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Spatial instability of counterpropagating waves in nonlinear distributed feedback structures
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We investigate spatial instabilities~induced by small angular perturbations! of counterpropagating waves in
nonlinear distributed feedback~DFB! structures. We determined the DFB-structure threshold length at which
an absolute instability occurs and a nonhomogeneous spatial intensity distribution is generated. The evolution
of the transverse intensity distribution is studied for counterpropagating waves as a function of the control
parameters.@S1050-2947~99!04808-8#

PACS number~s!: 42.65.Sf, 42.65.Tg
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I. INTRODUCTION

A rich spatiotemporal dynamics of nonlinear distribut
feedback~DFB! structures and prospects of their utilizatio
in practical devices attract investigators to develop the the
of optical radiation propagation in a periodically modulat
nonlinear media.

The propagation of plane waves in DFB structures w
recently studied theoretically@1–12#. The model used pre
dicts a series of effects such as optical multistability@1,8#,
temporal filtration of pulses with quadratic phase modulat
@12#, advent of solitons@6,7#, self-oscillation, and chao
@3,10#.

On the other hand, the various features of nonlinear D
structures open interesting perspectives for application
quantum electronic and integrated optics. In particular
multistable regime of a laser with Bragg reflector based o
nonlinear DFB structure was predicted@13#. Futhermore,
Refs. @14,15# claim experimental observation of multipl
gap-soliton formation and an all-optical logic AND gate u
ing a fiber Bragg grating.

The effects of a spatial modulation of the light beam
flected from a nonlinear DFB structure in the weak coupl
approximationkL!1 ~wherek is the coupling coefficient of
counterpropagating waves andL is the DFB-structure length!
were investigated using parabolic wave equations@16,17#.
The analysis of those equations allows us@17# to conclude
that generation of optical patterns in the transvere distri
tion of counterpropagating waves intensities may occur i
nonlinear DFB structure if the coupling is strong enou
kL>1 @18#.

In this paper we investigate the effects of spatial insta
ity of counterpropagating waves interacting in a nonline
DFB structure for arbitrary coupling coefficients. We co
sider a transparent medium with nonrelaxing Kerr nonline
ity and we perform a stability analysis of the homogeneo
stationary solutions~under the influence of small angula
perturbations!. We show that an absolute instability ma
arise leading to the generation of regular spatial structu
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~patterns!. Examples of such structures were found throu
numerical integration of the fully nonlinear equations.

II. BASIC EQUATIONS

Let us consider a layer of a Kerr medium with period
cally modulated refractive index

n5n01n1 cos~qz!1n2uEu2, ~1!

wheren0 is the linear refractive index,n1!n0 is the modu-
lation amplitude with spatial frequencyq, andn2 is the mag-
nitude characterizing the Kerr nonlinearity. Bragg scatter
of radiation by the refractive index grating arised during t
propagation in the medium. The field within the medium
given by the superposition of two counterpropagating wa

E~z,x,y,t !5@E1~z,x,y!eiKz1E2~z,x,y!e2 iKz#e2 ivt1c.c.,

~2!

whereE6(z,x,y) are the slowly varying amplitudes and th
K5(v/c)n0 is the wave number. Substituting Eqs.~1! and
~2! into the wave equation we get@16,17#

6
]E6

]z
2

i

2K
D'E65 ikE7e6 iD0z1 ig~ uE6u212uE7u2!E6 ,

~3!

whereD'5]2/]x21]2/]y2 is the transverse Laplacian,D0
5q22K is the linear Bragg detuning (uD0u!K), g
5Kn2 /n0, and k5Kn1/2n0. Boundary conditions for the
system of equations~3! are

E1~z50,x,y!5E10~x,y!, E2~z5L,x,y!5E20~x,y!,
~4!

whereE10 andE20 are arbitrary functions.

III. ANALYSIS OF LINEARIZED EQUATIONS

To get insight about possible physical situations we c
sider homogeneous solutionsE6(z) of Eq. ~3!. Of course,
E10 and E20 are also independent of (x,y). Then we per-
form a linear stability analysis around such solutions
weak perturbations in transverse directions. The comp

s-
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amplitudes of counterpropagating waves~2! can be written
in the form

E15E1~z!1@a1~z!ei (Kxx1Kzz)1a2~z!e2 i (Kxx2Kzz)#e2 iKz,

E25E2~z!1@b1~z!ei (Kxx2Kzz)1b2~z!e2 i (Kxx1Kzz)#eiKz,

~5!

wherea6(z) and b6(z) are weak angular perturbation am
plitudes (ua6u,ub6u!uE6u) and Kx.Ku and Kz.K(1
2u2/2), u!p/2 is the angle between thez axis and the
direction of the perturbation propagation. The followin
equations can be obtained from Eq.~3! for the weak wave
amplitudes in the linear approximation:

da6

dz
5 ikb6ei (D1D0)z1 ig@2~ uE1u21uE2u2!a6

12E1E2* b6eiDz1E1
2 a7* eiDz12E1E2b7* #,

2
db6

dz
5 ika6e2 i (D1D0)z1 ig@2~ uE1u21uE2u2!b6

12E1* E2a6e2 iDz1E2
2 b7* e2 iDz

12E1E2a7* ], ~6!

where D5Ku2. At k50 Eq. ~6! coincides with the corre-
sponding equations from Ref.@19#, where the analysis o
counterpropagating wave spatial instabilities in a homo
neous nonlinear medium was carried out.

We look for the solution of Eq.~6! assuming that the
intensities I 65uE6u25I 0 are constant and equal. Takin
into account nonlinear phase raid appearing during the w
propagation in the medium, we have

E1~z!5E 0ei3sz, E2~z!5E 0ei3s(L2z), ~7!

where s5guE 0u2,E05E1(0)5E2(L)5const. In the linear
approximation we can takeD056s without losing general-
ity. In this case, it can be shown that the wave intensi
remain practically constant and equal along the DFB str
ture if its length consists of an integer number of grati
periods (qL/2p5m, m50,1,2, . . . ). We introduce the
quantitiesA6 andB6 as

a65A6ei (D/213s)z, b65B6e2 i (D/213s)z. ~8!

Equation~7! with account of Eq.~6! can then be written
in matrix form

dY

dz
5YX, ~9!

whereY5(A1A2* 2B12B2* )Á,

X5S x1 x3 2x2 2x4

2x3 2x1 2x4* 2x2*

2x2* x4 2x1 2x5

x4* 2x2 2x5* x1 ,

D ,
-

ve

s
-

x152 i (D/22s), x25 ik1 i2se2 i3sL, x35 is, x4
5 i2sei3sL, x55 isei6sL.

The boundary conditions become

A1~0!5A0 , A2* ~0!5B1~L !5B2* ~L !50. ~10!

After simple calculations, the solution of the system of equ
tions ~9! can be represented in the form

Y~z!5(
i 51

4 S 1

b i

a i

g i

D Cie
l i z, ~11!

whereCi are integration constants,

l152l25
1

2
A24sk cos~3sL !2D2112Ds14k2,

l352l45
1

2
A8sk cos~3sL !2D224Ds14k2

are the roots of the characteristic equation of system~6!, and

a1,25
2 i2l1,21D26s

2~k13se2 i3sL!
, a3,45

2 i2l3,41D12s

2~k1se2 i3sL!
,

g15g252g352g45e2 i3sL, b i5a ig i .

We can write the matrix equation to determine the vec
C5(C1 C2 C3 C4)Á using boundary conditions~10!:

DC5R, ~12!

whereR5(A0 0 0 0)Á is the free term column,

D5S 1 1 1 1

a1 a2 a3 a4

b1el1L b2el2L b3el3L b4el4L

g1el1L g2el2L g3el3L g4el4L

D .

Solution of Eq.~12! is given by expression

Ci5Di /D0 , ~13!

whereD0 is the determinant of matrixD, Di is the determi-
nant receiving fromD by exchange thei column to the free
term column. We can see from the general form of Eq.~13!
that the weak perturbation amplitudes diverge at the par
eter values makingD050. This means that an absolute in
stability in the transverse direction of the counterpropagat
wavesE6 may appear in a nonlinear DFB structure.

The following expression for the determinantD0 can be
obtained after simple mathematic calculations:

D05P4H 2P012[P1e2 i6sL1P2e2 i3sL1P3]

3[cosh[(l12l3)L] 2cosh[(l11l3)L]

1
1

4
l1l3[3s2e2 i6sL14kse2 i3sL1k2]

3[cosh[(l12l3)L] 1cosh@~l11l3!L#J , ~14!
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where

P05
1

4
l1l3@k13se2 i3sL#@k1se2 i3sL#,

P152
3

2
D2s216s3D110s2k2136s4124s3k cos~3sL !,

P258Ds2k148s3k18sk322skD2124s2k2 cos~3sL !,

P352
1

2
D2k212sDk212k4116s2k218sk3 cos~3sL !,

P45e2 i6sL@k13se2 i3sL#22@k1se2 i3sL#22.

At k50 expression~14! coincides with the expression ob
tained in Ref.@19# for frequency-degenerated six-wave mi

FIG. 1. DFB-structure threshold lengthL th depends onD for
different values ofk.
ing. At D˜` we can neglect the processes of colight- a
counterlight-induced diffraction. Then Eqs.~6! describe
four-wave mixing@19# with the following condition for para-
metric generation:

2sL5p/2. ~15!

In conclusion, the linear stability analysis of the homog
neous solution shows that at a critical lengthL th of the DFB
structure,D0 vanishes and a transverse structure devel
with a well defined wave number. The threshold length
the nonlinear DFB structureL th as a function ofD is shown
in Fig. 1 for different values of the coupling coefficient an
for both defocusing (s,0) and focusing (s.0) media. At
L5L th spatial instability of counterpropagating waves occu
for a definite value ofD. As we can see from Fig. 1, atk
Þ0 the value ofL th has a minimum and then increases in
oscillatory way with increasingD. For example, atk
50.5 cm21: for defocusing mediumLmin

th 57.41 cm atD
51.6 cm21 and L th58.3 cm atD58 cm21; for focusing
medium Lmin

th 56.08 cm at D52.2 cm21 and L th

58.12 cm atD58 cm21.

FIG. 2. Transverse distribution of transmitted radiation intens
depends on input one forL52 cm, k51 cm21, D0524 cm21.

FIG. 3. Spatial distribution of forward and backward wave i
tensities within the nonlinear DFB structure fork51 cm21, J10

51.21 cm21, D0524 cm21. More dark regions correspond t
higher intensity.
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IV. RESULTS OF NUMERICAL SIMULATIONS

We perform numerical simulations of Eqs.~3! describing
the dynamics of the spatial evolution of counterpropagat
wave intensities in the nonlinear DFB structure. For the s
of simplicity we consider the case of a two-dimension
pulse ~the pulse size along thex axis is much smaller than
the size along they axis! incident on a defocusing medium
We solved the problem for the nonlinear DFB structure li
ited in transverse direction and assumed full reflection
sides boundary:]E6 /]xux505]E6 /]xux5x0

50. All calcu-

lations were done for normalized valueÊ6(z,x)
5AuguE6(z,x). Boundary conditions~5! were chosen as

Ê1~0,x!5E011024f ~x!, Ê2~L,x!50, ~16!

whereu f (x)u<1.
The dependence of the transverse distribution of the tra

mitted radiation intensity on the input one is shown on F
2. As can be seen from Fig. 2, the spatial distribution of
transmitted intensity stays homogeneous if the input
J105uÊ1(z50)u2,0.6. Above this threshold we can ob
serve the fluent loss of stability of homogeneous field str
ture and the appearence of a periodic modulation of the
tensity in the transverse direction. The modulation amplitu
of the transmitted radiation increases when the input fi
intensity increases. It can be shown that the threshold in
sity, at which counterpropagating wave instabilities appea
the nonlinear DFB structure, corresponds to the valueJ10
50.6, calculated from formula~14! at D050 for the param-
eters of Fig. 2.

Spatial distributions of forward and backward wave inte
sities within the nonlinear DFB structure are shown in Fig
for an input radiation intensity above thresoldJ10.0.6. As
can be seen from Fig. 3, the spatial evolution of coun
propagating wave intensities is such that the forward w

FIG. 4. Transmitted radiation average power depends on in
radiation one fork51 cm21, D0524 cm21, x055.2 cm. Dot-
ted lines correspond to the case of the plane wave approxima
and solid lines are plotted with account of one-dimensional tra
verse diffraction.
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regions with lower intensity correspond to the backwa
wave regions with higher ones and the opposite.

It is known @1# that the reflection~transmission! coeffi-
cient of the nonlinear DFB structure is bistable with resp
to the input wave intensity in the plane wave approximatio
If we take into account diffractive effects, this result is val
only below the instability threshold of the homogeneo
transverse field structure.

The appearence of wave periodic modulations due to
spatial instability changes the energy characteristics of
medium, for instance, its reflectivity. It is important to no
that transverse effects induce multistability in the syst
which would otherwise be just bistable. This effect can
demonstrated by calculating the reflection~transmission!
nonlinear DFB-structure index as a function of the input
diation intensity.

In the case of two-dimensional pulses it is convenient
introduce the counterpropagating waves average powerP6

5x0
21*0

x0uÊ6(x)u2dx. Figure 4 shows how the averag
power of the transmitted radiation average power depend
the input radiation in the cases of the plane wave appro
mation~dotted lines! and taken into account one-dimension
transverse diffraction~solid lines!. The aperture limitation
leads to the discretization of transverse mode spectra. Du

ut

on
s-

FIG. 5. Transverse structure of reflected radiation modulus
plitude for a different point of multistable curve than represented
Fig. 4.
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PRA 60 2379SPATIAL INSTABILITY OF COUNTERPROPAGATING . . .
this fact we can observe for one value of input radiat
intensity at least three stable conditions of nonlinear Bra
reflector with different values of reflection coefficient an
various transverse field structures~for example, pointsA, B,
C, D, andE in Fig. 4!. The transverse structures of the mod
lus of the reflected radiation are shown in Fig. 5 for differe
branches of the multistable curve.

In our calculations we use iterative solution methods
stationary counterpropagating wave interaction in nonlin
media based on a multicomponent scheme@20#. Note that the
numerical method allows us to investigate the steady stat
light fields in the nonlinear DFB structures in the presence
multistability @8#.

V. CONCLUSION

In this paper we investigated the effects of spatial ins
bility of counterpropagating waves interacting in a nonline
s.

d

ys
g

-
t

f
r

of
f

-
r

DFB structure based on a transparent medium with nonre
ing Kerr nonlinearity. We shown that homogeneous so
tions destabilize under small angular perturbations at a c
cal value of the medium length. We performed a gene
linear stability analysis and we determined the thresh
length of the DFB structure at which pattern formation o
curs. We also studied the dynamics of the spatial distribut
of the transmitted and reflected intensities by numerica
solving the parabolic equations. It was shown that the spa
instability is responsible for the generation of optical patte
in the transverse distribution of the counterpropagating w
intensities in the nonlinear DFB structure. In particular, w
predict that the appearance of wave periodic modulati
changes the energy characteristics of the nonlinear D
structure, for instance, its reflectivity. For example, tran
verse effects essentially influence the spectrum of the sys
generating multistable states.
d.

c-

g,

n,

.

-

v.
@1# H.G. Winful, J.H. Marburger, and E. Garmire, Appl. Phy
Lett. 35, 379 ~1979!.

@2# H.G. Winful, Phys. Rev. Lett.49, 1179~1982!.
@3# H.G. Winful and G.D. Cooperman, Appl. Phys. Lett.40, 298

~1982!.
@4# D.L. Mills and S.E. Trullinger, Phys. Rev. A36, 947 ~1987!.
@5# M.C. Gross, Phys. Rev. A38, 3593~1988!.
@6# A.B. Aceves and S. Wabnitz, Phys. Lett. A141, 37 ~1989!.
@7# D.N. Christodoulides and P.I. Joseph, Phys. Rev. Lett.62,

1746 ~1989!.
@8# H.G. Winful, R. Zamir, and S. Feldman, Appl. Phys. Lett.58,

1001 ~1991!.
@9# J. Feng and F.K. Kneubuhl, IEEE J. Quantum Electron.QE-

29, 590 ~1993!.
@10# A.A. Afanas’ev, B.A. Samson, and E.G. Tolkacheva, J. Mo

Opt. 42, 2285~1995!.
@11# G.Ya. Slepyan, A.V. Gurevich, and S.A. Maksimenko, Ph
.

.

Rev. E51, 2543~1995!.
@12# A.A. Afanas’ev, B.A. Samson, and E.G. Tolkacheva, J. Mo

Opt. 45, 91 ~1998!.
@13# A.A. Afanas’ev and E.G. Tolkacheva, IEEE J. Quantum Ele

tron. QE-32, 1740~1996!.
@14# D. Taverner, N.G.R. Broderick, D.J. Richardson, R.I. Lamin

and M. Ibsen, Opt. Lett.23, 328 ~1998!.
@15# D. Taverner, N.G.R. Broderick, D.J. Richardson, M. Ibse

and R.I. Laming, Opt. Lett.23, 259 ~1998!.
@16# A.A. Afanas’ev, V.V. Dritz, B.A. Samson, and E.G

Tolkacheva~unpublished!.
@17# A.A. Afanas’ev, V.V. Dritz, and E.G. Tolkacheva, Opt. Com

mun.148, 236 ~1998!.
@18# G. D’Alessandro and J. Firth, Phys. Rev. A46, 537 ~1992!.
@19# P.A. Apanasevich, A.A. Afanas’ev, and B.A. Samson, Iz

Acad. Sci. USSR, Fiz.,51, 1417~1987!.
@20# V.M. Volkov, Differential Equations34, 935 ~1998!.


