of the experiment. Moreover, it may b
possible in the future to modify the evolution of the syste
through feedback based on this continuous measuremen@2#.
Current experimental technology, such as that describe
Ref. @1#, is reaching the point at which determining the sta
of the system and observing the effects of backaction
feedback in a single run of an experiment is a real poss
ity. With this situation in mind, we discuss the identificatio
of the state of the system following a period of continuo
observation and the extent to which this state can be trac
taking into account factors such as imperfect initial know
edge of the state and imperfect detection efficiency. We
cus on a model of continuous position measurement o
mechanical oscillator which is relevant to the experiment
Ref. @1# but which also has relevance to other instances
interferometric position monitoring such as gravitation
wave detection.

The problem of describing quantum systems undergo
continuous measurement has attracted much theoretica
terest in recent years. As discussed by Wiseman@3#, these
theories admit a variety of interpretations; as tools for e
cient stochastic calculation of ensemble averages in lieu
solving master equations@4#, as equations describing th
evolution of systems conditioned on measurements@5–7#,
and as a description of the evolution of a system couple
an environment, in which collapse of the wave function
supposed to be associated with the coupling to the envi
ment @8#. Here we take the second viewpoint, namely, th
the conditioned state represents the observer’s best des
tion of the system state given the results of the continu
measurement process. Adopting the first or third viewpo
PRA 601050-2947/99/60~3!/2380~13!/$15.00
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one is led to describe the system by a pure state ve
throughout the evolution although the reasons for doing
are somewhat different in each case. By contrast, a des
tion of one’s conditioned state of knowledge necessarily
quires mixed states in order to account for incompl
knowledge of the system. From this viewpoint the fund
mental equation for the conditioned evolution is the stoch
tic master equation~SME! @9#. This is able to account for the
effects of mixed initial states, imperfect detection efficie
cies, and the existence of unmeasured couplings to the e
ronment. However, to date, relatively little work has a
tempted to address the evolution of the conditioned stat
any of these situations@10#. In this paper we consider a sys
tem which is simple enough that almost all the work can
done analytically, and which admits a treatment of all
these imperfections. This helps in developing intuition ab
the role of SME’s and their possible relevance to expe
ments.

A projective measurement has the property that if the
sult of the measurement is known, the state after the m
surement is pure, and depends only on the measuremen
sult. It would be hoped that in a continuous measurem
there would be some finite interval of time after which t
measurement has effectively given rise to a projection,
that the system is placed in a particular state which depe
only on the sequence of measurement results, and which
be calculated without knowledge of the initial state. If th
resulting state is pure, then a stochastic Schro¨dinger equation
~SSE! would be a perfectly adequate tool for describing t
subsequent system evolution. In this paper we investigate
conditions which lead to such an effective collapse, and o
what time scale it takes place. This is made possible by c
sidering density matrices and the SME rather that wave v
tors and the SSE. In a real experiment there will also
uncontrolled, unmeasured couplings of the system to the
vironment, and in this case the effects of the measurem
will compete not only with the coherent dynamics of th
system but also with the randomizing effects of the coupl
to the bath. This may lead to mixed conditioned states e
after long periods of continuous measurement, and limit
observer’s ability to make inferences about the system st
Understanding the process by which the conditioned s
may collapse onto a pure state, and the effects of nois
2380 ©1999 The American Physical Society
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PRA 60 2381STATE DETERMINATION IN CONTINUOUS MEASUREMENT
described by the SME, allows us to define conditions un
which continuous measurements in real experiments are
proximations to ideal measurements.

This paper is organized as follows. In Sec. II we estab
our simplified model of the continuous position measurem
of an oscillator, and solve the SME for Gaussian init
states. We find the time over which the second-order m
ments approach their steady-state values, and calculate
entropy of the conditioned state as it becomes pure. In S
III we discuss the classical problem of state identification
the noisy measurement of the the position of an oscilla
and derive a kind of uncertainty principle relating the obs
vation and process noises if the classical model is to re
duce the SME. In Sec. IV we show that the time scale o
which the second-order moments of the conditioned s
reach their steady state is the same as that over which
conditioned state is completely determined by the meas
ment record. Section V discusses the effect of heating, no
and detection inefficiency on these conclusions. Finally,
Sec. VI we summarize and make some comments abou
ture extensions of this work.

II. SOLVING THE STOCHASTIC MASTER EQUATION

A. A generalized model for continuous position
measurement

In this paper we shall consider the abstract model of c
tinuous position measurement discussed by Milburn and
workers@11,9# with a harmonically bound rather than a fre
measured particle. Projective position measurements
imagined to be made on a sequence of meters coupled br
to the system, and the limit of very frequent meter inter
tions and very broad initial meter position distributions
taken. This leads to a continuous evolution for the system
interest. Although this model should correspond in so
limit to any continuous position measurement of a sin
oscillator at the standard quantum limit, one system wh
does realize it at least approximately is the dispersive reg
of single-atom cavity quantum electrodynamics~QED!. In
this system the position of an atom inside a high-fine
optical cavity causes a phase shift of the field driving
cavity which can be monitored by homodyne detection@12–
15#. The SME for the conditioned evolution of the system
its Itô form is @16,9#

drc52
i

\
@Hsys,rc#dt12aD@x#rcdt

1A2aH@e2 ifx#rcdW. ~2.1!

The superoperatorsD@c# andH@c# acting on a density ma
trix r are D@c#r5crc†2 1

2 c†cr2 1
2 rc†c and H@c#r5cr

1rc†2Tr(cr1rc†)r, wherec is an arbitary operator. We
will imagine that the atom is harmonically bound,

Hsys5
p2

2m
1

mv2x2

2
. ~2.2!

The constanta describes the strength of the measurem
interaction and in the cavity QED example depends on
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strength of the coherent driving and of the damping of
cavity. For the moment we will consider a one-sided cav
and perfect detection, so that all the output light is detec
This assumption will be relaxed in Sec. V. In a generaliz
tion of the Caves and Milburn model, we will allow projec
tive measurements of any quadrature of the meters, not
position, since this can be realized in the cavity QED expe
ments by varying the phasef of the local oscillator in the
homodyne detection of the output light. The resulting me
surement currenti 5dQ/dt ~suitably scaled! is

dQ5cos~f!^x&cdt1A 1

8a
dW. ~2.3!

This stochastic master equation with the full dependence
f was discussed by Dio´si @17# in the context of a phenom
enological model of position measurement through pho
scattering where the kind of measurement made on the s
tered photon determines the value off. Clearly, if we choose
f50, p, the homodyne detection is an effective measu
ment of the atomic position, whereas iff5p/2, 3p/2 the
measurement results are independent of the system state
only contain information about the noisy potential seen
the atom. Forf5p/2, 3p/2, the conditioned evolution is
linear in the system state@9,15#. This is somewhat like a
continuous quantum eraser where the continuous meas
ment of one quadrature of the probe system destroys
position information written into the other quadrature of t
probe. Forf50 the SSE corresponding to this model in t
case of pure states of the system was considered in
@18,19#. Somewhat earlier, Dio´si found solutions to the SSE
where the measured system was a free particle rather tha
oscillator @20#. In this work we will use a simpler means o
solving the evolution equations which straightforwardly a
plies to mixed states.

It has been shown by Jacobs and Knight@19# that the SSE
corresponding to Eq.~2.1! is one for which Gaussian pur
states@21# remain Gaussian and pure under the evoluti
Thus, if the system is initially in a mixture of Gaussian pu
states, the conditioned state will remain Gaussian under
SME ~2.1!. This property holds true for single-mode system
where the Hamiltonian is at most quadratic inx and p, and
the operatorc appearing in the Lindblad termD@c# is linear
in x and p, and, in all likelihood, for multimode linear sys
tems also. If we restrict ourselves to Gaussian initial state
for example, to thermal states of the oscillator—then th
are only five quantities which completely define the sta
^x&, ^p&, ^(Dx)2&5^x2&2^x&2, ^(Dp)2&5^p2&2^p&2, and
^DxDp&sym5 1

2 (^xp1px&22^x&^p&). From now on we will
use ^c& to indicate the conditioned expectation value
(crc). The requirement that the initial states be Gaussia
not unduly restrictive, since these are typically the states
are most stable in linear systems, and would therefore b
reasonable assumption for an initial state. Moreover, ther
numerical evidence that non-Gaussian pure initial states
come approximately Gaussian under the stochastic Sc¨-
dinger equation evolution corresponding to the SME~2.1! on
time scales fast compared to those considered here@22,23#. It
has also been shown that in at least one such linear syste
arbitary density matrix can eventually be written as a pro
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bilistic sum over Gaussian pure states after sufficient ev
tion subject to the unconditioned master equation@24#. In
considering such a linear system, we are in effect specify
a semiclassical evolution, since the equations of motion
the Wigner function of the state in the unconditioned evo
tion are similar to the classical Liouville equations for
phase-space density; see, for example, Ref.@25#. However,
here we include the important quantum feature of the m
surement backaction, which is represented by the fact
the momentum diffusion is determined by the accuracy w
which the particle’s position is monitored@9#. So, as the
noise in the position measurement is decreased by increa
a, the momentum diffusion expressed by the Lindblad te
in the SME~2.1! increases.

Following Breslin and Milburn@26#, we can derive a sys
tem of differential equations for the first- and second-or
moments from the SME~2.1!, since d^c&5Tr(cdrc). A
similar calculation was performed in Ref.@24#. We define
the dimensionless quantities x̃5^x&/A\/2mv, and
p̃5^p&/A\mv/2, the second-order momentsVxx
52mv^(Dx)2&/\, Vpp52^(Dp)2&/\mv, and Vxp
52^DxDp&sym/\, and a dimensionless parameter describ
the relative strengths of the measurement and harmonic
namics,r 5mv2/2\a. The Heisenberg uncertainty princip
now requires thatVxxVpp>1. A pure state has the proper
that VxxVpp2Vxp

2 51, representing the fact that a Gaussi
pure state is a minimum uncertaintly state for some pair
conjugate quadrature variables@21#. A scaled measuremen
currentdQ̃ is defined so as to be consistent with the scal
of the position, so thatdQ̃5dQ/A\/2mv. In terms of these
new quantities, the Itoˆ stochastic differential equations fo
the first- and second-order moments and the measured
tocurrent are

dx̃5v p̃ dt1A2v

r
cos~f!VxxdW, ~2.4a!

dp̃52v x̃ dt1A2v

r
@cos~f!Vxp2sin~f!#dW,

~2.4b!

dQ̃5cos~f!x̃ dt1A r

2v
dW, ~2.4c!

1

v

dVxx

dt
52Vxp2

2

r
cos2~f!Vxx

2 , ~2.4d!

1

v

dVpp

dt
522S 12

sin~2f!

r DVxp1
2

r
cos2~f!

2
2

r
cos2~f!Vxp

2 , ~2.4e!

1

v

dVxp

dt
5Vpp2S 12

sin~2f!

r DVxx2
2

r
cos2~f!VxxVxp .

~2.4f!
-
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As in Ref. @26#, the Itô rules for stochastic differential equa
tions @27# and the properties of Gaussian states@28# result in
deterministic equations for the conditioned second-order m
ments which are decoupled from the equations for
means. The constant term in the equation forVpp refers to
the momentum diffusion due to the position measureme
and remains in the master equation for the unconditio
evolution. The nonlinear terms describe the conditioning
the state on the measurement. The noisy contribution to
equation fordx̃ seems a little like a stochastic impulsiv
force; however, it is perhaps better to think of this term
updating the expected position given the measurement re
dQ̃ in analogy with classical Bayesian state estimation.

Equations like those above for the second-order mome
of the conditioned state arise very frequently in classi
continuous-time observation and control problems. They
be collected into a Riccati matrix differential equation@29#
for the covariance matrix,

d

dt
V5v~C2VBV2DV2VA!, ~2.5a!

V5S Vxx Vxp

Vxp Vpp
D , ~2.5b!

A5DT5S 0 S 12
sin~2f!

r D
2S 12

sin~2f!

r D 0
D ,

~2.5c!

B5S 2cosf

r
0

0 0
D , ~2.5d!

C5S 0 0

0
2cosf

r
D . ~2.5e!

A single variable Riccati equation which arose from the s
chastic Schro¨dinger equation for this system was found a
solved in Ref.@18#.

In practice it may not be homodyne but, rather, hete
dyne detection which can be experimentally achieved w
noise at the quantum limit@1#. In this case, the local oscilla
tor is detuned from the cavity by a frequencyDhet which is
large compared to all system frequencies, with the result
the phasef changes very rapidly. The quantum theory
heterodyne detection was described by Wiseman and
burn @30#. The appropriate conditioned evolution can be d
scribed by averaging all the trigonometric functions off in
the evolution equations~2.4! except where they are multi
plied by Itô increments. Thus the equations for the seco
order moments are exactly those for homodyne detec
with f50, wherer is replaced by 2r , corresponding to halv-
ing the signal-to-noise ratio of the measurement. Conside
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PRA 60 2383STATE DETERMINATION IN CONTINUOUS MEASUREMENT
the stochastic integrals * t
t1dtcos(Dhett8)dW(t8) and

* t
t1dtsin(Dhett8)dW(t8), first in the limit of infinite Dhet and

then in the limit of infinitesimaldt, leads to equations for th
first order moments under heterodyne detection,

dx̃5v p̃dt1Av

r
VxxdW1 , ~2.6a!

dp̃52v x̃dt1Av

r
~VxpdW12dW2!, ~2.6b!

where dW1 and dW2 are independent Wiener incremen
Again this is formally identical to the evolution with homo
dyne detection andf50, wherer is replaced by 2r and in
which a second independent noise processdW2 is present.
Scaled versions of the two quadrature components of
experimental photocurrent are given by

dQ̃15 x̃dt1A r

v
dW1 , ~2.7a!

dQ̃25dW2 . ~2.7b!

Again note the replacement ofr by 2r in the equation for
dQ̃1 as compared to the equation fordQ̃ with f50. So if the
quadrature-phaseI 2(t) current is collected and used to a
count for the noisy potential, or alternatively fed back
order to compensate for this evolution, then heterodyne
tection is equivalent to homodyne detection with half t
signal-to-noise ratio as far as the motional state is concer

B. Steady-state conditioned variances

For all phases of the local oscillatorfÞp/2, and 3p/2, the
second-order moments possess a steady state. For exa
if f50,

Vxx
ss5

1

A2
rAA11

4

r 2
21, ~2.8a!

Vpp
ss 5

1

A2
rA11

4

r 2
AA11

4

r 2
21, ~2.8b!

Vxp
ss5

1

2
r SA11

4

r 2
21D , ~2.8c!

which defines a pure state that agrees with the solution g
in Ref. @18#. The steady states are found to have exactly
same second-order moments regardless of the initial pu
of the system. Assuming ideal detection, the observe
eventually able to ascribe a pure state to the system. W
the harmonic oscillator dynamics dominates over the m
surement (r @1), the steady conditioned state is appro
mately a coherent state withVxx

ss.Vpp
ss .1, andVxp

ss.1/r . If
the measurement dynamics dominate (r !1), then Vxx

ss
.

e

e-

d.

ple,

n
e
ty
is
en
a-
-

.Ar ,Vpp
ss .2/Ar , Vxp

ss.1, and the conditioned state i
strongly squeezed in position, as one would expect fo
position measurement which is rapid enough to overco
the internal dynamics of the system. The product of the
sition and momentum variances is greater than that requ
by the Heisenberg uncertainty principle as a result of
system Hamiltonian which gives a nonzero correlationVxp .
Finally, the scaling we have chosen for the variances ma
the limit of the free particle appear singular, however, t
limit exists and the results agree with Belavkin’s@18#. Pure
steady states also exist for other values off but the full
expressions are rather complicated, so we will just cons
two special cases. If the oscillator dynamics dominater
@1), the steady conditioned states are insensitive to the l
oscillator phase, leaving the conditioned state nearly i
coherent stateVxx

ss.11sin(2f)/2r , Vpp
ss .12sin(2f)/2r , and

Vxp
ss.cos2f/r. If r !1 the conditioned state is strongly de

pendent on the choice of local oscillator phase,

Vxx
ss.

Ar

ucosfu
A1/ucosfu1tan f, ~2.9a!

Vpp
ss .

2

Ar
A1/ucosfu1tan f, ~2.9b!

Vxp
ss.1/ucosfu1tanf. ~2.9c!

Rather surprisingly, it is possible for some phases of
local oscillator that the momentum variance is in fact sma
than the position variance. This is because the measurem
for nontrivial f is a simultaneous measurement of the po
tion of the oscillator and the momentum kicks to which it
being subjected and this can result in a more sharply defi
momentum than position. This is really only a possibility f
phases of the local oscillator where there is very little po
tion information in the record.

In the cases wheref5p/2 and 3p/2, the differential equa-
tions for the second-order moments of the state are sim
those that result from the unitary evolution of a simple h
monic oscillator and the SME~2.1! describes a stochasti
unitary evolution. As a result there is no steady state for
moments, which grow according to the conventional Sch¨-
dinger equation. In this case the measurement curren
white noise. In Ref.@22# it was noted that where a Lindbla
operator is Hermitian there exists an unravelling of the m
ter equation which does not localize the conditioned sta
The reason for this is clear in this context, such an unrav
ling corresponds to a measurement in which the obse
obtains no information about the system state.

C. Time scale for determination of a pure state through
measurement

The matrix Riccati equation~2.5a! has an analytic solu-
tion given by Reid@29#. Where U(t) and W(t) obey the
linear coupled matrix equations



e

di-
r-
st

n
he

2384 PRA 60A. C. DOHERTY, S. M. TAN, A. S. PARKINS, AND D. F. WALL
d

dt
U5AU1BW, ~2.10a!

d

dt
W5CU2DW ~2.10b!

and for times whereU(t) is nonsingular, the solution for th
covariance matrix isV(t)5W(t)U21(t). The full solution
nc
lu
e
ic
f
e

e
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e
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for all the second-order moments and arbitary initial con
tions is complicated and not particularly illuminating. In o
der to expose the general form of the solution we will ju
consider the casef50, and give a solution for the positio
variance where the initial state of the oscillator is of t
forms Vxx(0)5Vpp(0)5V0 , Vxp(0)50,
Vxx~ t !5
V0~c2cosh2bt1b2cos2ct!1~11V0

2!~c sinh2bt2b sin 2ct!

~b21c2!1V0~c3sinh2bt1b3sin2ct!1~11V0
2!~c2sinh2bt2b2sin2ct!

, ~2.11a!

b5
1

A2
AA11

4

r 2
21, ~2.11b!

c5
1

A2
AA11

4

r 2
1151/Vxx

ss . ~2.11c!
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We have scaled time by the harmonic oscillation freque
v. When 2bt@1 the system is close to its steady-state va
regardless ofV0. The nonlinearity of the terms describing th
conditioning of the system state cause the time over wh
the conditioned state becomes pure to be independent o
initial temperature of the state. For definiteness we will d
fine a collapse timetcol52/bv as being the time at which th
state has become effectively pure. Whenr .1 this collapse
time is tcol.2r /v5mv/\a, since in this regimeb.1/r . In
this regimec.111/2r 2, and there are many oscillations o
the particle before the state is determined. That the tim
determine a particular pure state of the system should
crease with the frequency seems reasonable since unexp
values of the measurement current could be due to a
taken idea of the position of the particle, the white noise
the measurement record, or to motion due to the oscillat
and these possibilities will be more difficult to distinguish
the atomic motion is fast. For smallerr, the measurement i
becoming very good, and this estimate for the collapse t
is optimistic since it is hard to determine the state of
system in less than one period of the mechanical oscillat
Reductions in the conditioned momentum variance will o
occur as the Hamiltonian evolution creates a correlation
tween the position and the momentum of the state. Eve
the harmonic potential were absent, a continuous meas
ment of position will give some information about the m
mentum of the particle. Whenr !1 the particle is essentially
free as far as the measurement is concerned, and the tim
the state reduction to occur turns out to betcol.A8m/\a,
which is determined solely by the strength of the measu
ment and the mass of the particle. In this situationb.c
.1/Ar . Increasing the measurement coupling means that
time for the measurement to take place is reduced and in
limit of infinite a the model essentially describes a project
y
e
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measurement of the position. If heterodyne detection is u
rather than homodyne detection, thenr is replaced by 2r in
the above equations with obvious implications for the tim
scale of the system collapse.

A pure state describes a situation in which an observer
maximal information about the system. A mixed state d
scribes a less than maximal knowledge of the system an
turns out that the amount of missing information, in an
formation theoretic sense, required to complete the spe
cation of the state may be measured by the von Neum
entropyS(r)52Tr(r lnr) of the density operator; see, fo
example, Ref.@31#. Thus the entropy allows us to quantif
the extent to which the measurement has determined the
of the system at a given time, and also the extent to wh
other environmental couplings limit what an experimen
can say about the system state. Another commonly u
measure of the ‘‘mixedness’’ of a given density matrix is t
linear entropy or puritys(r)512Tr(r2). For a single-mode
Gaussian state these quantities are simple functions of
unitless ‘‘area’’ of the state in phase spaceA
5AVxxVpp2Vxp

2 @32#:

s~r!512
1

A
, ~2.12a!

S~r!5
A11

2
ln~A11!2

A21

2
ln~A21!2 ln2.

~2.12b!

Note thatA is just the determinant of the covariance mat
of the position and momentum probability distributions f
the conditioned state. For a pure stateA51, s(r)˜0, and
S(r)˜0, and as the state becomes increasingly mixed
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occupies a larger phase space area such that asA˜`,
s(r)˜1, andS(r)˜`. As we would expect, if the state i
widely spread in phase space then our knowledge of the
tem is poor and the information needed to complete the
scription of the state is great.

The time evolution of the variances and the linear and v
Neumann entropies of the conditioned state withVxx(0)
5Vpp(0)520, Vxp50, v51, andr 520 is plotted in Fig. 1.
These parameters are chosen since the measurement dy
ics are not fast enough to obscure the harmonic oscilla
totally, and because achieving very small values ofr will
probably be difficult in practice. Several features of Fig
are relevant. First the initial very rapid reduction of the p
sition variance is associated with the the first part of
measurement record, making a reasonably accurate dete
nation of the position. Then over the time scale of the h
monic oscillation, the momentum variance also reduces
the dynamics correlate the position and momentum. N
that the reduction in momentum variance occurs only wh
there is a strong correlation between the position and
momentum. AsVxp becomes small the position variance d
cays more rapidly, and the reduction of the momentum v

FIG. 1. Time evolution of~a! the dimensionless second-ord
momentsVxx , Vxp , andVpp and ~b! the two entropies of the con
ditioned state of the harmonic oscillator under continuous posi
measurement as described in the text. Note the different time
for the entropies. Time is measured in units of the harmon
oscillator angular frequency whiler 520 andf50. The initial state
is Vxx5Vpp520 andVxp50 corresponding to a thermal state of th
oscillator.
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ance slows. Eventually all the second-order moments de
to the steady-state values predicted above. This initial
reduction of the position variance is accompanied by a
reduction of the von Neumann entropy which damps to z
as the system approaches steady state.

D. Cavity QED realization

Although we have been considering an abstract model
continuous position measurement, this work is motivated
emerging experimental possibilities in areas such as ca
quantum electrodynamics. The position-dependent ph
shift induced by an atom strongly coupled to a high fine
optical cavity mode in the dispersive limit of cavity QE
@12–15# realizes the abstract position measurement coup
considered here. It is currently possible to detect the prese
of a single cold atom in the cavity through measurements
the output field@33,34#, and great progress has been made
observing single-atom events with broad bandwidth close
the dispersive regime@1#. The phase shift changes mo
quickly with position where the gradient of the field is grea
est, and if the atom is harmonically confined in this regi
then the model discussed above would be approximately
alized. There is also the far off-resonant optical poten
which will lead to large forces on the atom in this regim
which would move the atom quickly away from this regio
of the standing wave. However, an optical standing wave
a nearby frequency could in principle be tuned to cancel
ac Stark shift of the ground state in the region of the h
monic confinement. In fact the dipole force could straig
forwardly be included in our simplified model, resulting
only minor changes for sufficiently strong harmonic confin
ment. For the moment we will not specify the exact source
the potential confining the atom, but the use of light forc
from a far-off-resonant optical standing wave or a stand
wave in another mode of the cavity are possibilities. There
also experimental work aimed at confining ions in high
nesse optical cavities which could realize such a system@35#.

If we imagine a harmonic potential confining the atom
this region of the standing wave with some constant resto
force to overcome the dipole force then in the far-detun
and Lamb-Dicke limit, the resulting SME would be exact
Eq. ~2.1! above@15#. The constanta would then be equal to
2g0

4nkL
2/D2k, whereg0 is the maximal single photon Rab

coupling in the cavity,n is the number of photons present
the driven cavity in the steady state,D is the detuning be-
tween the atomic and cavity resonances — the external l
driving is on the cavity resonance,k is the cavity field decay
rate andkL is the wave number for the light resonant insi
the cavity. Using the parameters of Ref.@15#, which are
based on cavity parameters achieved by Hoodet al. @34#,
gives a52.431020 s21 m22, and this determines the rat
of decay of the off-diagonal terms in the position repres
tation of the density-matrix under the unconditioned evo
tion. This rather large number means that the density-ma
elements^xurux8&, where x and x8 are separated by nin
nanometers or around 1% of a wavelength, will decay in
unconditioned evolution at the rate 2.03104 Hz. The decay
of off-diagonal elements of the density matrix in a particu
basis is often associated with decoherence and the emerg
of classicality@36#. In this case the decoherence is due to
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measurement coupling. In Ref.@13# this decay of off-
diagonal density-matrix elements is described as state re
tion. In this work we are interested in state reduction ont
pure state, and the rate of this process is determined not
by a but also by the length scale of a typical pure state of
uncoupled system. Thus we found above that reduction o
a pure state took place in a timetcol.mv/4\a, and the
dependence on the length scale of the harmonic oscillato
clear. In order to find the rate of collapse onto a pure stat
the conditioned evolution, it is therefore also necessary
know the oscillation frequency of the atom due to its h
monic confinement. Assuming this is achieved optically,
value forv/2p could be in the range of tens to hundreds
KHz. So, for example, in Ref.@15# the potential for a cesium
atom resulting from the same cavity and driving parame
gives v/2p52A\kL

2/2mAg0
2n/D/2p5180 kHz, while

v/2p.60 kHz was achieved for cesium in optical lattices
Haycocket al. @37#. For such a hypothetical experiment wi
cesium we now haver 55.6 and 0.63, respectively. Est
mates, as outlined above, for the time for an experimente
determine a pure state of the system through heterodyne
tection are then 19 and 8.9ms. Both these times are reaso
ably close to the minimum collapse time for this accuracy
detection which corresponds to the free-particle limit w
tcol.3.9 ms. In current experiments, detection efficienc
and bandwidths will have a significant effect on the inform
tion that can be gathered from the record. For trapped i
harmonic frequencies would be around an order of mag
tude larger, and state reduction times would then also
around an order of magnitude longer. However, the ca
finesse used here for such experiments may be more diffi
to achieve at typical frequencies of ion transitions and
size of the cavity will be limited by the ion trap electrode
What is dramatic about this time is that it is so short th
single cold atoms have been observed close to the cent
the cavity mode in the experiment at Cal Tech for times
the order of hundreds of microseconds. This is another c
firmation of the extent to which this experiment opera
near the standard quantum limit of position measurem
~see Ref.@38# and references therein!, and an indication of
the importance of continuous quantum measurement th
to its interpretation.

Note that it will be difficult to achieve very small value
of r for which the measurement dynamics dominate over
oscillation in the well. This is the result of the two ma
constraints on the applicability of the model. First it is ne
essary that the harmonic potential confine the atom to w
within a wavelength, thus justifying the Lamb-Dicke a
proximation in the master equation~2.1!. This requires that
the recoil frequency for the atomic transitionv rec5\kL

2/2m
be much smaller than the harmonic oscillation. Moreov
attaining the dispersive regime requires that
saturation parameters5g0

2n/D2 be much smaller than 1
It is possible to expressr in terms of these quantities,r
5(v/v rec)(1/8s)(v/Gcav), where Gcav5g0

2/k is the cavity
mediated spontaneous emission rate@39#. Assuming that val-
ues of v and s are chosen to satisfy a particular level
approximation, the rate at which the conditioned states
come pure is only increased by changing the cavity par
eters through increasingGcav relative to the oscillation fre-
quency. Moreover, since both the first two factors in t
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expression forr must be large for the SME~2.1! to corre-
spond to the cavity system, extremely large values ofGcav
are necessary to achieve rapid measurement of the sy
state.

III. CLASSICAL ANALOG

If we are to interpret the conditioned state as the b
description of the observer’s knowledge of the quantu
mechanical state given the results of a series of meas
ments, we would expect a similarity between these equat
and classical Bayesian state observation. The analogy
tween the SME~2.1! and Kalman filtering for a classica
position measurement was discussed in Ref.@9#, but only the
equations for the position probability distributions were co
sidered. Here we formulate the continuous-time posit
measurement state observer for a classical harmonic osc
tor, and find that there is a close analogy between the S
and the classical theory for all moments of the condition
probability distribution as long as we restrict ourselves
Gaussian states and allow for noisy driving of the class
oscillator.

The problem of noisy, classical, continuous time positi
measurement of a harmonic oscillator can be formulated

dxC

dt
5vpC , ~3.1a!

dpC

dt
52vxC1A2v

s
e, ~3.1b!

dQC

dt
5axC1A r

2v
h, ~3.1c!

E@e~ t !e~ t8!#5E@h~ t !h~ t8!#5d~ t2t8!, ~3.1d!

E@e~ t !h~ t8!#5 f d~ t2t8!. ~3.1e!

We have used the same scaling of the variables as in
quantum problem. We imagine that, as well as having
imperfect measurement of the system, the oscillator is s
ject to a white noise force. There may be some correlat
between the oscillator~plant or process! noise and the mea
surement noise and soe and h are correlated Wiener pro
cesses. As in the quantum-mechanical case, the limit of s
r is the limit of good position measurement.

The continuous-time theory of Kalman filtering then pr
vides the best estimate of the system statex̂ and p̂ and the
second-order moments of the posterior probability distrib
tion P(xC ,pC) @40#,

dx̂C5v p̂Cdt1aA2v

r
VxxdW, ~3.2a!

dp̂C52v x̂Cdt1S aA2v

r
Vxp1 fA2v

s D dW,

~3.2b!
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1

v

dVxx

dt
52Vxp2

2

r
a2Vxx

2 , ~3.2c!

1

v

dVpp

dt
522S 11

2a f

Ars
D Vxp1

2

r
2

2 f 2

s
2

2

r
a2Vxp

2 ,

~3.2d!

1

v

dVxp

dt
5Vpp2S 11

2a f

Ars
D Vxx2

2

r
a2VxxVxp . ~3.2e!

HeredW is an Wiener increment withdW25dt that is inde-
pendent of the noise processesh and e and proportional to
the innovation processdQ2ax̂dt. Note that the circumflex
employed here indicates that the quantity is an estimat
the classical variable and not that it is a quantum opera
The moments of the posterior probability distribution ha
been given the same notation as the moments of the co
tioned quantum-mechanical state. If we make the identifi
tions s5r , a5cosf, and f 52sinf, then this system of
equations is formally identical to the system which det
mines the evolution of the quantum-mechanical condition
state equations~2.4!.

We see that there is a classical model of noisy posit
measurement for which the equations of motion for the p
terior probability distribution of the classical state given
the Kalman filter reproduce the stochastic master equat
What is specifically quantum mechanical in the SME is t
we cannot, even in principle, specify the process noise
the measurement noise separately. Classically one c
imagine isolating the system sufficiently thats is as large as
we like. With s˜` there would be no momentum distu
bance on the atom, and after a sufficiently long observa
time the state of the system would be determined exactly
that Vi j

ss50. Clearly this does not correspond to a quant
state. However, the quantum theory of the problem gua
tees that any coupling to the system which gives posit
information about the state of the system must also dis
the momentum. This momentum disturbance must be s
cient that the conditioned state always obeys the Heisen
uncertainty principle. Thus only some classically possi
models of position measurement are allowed by quan
mechanics. For a given level of measurement noise, the
cess noise must be at least sufficient to ensure that the
server can never infer probability distributions for the po
tion and momentum which do not constitute valid quant
states. This is a measurement-disturbance uncertainty
tion @41# for continuous measurement; reducing the noise
the measurement must increase the noise in the evolu
However, backaction noise does not behave like class
process noise; its properties are entirely determined by
measurement. If we vary the basis of the measurement on
meter—varyf—then we are able to alter the correlation b
tween the measurement noise and the apparent process
in the classical model.

We have found here that the symmetric moments of
conditioned state always obey a system of equations w
also describes Kalman filtration for a classical problem,
that altering the specific quantum measurement alters
of
r.
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the observationand the process noise of the relevant clas
cal problem. Since the symmetric moments are the mom
of the Wigner function~for example, Ref.@28#!, the condi-
tioned Wigner function can be interpreted as the direct a
log of a classical posterior probability distribution for th
system. This relationship is not going to be as straightf
ward for more complicated quantum systems where the c
ditioned Wigner function can be negative, and cannot
interpreted as a probability distribution.

IV. DEPENDENCE ON INITIAL STATE

We have established above that the conditioned stat
the system can in priniciple become pure after a finite obs
vation time. What might not be clear is that the state wh
results is uniquely determined by the measurement record
an ideal projective measurement the probabilities of obta
ing the various measurement results depend upon the in
state. However, once a result has been obtained the co
tional state after the measurement depends on that re
alone. In a similar way, for continuous measurements
find that, while the initial state affects the probability of o
taining particular measurement records, the conditional s
following the measurement is determined by the particu
measurement record which was obtained, provided
record is sufficiently long. In particular, if the initial state o
the system is very poorly known to an observer, then
might hope that there is effectively a maximum likelihoo
estimate of the system state which depends only on the m
surement current and which converges to the actual sys
state withintcol . If propagating the stochastic master equ
tion with the actual initial state of the system provides ana
posteriori estimate of the system state given the measu
ment results, then such a maximum likelihood estim
would result from propagating an initial state with very lar
position and momentum variances in the SME~2.1!, say
Vxx5Vpp5V0˜`, and Vxp50, which gives a nearly flat
prior probability distribution for the initial state. In this sec
tion we demonstrate that such a strategy does indeed w
Thus the purity of the conditioned density matrix indicate
as would be hoped, that there is only one pure state of
system at timet.tcol which is consistent with the known
sequence of measurement results.

Suppose that two observers, Alice and Bob say, postu
different initial states of the systemrA(0) andrB(0), which
we will continue to assume to be Gaussian. For exam
Alice may have more information than Bob about the s
tem, in which case Bob would start with a more mixed init
density matrix reflecting his initial lack of knowledge. Give
that they both recieve the same measurement recordI (t) and
propagate their conditioned states according to the S
~2.1!, it should be the case that at some timet8, aroundtcol ,
Alice and Bob agree on the system state, so thatrA(t8)
5rB(t8). From Sec. III we know that after the timetcol the
second-order moments of both conditioned states will
equalVi j

A5Vi j
B5Vi j

ss and so we focus on the equations for t
first-order moments of the conditioned state for each
server:

dxA5vpAdt1A2v

r
Vxx

A dW, ~4.1a!
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dpA52vxAdt1A2v

r
Vxp

A dW, ~4.1b!

dxB5vpBdt1A2v

r
Vxx

B dWB, ~4.1c!

dpB52vxBdt1A2v

r
Vxp

B dWB, ~4.1d!

dQ5xAdt1A r

2v
dW5xBdt1A r

2v
dWB. ~4.1e!

In this section we will omit the tildes used earlier to indica
that we have scaled the position and momentum to the n
ral units for the harmonic oscillator. The stochastic inc
mentdQ is the infinitesimal increment of the measured c
rent which both Alice and Bob have access to. We c
express the incrementdWB in terms of the other quantitie
dWB5dW2A2v/r (xB2xA)dt, and find stochastic differen
tial equations for the differences between the meansex5xB

2xA, ep5pB2pA:

dex5vepdt2
2v

r
Vxx

B exdt1A2v

r
~Vxx

B 2Vxx
A !dW,

~4.2a!

dep52vS 11
2

r
Vxp

B Dexdt1A2v

r
~Vxp

B 2Vxp
A !dW.

~4.2b!

The deterministic part of this system of equations describ
damped harmonic oscillation forex andep where the damp-
ing and oscillation rates depend on the second-order
ments of Bob’s conditioned state. The damping in the
equations is not present in an analogous equation foex
given by Mabuchi@38# for a free particle. The equatio
adopted in Ref.@38# is obtained from the continuous limit o
the repeated position measurement model of Caves and
burn @11#, and does not contain a noise term in the stocha
differential equation forx. In fact the omission of this term is
in error and if the continuous limit of the repeated positi
measurement model of Caves and Milburn is taken corre
then the noisy contribution todex , which we obtained from
the SME ~2.1!, is in fact present. It is the damping whic
results from this term which leads to all observers agree
about the conditioned state after a sufficiently long obser
tion time. Note that after the timetcol Eqs.~4.2! are in fact a
system of ordinary differential equations, since at that po
the covariances of the two conditioned states are equal.
differences in the means then damp to the steady state va
ex5ep50, indicating that Alice and Bob do eventually agr
about the state of the system regardless of their initial sta
Thus we have shown that the conditioned state eventu
depends only on the measurement record but not the
scale over which this occurs.
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It is straightforward to use the Itoˆ chain rule@27# to find
differential equations for the expectation values of the co
riance matrix for the difference between the condition
means of Alice and Bob

1

v

d

dt
~E@ex

2# !52E@exep#2
4

r
Vxx

B E@ex
2#1

2

r
~Vxx

B 2Vxx
A !2,

~4.3a!

1

v

d

dt
~E@ep

2# !522E@exep#2
4

r
Vxp

B E@exep#

1
2

r
~Vxp

B 2Vxp
A !2, ~4.3b!

1

v

d

dt
~E@exep# !5E@ep

2#2E@ex
2#2

2

r
Vxp

B E@ex
2#2

2

r
Vxx

B

3E@exep#1
2

r
~Vxx

B 2Vxx
A !~Vxp

B 2Vxp
A !.

~4.3c!

Although we have taken the expectation value for this s
tem of equations, the noise terms all become zero aftertcol ,
so these ordinary differential equations eventually desc
the whole dynamics. We are now interested in the time sc
over which the elements of this covariance matrix beco
zero. Unfortunately the time dependence of the condition
state variances prevents a closed-form solution of this sys
of equations, and we have not found a matrix Riccati fo
for the overall system. However, it is straightforward to i
vestigate the problem numerically.

We wish to show that all observers will agree about t
conditioned state of the system in roughlytcol . To do this it
is sufficent to show that an arbitary observer will agree w
some preferred observer in that time. For this reason we
assume that Alice has sufficient information to describe
state of the system as a pure state, and that she has acc
sufficient earlier measurement records thatVi j

A(t)5Vi j
ss. An

experimenter is going to be in Bob’s position of not havi
precise knowledge of or control over the preparation of
state. We would expect that if Bob makes an accurate ass
ment of his initial knowledge of the state thenE@ex

2# is at
first of the same order asVxx or smaller. SinceVxx

B 2Vxx
A may

be large initially, the stochastic term in the Eqs.~4.2! for
Bob’s errors dominates for very short times and essenti
determines a random initial condition forex such that
E@ex

2#&Vxx . This reflects the fact that for short times th
measurement record is dominated by noise. From this p
on we find numerically thatE@ex

2#.Vxx , and that all the
elements of the covariance matrix damp to zero withintcol .
Thus, we have found numerically that the conditioned st
depends only on the measurement record after a time e
to the time over which the conditioned state becomes p
Most importantly we found this to be the case even where
the variances were set to very large initial values, the larg
we tried being Vxx

B 5Vpp
B 5E@ex

2#(0)5E@ep
2#(0)51010.

Thus, as we anticipated, Bob can make an accurate esti
of the state within the collapse time even in the absence
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accurate information about the initial state. In this case Bo
conditioned state corresponds to the maximum likelihood
timate discussed above. Interestingly, even with the pe
mistic initial condition whereE@ex

2#(0) is significantly larger
thanVxx

B (0)—this corresponds to Bob overestimating the a
curacy of his estimate of the particle’s position, and the d
ference between his estimate and the actual value being
large—the determinant of the covariance matrix damps
the characteristic time scaletcol . This feature is more pro
nounced for larger values ofVxx

B (0). Again this is because
for large initial values ofVii

B , Bob’s estimate of the system
state is essentially dependent on the measurement cu
alone. These behaviors are demonstrated in Fig. 2 for
parameters used in the Sec. III.

From this we can conclude that after the timetcol , any
experimenter knows the state of the system regardles
how the system is initially prepared and of how much cont
the experimenter has over this process. In Sec. V, when

FIG. 2. The time evolution of Bob’s mean-squared error in p
sition E@ex

2#. Bob’s conditioned state varianceVxx
B is also plotted

for comparison. Time is measured in units of the harmon
oscillator angular frequency, whiler 520 andf50. In ~a! the initial
values areE@ex

2#5E@ep
2#55, E@exep#50, Vxx

B 5Vpp
B 5200, and

Vxp
B 50, and, as discussed in the text, the mean-squared erro

though originally small, rapidly becomes of the same order as
conditioned state variance. In~b! the initial values areE@ex

2#
5E@ep

2#51010, E@exep#50,Vxx
B 5Vpp

B 51010, and Vxp
B 50. Over a

time roughly equal totcol the mean-squared error approaches z
and the conditioned position variance approaches its steady s
Note the different time scales in the two graphs.
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introduce detection efficiency and thermal couplings, th
will just modify the second-order moments of the cond
tioned state such that the steady conditioned state is
longer pure. Since the equations for the first-order mome
will be unmodified, all that is necessary to reproduce
results of this section in this more general case is to use
collapse timetcol which is appropriate for the new system
Although this will mean that the experimenter is left wi
broader position and momentum probability distributions
will not mean that different experimenters disagree about
means of these distributions. So, regardless of the detec
efficiency, the conditioned state is eventually uniquely det
mined by the measurement record, and can be regarde
known by the experimenter.

V. THERMAL AND DETECTION EFFICIENCY EFFECTS

In order to discuss the effects of detection efficiency a
other uncontrolled coupling to a bath in the model we w
add an extra momentum diffusion term to the SME to obta
for f50,

drc52 i @Hsys,rc#dt12aD@x#rcdt12bD@x#rcdt

1A2aH@x#rcdW. ~5.1!

This simple modification to the master equation is intend
to model several possible imperfections in a real experim
One contribution tob is the effect of detection efficiency@6#
so thatb is at leasta~12h!/h, where the overall detection
efficiency ish. The effect of cavity loss through the unmon
tored mirror in a cavity QED experiment is an effective d
tection inefficiency. Where the loss rates out of the two m
rors arek1 andk2, and if only the light passing through th
second mirror is detected, then we obtainb.ak1 /k where
k5k11k2. The best situation is if the mirror in front of th
detection apparatus has significantly higher transmiss
than the mirror through which the cavity is driven. Scatteri
losses of the mirror will also be an effective detection in
ficiency, but these are typically much smaller than transm
sion losses. In experiments with single atoms there will a

FIG. 3. The linear and von Neumann entropies of the ste
conditioned state are plotted against effective detection efficien
Extraneous heating of the oscillator is also described byh as dis-
cussed in the text.
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be heating due to spontaneous emission into free sp
which will lead to a contribution tob equal tog0

2nG/4D2,
whereG is the free-space decay rate of the excited state
the atomic transition. Other than the restriction to the Lam
Dicke regime, this is the largest correction to the adiab
cally eliminated master equation given above when a m
erate detuning from the atomic transition is employed as
Ref. @1#. The spontaneous emission contribution to the he
ing is also proportional to the measurement couplinga such
that bs5aGk/4g0

2, and to minimize the effect of spontane
ous emission we must use cavities with the largest poss
value of g0

2/k. Recall that if this rate is large the signal-to
noise ratio of the position measurement also improves. C

FIG. 4. ~a! The time evolution of the dimensionless secon
order momentsVxx , Vxp , andVpp under continuous imperfect po
sition measurement as described in the text. Time is measure
units of the harmonic-oscillator angular frequency whiler 520,
f50 andq55. The initial state isVxx5Vpp520 andVxp50, cor-
responding to a thermal state of the oscillator, and for compar
the evolution of the conditioned position variance is plotted for
case of perfect detection. As discussed in the text the conditio
second-order moments reach a steady state more rapidly whe
detection is imperfect.~b! The mean-square error in Bob’s estima
of the conditioned state mean position, and Bob’s conditioned s
position variance for imperfect continuous position measurem
r 520, f50, and q55. The initial values areE@ex

2#5E@ep
2#

51010, E@exep#50, Vxx
B 5Vpp

B 51010, andVxp
B 50. Even where the

observation is imperfect, the conditioned state is eventually in
pendent of the initial state of the system.
ce

of
-
i-
-

n
t-

le

n-

tributions tob in other systems, for example the interfer
metric detection of the position of a moving mirror@13#, will
also come from any coupling of the oscillator to a therm
bath. We found that the standard quantum Brownian mot
master equation@28# led to steady conditioned states that d
not obey the Heisenberg uncertainty principle for small v
ues of r. This a result of the non-Lindblad terms in th
master equation. The master equation we adopt here so
this problem by considering only coupling to very hig
temperature thermal baths for which the thermal contribut
to b is gkBT/\2, whereg is the coupling rate to the therma
reservoir andT is the temperature of the bath. This should
an adequate description of heating in the experiment as
as the bath to which the system is coupled is of sufficien
high temperature that only the diffusive evolution is signi
cant for the time scales of interest.

Pure states become mixed during the evolution descri
by the SME~5.1!. Although pure-state unravellings of thi
SME exist, the resulting wave functions cannot be int
preted as states of the system conditioned on informa
actually available to the experimenter, whereas the con
oned density matrix can be interpreted in this way. Howev
the SME continues to preserve Gaussian states so the p
ous calculation for the evolution of state can be straightf
wardly modified. The second-order moments of the con
tioned state still reach a steady state and we can easily
an expression for the steady conditioned state phase-s
areaA:

Ass5A11b/a5q>1/Ah, ~5.2a!

s~rc
ss!5121/q>12Ah, ~5.2b!

S~rc
ss!5

q11

2
ln~q11!2

q21

2
ln~q21!2 ln 2.

~5.2c!

The linear and von Neumann entropies of the steady co
tioned states are plotted for a range of detection efficien
in Fig. 3. Even though we have effectively coupled the o
cillator to an infinite temperature bath, the condition
steady states have in some sense a finite temperature
stochastically varying mean values of position and mom
tum.

We will consider some limiting cases here for the stea
state variances in this more general situation. Where
measurement is strong (r !1) the position variance is insen
sitive to these imperfections,Vxx

ss.ArAq,Vxp
ss.q,Vpp

ss

.2Aq3/Ar . If the dynamics dominate (r @1) then the posi-
tion and momentum variances have the same dependenc
b asA, Vxx

ss.q, Vxp
ss.q2/r , andVpp

ss .q.
Finally the whole time evolution of the second-order m

ments of the conditioned state can be determined by solv
the matrix Riccati equation. Again we will just consider th
position variance as a function of time whereVxx(0)
5Vpp(0)5V0.1, andVxp(0)50:
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Vxx~ t !5
q2V0~c2cosh2bt1b2cos2ct!1q~V0

21q2!~c sinh2bt2b sin2ct!

q2~b21c2!1qV0~c3sinh 2bt1b3sin 2ct!1~V0
21q2!~c2sinh2 bt2b2sin2 ct!

, ~5.3a!

b5
1

A2
AA11

4q2

r 2
21, ~5.3b!

c5
1

A2
AA11

4q2

r 2
115q/Vxx

ss , ~5.3c!
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and we have scaled time by the harmonic oscillation f
quencyv. As before, when 2bt@1 the system reaches it
steady-state value and the nonlinearity of the terms desc
ing the conditioning of the system state mean that the t
for this to occur is independent of the initial state. Intere
ingly this time is in fact shorter than was required to pur
the conditioned state in the case of ideal detection. Thi
essentially because the extra noise means that past obs
tions become irrelevant more quickly, not leaving enou
time to determine a pure state completely.While the ste
state is reached increasingly fast it corresponds to an incr
ingly high effective temperature. Whenr .1 this time to
reach the steady state ists.2r /qv5mv/q\a5tcol /q,
since in this regimeb.q/r . As noted in Sec. IV, the time fo
the conditioned state variances to reach their steady sta
also the time that is necessary for different observers to a
about the system state. The time evolution of some of th
quantities is plotted in Fig.~4!.

VI. CONCLUSIONS

In this paper we have established that for a simple clas
systems quantum trajectory theories allow the determina
of a unique post-measurement state that depends only o
measurement results over a finite time. We have discus
the effects of experimental imperfections on this state de
mination and the analogy to classical state observation.
systems to which this analysis is applicable have the prop
that the conditioned density matrix is at all times Gaussi
tic
-

b-
e
-

is
rva-
h
y
s-

is
ee
se

of
n

the
ed
r-
he
ty
,

and its evolution is exactly that of the posterior probabil
distribution for an appropriate classical state observer. W
we have considered only the case of position measurem
the same treatment will be applicable to these other lin
systems. Clearly in more complicated systems, such as
resonant interaction of an atom with the single mode of
optical cavity, this will not always be the case, and the co
ditioned Wigner function will sometimes be nonpositiv
However, we would expect that the central result we ha
shown here, the purity of the conditioned state after su
ciently long continuous observation and the dependenc
this state on the initial state only through the measurem
results, will still hold for these more interesting and comp
cated systems. However, this will require numerical simu
tion of the stochastic master equation for such systems.
other feature that should generalize is the interpretation
the SME as a state observer—presumably an optimal on
for the quantum system.
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