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Chaotic dynamics in erbium-doped fiber ring lasers

Henry D. I. Abarbanel,* Matthew B. Kennel,† Michael Buhl,‡ and Clifford Tureman Lewis‡
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Chaotically oscillating rare-earth-doped fiber ring lasers~DFRLs! may provide an attractive way to exploit
the broad bandwidth available in an optical communications system. Recent theoretical and experimental
investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscil-
lations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop
a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and
nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain
bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber
amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical
fiber—one made of passive fiber alone. The typical round-trip time for the passive optical ring connecting
the erbium-doped amplifier to itself is 200 ns, so'105 round-trips are required to see the slow effects of the
population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like
GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional
estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscilla-
tions of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and
not from interplay between the atomic population inversion and radiation dynamics.@S1050-2947~99!08607-2#

PACS number~s!: 42.65.Sf, 42.55.Wd, 05.45.2a
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I. INTRODUCTION

Rare-earth-doped fibers@1,2# appear very attractive fo
use as optical amplifiers in various stages of a commun
tions system and as inline active elements in ring lasers u
as transmitters and receivers in such a system. Erbium-do
lasers are especially attractive for long haul communicati
over optical fibers as the lasing wavelength, about 1550
is near the minimum attenuation and dispersion point of s
dard single-mode optical fiber. The goal of using the ba
band communications bandwidth of tens of terahertz~THz!
around the carrier frequency of a few hundreds of THz mi
well be realized using a chaotic communications schem
which the transmitter and receiver work over a very bro
Fourier power spectrum while retaining sufficient state sp
structure to allow modulation and demodulation of inform
tion on the chaotic ‘‘carrier’’~or courier! of information. The
use of chaos as a ‘‘courier’’ of information is primarily fo
~1! effective utilization of the enormous bandwidth of the
systems, and~2! the autosynchronization of the transmitt
and receiver in the communications scheme we discuss.

This paper develops the theory of the operation in cha
regimes of doped fiber ring lasers, especially those with
rameters corresponding to doping with erbium. A commu
cations window near 1300 nm is of some interest as well@3#.
In addition to studying ring lasers with parameters associa
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with those of Er31 doping as we do in this paper, in ou
future work we plan to analyze structurally similar ring l
sers choosing parameters associated with Nd31 and Pr31 and
doping where lasing at 1300 nm is seen@2#.

We investigate models of doped fiber ring lase
~DFRLs!. Such model equations have been discussed
Roy, Williams, and their collaborators@4,5#, and they have
shown, experimentally and theoretically, that chaotic fie
oscillations can be observed in these DFRLs. Roy and V
Wiggeren@6# and our group@7# have shown experimentally
and theoretically, respectively, that such ring laser syste
can be used for communicating information from a transm
ter laser to an open loop optical receiver. In work subsequ
to that just cited, VanWiggerenm and Roy@8,9# extended
their results to both higher symbol transmission rates
richer modulation schemes.

The main themes of this paper are the origin of chaos
the operation of erbium-doped fiber ring lasers and effec
methods for solution of the relatively well known equatio
of motion for these lasers. These two issues are raised by
experiments of Roy and VanWiggeren@6# and possess sub
stantial interest in themselves whether or not these laser
tems turn out to be utilized in communications systems. T
experiments of Roy and VanWiggeren demonstrate the p
ence of chaotic regimes in this kind of laser system, an
consideration of the time scales of the atomic lifetime~10
ms! and the ring round-trip time~'100 ns! alone would
suggest that in standard models of fiber lasers chaos w
be absent.

The system, as we recall below, is basically that o
delay differential equation where the delay is the ring roun
trip time and enters a map for the complex electric fie
amplitude and the differential equation describes the pop
tion inversion dynamics which is dictated by the fluore
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cence time scale of 10 ms which is much, much longer t
this. An estimate based on this time scale alone would s
gest that the population dynamics would be frozen out
the linear propagation of the field around the fiber ring wo
never yield chaos. This, if it were correct, would rule o
these lasers as interesting for chaotic communicati
schemes as they would not be chaotic. Nonetheless, the
periments of Roy and VanWiggeren showed chaotic osc
tions in their measurements of the output intensity of erbiu
doped fiber ring lasers. The analysis we provide in this pa
points clearly to the role of the nonlinear dependence of
polarization of the fused silica medium of the fiber as t
source of the optical chaos. We test this quantitatively in
model we develop below, and we show that this chaos p
sists when we vary the difference of index of refraction b
tween the electric field polarizations, the absorption for e
polarization, and even the external injection of light into t
cavity. None of these effects gives rise to chaotic oscillatio
in the absence of the medium nonlinearity, as expected,
each of them only slightly modifies the effect of the mediu
nonlinearity.

We present the results of a number of calculations
evant to the role of the nonlinear response of the medi
This nonlinear response is rather weak, and we show th
nevertheless is important as many hundreds of thousand
round-trips are required to build up the phenomena see
the experiments. Even small quantities can accumulate
nificant effect in this case. With these results one can co
dently proceed to investigate the coupling, possible synch
nization, and transmission of information between two ri
lasers of this variety. Again experiments have succeede
showing many of the effects we seek to model, so the m
vation for an accurate and efficient model is enhanced.
other dimension of this paper which adds substantially
earlier efforts is that of an efficient and accurate compu
tional scheme applied to the relatively well known equatio
of motion. We describe this scheme in some detail a
should be of interest in further exploration of this class
laser systems as their use in communications is investiga

In this paper and its companion@10# our focus is on in-
vestigating realistic models of the DFRL with an eye on t
synchronization and communication aspects of the coup
chaotic optical devices. In our earlier work@7# we reported
on results for what we called the ‘‘Ikeda ring laser’’ after th
early investigations of Ikeda on ring lasers and the dynam
associated with the time delay in the travel time around
ring @11#. The Ikeda ring laser contained the essential ing
dients of a ring laser communications system, and, in p
ticular, we gave an analytic proof that two optical ring sy
tems as described here will autosynchronize and al
accurate communication of information when the transmi
is run as a closed loop oscillator and the receiver is run a
open loop device. In that paper we ignored a variety
physical effects which play a significant role in the realis
operation of a rare-earth-doped fiber laser. These include
rect pumping of the active medium by an external sour
dynamics involving the two transverse polarizations aris
from the vector nature of the electric field; properties of t
optical fiber and other passive elements connecting the
put back to the input of the rare-earth amplifier; intrins
birefringence, the different indices of refraction, and hen
n
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different velocities of signal propagation of orthogonal p
larizations in realistic glass media; group velocity dispers
~GVD!, a frequency-dependent change in the index of refr
tion; nonlinear birefringence, primarily, the cubic depe
dence of the atomic polarization on the electric field~Kerr
effect!; and the finite, and frequency-dependent gain ba
width for a realistic active medium. The work in Ref.@4#
developed models of erbium-doped lasers which included
first three of these items and serve as the predecessors t
work along with @7#. In this paper we address all of thes
issues as part of building a realistic model of a DFRL. T
accompanying paper@10# addresses the coupling of thes
more realistic DFRLs, their synchronization properties, a
their performance for communications. A fine review of fib
and semiconductor lasers and amplifiers has been publi
by van Tartwijk and Agrawal@12#. This review covers many
of the topics touched on here and sets our investigation in
context of other investigations of these lasing media.

There are many suggestions in the literature on cha
communications@13# that such systems provide secure co
munications. They may, and, equally, they may not. Secu
of communications is an entirely separate issue from the
tential value to bandwidth utilization by such chaotic me
ods. In the discussion section of our subsequent paper@10#
we will comment on thecryptographic settingof our com-
munication methods@6,7,14# in hopes a rigorous analysi
may be provided by others.

In this paper we formulate the equations of motion r
evant to an erbium-doped fiber ring laser. In most conv
tional lasers, and in our earlier investigation@7#, complex
time-dependent dynamics arise from the interaction betw
cavity modes of the electric field and the population inv
sion in the active medium. A somewhat unusual feature
our present erbium-doped fiber laser system is that when
total fiber length, active and passive, in the optical ring is
the order of a few tens of meters, about 105 round-trips of
light around the laser are required for the population inv
sion to play any role in the oscillations of the system. T
fluorescence lifetime for the upper lasing state in Er13-doped
silica is about 10 ms. We are primarily interested in fa
gigahertz scale fluctuations, or equivalently in times well u
der sub-round-trip times because we wish to eventually c
vey information at this speed. At these shorter time sca
the population dynamics nearly ‘‘freezes out’’ and on
serves to automatically set the overall gain and power lev
However, the dynamics are far from boring. Because of
unusually long cavity length and low losses, spatially co
plex electric field wave forms can propagate for long perio
of time. This means that small physical effects which
rectly involve signals on the optical field, such as the dep
dence of the medium’s polarization on electric field, gro
velocity dispersion@15#, and the linear birefringence of silic
glass can accumulate to large effects on the laser oscillati

We begin by formulating the equations of motion. The
consist of an ordinary differential equation for the populati
inversion and a set of partial differential equations for prop
gation of the two polarizations of the complex electric fie
through the active medium coupled with a four-dimensio
map for these quantities describing their passage through
passive fiber. Altogether the solutions to the different
equations connect the complex fields at timet with the same
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fields one round-trip time later at timet1tR , and they de-
scribe the slow variation of the population inversion duri
any round-trip.

We then derive a propagation map, based on@4,5#, reduc-
ing the solution of the partial differential equation to tim
delay maps, thus greatly diminishing the computational d
ficulty of the simulation. This differentiates our work from
most of the conventional optical literature and is vital for o
investigation because we need to be able to integrate
dreds of thousands of round-trips with high spatial resolut
inside a single ring.

We present some characteristic numerical results for
dynamics of this system. In particular, by following near
orbits in state space, we show that the Kerr nonlinea
gives rise to chaos in this system even when there is
driving by an external, detuned laser. When there is s
driving, chaotic oscillations occur over a broad range of a
plitudes and frequencies of the external source.

After the discussion of the single-ring DFRL we add a
other, passive ring, which introduces an additional time
lay into the dynamics and results in chaotic oscillations w
additional frequency components. This second ring was s
gested by experiments of VanWiggeren and Roy@8#.

Synchronization of two such ring lasers and communi
tion of information modulated onto the chaotic signals c
ried between them is taken up in the accompanying pa
@10#.

II. DYNAMICAL EQUATIONS FOR THE DOPED
FIBER RING LASER

We begin with a laser cavity composed of an active m
dium, rare-earth-doped fiber amplifier~DFA! of length l A ,
whose output is connected back to the input by a sing
mode fiber of lengthl F . In the light path, we include an
optical isolator to ensure unidirectional propagation, a po
ization controller, and optionally, a fiber junction which co
nects an external monochromatic source which injects a
tional light into the ring. The center frequency of the optic
signal in the cavity isv0, and the frequency of the injecte
light is v I . The coordinate around the ring is calledz, and
the length of the optical cavity isL5 l A1 l F . In this section
we formulate the dynamical equations for this setup.

In a later section we add a ring of passive fiber to th
The reason for the second loop of fiber is that the ratio
fluorescence lifetime in the active medium to that of a rou
trip time in the fiber ring is order 105 for an erbium amplifier
so the population inversion dynamics is essentially time
dependent in such a system, leaving nearly linear dynam
for the electric field propagation. The only nonlinearity
that of the Kerr effect or cubic dependence of the mate
polarization on electric field. This weak nonlinearitydoes
lead to chaotic oscillations of the erbium DFRL~EDFRL! as
we will show here, but such oscillations occur on a tim
scale so long that they do not provide effective bandwi
utilization. The addition of a second ring of passive fiber,
suggested by VanWiggeren and Roy@8#, gives us an addi-
tional time delay, allowing us to increase the frequency c
tent of the chaotic signals. The single-ring configuration
illustrated in Fig. 1. In Fig. 2 we portray the situation wi
the second ring of passive fiber added.
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Following the derivations in@15# for the dynamics of the
slowly varying envelopeE(z,t)5„Ex(z,t),Ey(z,t)… of the
electric field, we find the wave equation for a birefringe
wave guide in retarded coordinates (z,t5t2z/vg ,k0
5n0v0 /c) to be

]Ex,y~z,t!

]z
1 i

b2

2

]2Ex,y~z,t!

]t2

56
ik0D

2n0
2
Ex,y~z,t!6

D

n0c

]Ex,y~z,t!

]t
1

ik0

2n0
2e0

Px,y~z,t!,

~1!

FIG. 1. Setup for our simulations of the dynamics of a ra
earth-doped fiber ring laser. An erbium-doped fiber amplifier w
input at z50 extends toz5 l A . After leaving the amplifier light
travels through an isolator which guarantees propagation only in
positivez direction, through a polarization controller, and through
length l F of passive fiber described byUwhole fiber. Just before the
circulating light reenters the amplifier it receives external inject
of light of amplitudeA(t) and frequencyDv.

FIG. 2. Setup for our simulations of the dynamics of a ra
earth-doped fiber ring laser with two loops. As before, an erbiu
doped fiber amplifier with input atz50 extends toz5 l A . In this
setup, after the light leaves the isolator, some of the light is
moved and passed though a second loop with a second polariz
controller. After the light has been delayed a timetD by propaga-
tion around the second ring, it is reinjected back into the main lo
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where we use the upper choice in sign forx polarization and
the lower for y. The group velocity dispersion coefficien
b2'220 ps2/km at 1.55 mm in silica. The differential
birefringence parameter isD5n0(nx2ny). Compared to the
familiar formulation in@15# we keep an additional time de
rivative in E on account of the birefringence because t
influences the differential propagation speeds ofsignals in
the different polarizations, not just the optical phase. O
many thousands of round-trips, this can be significant eve
D!1. The material polarizationP(z,t)5„Px(z,t),Py(z,t)…
has two important contributions: a polarization proportion
to one power of the electric fieldE(z,t) arising from stimu-
lated emission due to population inversion of the lasing
oms, and the Kerr nonlinearity proportional to three pow
of E(z,t). This allows us to write

P~z,t !/e05Pl~z,t !1PK~z,t !, ~2!

where

PKx~z,t !5x3H S uEx~z,t !u21
2

3
uEy~z,t !u2D Ex~z,t !

1
1

3
Ex* ~z,t !E y

2~z,t !J
and

PKy~z,t !5x3H S uEy~z,t !u21
2

3
uEx~z,t !u2D Ey~z,t !

1
1

3
Ey* ~z,t !E x

2~z,t !J ,

where we have identified the linear term in electric fie
Pl(z,t) and the nonlinear or Kerr termPK(z,t) which we
have written out explicitly.

To relate x3 to the more commonly measured macr
scopic quantity, we temporarily concentrate on a sin
polarization of E. Defining a power-dependent index o
refraction n5n01n2uEu2, following the argument in@15#
we find the following relation betweenn2 andx3 x352n2 /
Aeff where Aeff is the ‘‘effective’’ core area of the optica
fiber, accounting for the transverse mode function. Us
n2'1.2310222 m2/V2 for ordinary fused silica glass
and an effective area for the core of a single-mode fi
of 109 (mm)2 @9#, we have a nominal value ofx3
52.2310212/V2.

The linear term in the atomic polarization arises from t
interaction between the electric field and the active las
atoms. As discussed in@16# the erbium system is a three
‘‘level’’ system in which a pump, for us an external diod
laser running at 980 nm inside the amplifier, takes the4I 15/2
ground state to the short lived4I 11/2 excited state, from
whence it rapidly goes to the long lived4I 13/2 state where its
fluorescence lifetime is 10.2 ms. The lasing transition is
tween this 4I 13/2 state and the4I 15/2 state. Only the lasing
transition between the4I 13/2 and 4I 15/2 states is relevant to
our discussion, so we treat the whole system as a pum
two-level system.

An erbium-doped fiber laser is classB, meaning that we
can adiabatically eliminate the dynamics in the fast fluct
s
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tions in the polarization corresponding to the off-diagon
terms of the density matrix. These decay with a time sc
T2'10212 s. As we are not concerned with signal tim
scales that rapid, we assume the active atoms act as a
nantly driven dipole, providing a complex-valued electr
susceptibility function depending on parameters such as
density of active atoms, their cross section, and the pop
tion inversionn @16#. In frequency domain the dipole re
sponse is an algebraic expression,Pl(v)5x l(v,n)E(v). For
x l , we use for baseband signal frequenciesv!vA , follow-
ing @17#,

x1~v,n!5
sNc

vA
n~ t !F vT22 i

11v2T2
2G , ~3!

with s an atomic cross section, andN the density of active
atoms. The imaginary part ofx1 contributes to gain, and the
real part to a population-inversion-dependent change in
index of refraction. Absorbing the constants into a gain p
rameterg the resulting operator isgn(t)/(11v2T2

2), ex-
pressed in frequency space, which we separate and rearr
into the dominant zero-frequency gaingn(t) and the
frequency-dependent correction. We ignore the real par
x l in our simulation because it primarily corresponds to
secular change in the group velocity, equal for both polari
tions, which we assume could be absorbed intov because in
the equilibrium operation of an EDFRL, the fluctuations
n(t) are very small compared to its average value.

We point out there is some confusion in the literatu
about the meaning of the ‘‘third-order nonlinearity’’ whic
arises from this term. Some experiments measure the p
shift induced by a long-term change~slower thanT1) in
some applied electric field power. Running as a fiber am
fier, and not a ring, surely would changen very substantially,
and via Re(x l) contribute to a large change in index of r
fraction which appears to change with input power, just as
the classical Kerr effect. However, for our study of comm
nications in ring lasers, this is not important, asn changes far
slower than the signal time scales we considerO(1029 s).
We concern ourself only withx3 attached to a fast-
responding Kerr nonlinearity.

The field’s wave equations thus become

]Ex,y~z,t!

]z
5gn~t!Ex,y1L x,yEx,y1Nx,yEx,y . ~4!

L contains the linear parts of the propagation operator
cluding gain, andN the Kerr nonlinearity. The linear opera
tor L , including birefringence, GVD, and gain dispersion,
most naturally represented in the Fourier domain:

L x,y56
ik0~nx2ny!

2n0
7

D

n0c
iv2

i

2
b2v2

1
12gn~t!~11v2T2

2!

11v2T2
2

, ~5!

with v the signal angular frequency, and assuming thatn(t)
behaves as a very slowly varying~compared to signal fre-
quenciesv) external parameter. The first term inL x,y only
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results in an overall arbitrary phase shift for the two pol
izations, which can be absorbed without loss of genera
into the polarization controller in the passive leg of the ri
described in the next section. The term linear inv represents
linear birefringence; the next term, quadratic inv, is the
group velocity dispersion. The last term is associated w
the gain curve, and arises from the fact that the center
quency of the linev50 is amplified more strongly than
frequencies on either side of the line.

The nonlinear operators are

NxEx5x3H S uEx~z,t!u21
2

3
uEy~z,t!u2D Ex~z,t!

1
1

3
Ex* ~z,t!Ey~z,t!2J , ~6!

NyEy5x3H S uEy~z,t!u21
2

3
uEx~z,t!u2D Ey~z,t!

1
1

3
Ey* ~z,t!Ex~z,t!2J . ~7!

We have assumed the lasing gaing to be identical for bothx
andy polarizations. This appears to be true in the setup u
by Roy and VanWiggeren@9#. The physical implication is
that an erbium atom in the upper state has an equal c
section for lasing in both polarizations and that the pump
does not favor either state, and that the reservoir of inve
atoms is evenly shared.

These equations must be solved numerically to propa
the light from its entry into the DFA atz50 to its exit atz
5 l A . From there we propagate the electric field around
remainder of the passive fiber. This process we take up n

The electric field envelope atz5 l A is related to the field
at z50 by the symbolic expression

E~z5 l A ,t1 l A /v !5P$E~z50,t !%, ~8!

where we defineP to be the propagation operator whic
transports the electric field from the beginning to the end
the active medium, an integration of the wave equations
cently derived.

The polarization state of the field influenced by the ra
dom birefringence in the fiber arising from numerous sm
effects associated with imperfections in the fiber, strains,
Following @18# we write the net effect of passive fiber as
unitary Jones matrix which we denoteUwhole fiber,

Uwhole fiber5S u1 u2

2u2* u1*
D , ~9!

whereuu1u21uu2u251. An overall phase and an attenuatio
factor can be absorbed in the other terms to appear be
Similarly we associate a Jones matrixJPC with the polariza-
tion controller.

Transporting this field fromz5 l A around the fiber and
back to the input of the DFA atz5L we have

E~z5L,t1tR!5~Reiv0n0l F /cJPCUwhole fiber!P$E~z50,t !%,
~10!
-
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with tR5L/vg the round-trip time for the full laser cavity
and R the matrix representing absorption by the fiber.
general the absorption in the two polarizations can be dif
ent, so we write

R5S Rx 0

0 Ry
D , ~11!

0<Rx ,Ry<1. The phase factoreiv0n0l F /c comes from the
free propagation fromz5 l A to z5L over a distancel F .

The pointsz50 and z5L represent the same physic
location, the input to the DFA. Dropping the labelz on the
field, henceforth implicitly referring only toz50, we have

E~ t1tR!5~Reiv0n0l F /cJPCUwhole fiber!P$E~ t !%. ~12!

Finally we add to this equation a term which represents
jection of an externally generated electric field of compl
amplitude

A~ t !5S A1~ t !

A2~ t !
D , ~13!

and frequencyv I . This light is injected just beforez50
whereE(t) is defined, the entrance to the DFA.~See Fig. 1.!
In the frame rotating at frequencyv0, where we have written
our equations, this changes the relation betweenE(t) and
E(t1tR) to

E~ t1tR!5A~ t1tR!ei (v I2v0)(t1tR)

1~Reiv0n0l F /cJPCUwhole fiber!P$E~ t !%. ~14!

This discrete-time map, a recursion relation between the fi
at time t and timetR later, is one of the dynamical rules o
our ring laser system. The other is the population invers
equation in its simplified form.

The overall phase factor and Jones matrix of the real fi
are unknown and without loss of generality we can abs
them into JPC. Any such matrix may be parametrized b
three anglesu1 ,u2 ,u3. In experimental circumstances, th
absolute values of these angles are unknown, although
may be varied by rotating the appropriate optical element
the polarization controller.

III. SOLUTION OF THE ELECTRIC-FIELD
PROPAGATION EQUATIONS

We integrate the equations of motion using a time stepdt
which is a small fraction of the round-trip timetR : dt
5tR /Ns , Ns52500. The dynamics of the population inve
sion is given by an ordinary differential equation which c
be integrated by conventional means at each integration
stepdt. Because the propagation map~14! connects electric
fields a full tR later, we must save a rolling bufferNs steps
long for the complex coefficients of the electric fieldEx and
Ey .

At each time step, we recall the values ofEx(t) andEy(t)
and operate on them with maps representing propaga
through the active medium followed by the passive com
nents of the ring, then we store the future values asEx(t
1tR) andEy(t1tR) in the buffer. Now time advances for
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ward bydt. We recallEx(t1dt) andEy(t1dt), and we re-
peat. The map propagating the field through the passive fi
is given explicitly by Eq.~14!. We now discuss the transfor
mation of the partial differential equations~4! into maps
propagating the electric field from the beginning of the act
medium to the end of the active medium in one operati
just as we used the Jones matrices for the passive sectio
fiber.

In the time-asymptotic operation with realistic paramet
corresponding to erbium-doped fiber lasers, neitherL nor N
has a substantial influence in anysingle pass through the
lengths of active medium typically found in a commerc
EDFA: l A'20 m. The dominant effect in the active mediu
is gain, balanced by the net attenuation found in the res
the ring. This means that we can approximate the solutio
the differential equation~4! which simultaneously include
all three operatorsL , N, and gn(t) by operating onE by
each of the operators in turn. Each can be easily solve
find E at z5 l A , givenE at z50.

In an erbium-doped amplifier, the gain curve is ve
broad. That is,T2v!1 for the signal frequencies we ma
resolve with our spatial discretization of the loop. More p
cisely, we can resolve a maximum frequency about 5 GH
the present computation while 1/T2'1000 GHz.

The differential equation]E/]z5L E is solved byE(z
5 l A)5exp(lAL ) E(z50), and this has a simple represen
tion in the frequency domain. Operationally, we take a chu
of E from the buffer 2M steps long (2M!N), transform to
frequency domain by a fast fourier transform~FFT!, apply
the operator exp(lAL ), transform to real space, and save the
values, denotedEx,y;L in new buffers. A certain number o
points from each end are discarded before the result is s
in the Ex,y;L auxiliary buffer in order to account for end e
fects which can bedevil Fourier-based methods. T
frequency-dependent term in the solution is expanded
powers ofv into 12glAn(t)T2

2v2 to simplify computations.
This form more clearly demonstrates the decreased gain
frequencies further from the center of the line atv50. The
remaining imaginary terms ofL apply a frequency-
dependent phase shift, i.e., dispersion, but not dissipa
Explicitly,

Ex,y;L~v,z5 l A!5@12glAn~t!T2
2v2#

3expS 7 i
D l A

n0c
v2 i

b2l A

2
v2D

3Ex,y~v,z50!. ~15!

The value ofn(t) is assumed to be constant during the a
plication of this linear operator, fixed to the current value
the beginning of the domain. In the asymptotic equilibriu
state for an erbium-doped fiber laser, the population inv
sion changes negligibly during a single traversal of the ac
medium.

This process of reading in points from theE buffer, oper-
ating on them with the linear operator, and saving them
the auxiliary buffer happens independently from the m
integration loop: a counter keeps track of the latest poin
time which has been saved inEx,y;L , and, if it is less than the
‘‘current time’’ in the main loop, an additional chunk is pro
er
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cessed. The number of sites in the loopNs is not the same as
for the FFT computation, unlike many existing optical sim
lations in the literature. Integration strictly with the FFT a
sumes periodic boundary conditions. Much of the exist
literature is only concerned with repetitive pulses, and o
for a single polarization~or examining only intensity!, in
which case the identification of the entire loop with the FF
input is acceptable, allowing one to advance an entire rou
trip per large integration step. In our situation, however, t
approach is inappropriate because we consider both pola
tions, and the polarization controller strongly rotates the a
and the attenuation is different between the axes.

Other than the evaluation of the linear operator, the
mainder of the integration algorithm proceeds strictly poi
wise, taking the envelope values stored inEx,y;L(t), operat-
ing on them with the nonlinear Kerr operator, the ga
operator, the passive components of the ring~polarization
controller, attenuation, external driving!, and storing it in the
buffer asEx,y(t1tR). n(t) is updated with a simple Eule
integration formula, and time advanced one discrete ste
t1dt.

The Kerr integration is also approximate. For realis
lengths of active medium and birefringences, there are
nificant phase oscillations between thex andy components,
which result in the last terms in Eq.~6! averaging to zero.
This approximation is valid when propagating through ch
acteristic lengths much larger than the modal ‘‘beat lengt
LB5l/unx2nyu @15#. We estimateLB'1 m whereas our ac
tive mediuml A is about 20 m. In this standard approxim
tion, the result is an intensity-dependent nonlinear ph
change:

Ex~z5 l A!5expF i l Ax3S uE xu21
2

3
uE yu2D GEx~z50!,

~16!

Ey~z5 l A!5expF i l Ax3S uE yu21
2

3
uE xu2D GEy~z50!.

The full solution has been computed in the literature@19# and
involves Jacobi elliptic functions. The gain part of the prop
gation equation,

]E~z,t!

]z
5gn~z,t!E~z,t!, ~17!

has the solution

E~z,t!5expFgE
0

z

dz8n~t,z8!GE~z50,t!. ~18!

Given the electric field at the start of the active mediu
E(z50,t) we have a formula giving its value at the end
the active medium whose only other time dependence is
population inversion averaged over the medium:

E~ l A ,t!5eglAw(t)E~z50,t!, ~19!

where

w~t!51/l AE
0

l A
dz8n~z8,t!. ~20!
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The physics of the atomic polarization in the active medi
is governed by external pumping, spontaneous emission,
stimulated emission from the light propagating through
This is described by the usual Bloch equations for the po
lation inversion at timet and spatial locationz:

]n~z,t!

]t
5pumping term2

1

T1
@n~z,t!11#

2jn~z,t!uE~z,t!u2, ~21!

with T1 the lifetime of the excited state~10 ms for a typical
EDFRL! andj a constant relating to the optical cross sect
governing the transition rate between levels. With the so
tion ~18! and assuming realg we can integrate Eq.~21! by
l A

21*0
l Adz8 to arrive at the dynamics for the population inve

sion averaged over the entire active mediumw(t)
5w( l A ,t), following Ref. @4#,

dw~t!

dt
5Q2g@w~t!111~e2l Agw(t)21!uE~z50,t!u2#,

~22!

here with time units rescaled by the round-trip timetR .
This scalar quantityw(t) is the only representation of th

population inversion state needed in the simulation. It is
portant to note that the magnitudeuEu2 is preserved by our
propagation operations, except for the gain term, includ
the nonlinear Kerr phase shifts. After the Kerr operator,
main component of the gain is applied to the two comp
envelopes, multiplying each by exp@glAw(t)#, and finally we
account for the passive components of the ring, to prod
Ex,y(t1tR).

IV. EXAMPLES OF THE EDFRL OPERATION

Using the numerical methods just described we h
evaluated the dynamics of the model DFRLs derived ear
In these calculations we employed 2500 locations around
ring as points to sample the electric field. This correspond
tR/2500 or a time resolution of about 0.08 ns. We sho
resolve fluctuations in electric field or light intensity up to
or 6 GHz with this integration scheme. The experiments
presently able to resolve about 1 GHz fluctuations with
diode detectors available.

The only power-dependent dynamical quantity is the s
of the third-order nonlinearity, which is is most easily cha
acterized by the nondimensional nonlinear phase shiftFnl
experienced by anE field as it passes through the fiber
given by @15#

Fnl5
2pn2L

lAeff
~Pa12Pb!, ~23!

wherePa ,Pb are the optical powers in the parallel and pe
pendicular direction.

In a typical experimental case@9# running at a pump leve
of 20 times threshold, a typical output power is 136 m
Splitting the power equally between polarizations and e
mating a total fiber lengthL of 40 m, we estimate an induce
nonlinear phase shift as
nd
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Fnl5
2p~3.2310220 m2/W!~40 m!

~1.55 mm!~109310212 m2!
S 3

2
~13631023 W! D

~24!

.1022. ~25!

This is the phase shift associated with one round-trip thro
the fiber cavity. In our work we investigate the results
hundreds of thousands of round-trips around the cavity,
thus the effects of aFnl of this size can be quite substantia

We parametrize our dynamical simulations byFnl , the
only dynamically relevant combination of power and nonli
earity. Physically this could be interpreted as varying t
EDFA pump level, linearly increasing the optical pow
above threshold, or varying the length of the fiber cavityL.
The remaining parameters in the definition ofFnl are as-
sumed to be generally fixed in any given experiment. Ea
calculation allowed the ring laser to run for 500 000 roun
trips before the dynamics was observed. This is relevan
erbium-doped fiber lasers where the lifetime of the up
lasing state is about 10 ms and approximately 100 000 rou
trips are required for the population inversion dynamics
play a role. The pumping level for the population inversi
equation was a few times above threshold, and the diss
tion in x polarization andy polarization was taken to diffe
by about 5% and each to be about 0.9 on each round-
The size ofFnl was chosen to be 1.531022, a slight increase
on the above nominal value. The difference in indices
refraction was taken to be about 1026 ~see Table I!.

In Fig. 3 we show a typical time series for the total inte
sity with a single loop of passive fiber. The top graph sho
the intensity at frequencies up to 6 GHz. In the experime
of Roy and co-workers@20# a photodiode used to measu
the intensity cannot resolve frequencies above 1 GHz.
that our results will have the same frequency content as
experiment we passed the same data through a single
filter to simulate the photodiode, a high-order far infrar
~FIR! filter to simulate the analog to digital converter in th
oscilloscope, and down sampled to 1 GHz. This time se
is shown in the middle of Fig. 3. Underneath is an expe
mental time series from the laser of Roy and co-work
@20#.

The amplifier was pumped at 20 times the lasing thre
old of the ring and there is no external injection, althou
typically the addition of external injection does not qualit

TABLE I. Typical parameters for our EDFRL model simula
tions.

Quantity Symbol Value

Linear modal birefringence nx2ny 1.831026

Pump strength Q 3.431023

Gain times active length glA 0.67531022

Ratio of round-trip time to erbium lifetime g 1025

Round-trip time tR 200 ns
Polarization dephasing time T2 1 ps
GVD coefficient b2 220 ps2/km
Length of active medium l A 20 m
Nonlinear phase shift Fnl 1.531022
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tively change the dynamics. The round-trip time in the sim
lations was 200 ns, while in the experiment it is 186
Figure 4 displays the Fourier power spectrum on two sca
for the total intensity displayed in Fig. 3. Notice that becau
the time scale of light to go around the cavity is mu
smaller than the time scale for the population inversion
any dynamics fromFnl most of the power is concentrate
into harmonics of one round-trip. In order to see any dyna
ics on these time scales we can change the sampling pe
to be equal totR , removing any changes within one roun
trip. A time series down sampled thus is given in Fig. 5. He
we can see that, although the intensity appears to be mo
periodic from round-trip to round-trip, on long time scal
there are aperiodic fluctuations.

In the future we plan to analyze these time series al
with the experimental time series of Roy and co-work
@20# using well tested nonlinear analysis tools@21#.

V. CHAOS IN THE ONE-RING EDFRL

The EDFRL model described above represents an
tremely high-dimensional system. In our simulation, t
equations are integrated by separating the ring into 2
discrete-time steps. Each time step contains four electric fi
variables, ReEx , ImEx , ReEy , and ImEy . These, along
with the constantly changing population inversion varia
w(t)5n(t) l A , results in 10 001 state variables in the syste

FIG. 3. Top: A time series of the output of the laser simulati
sampled at 12.5 GHz. This is a laser with a single loop and
external injection. Here,Dn'2.031026, Fnl51.531022, and the
reflectances areRx50.9, andRy50.85. Middle: The same data a
ter a filter to simulate a photodiode and down sampled to 1 G
Bottom: An experimental time series from Roy and VanWigge
also sampled at 1 GHz.
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At each time step, the electric field variables are coupled
only to the previous round-trip variables, but also with th
neighbors through the population inversion dynamics, GV
and linear birefringence effects. The complexity of the in
gration algorithm, especially the spectral evaluation of
linear propagator, makes a direct computation of the
spectrum of Lyapunov exponents~as was done in@7#! im-
practical as one would need to take Jacobians of the o
time-step map implied by the integration algorithm. How

o

z.
n

FIG. 4. Power spectrum of the output of the laser simulati
The original time series was sampled at 2500 pertR . This is a laser
with a single loop and no external injection. Here,Dn'2.0
31026, Fnl51.531022, and the reflectances areRx50.9 andRy

50.85.

FIG. 5. Time series of the output of the laser simulation. T
was only sampled once pertR to remove the fast sub-round-tri
fluctuations. As before, this is a laser with a single loop and
external injection. Here,Dn'2.031026, Fnl51.531022, and the
reflectances areRx50.9 andRy50.85.
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ever, one may estimate the largest Lyapunov expon
through the rate of divergence of nearby trajectories.

One EDFRL, called laserA, is integrated for 53105

round-trips~equal to about 1/10 of a second in real time! to
reach what appears to be asymptotic behavior. At this po
a second~identical! laser, called laserB, with identical physi-
cal parameters is initialized with identical state variables
laserA, with B’s electric fieldsEB perturbed by a very smal
amount of noise, knocking it slightly off of the trajectory o
laserA. The noise is added to both the real and imagin
parts ofEB in both components, Gaussian distributed with
variance of sizee which is set as an external parameter of t
simulation. In the following simulations,e is a factor of
1024 smaller than the average magnitude of the electric fi
components.

Concrete computation of Lyapunov exponents from t
jectory divergences requires a metric to be chosen. The m
ric we use here is

D15L21E
0

L

dzuExA
~z!2ExB

~z!u21uEyA
~z!2EyB

~z!u2,

~26!

with L corresponding to a full round-trip. This metric me
sures the difference in each electric field component and
calculates the squared distance in a four-dimensional Eu
ean manner. This metric is sensitive to phase deviation
tensity and polarization differences.

For an optical system, what is measured experimentall
in many cases a projection of the general state space o
system into a certain physically meaningful subspace.
example is the detection of optical intensity by a photodio
This measurement would read the intensity of the elec
field wave, but by itself says nothing of the optical phase
details about the polarization of the wave. Consequently
one uses a polarization insensitive photodiode to recor
chaotic time series of electric field intensity, one cannot
anything regarding the phase chaos in their data set with
further tools. In order to connect our simulation to this phy
cal circumstance, we also examine a metric which is se
tive only to intensity differences. It is conceivable that no
linearity produced by the Kerr effect, for instance, mig
only cause chaotic polarization or phase differences and
lead to chaotic amplitude fluctuations.

The first metric,D1, is sensitive to both phase and inte
sity divergences, but the second metric,

D25L21E
0

L

dzu@ uExA
~z!u21uEyA

~z!u2#

2@ uExB
~z!u21uEyB

~z!u2#u, ~27!

only responds to intensity differences. Because the pro
tions of the fullE(z) space down to theuE(z)u intensity space
is not invertible, the Lyapunov exponents need not be
same. Intensity is more experimentally accessible, mak
this particular projection interesting.

We quantify the divergence of nearby orbits in the larg
Lyapunov exponent of the system which is defined by
nt
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l5 lim
t˜`

lnS Di~ t !

Di~0! D , ~28!

and we understandt˜` as long times after the perturbin
kick is made to the orbit. When the system is chaotic, nea
trajectories diverge beyond the validity of the linear appro
mation governing the Lyapunov exponent. To compens
for this, all the state variables of laserB are renormalized
back to withine of laserA whenever the round state differ
ence grows to a size of 10e:

SB@ i #—SA@ i #1
SB@ i #2SA@ i #

10
, ~29!

whereS@ i # represents the state variables at time stepi. Thus
calculating the trajectory difference reduces to finding
number of times normalization was performed and the fi
value of the trajectory differences. The largest Lyapunov
ponent is estimated by examining the slope, in the tim
asymptotic linear region, of the logarithm of trajectory d
ferences as a function of time. The initial trajecto
perturbation will not necessarily lie upon the eigendirecti
corresponding to the largest exponent, thus the initial sta
of the trajectory divergence will have contributions from a
the exponents, though the largest Lyapunov exponent do
nates the trajectory divergence exponentially quickly. Sin
we have no direct way of estimating the other exponents,
actual separation between the largest and the rest of the
ponents is difficult to estimate.

A. Kerr coefficient

We examine the dependence of the trajectory diverge
on the nondimensional nonlinearity coefficientFnl . While
the other effects considered are important to the dynam
we identify the nonlinear polarization rotation to be nece
sary for chaos.

As we see in Figs. 6 and 7 there is a definite increase
the Lyapunov exponentl as the nonlinear phase shiftFnl is
increased. We see that even for a value ofFnl equal to the
nominal value found in Eq.~25!, we get a positive, although
small, exponent. As we increaseFnl beyond the nominal
value we get an increasingly larger exponent. We go from
characteristic trajectory divergence timetc5(1/l) of about
tc51 ms for a nominalFnl , to tc50.25 ms for aFnl of
1.75 times that of the nominal value. At the largest value
Fnl we studied,Fnl was equal to 2.25 times its nomina
value,tc was about 0.15 ms. These computations were d
with no external injection of light into the ring. We also se
that the laser intensity also shows significant divergence.
though the intensity Lyapunov exponent is generally ab
half of the trajectory exponent, it still follows the same pa
tern of increasingl with increasingFnl and thus an experi-
menter monitoring only laser intensity should observe
results of these chaotic intensity fluctuations. Even thou
the Kerr effect only directly influences the polarizatio
angle, in the whole ring system it leaks out to generate ch
in the intensity as well.

The trend ofl with changingFnl ~Fig. 7! reveals a gen-
erally linear, and certainly monotonic, dependence ofl on
Fnl for both metrics. The error bars were calculated by loo
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ing at the standard deviation of the entire group of expone
found if the linear fit is calculated subsequently over t
range of starting points between 4 and 16 ms and using
ending point of 20 ms. This measurement gives an esti
tion of the variance of the exponent calculation depend
upon where you look for a best linear slope. Thus we c
clude for the apparent relationship betweenFnl andl that it
is valid to consider the Kerr effect as the source of the c
otic behavior in the single-loop EDFRL. Even though t
nonlinear polarization rotation conserves optical power i
single pass through an ideal nonlinear medium, the ove
system produces chaos in the intensity even whenDR50,
i.e., equal transmission coefficients for both polarizations

The actual value ofl is altered by other effects in th
laser, though, as can be seen from Fig. 8. Although ther
substantial trajectory and intensity divergence for aFnl of
1.5 times the nominal value, we see that a nonzeroDn and a
breaking of the transmission coefficient symmetry,DR, both
serve to increase the exponent value. As shown in the fig
breaking the symmetry in transmission coefficient betwe
polarization states has a small effect ifDn is set to zero.
However, ifDn is raised to a physically reasonable value,
see an almost threefold increase inl in this case. Now when
the reflectance symmetry is broken, we get a fourfold
crease from theDn5DR50 case. So while the Kerr nonlin
ear phase shift is the prime initiator of the chaos, the ot
linear effects do serve to emphasize the divergences and
higher l values. Different Rx and Ry turn intensity-
dependent polarization rotations into nonlinear intensity fl
tuations after a full propagation.

FIG. 6. Trajectory divergences withFnl varying from zero to
0.531022. This is a laser with a single loop with no external inje
tion. Here,Dn'2.031026, and the transmission coefficients a
Rx50.9 andRy50.85.
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B. Dn — Linear birefringence

The linear birefringence term results from a net differen
in the refractive index experienced by the two electric fie
polarizations as they travel through the fiber. This contr
utes only linearly to the dynamics, and thus will not lead
chaotic dynamics on its own. This fact is confirmed nume

FIG. 7. Trajectory~upper! and intensity~lower! Lyapunov ex-
ponentsl varying Fnl . This is a laser with a single loop and n
external injection. Here,Dn'2.031026, and the transmission co
efficients areRx50.9 andRy50.85.

FIG. 8. Dependence on trajectory and intensity divergence
varying values of Dn and DR. When Dn.0 we use Dn
'2.031026, and whenDR.0 we useRx50.9 andRy50.85. This
is a laser with a single loop and no external injection. Here,Fnl

'1.531022.
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2370 PRA 60ABARBANEL, KENNEL, BUHL, AND LEWIS
cally by the lower curve in Fig. 9 where we see unifor
convergence for all values ofDn. Naturally this convergence
is characterized by a negativel, and occurs for all in a wide
range ofDn values when the Kerr phase shiftFnl is set to
zero.

However, when the Kerr phase shift is nonzero, variat
of the linear birefringence term was found to profoundly
fluence the value ofl. The upper curve of Fig. 9 shows th
varying Dn has a substantial effect on the trajectory a
intensity values ofl at fixedFnl , though without any clear
trend inDn, unlike Fnl . Further explorations of theDn-Fnl
phase space will be necessary if a more complete explora
of the effect onl of Dn with nonzeroFnl is desired. Be-
cause the common single-mode fibers have random lin
birefringence, which is further influenced by the arbitra
mechanical stresses of the fiber in a laboratory, the ma
tude of the Lyapunov exponent may be difficult to exac
reproduce experimentally, even ifFnl can be accurately con
trolled.

C. External injection

Driving a nonlinear system by a periodic external for
often leads to a rich set of bifurcation phenomena in
amplitude, frequency plane of the driving parameters.
certainly expect the same when we drive the ring laser w
an external injection of light of certain amplitude and fr
quency. We examine the case of external injection withFnl
set to zero in Fig. 10. As in theDn case, we see uniform
trajectory and intensity convergence for a wide range of
jection amplitudes. It appears as though we again have
case where there is no trajectory divergence if there is
Kerr effect.

We now examine the effect of outside forcing throu
injection of light from an external laser into the cavity
fixed Dn and nonzeroFnl . For these we choose to provide
large l using Fnl51.531022 and Dn of '2.031026.
These resulted inl'4100 s21. We now choose the detun
ing between the external laser frequency and the optical
quency of the ring laserv I2v0'16/tR . In Fig. 10 we see

FIG. 9. Lyapunov exponents varyingDn, with and without Kerr
nonlinearity. This is a laser with a single loop and no exter
injection.
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that over a range of injection amplitudes'17–77 % of the
average circulating electric field amplitude in the ring lea
to little variation inl.

On the whole we see similar behavior when we vary
detuning frequency. Taking the same parameters forFnl and
Dn and an injection amplitude about 55% of the avera
electric field magnitude, we see in Fig. 11 that the detun
frequency also has little effect on the Lyapunov expone
for frequencies above'5 per round-trip. For smaller fre
quencies, we see that the chaos is absent, even for valu
Fnl andDn which gave largel.

Whether this is physically important depends on the ran
of parameters which are experimentally realizable. In the

l

FIG. 10. Lyapunov exponents with varying amplitude of exte
nal injection. A single-loop laser with external injection period a
proximately 1/16 of a round trip, withDn'2.031026 and trans-
mission coefficients areRx50.9 andRy50.85. X axis is ratio of
injected field magnitude to average total field magnitude.

FIG. 11. Lyapunov exponents with varying frequency of e
ternal injection. This is a laser with a single loop with injectio
amplitude '55% of field amplitude. Here,Fnl51.531022, Dn
'2.031026 and the transmission coefficients areRx50.9 andRy

50.85.
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perimental situation of Roy and VanWiggeren@6,8#, such a
slow detuning frequency due to external injection is not o
which could be realized consistently, since the EDFRL la
over a frequently changing range of wavelengths. So for
jection frequencies which are in a physically meaning
range,l is essentially unaffected by changes in the detuni

D. Summary of variations in chaotic behavior

We conclude that in the case of a single-loop EDFRL,
origin of chaotic oscillations is clearly the nonlinear Ke
effect which mixes polarizations while preserving intensiti
The positive Lyapunov exponentl associated with nonzer
Fnl varies more or less linearly inFnl over the range we
explored, and it varies substantially with the magnitude
linear birefringence.l appears to be relatively insensitive
the amplitude and detuning frequency associated with ex
nal injection into the laser cavity, though there are freque
values where the ring laser locks into periodic behavior a
l˜0. By no means does our small investigation cover
range of phenomena which may appear in the param
space formed byDn, Fnl , injection amplitude, andv I
2v0.

VI. TWO-RING EDFRL

VanWiggeren and Roy@8# also investigated the oscilla
tions of a ring laser when a second loop of passive fiber
added to the ring. This adds a second time delay to the
laser system and it affects the polarization of the light. Wh
light arrives at the entrance to the second loop a fractiona of
its electric field enters the new ring and 12a continues on in
the new ring. The light in the second ring is propagated
described in detail above and encounters a Jones matrixJloop
on circulating about the loop. As the light from the seco
loop reenters the main ring, it is added to light in the ma
ring which has not undergone a propagation over the rou
trip time of the second looptD . This means we should re
place the propagation equation we had before~absent exter-
nal injection which is not affected by the new loop! by

E~ t1tR!5Reiv0n0l F /cJPC8 Uwhole fiber@~12a!P$E~ t !%

1aJloopP$E~ t1tD!%#. ~30!

This expression for the effect of the second loop of len
tDc cannot be represented solely by a redefinition of
Jones matrix of the first loop. One can see this by noting
even attD50, the effect of the second loop is not given b
a unitary matrix in general.

A. Examples of the two-ring EDFRL operation

The introduction of a second loop significantly chang
the outward character of the laser oscillations. The time
ries looks quite periodic, but on much smaller time sca
than in the single-loop configuration. This is shown in F
12. With a single loop, the intensity was almost periodic w
a period oftR , but with the second loop activated, there a
about 45 periods within one round-trip when thetD is
slightly less than half oftR . The frequency spectrum is als
changed, and with the second loop there is much more po
in a few frequencies as one may see in Fig. 13. In the c
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where the second Jones matrix is the identity, the caus
this effect can be seen by thinking of the second loop as
insertion of a FIR filter into the ring with the first coefficien
12a, a after a delay oftD , and all other coefficients zero
The transfer function of such a filter is

H~v!5~12a!1ae2 ivtD. ~31!

Thus the second loop attenuates all frequencies not comm
surate with the delay loop. Because most of the power is
the harmonics of one round-trip, those harmonics that
close to commensurate with the delay are given much m
power. To remove this apparent periodicity, we made a s
boscopic section, sampling the intensity once per 10tR in-
stead of 2500 times pertR . The result removes all of the
harmonics of 1/tR and is aperiodic. The result of this is see
in Fig. 14.

Ignoring nonlinearity for a moment, the net effect of ha
ing a second loop is for the system to try to find a state wh
is approximately commensurate with both the round-t
times of both paths. Most commonly, the system evolve
periodic signal whose period is significantly shorter than
ther round-trip, so that an integral number of these sh
periods can fall through either loop and recombine constr
tively. This explains the dominant visual difference betwe
the one- and two-ring simulation results.

B. Chaos in the two-ring EDFRL

Using the methods described above, we evaluatedl for
the two-ring system. We found that the introduction of t

FIG. 12. A time series of the output of the laser simulation w
a second loop. In the lower graph one can see a near periodicit
very small time scales. This is a laser with no external injecti
Here,tD /tR50.4468, the coupling to the second loop is 0.1,Dn
'2.031026, the pumping is at 113 threshold, and the reflectance
areRx50.9 andRy50.85.
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second loop has a dramatic effect on the largest Lyapu
exponent.

Figure 15 shows the Euclidean distanceD1 between two
close trajectories for several different values of the coupl
between the two loops includinga50, that is, with the sec-
ond loop decoupled from the first. Figure 16 is similar to F
15, but we have increased the pump level into the first r
by a factor of about 2, andFnl was increased to 1.5 times it
nominal value. The increased pumping also serves to

FIG. 13. Top: power spectrum of the output of the laser sim
lation with a second loop. Here,tD /tR50.4468, the coupling to the
second loop is 0.1,Dn'2.031026, the pumping is at 113 thresh-
old, and the reflectances areRx50.9 andRy50.85.

FIG. 14. A stroboscopic section of the two-loop laser w
the sampling rate once per 10tR . As before the lack of periodicity
on a long time scale can be seen. There is no external injec
Here,tD /tR50.4468, the coupling to the second loop is 0.1,Dn
'2.031026, the pumping is at 113 threshold, and the reflectance
areRx50.9 andRy50.85.
v

g

.
g

n-

crease the magnitude of the Kerr effect, as it increases
amount of power in the laser. In both cases, as the amoun
light put in the second loop increases, the highest Lyapu
exponent decreases. However, in both cases the largel
came from a two-loop, not a one-loop, ring laser.

Despite the large effect the difference in indices of refra
tion had in the single-loop case, it seemed to have little or
effect in the two-loop case. Figure 17 shows the traject
divergence for a range ofDn and there is not much change
the slope. The slopes do vary somewhat, but the uncerta
in the calculation of the slopes is also large. Changing
length of the second loop changes the highest Lyapunov
ponent. Figure 18 shows the trajectory divergence for sev
delay timestD . The slope varies with the delay time irregu
larly, much as it did for varyingDn in the single-loop case

The other metrics for measuring trajectory divergence
not behave very differently from the Euclidean metric. T
slopes using metricD2 were half those ofD1. The physical
conclusion is that the chaos is uniformly mixed in phase a

-

n.

FIG. 15. Trajectory divergences with varying coupling to t
second loop. This is a laser with no external injection. He
tD /tR50.4468,Dn'2.031026, the pumping is at 113 threshold,
Fnl55.031023, and the reflectances areRx50.9 andRy50.85.

FIG. 16. Trajectory divergences with varying coupling to t
second loop and greater pumping. This is a laser with no exte
injection. Here,tD /tR50.4468,Dn'2.031026, the pumping is at
203 threshold,Fnl51.531022, and the reflectances areRx50.9
andRy50.85.
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intensity, the particular difference being only in the defin
tions of the metrics.

VII. CONCLUSIONS AND DISCUSSION

This paper has been the first in a pair@10# investigating
synchronization and communication between realistic mo
erbium-doped fiber ring lasers. We plan to discuss synch
nization and communication in the future while this pap
has been devoted to the dynamics of an individual EDFR

In order to account for the dynamics of a very slow
changing population inversion compared to the round-
time of light through the fiber ring, we focused on thr
dynamical effects which might appear to be of little intere
for a single round-trip: group velocity dispersion, linear b
refringence, and terms in the polarization of the medium
bic in the electric field; the Kerr effect.

Each of these had a major effect on the electric field a
intensity of the light circulating in the fiber ring when w
looked at many hundreds of thousands of round-trip time
that light. This scale of round-trip times is dictated by t
ratio of lifetime of the lasing state, about 10 ms, and
optical cavity round-trip time, about 200 ns. The main role
GVD during this large number of round-trips was to remo
high-frequency components from the initial state of the el
tric field. The linear birefringence had a substantial effec
separating the dynamics of the two polarizations, and the
role played by the Kerr effect was to create conditions wh
chaotic oscillation of the electric field was possible. We d
veloped numerical techniques to permit rapid simulat
over long integration times, compared to explicit integrati
of the underlying wave equations.

Nonlinearity in the dynamics of the EDFRL appears on
in the Kerr terms associated with the polarization of the m
dium and in the equation for the population inversion. T
latter is effectively constant during many hundreds of tho
sands of round-trips, so the principal source of nonlin
dynamics in this laser comes from the Kerr terms. We h
shown quite explicitly in our simulation that when this ter

FIG. 17. Trajectory divergences with varyingDn. As in the
single-loop case, the highest exponent does have a simple de
dence onDn. This is a laser with a double loop and no extern
injection. Here,tD /tR50.4468, the coupling to the second loop
0.1, the pumping is at 113 threshold,Fnl55.031023, and the
reflectances areRx50.9 andRy50.85.
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is set to zero, the effective Lyapunov exponentl associated
with trajectory divergences is zero. When we increaseFnl ,
which is proportional tox3 , the Kerr term,l becomes posi-
tive even for values less than that known for pure fus
silica. This is a clear indication that chaos in the operation
this kind of laser arises from this optical nonlinearity.

We investigated the dependence ofl on linear birefrin-
gence and on the amplitude and frequency of externally
jected light and found that usually positiveFnl lead to cha-
otic behavior. The exceptions involve some circumstan
with externally injected monochromatic light which cau
locking in the ring laser operation. In these casesl50.

The stage is set now for two directions of investigation
~1! Couple two EDFRLs using the schemes discussed

@7#. This is the subject of our companion paper@10#.
~2! Change the doping material to Nd or Pr which alte

three important parameters in this problem:~1! the relaxation
time of these rare earths is less by about a factor of 10:
ms for Pr and 400ms for Nd. ~2! The wavelength of inter-
esting laser action is about 1.3mm which is within another
important communications window, and~3! the GVD coef-
ficient b2 is nearly zero at this wavelength.

Our simulations of the EDFRL also raise the issue
experimental verification of the dependence of the larg
Lyapunov exponent on the nonlinear phase shiftFnl or
equivalently on the nonlinear optical effects ofx3. We plan
to report@20# on our investigations of this in the near futur
The collection of experimental data in this regard requi
some care as the very large ratio of fluorescence lifetime
cavity round-trip time means the wave forms whose chao
oscillations we are investigating change on a quite slow ti
scale compared to all other phenomena in this system.
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