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State determination in continuous measurement
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The possibility of determining the state of a quantum system after a continuous measurement of position is
discussed in the framework of quantum trajectory theory. The initial lack of knowledge of the system and
external noises are accounted for by considering the evolution of conditioned density matrices under a sto-
chastic master equation. It is shown that after a finite time the state of the system is a pure state, and can be
inferred from the measurement record alone. The relation to emerging possibilities for the continuous experi-
mental observation of single quanta, as for example in cavity quantum electrodynamics, is discussed.
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[. INTRODUCTION one is led to describe the system by a pure state vector
throughout the evolution although the reasons for doing so
There is currently great interest in experiments which ob-are somewhat different in each case. By contrast, a descrip-
tain useful information about a quantum system or state irion of one’s conditioned state of knowledge necessarily re-
single runs of an experiment. Very recently it has been posguires mixed states in order to account for incomplete
sible to distinguish the quantum-mechanical and classicatnowledge of the system. From this viewpoint the funda-
models of the interaction of an atom with a mode of a highmental equation for the conditioned evolution is the stochas-
finesse optical cavity as the result of continuous monitoringic master equatiofSME) [9]. This is able to account for the
of the output light while a single atom passes through theeffects of mixed initial states, imperfect detection efficien-
cavity [1]. As a result of this continuous monitoring the cies, and the existence of unmeasured couplings to the envi-
guantum-mechanical backaction of the measurement processnment. However, to date, relatively little work has at-
may be expected to have a significant effect on the evolutiotempted to address the evolution of the conditioned state in
of individual runs of the experiment. Moreover, it may be any of these situations.0]. In this paper we consider a sys-
possible in the future to modify the evolution of the systemtem which is simple enough that almost all the work can be
through feedback based on this continuous measuregf@ent done analytically, and which admits a treatment of all of
Current experimental technology, such as that described ithese imperfections. This helps in developing intuition about
Ref.[1], is reaching the point at which determining the statethe role of SME’s and their possible relevance to experi-
of the system and observing the effects of backaction andchents.
feedback in a single run of an experiment is a real possibil- A projective measurement has the property that if the re-
ity. With this situation in mind, we discuss the identification sult of the measurement is known, the state after the mea-
of the state of the system following a period of continuoussurement is pure, and depends only on the measurement re-
observation and the extent to which this state can be trackedult. It would be hoped that in a continuous measurement
taking into account factors such as imperfect initial knowl-there would be some finite interval of time after which the
edge of the state and imperfect detection efficiency. We fomeasurement has effectively given rise to a projection, so
cus on a model of continuous position measurement of #at the system is placed in a particular state which depends
mechanical oscillator which is relevant to the experiment ofonly on the sequence of measurement results, and which can
Ref. [1] but which also has relevance to other instances obe calculated without knowledge of the initial state. If the
interferometric position monitoring such as gravitationalresulting state is pure, then a stochastic Sdimger equation
wave detection. (SSB would be a perfectly adequate tool for describing the
The problem of describing quantum systems undergoingubsequent system evolution. In this paper we investigate the
continuous measurement has attracted much theoretical igonditions which lead to such an effective collapse, and over
terest in recent years. As discussed by Wisef@8nthese what time scale it takes place. This is made possible by con-
theories admit a variety of interpretations; as tools for effi-sidering density matrices and the SME rather that wave vec-
cient stochastic calculation of ensemble averages in lieu dbrs and the SSE. In a real experiment there will also be
solving master equationgd], as equations describing the uncontrolled, unmeasured couplings of the system to the en-
evolution of systems conditioned on measuremégBbts7|, vironment, and in this case the effects of the measurement
and as a description of the evolution of a system coupled taill compete not only with the coherent dynamics of the
an environment, in which collapse of the wave function issystem but also with the randomizing effects of the coupling
supposed to be associated with the coupling to the envirorte the bath. This may lead to mixed conditioned states even
ment[8]. Here we take the second viewpoint, namely, thatafter long periods of continuous measurement, and limit the
the conditioned state represents the observer’s best descripbserver’s ability to make inferences about the system state.
tion of the system state given the results of the continuou&/nderstanding the process by which the conditioned state
measurement process. Adopting the first or third viewpointmay collapse onto a pure state, and the effects of noise as
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described by the SME, allows us to define conditions undestrength of the coherent driving and of the damping of the

which continuous measurements in real experiments are apavity. For the moment we will consider a one-sided cavity

proximations to ideal measurements. and perfect detection, so that all the output light is detected.
This paper is organized as follows. In Sec. Il we establishThis assumption will be relaxed in Sec. V. In a generaliza-

our simplified model of the continuous position measuremention of the Caves and Milburn model, we will allow projec-

of an oscillator, and solve the SME for Gaussian initialtive measurements of any quadrature of the meters, not just

states. We find the time over which the second-order moposition, since this can be realized in the cavity QED experi-

ments approach their steady-state values, and calculate th@ents by varying the phasé of the local oscillator in the

entropy of the conditioned state as it becomes pure. In Settomodyne detection of the output light. The resulting mea-

[l we discuss the classical problem of state identification forsurement current=dQ/dt (suitably scalegis

the noisy measurement of the the position of an oscillator,

and derive a kind of uncertainty principle relating the obser- 1

vation and process noises if the classical model is to repro- _ /

duce the SME. In Sec. IV we show that the time scale over dQ=cog $){x)cdt+ 8—adW. 23

which the second-order moments of the conditioned state

reach their steady state is the same as that over which thiyis siochastic master equation with the full dependence on
conditioned state is completely determined by the_measu_re¢ was discussed by D& [17] in the context of a phenom-
ment record. Section V discusses the effect of heating, n0iSgno|ogical model of position measurement through photon
and detection |neff|c_|ency on these conclusions. Finally, 'nscattering where the kind of measurement made on the scat-
Sec. VI we summarize and make some comments about fyseq photon determines the valuediClearly, if we choose

ture extensions of this work. ¢=0, m, the homodyne detection is an effective measure-
ment of the atomic position, whereas df= /2, 37/2 the
Il. SOLVING THE STOCHASTIC MASTER EQUATION measurement results are independent of the system state and

only contain information about the noisy potential seen by
the atom. For¢=m/2, 3m/2, the conditioned evolution is
linear in the system stat,15]. This is somewhat like a

In this paper we shall consider the abstract model of coneontinuous quantum eraser where the continuous measure-
tinuous position measurement discussed by Milburn and coment of one quadrature of the probe system destroys the
workers[11,9] with a harmonically bound rather than a free position information written into the other quadrature of the
measured particle. Projective position measurements afgrobe. For¢=0 the SSE corresponding to this model in the
imagined to be made on a sequence of meters coupled briefbase of pure states of the system was considered in Ref.
to the system, and the limit of very frequent meter interac{18,19. Somewhat earlier, D& found solutions to the SSE
tions and very broad initial meter position distributions is where the measured system was a free particle rather than an
taken. This leads to a continuous evolution for the system obscillator[20]. In this work we will use a simpler means of
interest. Although this model should correspond in somesolving the evolution equations which straightforwardly ap-
limit to any continuous position measurement of a singleplies to mixed states.
oscillator at the standard quantum limit, one system which It has been shown by Jacobs and Knigtf] that the SSE
does realize it at least approximately is the dispersive regimeorresponding to Eq(2.1) is one for which Gaussian pure
of single-atom cavity quantum electrodynami@@ED). In  states[21] remain Gaussian and pure under the evolution.
this system the position of an atom inside a high-finess&hus, if the system is initially in a mixture of Gaussian pure
optical cavity causes a phase shift of the field driving thestates, the conditioned state will remain Gaussian under the

A. A generalized model for continuous position
measurement

cavity which can be monitored by homodyne detecfib2—  SME (2.1). This property holds true for single-mode systems
15]. The SME for the conditioned evolution of the system inwhere the Hamiltonian is at most quadraticxrand p, and
its Ito form is[16,9] the operatorc appearing in the Lindblad ter®[ c] is linear

in x andp, and, in all likelihood, for multimode linear sys-
i tems also. If we restrict ourselves to Gaussian initial states—
dpc=— 7 [Heys pcldt+2aDx]pdt for example, to thermal states of the oscillator—then there

f are only five quantities which completely define the state:
+\2aH[ e x]pdW. @20 (0, (P (M)A =)= (%)% ((Ap)*)=(p?*)—(p)? and

(AXAD)sym= 3 ({(Xp+ px) — 2(x){p)). From now on we will

The Superoperator@[c] and’)—[[c] acting on a density ma- use <C> to indicate the conditioned expectation value Tr
trix p are D[c]p=cpc’—icTcp—1ipcc and H[c]p=cp (cpy). The requirement that the initial states be Gaussian is
+pc'=Tr(cp+pch)p, wherec is an arbitary operator. We hot unduly restrictive, since these are typically the states that
will imagine that the atom is harmonically bound, are most stable in linear systems, and would therefore be a
reasonable assumption for an initial state. Moreover, there is
- numerical evidence that non-Gaussian pure initial states be-
b MeX (2. come approximately Gaussian under the stochastic "Schro
2m 2 ' dinger equation evolution corresponding to the S{H) on

time scales fast compared to those considered[22r23. It
The constanie describes the strength of the measuremenhas also been shown that in at least one such linear system an
interaction and in the cavity QED example depends on thearbitary density matrix can eventually be written as a proba-
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bilistic sum over Gaussian pure states after sufficient evoluAs in Ref.[26], the Itorules for stochastic differential equa-
tion subject to the unconditioned master equafigd]. In  tions[27] and the properties of Gaussian std28] result in
considering such a linear system, we are in effect specifyingleterministic equations for the conditioned second-order mo-
a semiclassical evolution, since the equations of motion foments which are decoupled from the equations for the
the Wigner function of the state in the unconditioned evolu-means. The constant term in the equation Vg, refers to

tion are similar to the classical Liouville equations for athe momentum diffusion due to the position measurement,
phase-space density; see, for example, R&5]. However, and remains in the master equation for the unconditioned
here we include the important quantum feature of the meaevolution. The nonlinear terms describe the conditioning of
surement backaction, which is represented by the fact thahe state on the measurement. The noisy contribution to the

the momentum diffusion is determined by the accuracy withequation fordx seems a little like a stochastic impulsive
which the particle’s position is monitoreld]. So, as the force; however, it is perhaps better to think of this term as
noise in the position measurement is decreased by increasingdating the expected position given the measurement result

«, the momentum diffusion expressed by the Lindblad termdb in analogy with classical Bayesian state estimation.

in the SME(2.1) increases. Equations like those above for the second-order moments

tenftz:‘ozi\i/?egreart(iajllngaunstigﬂr:gbl;crjrr{fr?i’ mitczmges”evciﬁ dsﬁt-je rof the conditioned state arise very frequently in classical
. . ) continuous-time observation and control problems. They can
moments from the SMHE2.1), since d{(c)=Tr(cdpy). A b y

S . ) ) be collected into a Riccati matrix differential equati
similar calculation was performed in Rd24]. We define quatigze]

for the covariance matrix,
the dimensionless quantitiesx=(x)/\%/2mo, and
p=(p)/VEimw/2, the second-order momentsV,, d
=2mo((AX)A/f,  Vpp=2((Ap)A)/hmw, and V,, giV=©(C-VBV-DV-VA), (2.59
=2(AxAp)sym/fi, and a dimensionless parameter describing
the relative strengths of the measurement and harmonic dy-
namics,r = mw?/2h . The Heisenberg uncertainty principle Vyx
now requires thav,,V,,=1. A pure state has the property V:(
that VXXVpp—V§p=1, representing the fact that a Gaussian
pure state is a minimum uncertaintly state for some pair of _
conjugate quadrature variablggl]. A scaled measurement 0 (1— Sln(2¢))
currentdQ is defined so as to be consistent with the scaling
of the position, so thal O=dQ/\%/2mw. In terms of these
new quantities, the Ttstochastic differential equations for
the first- and second-order moments and the measured pho- (2.50
tocurrent are

Xp) , (2.5b

A=DT= ,

o~ 2w
dx=wpdt+/ e cog @)V, dW, (2.49 B= r , (2.50
0 0
~ ~ 2w )
dp=—wxdt+ \/T[cos(¢)vxp—sm(¢)]dw, 0 0
(2.4bh C= 0 2cosp | . (2.50
r
dO=cog ¢)x dt+ . dw, (2.49  Asingle variable Riccati equation which arose from the sto-
20 chastic Schrdinger equation for this system was found and
solved in Ref[18].

1dvV 2 In practice it may not be homodyne but, rather, hetero-
- thX=2VXp— - cod(¢)V2,, (2.40  dyne detection which can be experimentally achieved with

noise at the quantum limftL]. In this case, the local oscilla-
tor is detuned from the cavity by a frequenayg, which is
2 large compared to all system frequencies, with the result that
Vot T cos () the phaseg changes very rapidly. The quantum theory of
heterodyne detection was described by Wiseman and Mil-
2 ’ burn[30]. The appropriate conditioned evolution can be de-
7 coS () Vip, (248 scribed by averaging all the trigonometric functions¢fn
the evolution equation§2.4) except where they are multi-
plied by Ito increments. Thus the equations for the second-
)V _E CO2( )V, V order moments are exactly those for homodyne detection
>y XXX with ¢=0, wherer is replaced by 2, corresponding to halv-
(2.49) ing the signal-to-noise ratio of the measurement. Considering

1 dVp, _2( L Sin2¢)

1dVy, sin(2¢)
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the stochastic integrals [1"*cos@pet’)dW(t') and = rVep= 21\r, Vip=1, and the conditioned state is
P osin(Apet’)dW(t"), first in the limit of infinite Ape;and  strongly squeezed in position, as one would expect for a
then in the limit of infinitesimabt, leads to equations for the position measurement which is rapid enough to overcome
first order moments under heterodyne detection, the internal dynamics of the system. The product of the po-
sition and momentum variances is greater than that required
o by the Heisenberg uncertainty principle as a result of the
dx=wpdt+ \/: Vo dW, (2.6  sSystem Hamiltonian which gives a nonzero correlatigy.
r Finally, the scaling we have chosen for the variances makes
the limit of the free particle appear singular, however, this
B 5 o limit exists and the results agree with Belavkifk8]. Pure
dp=—wxdt+ \ﬁ (VypdWp—dW,), (2.6b  steady states also exist for other values¢obut the full
r expressions are rather complicated, so we will just consider
two special cases. If the oscillator dynamics dominate (
>1), the steady conditioned states are insensitive to the local

dyne detection and=0, wherer is replaced by  and in oscillator phase, leaving the conditioned state nearly in a
which a second independent noise proce®é, is present. cg?erent stat¥/y=1+sin(2¢)/2r, Vpp=1-sin(2¢)/2r, and
Scaled versions of the two quadrature components of th¥xp=COS¢/r. If r<1 the conditioned state is strongly de-

where dW,; and dW, are independent Wiener increments.
Again this is formally identical to the evolution with homo-

experimental photocurrent are given by pendent on the choice of local oscillator phase,
-~ ~ r
— _ r
dQu=xdt+ \/; dW,, (2.78 VS~ 1cos 4|+ tan &, (2.93
|cos )|
dQ,=dW,. (2.7b
2
Again note the replacement ofby 2r in the equation for V,Sfb: T\/1/| cos ¢| +tan ¢, (2.9b
dQ, as compared to the equation t® with ¢=0. So if the r

guadrature-phask,(t) current is collected and used to ac-

count for the noisy potential, or alternatively fed back in <

order to compensate for this evolution, then heterodyne de- Vip="1/|cosp| + tane. (2.99
tection is equivalent to homodyne detection with half the

signal-to-noise ratio as far as the motional state is concerneg,iher surprisingly, it is possible for some phases of the

local oscillator that the momentum variance is in fact smaller
B. Steady-state conditioned variances than the position variance. This is because the measurement

For all phases of the local oscillatge: 7/2, and 3r/2, the for nontrivial ¢ is a simultaneous measurement of the posi-

second-order moments possess a steady state. For examgjien of the oscillator and the momentum kicks to which it is
if $=0, being subjected and this can result in a more sharply defined

momentum than position. This is really only a possibility for

phases of the local oscillator where there is very little posi-
1 4 tion information in the record.
Vis=— -1 (2.89 i i
XX \/Er 1+ ' In the cases wheré==/2 and 37/2, the differential equa-

r tions for the second-order moments of the state are simply
those that result from the unitary evolution of a simple har-
1 4 4 monic oscillator and the SME2.1) describes a stochastic
fopz =\ 1+ 5\ A [14+——1, (2.8b unitary evolution. As a result there is no steady state for the
V2 r r2 moments, which grow according to the conventional Sehro
dinger equation. In this case the measurement current is
white noise. In Ref[22] it was noted that where a Lindblad
Vsszlr( 1 /1+ i—l) , (2.80 operator is Hermitian there exists an unravelling of the mas-
2 r? ter equation which does not localize the conditioned state.
The reason for this is clear in this context, such an unravel-
which defines a pure state that agrees with the solution giveling corresponds to a measurement in which the observer
in Ref.[18]. The steady states are found to have exactly thebtains no information about the system state.
same second-order moments regardless of the initial purity
of the system. Assuming ideal detection, the observer is _ o
eventually able to ascribe a pure state to the system. When C: Time scale for determination of a pure state through
the harmonic oscillator dynamics dominates over the mea- measurement
surement (>1), the steady conditioned state is approxi- The matrix Riccati equatioi2.59 has an analytic solu-

mately a coherent state wiM;3=V3,=1, andVi;=1/r. If  tion given by Reid[29]. Where U(t) and W(t) obey the
the measurement dynamics dominate<(l), then V5,  linear coupled matrix equations
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for all the second-order moments and arbitary initial condi-

—U=AU+BW, (2.103  tions is complicated and not particularly illuminating. In or-
at p y g

d der to expose the general form of the solution we will just
aW=CU— DW (2.10b  consider the case=0, and give a solution for the position

and for times wher&l (t) is nonsingular, the solution for the variance where the initial state of the oscillator is of the
covariance matrix i8/(t)=W(t)U~(t). The full solution  formsVy,(0)=V,p(0)=Vo, V;p(0)=0,

Vo(c?coshdt+b?cosxt) + (1+V3)(c sinh2bt—b sin 2ct)
(b2+¢?) + Vo(c3sinh2bt+ b3sin2ct) + (1+ V3) (c?sintPbt— bsirfct) |

1 4
bzﬁ 1+ -1, (2.11h
r
1 4
C=E\/ N /1+_2+1=1N§§. (2.110
r

We have scaled time by the harmonic oscillation frequencymeasurement of the position. If heterodyne detection is used
o. When Dt>1 the system is close to its steady-state valuaather than homodyne detection, theis replaced by 2 in
regardless o¥,. The nonlinearity of the terms describing the the above equations with obvious implications for the time
conditioning of the system state cause the time over whiclscale of the system collapse.

the conditioned state becomes pure to be independent of the A pure state describes a situation in which an observer has
initial temperature of the state. For definiteness we will desmaximal information about the system. A mixed state de-
fine a collapse time.,=2/bw as being the time at which the scribes a less than maximal knowledge of the system and it
state has become effectively pure. When1 this collapse turns out that the amount of missing information, in an in-
time is 7.o=2r/ w=mw/#h«a, since in this regiméd=1/r. In  formation theoretic sense, required to complete the specifi-
this regimec=1+1/2r2, and there are many oscillations of cation of the state may be measured by the von Neuman
the particle before the state is determined. That the time tentropy S(p) = —Tr(plnp) of the density operator; see, for
determine a particular pure state of the system should inexample, Ref[31]. Thus the entropy allows us to quantify
crease with the frequency seems reasonable since unexpectbé extent to which the measurement has determined the state
values of the measurement current could be due to a misf the system at a given time, and also the extent to which
taken idea of the position of the particle, the white noise inother environmental couplings limit what an experimenter
the measurement record, or to motion due to the oscillationgan say about the system state. Another commonly used
and these possibilities will be more difficult to distinguish if measure of the “mixedness” of a given density matrix is the
the atomic motion is fast. For smallerthe measurement is linear entropy or puritys(p)=1—Tr(p?). For a single-mode
becoming very good, and this estimate for the collapse timé&aussian state these quantities are simple functions of the
is optimistic since it is hard to determine the state of theunitless “area” of the state in phase spacA
system in less than one period of the mechanical oscillation= ‘/VXXVpp_szp [32]:

Reductions in the conditioned momentum variance will only

occur as the Hamiltonian evolution creates a correlation be- 1

tween the position and the momentum of the state. Even if s(p)=1——, (2.123

the harmonic potential were absent, a continuous measure- A

ment of position will give some information about the mo-

mentum of the particle. When<1 the particle is essentially A+1 A—1

free as far as the measurement is concerned, and the time for -~ S(p)=——In(A+1)— ——In(A-1)—In2.

the state reduction to occur turns out to hg=8m/7%i «, (2.12b
which is determined solely by the strength of the measure-

ment and the mass of the particle. In this situatlosc Note thatA is just the determinant of the covariance matrix
= 1. Increasing the measurement coupling means that thef the position and momentum probability distributions for
time for the measurement to take place is reduced and in thHése conditioned state. For a pure stéte 1, s(p)—0, and

limit of infinite « the model essentially describes a projectiveS(p)—0, and as the state becomes increasingly mixed it

V()=

(2.113
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20F ' ' ' ' 7 ance slows. Eventually all the second-order moments decay

' (a) to the steady-state values predicted above. This initial fast
reduction of the position variance is accompanied by a fast
reduction of the von Neumann entropy which damps to zero
as the system approaches steady state.

o

D. Cavity QED realization

Although we have been considering an abstract model for
continuous position measurement, this work is motivated by
emerging experimental possibilities in areas such as cavity
quantum electrodynamics. The position-dependent phase
shift induced by an atom strongly coupled to a high finesse
optical cavity mode in the dispersive limit of cavity QED
[12-19 realizes the abstract position measurement coupling

Second Order Moments
3

o

ssf T T T T T ] considered here. It is currently possible to detect the presence
(b) 1 of a single cold atom in the cavity through measurements of
30 1 the output field 33,34, and great progress has been made in

von Neumann Entropy

,,,,,,,,,, . observing single-atom events with broad bandwidth close to
25 Linear Entropy i

the dispersive regim¢l]. The phase shift changes most
J quickly with position where the gradient of the field is great-
est, and if the atom is harmonically confined in this region
] then the model discussed above would be approximately re-
alized. There is also the far off-resonant optical potential
which will lead to large forces on the atom in this regime
which would move the atom quickly away from this region
of the standing wave. However, an optical standing wave at
a nearby frequency could in principle be tuned to cancel the
ac Stark shift of the ground state in the region of the har-
monic confinement. In fact the dipole force could straight-

FIG. 1. Time evolution of(a) the dimensionless second-order forwardly be included in our simplified model, resulting in
momentsV,,, V,,, andV,, and(b) the two entropies of the con- only minor changes for sufﬁgently stro_ng harmonic confine-
ditioned state of the harmonic oscillator under continuous positiornent. For the moment we will not specify the exact source of
measurement as described in the text. Note the different time axége potential confining the atom, but the use of light forces
for the entropies. Time is measured in units of the harmonicfrom a far-off-resonant optical standing wave or a standing
oscillator angular frequency while= 20 and¢=0. The initial state wave in another mode of the cavity are possibilities. There is
is Vyx=V,,=20 andV,,=0 corresponding to a thermal state of the also experimental work aimed at confining ions in high fi-
oscillator. nesse optical cavities which could realize such a sy$8&h

If we imagine a harmonic potential confining the atom to
occupies a larger phase space area such thaA-ase, this region of the standing wave with some constant restoring
s(p)—1, andS(p)—. As we would expect, if the state is force to overcome the dipole force then in the far-detuned
widely spread in phase space then our knowledge of the sy@nd Lamb-Dicke limit, the resulting SME would be exactly
tem is poor and the information needed to complete the deEd. (2.1) above[15]. The constantr would then be equal to
scription of the state is great. 2g¢nk?/A%k, whereg is the maximal single photon Rabi

The time evolution of the variances and the linear and vorcoupling in the cavityn is the number of photons present in
Neumann entropies of the conditioned state with(0)  the driven cavity in the steady statd,is the detuning be-
=Vpp(0)=20, V,,=0, w=1, andr =20 is plotted in Fig. 1. tween the atomic and cavity resonances — the external laser
These parameters are chosen since the measurement dynairiving is on the cavity resonance,is the cavity field decay
ics are not fast enough to obscure the harmonic oscillatiomate andk, is the wave number for the light resonant inside
totally, and because achieving very small values afill the cavity. Using the parameters of R¢L5], which are
probably be difficult in practice. Several features of Fig. 1based on cavity parameters achieved by Heodl. [34],
are relevant. First the initial very rapid reduction of the po-gives a=2.4x10?° s' m 2, and this determines the rate
sition variance is associated with the the first part of theof decay of the off-diagonal terms in the position represen-
measurement record, making a reasonably accurate deternt@tion of the density-matrix under the unconditioned evolu-
nation of the position. Then over the time scale of the hartion. This rather large number means that the density-matrix
monic oscillation, the momentum variance also reduces aslements(x|p|x'), wherex and x’ are separated by nine
the dynamics correlate the position and momentum. Not@anometers or around 1% of a wavelength, will decay in the
that the reduction in momentum variance occurs only whemnconditioned evolution at the rate XQ0* Hz. The decay
there is a strong correlation between the position and thef off-diagonal elements of the density matrix in a particular
momentum. AsV,, becomes small the position variance de-basis is often associated with decoherence and the emergence
cays more rapidly, and the reduction of the momentum variof classicality[36]. In this case the decoherence is due to the

20

Conditioned Entropy
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measurement coupling. In Refl3] this decay of off- expression for must be large for the SME2.1) to corre-
diagonal density-matrix elements is described as state reduspond to the cavity system, extremely large valued'gf,

tion. In this work we are interested in state reduction onto are necessary to achieve rapid measurement of the system
pure state, and the rate of this process is determined not onjtate.

by « but also by the length scale of a typical pure state of the

uncoupled system. Thus we found above that reduction onto IIl. CLASSICAL ANALOG

a pure state took place in a time,=mw/4f«, and the ) N

dependence on the length scale of the harmonic oscillator is |f We are to interpret the conditioned state as the best
clear. In order to find the rate of collapse onto a pure state iflescription of the observer's knowledge of the quantum-
the conditioned evolution, it is therefore also necessary téhechanical state given the results of a series of measure-
know the oscillation frequency of the atom due to its har-ments, we would expect a similarity bet\(veen these equations
monic confinement. Assuming this is achieved optically, theand classical Bayesian state observation. The analogy be-
value for w/27 could be in the range of tens to hundreds oftween the SME(2.1) and Kalman filtering for a classical
KHz. So, for example, in Ref15] the potential for a cesium POSsition measurement was discussed in F3f.but only the
atom resulting from the same cavity and driving parameter§duations for the position probability distributions were con-
gives w/2w=2\/mml2ﬂ'=180 kHz,  while sidered. Here we formulate the contlr)uous—tlme _posm(_)n
/277=60 kHz was achieved for cesium in optical lattices bymeasurement state observer for a classical harmonic oscilla-

Haycocket al.[37]. For such a hypothetical experiment with tor, and find that there is a close analogy between the SME
cesium we now have=5.6 and 0.63, respectively. Esti- and the classical theory for all moments of the conditioned
mates, as outlined above, for the time for an experimenter t robap|llty distribution as long as we restrict ourselves.to
determine a pure state of the system through heterodyne d aussian states and allow for noisy driving of the classical
tection are then 19 and 8,8s. Both these times are reason- oscillator. . . . . "
ably close to the minimum collapse time for this accuracy of The problem of noisy, Cl_asswa_ll, continuous time position
detection which corresponds to the free-particle limit with measurement of a harmonic oscillator can be formulated as
To=3.9 us. In current experiments, detection efficiencies

and bandwidths will have a significant effect on the informa- dxc

tion that can be gathered from the record. For trapped ions W:wpc' (3.13
harmonic frequencies would be around an order of magni-
tude larger, and state reduction times would then also be

around an order of magnitude longer. However, the cavity dﬁ:—wx n 2_“’ 6 (3.1b
finesse used here for such experiments may be more difficult dt ¢ s '

to achieve at typical frequencies of ion transitions and the

size of the cavity will be limited by the ion trap electrodes. dQ p

What is dramatic about this time is that it is so short that —C=aXC+ A — 7 (3.19
single cold atoms have been observed close to the center of dt 2w

the cavity mode in the experiment at Cal Tech for times of

the order of hundreds of microseconds. This is another con- E[e(t)e(t’)]=E[7(t) p(t")]=8(t—t"), (3.1d

firmation of the extent to which this experiment operates
near the standard quantum limit of position measurement
(see Ref[38] and references therginand an indication of E[e(t) n(t")]=fo(t—t"). (3.1¢9
the importance of continuous quantum measurement theo
to its interpretation.

Note that it will be difficult to achieve very small values

'We have used the same scaling of the variables as in the
quantum problem. We imagine that, as well as having an
émperfect measurement of the system, the oscillator is sub-
ject to a white noise force. There may be some correlation
between the oscillatofplant or processnoise and the mea-
I§urement noise and soand 7 are correlated Wiener pro-
cesses. As in the quantum-mechanical case, the limit of small
r is the limit of good position measurement.

oscillation in the well. This is the result of the two main
constraints on the applicability of the model. First it is nec-
essary that the harmonic potential confine the atom to we
within a wavelength, thus justifying the Lamb-Dicke ap-

proximation in the master equatid@.1). This requires that The continuous-time theory of Kalman filtering then pro-

the recoil frequency for the atomic transiti(mec=hkf/2m . . ~ -
be much smaller than the harmonic oscillation. Moreover?ides the best estimate of the system standp and the

attaining the dispersive regime requires that thesecond-order moments of the posterior probability distribu-

saturation parametes=g2n/A? be much smaller than 1. 10" P(Xc.Pc) [40]
It is possible to express in terms of these quantities,

= (0! 0169 (1/85) (/T o), WhereT' =03/« is the cavity . 2w
mediated spontaneous emission &@]. Assuming that val- dxc=wpcdt+a T VidW, (3.2a
ues of w and s are chosen to satisfy a particular level of
approximation, the rate at which the conditioned states be- > >

come pure is only increased by changing the cavity param- dbe= — wxedt+ [c@ Vo +f /_‘“)dw

eters through increasinf,, relative to the oscillation fre- Pe=—wXc AN Ve s ’
guency. Moreover, since both the first two factors in this (3.2b
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1 dV,y 2 o2 the observatior_and the process noise of the relevant classi-

o a2V ratVi (3.20  cal problem. Since the symmetric moments are the moments
of the Wigner function(for example, Ref[28]), the condi-
tioned Wigner function can be interpreted as the direct ana-

1.dV,, 2af 2 2f2 2 - log of a clz?\ssical 'poste_:rio'r probab_ility distribution fqr the
—T——Z 1+ —|Vyp T s Ta Vip system. This relatlonshlp is not going to be as straightfor-
@ Vrs ward for more complicated quantum systems where the con-
(3.2d ditioned Wigner function can be negative, and cannot be
interpreted as a probability distribution.
1 dV, 2af 2
- szvpp_ 1+ \/T—s Vi ;anxxpr- (3.20 IV. DEPENDENCE ON INITIAL STATE

We have established above that the conditioned state of
the system can in priniciple become pure after a finite obser-
vation time. What might not be clear is that the state which
results is uniquely determined by the measurement record. In

loved h indicates that th ity i timat n ideal projective measurement the probabilities of obtain-
employed heré indicates that the quantity IS an estimate g the various measurement results depend upon the initial
the classical variable and not that it is a quantum operator,

Th ts of th teri babilitv distribution h state. However, once a result has been obtained the condi-
€ moments of the posterior probabliity GISWIDULON NaVey;q ) state after the measurement depends on that result
been given the same notation as the moments of the con

. . . *~—alone. In a similar way, for continuous measurements we
t!oned quantum-mechanical stat_e. If we make the Identlflcafind that, while the initial state affects the probability of ob-

tions s=r, a=cosp, and f=—sing, then this system of  ining particular measurement records, the conditional state
equations is formally identical to the system which deter- ollowing the measurement is determined by the particular
mines the evolution of the quantum-mechanical Conditionetineasurement record which was obtained, provided that

state equationg2.4). record is sufficiently long. In particular, if the initial state of

We see that therg is a classicgl model Of. noisy positioqhe system is very poorly known to an observer, then we
me_asuremen't.for V.Vh'Ph the equations of_monon for .the pOSFnight hope that there is effectively a maximum likelihood
terior probability distribution of the classical state given by estimate of the system state which depends only on the mea-

the Kf?"ma” f_iIFer reproduce the stochasti_c master eq_uatio%urement current and which converges to the actual system
What is specifically quantum mechanical in the SME is tha tate withinz.,. If propagating the stochastic master equa-

n’le cannot, even ;n pr.|n0|ple, spet0||fy tg? prgcel.;ss NOISE aNflon with the actual initial state of the system providesaan
the measurement noise separately. Liassically oné CoUlGystariori estimate of the system state given the measure-
imagine |sqlat|ng the system sufficiently trels as Iargg a5 ment results, then such a maximum likelihood estimate
we like. With s—c there would be no momentum distur- o 14 result from propagating an initial state with very large

b_ancehon the atfor::, and after a slgftf)lu%ntly long gbservalttlo osition and momentum variances in the SNE1), say
time the state of the system would be determined exactly g ' _\, Z\/ o "andV,,=0, which gives a nearly flat

SS__ H XX
that Vij=0. Clearly this does not correspond t0 a quantumy o hrobability distribution for the initial state. In this sec-
state. However, the quantum theory of the problem guaranyjon we demonstrate that such a strategy does indeed work.
tees that any coupling to the system which gives positionryys the purity of the conditioned density matrix indicates,

information about the state of the system must also disturg \would be hoped, that there is only one pure state of the
the momentum. This momentum disturbance must be SUﬁ'éystem at timet> 7., which is consistent with the known

cient that the conditioned state always obeys the Heisenbe@aquence of measurement results.

uncertainty pringiple. Thus only some classically possible Suppose that two observers, Alice and Bob say, postulate
models _of position measurement are allowed by quantunditferent initial states of the systepf(0) andp®(0), which
mechanics. For a given level of measurement noise, the proge il continue to assume to be Gaussian. For example,
cess noise must be at least sufficient to ensure that the ol may have more information than Bob about the sys-
SEerver can never infer probab|l|ty d|str|bl_1t|ons fqr the POSI"tem in which case Bob would start with a more mixed initial
tion and momentum which do not constitute valid quantumyensin matrix reflecting his initial lack of knowledge. Given

states. This is a measurement-disturbance uncertainty relg;,; they both recieve the same measurement re¢tycnd
tion [41] for continuous measurement; reducing the noise ir%

HeredW is an Wiener increment wittW?=dt that is inde-
pendent of the noise processgsand e and proportional to

the innovation procesdQ— axdt. Note that the circumflex

. o . propagate their conditioned states according to the SME
the measurement must increase the noise in the evolutio

. . . "~1(2.1), it should be the case that at some tithearoundr,,,
However, backaction noise does not behave like classic ) e 7col

se- it i tirely determined by th lice and Bob agree on the system state, so fft’)
process noise; its properties are entirely determined by the g1y ‘From sec. 11l we know that after the time,, the

measurement. If we vary the basis of the measurement on the, .- i rder moments of both conditioned states will be

meter—vary¢—then we are able to alter the correlation be-eqeualvi/?:vﬁ =V:*and so we focus on the equations for the

Meen the measurement noise and the apparent process r]01J|Srst—order moments of the conditioned state for each ob-
in the classical model.

We have found here that the symmetric moments of the€ver

conditioned state always obey a system of equations which
also describes Kalman filtration for a classical problem, but dxP = woPdt+ |20 VA dW
that altering the specific quantum measurement alters both P roooXen

(4.13
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20 It is straightforward to use theltchain rule[27] to find
dpt=— wx dt+ - prdW, (4.1b differential equations for the expectation values of the cova-

riance matrix for the difference between the conditioned
means of Alice and Bob

20
dxB= wpBdt+ \/TVEXdWB, (4.19 1 d , 4 0,2 o
Z &(E[ex])ZZE[exep]_ FVXXE[eX]+ F(Vxx_ Vi)
(4.3a

2
dpB= — wxBdt+ \/Tw VE AW, (4.1 Ly .
® a(E[e;ZJ]) == 2E[exep]_ FVEpE[exep]

r r 2
dQ=x"dt+ /Z dw=xBdt+ \/Z dWB. (4.1e + F(VXBp—vﬁp)Z, (4.3b

In this section we will omit the tildes used earlier to indicate 2 2
that we have scaled the position and momentum to the natu- — g7 (Eleep]) = E[ej]—E[ef] - vapE[e)z(]— vafx
ral units for the harmonic oscillator. The stochastic incre-

mentdQ is the infinitesimal increment of the measured cur-

rent which both Alice and Bob have access to. We can X E[e.ep]+ E(VEX—VQX (Vo= Viep)-
express the incrememtW® in terms of the other quantities r

dWB=dW— \2w/r (xB—x*)dt, and find stochastic differen- (4.30

tial equations for the differences between the megmsx® . .

XA, e,= pB—pA: Although we have taken the expectation value for this sys-

tem of equations, the noise terms all become zero aftgr
so these ordinary differential equations eventually describe
20 2w the whole dynamics. We are now interested in the time scale
de,=wepdt— TVExede \are (Vi Vi) dW, over which the elements of this covariance matrix become
(4.29 zero. Unfortunately the time dependence of the conditioned
state variances prevents a closed-form solution of this system
of equations, and we have not found a matrix Riccati form

2 . 20 o A for the overall system. However, it is straightforward to in-
dey=—o| 1+ -Vip|edt+ \ = (Vip= Vi) dW. vestigate the problem numerically.
(4.2b We wish to show that all observers will agree about the

conditioned state of the system in roughiy,. To do this it
The deterministic part of this system of equations describes 3 sufficent to show that an arb|ta_ry observe_r will agree W'th
some preferred observer in that time. For this reason we will

damped harmonic oscillation f&, ande, where the damp- . L . .
ing and oscillation rates depend on the second-order m@ssume that Alice has sufficient information to describe the

ments of Bob’s conditioned state. The damping in thesestate of the system as a pure state, and that she has access to

equations is not present in an analogous equationefor sufﬂqent earllgr measurement rec?rds ﬂﬁ(t):v‘sis' An.
given by Mabuchi[38] for a free particle. The equation experimenter Is going to be in Bob’s position of not having
adopted in Ref[38] is obtained from the continuous limit of Precisé knowledge of or control over the preparation of the
the repeated position measurement model of Caves and Miftate- We would expect that if Bob makes an accgra.te ASSESS
burn[11], and does not contain a noise term in the stochasti@€nt of his initial knowledge of the state tgﬁiex; Is at
differential equation fox. In fact the omission of this term is  first of the same order a&,, or smaller. Sinc&/,,—V,, may

in error and if the continuous limit of the repeated positionPe large initially, the stochastic term in the Edq4.2) for
measurement model of Caves and Milburn is taken correctip0b’s errors dominates for very short times and essentially
then the noisy contribution tde,, which we obtained from determines a random initial condition fag, such that

the SME (2.1), is in fact present. It is the damping which E[€Z]=V. This reflects the fact that for short times the
results from this term which leads to all observers agreeingneasurement record is dominated by noise. From this point
about the conditioned state after a sufficiently long observaon we find numerically thaE[eZ]=V,,, and that all the
tion time. Note that after the time., Eqs.(4.2) are in facta  elements of the covariance matrix damp to zero withig.
system of ordinary differential equations, since at that poinfThus, we have found numerically that the conditioned state
the covariances of the two conditioned states are equal. Thdepends only on the measurement record after a time equal
differences in the means then damp to the steady state valutss the time over which the conditioned state becomes pure.
ex=e,=0, indicating that Alice and Bob do eventually agree Most importantly we found this to be the case even where all
about the state of the system regardless of their initial state#he variances were set to very large initial values, the largest
Thus we have shown that the conditioned state eventuallwe tried being V§,=V5,=E[e](0)=E[e>](0)=10".
depends only on the measurement record but not the tim€hus, as we anticipated, Bob can make an accurate estimate
scale over which this occurs. of the state within the collapse time even in the absence of
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FIG. 3. The linear and von Neumann entropies of the steady
conditioned state are plotted against effective detection efficiency.
Extraneous heating of the oscillator is also describedytas dis-
cussed in the text.

20

introduce detection efficiency and thermal couplings, these
will just modify the second-order moments of the condi-
tioned state such that the steady conditioned state is no
longer pure. Since the equations for the first-order moments
will be unmodified, all that is necessary to reproduce the
results of this section in this more general case is to use the
collapse timer,, which is appropriate for the new system.
Although this will mean that the experimenter is left with
broader position and momentum probability distributions, it
Time (Units of @,) will not mean that different experimenters disagree about the
means of these distributions. So, regardless of the detection
FIG. 2. The time evolution of Bob's mean-squared error in po-efficiency, the conditioned state is eventually uniquely deter-

for comparison. Time is measured in units of the harmonic-y,qwn by the experimenter.

oscillator angular frequency, white= 20 and¢=0. In (a) the initial
values areE[ef]=E[e;]=5, E[ese,]=0, V§,=V;,=200, and
pr:O, and, as discussed in the text, the mean-squared error, aly- THERMAL AND DETECTION EFFICIENCY EFFECTS

though originally small, rapidly becomes of the same order as the In order to discuss the effects of detection efficiency and

conditioned state variance. Itb) the initial values areE[ef] other uncontrolled coupling to a bath in the model we will

— 27_ 0 — B _\/B _ 0 B _

-~ Elep] 10%, Ele,ep]=0Vy,=Vpp=10", andV;,=0. Over a add an extra momentum diffusion term to the SME to obtain,

time roughly equal tor., the mean-squared error approaches zero, —
" " . ; for ¢p=0,

and the conditioned position variance approaches its steady state.

Note the different time scales in the two graphs.

Mean Squared Error

accurate information about the initial state. In this case Bob’s dpe=~i[Heys,pcldt+ 2aDlx]pdt+ 25D x]p dt
conditioned state corresponds to the maximum likelihood es- +\2aH[x]pdW. (5.1
timate discussed above. Interestingly, even with the pessi-

mistic initial condition whereE[€£](0) is significantly larger  Thjs simple modification to the master equation is intended
thanV7},(0)—this corresponds to Bob overestimating the ac-to model several possible imperfections in a real experiment.
curacy of his estimate of the particle’s position, and the dif-One contribution tq3 is the effect of detection efficiend]
ference between his estimate and the actual value being vegy thatg is at leasta(1—7)/7, where the overall detection
large—the determinant of the covariance matrix damps orfficiency isz. The effect of cavity loss through the unmoni-
the characteristic time scalg, . This feature is more pro- tored mirror in a cavity QED experiment is an effective de-
nounced for larger values af2,(0). Again this is because tection inefficiency. Where the loss rates out of the two mir-
for large initial values oV?, Bob’s estimate of the system rors arex, and«,, and if only the light passing through the
state is essentially dependent on the measurement curresgcond mirror is detected, then we obt@ir ax,/«x where
alone. These behaviors are demonstrated in Fig. 2 for the= k+ «,. The best situation is if the mirror in front of the
parameters used in the Sec. Ill. detection apparatus has significantly higher transmission
From this we can conclude that after the timg,, any  than the mirror through which the cavity is driven. Scattering
experimenter knows the state of the system regardless ddsses of the mirror will also be an effective detection inef-
how the system is initially prepared and of how much controlficiency, but these are typically much smaller than transmis-
the experimenter has over this process. In Sec. V, when wsion losses. In experiments with single atoms there will also
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' ' ' ' ' ' ' tributions to B8 in other systems, for example the interfero-

20 (@ metric detection of the position of a moving mir{dr3], will
E —Va also come from any coupling of the oscillator to a thermal
_';'_"_';'_'xxp bath. We found that the standard quantum Brownian motion
noy Ideal V_ i master equatiof28] led to steady conditioned states that did

not obey the Heisenberg uncertainty principle for small val-
ues ofr. This a result of the non-Lindblad terms in this
master equation. The master equation we adopt here solves
- this problem by considering only coupling to very high-
RN temperature thermal baths for which the thermal contribution
A to Bis ykgT/#2, wherey is the coupling rate to the thermal
: ] reservoir andr is the temperature of the bath. This should be
ol o e an adequate description of heating in the experiment as long
as the bath to which the system is coupled is of sufficiently
high temperature that only the diffusive evolution is signifi-
cant for the time scales of interest.
Pure states become mixed during the evolution described

Second Order Moments
3

o

Time (Units of )

20

(b) by the SME(5.1). Although pure-state unravellings of this
——Ele]] SME exist, the resulting wave functions cannot be inter-
T v® 1 preted as states of the system conditioned on information

actually available to the experimenter, whereas the condi-
oned density matrix can be interpreted in this way. However,
the SME continues to preserve Gaussian states so the previ-
ous calculation for the evolution of state can be straightfor-
wardly modified. The second-order moments of the condi-
T : ] tioned state still reach a steady state and we can easily find
an expression for the steady conditioned state phase-space
areaA:

Mean Squared Error
=
T

o
T

0 . 1 N ! N 1 n t L L . 1
0 2 4 &} 8 10 12 14

Time (Units of o)
AS= 1+ Bla=q=117, (5.23

FIG. 4. (a) The time evolution of the dimensionless second-
order moment¥/,,, V,,, andVy, under continuous imperfect po-
sition measurement as described in the text. Time is measured in s(pH=1-1lg=1— NS (5.2
units of the harmonic-oscillator angular frequency while 20,
¢=0 andq=>5. The initial state i8/,,=V,,=20 andV,,=0, cor-
responding to a thermal state of the oscillator, and for comparison
the evolution of the conditioned position variance is plotted for the g+1 g—1
case of perfect detection. As discussed in the text the conditioned S(pd)= T'”(Q‘*‘ 1)- T'”(q— 1)=In2.
second-order moments reach a steady state more rapidly when the (5.20
detection is imperfecib) The mean-square error in Bob's estimate '

of the conditioned state mean position, and Bob’s conditioned statg jinear and von Neumann entropies of the steady condi-
position variance for imperfect continuous position measurementg, o states are plotted for a range of detection efficiencies
r=20, ¢=0, and q=5. The initial values areE[e;]=E[&,] i, rjy 3 Eyen though we have effectively coupled the os-
=10", E[e,e,]=0, Vyx=V;,=10", andV;,=0. Even where the illator t infinite i bath. th ditioned
observation is imperfect, the conditioned state is eventually indeC!aor 10 an infinite temperature batn, the conditione
pendent of the initial state of the system. steady states havg in some sense a flnl_te_z temperature but
stochastically varying mean values of position and momen-
be heating due to spontaneous emission into free spadem.
which will lead to a contribution tg8 equal toggnF/4A2, We will consider some limiting cases here for the steady-
whereT is the free-space decay rate of the excited state o$tate variances in this more general situation. Where the
the atomic transition. Other than the restriction to the Lamb-measurement is strong<€1) the position variance is insen-
Dicke regime, this is the largest correction to the adiabatisitive to these imperfections,Viy=ra,Vy5=0q,Vs;,
cally eliminated master equation given above when a mod=2./q% \r. If the dynamics dominater& 1) then the posi-
erate detuning from the atomic transition is employed as irtion and momentum variances have the same dependence on
Ref. [1]. The spontaneous emission contribution to the heatg asA, V=g, V53=a%r, andVyy=q.
ing is also proportional to the measurement couplinguch Finally the whole time evolution of the second-order mo-
that Bg=al’ K/4g3, and to minimize the effect of spontane- ments of the conditioned state can be determined by solving
ous emission we must use cavities with the largest possiblthe matrix Riccati equation. Again we will just consider the
value ofg%/K. Recall that if this rate is large the signal-to- position variance as a function of time whehg,(0)
noise ratio of the position measurement also improves. Con=V,,(0)=V;>1, andV,(0)=0:
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0?Vo(c?coshdbt+b?cosZt) +q(V3+g?)(c sinhbt—b sin2ct)

V(1) = , 5.3
xd) g2(b2+c?) +qVy(c3sinh 2ot+b3sin 2ct) + (V2+g2)(csini? bt— bZsir? ct) (533
0

1 4q2
b= — g, 5.3h
\/E 1+ r2 ( )

1 2
C:E 1+ 4%+1=C]/V§i, (530)
r

and we have scaled time by the harmonic oscillation fre-and its evolution is exactly that of the posterior probability
quencyw. As before, when Bt>1 the system reaches its distribution for an appropriate classical state observer. While
steady-state value and the nonlinearity of the terms descritwe have considered only the case of position measurement,
ing the conditioning of the system state mean that the tim¢he same treatment will be applicable to these other linear
for this to occur is independent of the initial state. Interest-systems. Clearly in more complicated systems, such as the
ingly this time is in fact shorter than was required to purify resonant interaction of an atom with the single mode of an
the conditioned state in the case of ideal detection. This igptical cavity, this will not always be the case, and the con-
essentially because the extra noise means that past obserditioned Wigner function will sometimes be nonpositive.
tions become irrelevant more quickly, not leaving enoughHowever, we would expect that the central result we have
time to determine a pure state completely.While the steadghown here, the purity of the conditioned state after suffi-
state is reached increasingly fast it corresponds to an increasiently long continuous observation and the dependence of
ingly high effective temperature. Whearn>1 this time to  this state on the initial state only through the measurement
reach the steady state is=2r/quw=mw/qfia=1./q, results, will still hold for these more interesting and compli-
since in this regim&é=q/r. As noted in Sec. IV, the time for cated systems. However, this will require numerical simula-
the conditioned state variances to reach their steady state tion of the stochastic master equation for such systems. An-
also the time that is necessary for different observers to agregher feature that should generalize is the interpretation of
about the system state. The time evolution of some of thestie SME as a state observer—presumably an optimal one—
quantities is plotted in Fig(4). for the quantum system.

VI. CONCLUSIONS
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