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Spatial instability of counterpropagating waves in nonlinear distributed feedback structures
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We investigate spatial instabiliti€ggxduced by small angular perturbatiors counterpropagating waves in
nonlinear distributed feedbadlFB) structures. We determined the DFB-structure threshold length at which
an absolute instability occurs and a nonhomogeneous spatial intensity distribution is generated. The evolution
of the transverse intensity distribution is studied for counterpropagating waves as a function of the control
parameters.S1050-294{@9)04808-9

PACS numbdis): 42.65.Sf, 42.65.Tg

[. INTRODUCTION (patterns. Examples of such structures were found through
numerical integration of the fully nonlinear equations.

A rich spatiotemporal dynamics of nonlinear distributed
feedback(DFB) structures and prospects of their utilization Il. BASIC EQUATIONS
in practical devices attract investigators to develop the theory ) ) _ o
of optical radiation propagation in a periodically modulated L€t Us consider a layer of a Kerr medium with periodi-
nonlinear media. cally modulated refractive index

The propagation of plane waves in DFB structures was
recently studied theoreticallyl—12. The model used pre-

dicts a series of effects such as optical multistability8], wheren, is the linear refractive index);<n, is the modu-

temporal filtration of_pulses with quadrgtic.phase modulationation amplitude with spatial frequenay andn, is the mag-

[12], advent of solitons[6,7], self-oscillation, and chaos pjyde characterizing the Kerr nonlinearity. Bragg scattering

[3,10]. ) i of radiation by the refractive index grating arised during the
On the other hand, the various features of nonlinear DFB,qpagation in the medium. The field within the medium is

structures open interesting perspectives for applications iiven by the superposition of two counterpropagating waves

guantum electronic and integrated optics. In particular, a

multistable regime of a laser with Bragg reflector based on &(z,x,y,t)=[E. (z,x,y)e*?+E_(z,x,y)e K?]e '+ c.c.,

nonlinear DFB structure was predictéd3]. Futhermore, )

Refs. [14,15 claim experimental observation of multiple

gap-soliton formation and an all-optical logic AND gate us-WhereE. (z,x,y) are the slowly varying amplitudes and the

ing a fiber Bragg grating. K=(w/c)ngy is the wave number. Substituting Eq4) and
The effects of a spatial modulation of the light beam re-(2) into the wave equation we gt6,17

flected from a nonlinear DFB structure in the weak coupling

n=ny+n, cog qz)+ n,|E|?, (1)

L . . iy JEL i .
apprOX|mat|orkL_<1 (wherek is the coupling coefficient of 7 —= ——— A E. =ikE.e 202+ y(|E.|?+2|E~|)E. ,
counterpropagating waves ahds the DFB-structure lengih gz 2K
were investigated using parabolic wave equatipbs,17]. )

The analysis of those equations allows[Gg] to conclude here A — a2/ ax2+ 21 ov2 is the t L aplacian
that generation of optical patterns in the transvere distribuVNerea, =d%/ox=+ o%1y* is the transverse Laplacian,
=g—2K is the linear Bragg detuning|4,|<K), vy

tion of counterpropagating waves intensities may occur in a_ N
nonlinear DFB structure if the coupling is strong enough:KnZ/nO’ and I§=Kn1/2n0. Boundary conditions for the
kL=1 [18]. system of equation&) are
In this paper we investigate the effects of spatial instabil-
ity of cou?’ntgrpropagating gwaves interacting iﬁ a nonlinear =+ (2= 0% Y) =Ero(x.y), E_(z—L,x,y)—E_o(x,y),(4)
DFB structure for arbitrary coupling coefficients. We con-
sider a transparent medium with nonrelaxing Kerr nonlinearyhereE, , andE_, are arbitrary functions.
ity and we perform a stability analysis of the homogeneous
stationary solutiongunder the influence of small angular
perturbations We show that an absolute instability may
arise leading to the generation of regular spatial structures To get insight about possible physical situations we con-
sider homogeneous solutiods.(z) of Eq. (3). Of course,
E. o andE_, are also independent ok(y). Then we per-
*FAX: 375-172-840879. Electronic address: lena@dragon.basform a linear stability analysis around such solutions for
net.by weak perturbations in transverse directions. The complex

Ill. ANALYSIS OF LINEARIZED EQUATIONS
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amplitudes of counterpropagating wave can be written  x,=—i(A/2—0), x,=ik+i20e % xz=io, X,
in the form =i20€3", xg=ioe't,

, , , The boundary conditions become
E+=5+(z)+[a+(z)e'(KxX+KzZ)+a,(z)e"(KxX‘KzZ)]e_'Kz,
A (0)=A,, A*(0)=B_,(L)=B*(L)=0. (10

_ (Kyx— K, —i(Kyx+K;2) 1 iK _ _ .
E-=&.(2)+[b, (e "A+b_(z)e7 (KerKD]el, After simple calculations, the solution of the system of equa-
(5)  tions (9) can be represented in the form

wherea. (z) andb. (z) are weak angular perturbation am- 1
plitudes (a-|,|b-|<|E+]) and K,=K6@ and K,=K(1 ‘s
—6°/2), 9<ml2 is the angle between the axis and the Y= | 7| cer?, (12)
direction of the perturbation propagation. The following i=1| aj
equations can be obtained from E) for the weak wave ¥i

amplitudes in the linear approximation: ) )
whereC; are integration constants,

dﬁ:ikb e (A 2Z iy 2(18, [2+]E|D)a 1
dz - YLetle -1es 1= —\p=5\240k cog30L) — A%+ 1200 +4K?,

+2E,. b, e2?+ 2 a%ed?+ 28 £_b%],

1 2 2
Ag=— )\425\/80-k cog30L)—A%?—4Ao+4k

db. .
— o, =ikase AT iy (€, 24+ ]E | )b
z are the roots of the characteristic equation of syst@mand

+285 6 _a.e M+ 2 pre A2 —i2\ 1+ A—60 —i2\34+A+20
@127 “i3oly ' @347 —i3gLy

+2&.&_at], (6) 2(k+30e ) 2(k+oe )

= = — = — = —i3oL = Vs
where A=K ¢?. At k=0 Eq. (6) coincides with the corre- YITY2T T YT T YaTE » Bi=aiy.

sponding equations from Refl19], where the analysis of We can write the matrix equation to determine the vector
counterpropagating wave spatial instabilities in a homoge€=(C, C,C;C,) " using boundary condition& 0):
neous nonlinear medium was carried out.

We look for the solution of Eq(6) assuming that the DC=R, (12)

intensities| . =|€.|?=1, are constant and equal. Taking whereR=(A,000)" is the free term column,
into account nonlinear phase raid appearing during the wave

propagation in the medium, we have 1 1 1 1
_ i30z _ i30(L—2) _ ag ar a3 ay

€+(Z) Soe ’ 5_(2) goe ! (7) D= Ble)\lL Bze)\zL B3e)\3L B4e)\4L

where o= y|£0|%,E=E.(0)=&_(L)=const. In the linear yieMb  yseteh  yaehal g ehat

approximation we can tak&,= 60 without losing general- _ o _
ity. In this case, it can be shown that the wave intensitiesSolution of Eq.(12) is given by expression
remain practically constant and equal along the DFB struc- _

o ; ; ) C;=D;/Dy, (13
ture if its length consists of an integer number of grating
periods @L/27=m, m=0,1,2...). We introduce the whereD, is the determinant of matri®, D; is the determi-

quantitiesA. andB. as nant receiving fronD by exchange thé column to the free
, _ term column. We can see from the general form of @)
a.=A.e 230z —B, e I(A2F30)z (8)  that the weak perturbation amplitudes diverge at the param-

_ _ _ eter values makin@,=0. This means that an absolute in-
Equation(7) with account of Eq(6) can then be written  stability in the transverse direction of the counterpropagating

in matrix form wavesE. may appear in a nonlinear DFB structure.
The following expression for the determinadt, can be
dy obtained after simple mathematic calculations:
az- Y X 9

Do=P,{ 2Py +2[P,e %7t + Pe 37b 4 Py

X[cosh[(A;—A3)L]—cosh[(\1+A3)L]

Xl X3 _X2 _X4
1 . .
N —X3 X1 _XZ _X,ZC +Z)\l)\3[30_2e7|60L+4k0_efl3UL+k2]
X5 X4 —X —Xs5|’
* *
X4 X2 X5 Xq, X [cosh[(\;—Ng)L]+coshi (N +A3)L]{, (14)
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FIG. 1. DFB-structure threshold length" depends om\ for
different values ok.

where

1 _ _
Po=7Mhglk+ 3oe B9 [k+ ge 137,
3
P,=— §A202+ 60°A +100°k?+ 360+ 240k cog 3oL ),
P,=8A0?%k+ 4803k + 8ak3— 20kA?+ 240°k? cog 30L),
1
Py=— §A2k2+ 20AK?+2k*+ 160°k%+80ok® cog30L),

P4:efi60'L[k+30_e7i3(rL]72[k+O_efi30L]72.
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FIG. 2. Transverse distribution of transmitted radiation intensity

depends on input one far=2 cm, k=1 cm !, Ap=—4 cm L.

ing. At A—c we can neglect the processes of colight- and
counterlight-induced diffraction. Then Eq$6) describe
four-wave mixing[19] with the following condition for para-
metric generation:

20L=m/2. (15

In conclusion, the linear stability analysis of the homoge-
neous solution shows that at a critical lengfA of the DFB
structure,D, vanishes and a transverse structure develops
with a well defined wave number. The threshold length of
the nonlinear DFB structure™ as a function ofA is shown
in Fig. 1 for different values of the coupling coefficient and
for both defocusing §<0) and focusing §>0) media. At
L =L!" spatial instability of counterpropagating waves occurs
for a definite value ofA. As we can see from Fig. 1, &t
#0 the value ol." has a minimum and then increases in an
oscillatory way with increasingA. For example, atk
=0.5 cm % for defocusing mediumlL™ =7.41 cm atA
=1.6 cm ! andL"=8.3 cm atA=8 cm!; for focusing
medium LM =6.08 cm at A=22 cm! and L™

=8.12 cmatA=8 cm L.

E,(x,2)1? IE (x,2)I*

0 0.1 0.2 03 04 05
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FIG. 3. Spatial distribution of forward and backward wave in-
tensities within the nonlinear DFB structure foe=1 cm™ 1, Jio

At k=0 expression14) coincides with the expression ob- =1.21 cm!, A;=—4 cm *. More dark regions correspond to
tained in Ref[19] for frequency-degenerated six-wave mix- higher intensity.
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FIG. 4. Transmitted radiation average power depends on input 08 A/__\A
00 -

radiation one fok=1 cm ', Ay=—4 cm !, x,=5.2 cm. Dot-
ted lines correspond to the case of the plane wave approximation 1.5
and solid lines are plotted with account of one-dimensional trans-
verse diffraction.

IV. RESULTS OF NUMERICAL SIMULATIONS

We perform numerical simulations of Eq8) describing
the dynamics of the spatial evolution of counterpropagating
wave intensities in the nonlinear DFB structure. For the sake
of simplicity we consider the case of a two-dimensional . ) ) .
pulse (the pulse size along the axis is much smaller than 0 1 2 3 4 5
the size along thg axis) incident on a defocusing medium. X
We solved the problem for the nonlinear DFB structure lim- FIG. 5. Transverse structure of reflected radiation modulus am-

ited in transverse direction and assumed full reflection onyiwge for a different point of multistable curve than represented in
sides boundarysE ... /9x|y—o=JE. /dX[x=x,=0. All calcu-  Fig. 4.

lations were done for normalized valueE. (z,x)
=|v|E+(z,x). Boundary conditiong5) were chosen as

regions with lower intensity correspond to the backward
wave regions with higher ones and the opposite.

E.(0x)=Eo+10 4f(x), E_(L,x)=0, (16) It is known [1] that the reflectior(transmission coeffi-
cient of the nonlinear DFB structure is bistable with respect
where|f(x)|<1. to the input wave intensity in the plane wave approximation.

The dependence of the transverse distribution of the trandf we take into account diffractive effects, this result is valid
mitted radiation intensity on the input one is shown on Fig.only below the instability threshold of the homogeneous
2. As can be seen from Fig. 2, the spatial distribution of thetransverse field structure.
transmitted intensity stays homogeneous if the input one The appearence of wave periodic modulations due to the
J.0=|E.(z=0)|2<0.6. Above this threshold we can ob- spatial instability changes the energy characteristics of this
serve the fluent loss of stability of homogeneous field strucmedium, for instance, its reflectivity. It is important to note
ture and the appearence of a periodic modulation of the inthat transverse effects induce multistability in the system
tensity in the transverse direction. The modulation amplitudé/hich would otherwise be just bistable. This effect can be
of the transmitted radiation increases when the input fieldleémonstrated by calculating the reflecti¢transmission
intensity increases. It can be shown that the threshold interflonlinear DFB-structure index as a function of the input ra-

sity, at which counterpropagating wave instabilities appear ifliation intensity. . _ o _
the nonlinear DFB structure, corresponds to the valug In the case of two-dimensional pulses it is convenient to

=0.6, calculated from formulél4) at D=0 for the param- introduce the counterpropagating waves average péwer
eters of Fig. 2. =x51f;°|Ei(x)|2dx. Figure 4 shows how the average
Spatial distributions of forward and backward wave inten-power of the transmitted radiation average power depends on
sities within the nonlinear DFB structure are shown in Fig. 3the input radiation in the cases of the plane wave approxi-
for an input radiation intensity above thresald,>0.6. As  mation(dotted line$ and taken into account one-dimensional
can be seen from Fig. 3, the spatial evolution of counteriransverse diffraction(solid lineg. The aperture limitation
propagating wave intensities is such that the forward wavéeads to the discretization of transverse mode spectra. Due to
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this fact we can observe for one value of input radiationDFB structure based on a transparent medium with nonrelax-
intensity at least three stable conditions of nonlinear Braggng Kerr nonlinearity. We shown that homogeneous solu-
reflector with different values of reflection coefficient and tions destabilize under small angular perturbations at a criti-
various transverse field structurder example, points, B,  cal value of the medium length. We performed a general
C, D, andE in Fig. 4). The transverse structures of the modu-jinear stability analysis and we determined the threshold
lus of the reflected radiation are shown in Fig. 5 for dlfferent|ength of the DFB structure at which pattern formation oc-
branches of the multistable curve. _ curs. We also studied the dynamics of the spatial distribution
In our calculations we use iterative solution methods ofsf the transmitted and reflected intensities by numerically

stationary counterpropagating wave interaction in nonlineagqying the parabolic equations. It was shown that the spatial
media based on a multicomponent sch¢@@. Note that the instability is responsible for the generation of optical patterns

Ir;urzr':?ireul:dasl ?r:e';lheogoagll?r:,\eljaruéltz%lgri?:ttlgifs it:fhzte?gzesntg;eo the transverse distribution of the counterpropagating wave
gnt. o P intensities in the nonlinear DFB structure. In particular, we
multistability [8]. . . )
predict that the appearance of wave periodic modulations

changes the energy characteristics of the nonlinear DFB
structure, for instance, its reflectivity. For example, trans-

In this paper we investigated the effects of spatial instaverse effects essentially influence the spectrum of the system
bility of counterpropagating waves interacting in a nonlineargenerating multistable states.

V. CONCLUSION
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