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Chaotic dynamics in erbium-doped fiber ring lasers
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Chaotically oscillating rare-earth-doped fiber ring lag@ERLS) may provide an attractive way to exploit
the broad bandwidth available in an optical communications system. Recent theoretical and experimental
investigations have successfully shown techniques to modulate information onto the wide-band chaotic oscil-
lations, transmit that signal along an optical fiber, and demodulate the information at the receiver. We develop
a theoretical model of a DFRL and discuss an efficient numerical simulation which includes intrinsic linear and
nonlinear induced birefringence, both transverse polarizations, group velocity dispersion, and a finite gain
bandwidth. We analyze first a configuration with a single loop of optical fiber containing the doped fiber
amplifier, and then, as suggested by Roy and VanWiggeren, we investigate a system with two rings of optical
fiber—one made of passive fiber alone.  The typical round-trip time for the passive optical ring connecting
the erbium-doped amplifier to itself is 200 ns,sd.0° round-trips are required to see the slow effects of the
population inversion dynamics in this laser system. Over this large number of round-trips, physical effects like
GVD and the Kerr nonlinearity, which may appear small at our frequencies and laser powers via conventional
estimates, may accumulate and dominate the dynamics. We demonstrate from our model that chaotic oscilla-
tions of the ring laser with parameters relevant to erbium-doped fibers arises from the nonlinear Kerr effect and
not from interplay between the atomic population inversion and radiation dyndi8i850-294{@9)08607-2

PACS numbgs): 42.65.5f, 42.55.Wd, 05.45a

. INTRODUCTION with those of Ef* doping as we do in this paper, in our
future work we plan to analyze structurally similar ring la-
Rare-earth-doped fiberid,2] appear very attractive for sers choosing parameters associated with'Nahd PP and
use as optical amplifiers in various stages of a communicadoping where lasing at 1300 nm is sg¢éx.
tions system and as inline active elements in ring lasers used We investigate models of doped fiber ring lasers
as transmitters and receivers in such a system. Erbium-dopédFRLs). Such model equations have been discussed by
lasers are especially attractive for long haul communicationRoy, Williams, and their collaboratoifg,5], and they have
over optical fibers as the lasing wavelength, about 1550 nnmshown, experimentally and theoretically, that chaotic field
is near the minimum attenuation and dispersion point of stanescillations can be observed in these DFRLs. Roy and Van-
dard single-mode optical fiber. The goal of using the baseWiggeren[6] and our groud7] have shown experimentally
band communications bandwidth of tens of terah€fidz)  and theoretically, respectively, that such ring laser systems
around the carrier frequency of a few hundreds of THz mighttan be used for communicating information from a transmit-
well be realized using a chaotic communications scheme iter laser to an open loop optical receiver. In work subsequent
which the transmitter and receiver work over a very broado that just cited, VanWiggerenm and R§8,9] extended
Fourier power spectrum while retaining sufficient state spacéheir results to both higher symbol transmission rates and
structure to allow modulation and demodulation of informa-richer modulation schemes.
tion on the chaotic “carrier’(or couriep of information. The The main themes of this paper are the origin of chaos in
use of chaos as a “courier” of information is primarily for the operation of erbium-doped fiber ring lasers and effective
(1) effective utilization of the enormous bandwidth of thesemethods for solution of the relatively well known equations
systems, and2) the autosynchronization of the transmitter of motion for these lasers. These two issues are raised by the
and receiver in the communications scheme we discuss. experiments of Roy and VanWiggerg6] and possess sub-
This paper develops the theory of the operation in chaotistantial interest in themselves whether or not these laser sys-
regimes of doped fiber ring lasers, especially those with patems turn out to be utilized in communications systems. The
rameters corresponding to doping with erbium. A communi-experiments of Roy and VanWiggeren demonstrate the pres-
cations window near 1300 nm is of some interest as [@!l ence of chaotic regimes in this kind of laser system, and a
In addition to studying ring lasers with parameters associatedonsideration of the time scales of the atomic lifetifi®
ms) and the ring round-trip timg~100 ng alone would
suggest that in standard models of fiber lasers chaos would
* Also at Department of Physics, and Marine Physical Laboratorype absent.
Scripps Institution of Oceanography, UC San Diego. Electronic ad- The system, as we recall below, is basically that of a

dress: hdia@hamilton.ucsd.edu delay differential equation where the delay is the ring round-
"Electronic address: mkennel@ucsd.edu trip time and enters a map for the complex electric field
*Also at Department of Physics, UC San Diego. Electronic ad-amplitude and the differential equation describes the popula-

dresses: mbuhl@click.ucsd.efMB), cti@click.ucsd.edyCTL). tion inversion dynamics which is dictated by the fluores-
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cence time scale of 10 ms which is much, much longer thawlifferent velocities of signal propagation of orthogonal po-
this. An estimate based on this time scale alone would sudarizations in realistic glass media; group velocity dispersion
gest that the population dynamics would be frozen out andGVD), a frequency-dependent change in the index of refrac-
the linear propagation of the field around the fiber ring wouldtion; nonlinear birefringence, primarily, the cubic depen-
never yield chaos. This, if it were correct, would rule outdence of the atomic polarization on the electric fiékrr
these lasers as interesting for chaotic communicationsffec); and the finite, and frequency-dependent gain band-
schemes as they would not be chaotic. Nonetheless, the ewidth for a realistic active medium. The work in Re#]
periments of Roy and VanWiggeren showed chaotic oscilladeveloped models of erbium-doped lasers which included the
tions in their measurements of the output intensity of erbiumfirst three of these items and serve as the predecessors to this
doped fiber ring lasers. The analysis we provide in this papework along with[7]. In this paper we address all of these
points clearly to the role of the nonlinear dependence of théssues as part of building a realistic model of a DFRL. The
polarization of the fused silica medium of the fiber as theaccompanying papefl0] addresses the coupling of these
source of the optical chaos. We test this quantitatively in thenore realistic DFRLS, their synchronization properties, and
model we develop below, and we show that this chaos pertheir performance for communications. A fine review of fiber
sists when we vary the difference of index of refraction be-and semiconductor lasers and amplifiers has been published
tween the electric field polarizations, the absorption for eachby van Tartwijk and Agrawal12]. This review covers many
polarization, and even the external injection of light into theof the topics touched on here and sets our investigation in the
cavity. None of these effects gives rise to chaotic oscillationsontext of other investigations of these lasing media.
in the absence of the medium nonlinearity, as expected, and There are many suggestions in the literature on chaotic
each of them only slightly modifies the effect of the mediumcommunicationg13] that such systems provide secure com-
nonlinearity. munications. They may, and, equally, they may not. Security

We present the results of a number of calculations relof communications is an entirely separate issue from the po-
evant to the role of the nonlinear response of the mediuntential value to bandwidth utilization by such chaotic meth-
This nonlinear response is rather weak, and we show that @ads. In the discussion section of our subsequent piiBEr
nevertheless is important as many hundreds of thousands wfe will comment on thecryptographic settingdf our com-
round-trips are required to build up the phenomena seen imunication method$6,7,14 in hopes a rigorous analysis
the experiments. Even small quantities can accumulate signay be provided by others.
nificant effect in this case. With these results one can confi- In this paper we formulate the equations of motion rel-
dently proceed to investigate the coupling, possible synchroevant to an erbium-doped fiber ring laser. In most conven-
nization, and transmission of information between two ringtional lasers, and in our earlier investigatipn], complex
lasers of this variety. Again experiments have succeeded itime-dependent dynamics arise from the interaction between
showing many of the effects we seek to model, so the motieavity modes of the electric field and the population inver-
vation for an accurate and efficient model is enhanced. Theion in the active medium. A somewhat unusual feature of
other dimension of this paper which adds substantially toour present erbium-doped fiber laser system is that when the
earlier efforts is that of an efficient and accurate computatotal fiber length, active and passive, in the optical ring is of
tional scheme applied to the relatively well known equationghe order of a few tens of meters, abouf ¥0und-trips of
of motion. We describe this scheme in some detail as itight around the laser are required for the population inver-
should be of interest in further exploration of this class ofsion to play any role in the oscillations of the system. The
laser systems as their use in communications is investigatefiuorescence lifetime for the upper lasing state ifi doped

In this paper and its companidd0] our focus is on in- silica is about 10 ms. We are primarily interested in fast
vestigating realistic models of the DFRL with an eye on thegigahertz scale fluctuations, or equivalently in times well un-
synchronization and communication aspects of the coupleder sub-round-trip times because we wish to eventually con-
chaotic optical devices. In our earlier wofK] we reported vey information at this speed. At these shorter time scales,
on results for what we called the “Ikeda ring laser” after the the population dynamics nearly “freezes out” and only
early investigations of Ikeda on ring lasers and the dynamicserves to automatically set the overall gain and power levels.
associated with the time delay in the travel time around thédowever, the dynamics are far from boring. Because of the
ring [11]. The Ikeda ring laser contained the essential ingreunusually long cavity length and low losses, spatially com-
dients of a ring laser communications system, and, in parplex electric field wave forms can propagate for long periods
ticular, we gave an analytic proof that two optical ring sys-of time. This means that small physical effects which di-
tems as described here will autosynchronize and allowectly involve signals on the optical field, such as the depen-
accurate communication of information when the transmitterdence of the medium’s polarization on electric field, group
is run as a closed loop oscillator and the receiver is run as avelocity dispersiori15], and the linear birefringence of silica
open loop device. In that paper we ignored a variety ofglass can accumulate to large effects on the laser oscillations.
physical effects which play a significant role in the realistic ~We begin by formulating the equations of motion. These
operation of a rare-earth-doped fiber laser. These include deonsist of an ordinary differential equation for the population
rect pumping of the active medium by an external sourcejnversion and a set of partial differential equations for propa-
dynamics involving the two transverse polarizations arisinggation of the two polarizations of the complex electric field
from the vector nature of the electric field; properties of thethrough the active medium coupled with a four-dimensional
optical fiber and other passive elements connecting the outnap for these quantities describing their passage through the
put back to the input of the rare-earth amplifier; intrinsic passive fiber. Altogether the solutions to the differential
birefringence, the different indices of refraction, and hencesquations connect the complex fields at tinveith the same
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fields one round-trip time later at timet+ 7, and they de- A 00t
scribe the slow variation of the population inversion during
any round-trip.

We then derive a propagation map, based4B], reduc-
ing the solution of the partial differential equation to time
delay maps, thus greatly diminishing the computational dif-
ficulty of the simulation. This differentiates our work from
most of the conventional optical literature and is vital for our
investigation because we need to be able to integrate hun-
dreds of thousands of round-trips with high spatial resolution
inside a single ring.

We present some characteristic numerical results for the
dynamics of this system. In particular, by following nearby
orbits in state space, we show that the Kerr nonlinearity
gives rise to chaos in this system even when there is no
driving by an external, detuned laser. When there is such giG. 1. Setup for our simulations of the dynamics of a rare-
driving, chaotic oscillations occur over a broad range of amearth-doped fiber ring laser. An erbium-doped fiber amplifier with
plitudes and frequencies of the external source. input atz=0 extends taz=1,. After leaving the amplifier light

After the discussion of the single-ring DFRL we add an-travels through an isolator which guarantees propagation only in the
other, passive ring, which introduces an additional time depositivez direction, through a polarization controller, and through a
lay into the dynamics and results in chaotic oscillations withlength | of passive fiber described Hyynole fiver- JUSt before the
additional frequency components. This second ring was sugsirculating light reenters the amplifier it receives external injection
gested by experiments of VanWiggeren and R8y of light of amplitude A(t) and frequenc w.

Synchronization of two such ring lasers and communica-
tion of information modulated onto the chaotic signals car-  Following the derivations ifil5] for the dynamics of the
ried between them is taken up in the accompanying papeflowly varying envelope(z,t) = (&(z.t),&,(zt)) of the
[10]. electric field, we find the wave equation for a birefringent
wave guide in retarded coordinatesz, £=t—z/vy,kg
=nNgwy/C) to be

Isolator

Passive Fiber

Uwhole Fiber

II. DYNAMICAL EQUATIONS FOR THE DOPED
FIBER RING LASER

2
We begin with a laser cavity composed of an active me9x,y(Z,7) b @ 97Exy(2,7)

dium, rare-earth-doped fiber amplifi@dFA) of lengthl,, Jz 2 972

whose output is connected back to the input by a single-

mode fiber of lengtH. In the light path, we include an ikoA A 9& (z,7)  iKg

optical isolator to ensure unidirectional propagation, a polar- = - on2 EX,V(Z'T)in_C ar to 5 Pay(z7),
N ; Lo . ; ng 0 2ngeq

ization controller, and optionally, a fiber junction which con-

nects an external monochromatic source which injects addi- (oN]

tional light into the ring. The center frequency of the optical
signal in the cavity iswg, and the frequency of the injected
light is w,. The coordinate around the ring is calledand
the length of the optical cavity is=1,+1g. In this section
we formulate the dynamical equations for this setup.

In a later section we add a ring of passive fiber to this.
The reason for the second loop of fiber is that the ratio of
fluorescence lifetime in the active medium to that of a round-
trip time in the fiber ring is order £0for an erbium amplifier
so the population inversion dynamics is essentially time in-
dependent in such a system, leaving nearly linear dynamics
for the electric field propagation. The only nonlinearity is
that of the Kerr effect or cubic dependence of the material
polarization on electric field. This weak nonlinearitpes
lead to chaotic oscillations of the erbium DFREDFRL) as
we will show here, but such oscillations occur on a time Trc
scale so long that they do not provide effective bandwidth g1 2. setup for our simulations of the dynamics of a rare-

utilization. The addition of a second ring of passive fiber, assarth-doped fiber ring laser with two loops. As before, an erbium-
suggested by VanWiggeren and R}, gives us an addi- doped fiber amplifier with input =0 extends t@=1,. In this
tional time delay, allowing us to increase the frequency consetup, after the light leaves the isolator, some of the light is re-
tent of the chaotic signals. The single-ring configuration ismoved and passed though a second loop with a second polarization
illustrated in Fig. 1. In Fig. 2 we portray the situation with controller. After the light has been delayed a time by propaga-

the second ring of passive fiber added. tion around the second ring, it is reinjected back into the main loop.

Isolator

Passive Fiber

Uwhole Fiber
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where we use the upper choice in sign fguolarization and tions in the polarization corresponding to the off-diagonal

the lower fory. The group velocity dispersion coefficient terms of the density matrix. These decay with a time scale

Bo~—20 pglkm at 1.55 um in silica. The differential T,~10 ?> s. As we are not concerned with signal time

birefringence parameter is=ny(n,—n,). Compared to the scales that rapid, we assume the active atoms act as a reso-

familiar formulation in[15] we keep an additional time de- nantly driven dipole, providing a complex-valued electric

rivative in £ on account of the birefringence because thissusceptibility function depending on parameters such as the

influences the differential propagation speedssigihalsin  density of active atoms, their cross section, and the popula-

the different polarizations, not just the optical phase. Ovetion inversionn [16]. In frequency domain the dipole re-

many thousands of round-trips, this can be significant even i§ponse is an algebraic expressi®y(w) = x,(w,n)&(w). For

A<1. The material polarizatiorP(z,t)=(Py(z,t),Py(zt))  xi, we use for baseband signal frequenciesw,, follow-

has two important contributions: a polarization proportionaling [17],

to one power of the electric fielf(z,t) arising from stimu-

lated emission due to population inversion of the lasing at- o/Nc

oms, and the Kerr nonlinearity proportional to three powers x1(w,n)= o n(t)
. . A

of £(z,t). This allows us to write

sz_ i
1+ T3

, )

P(z,t) €0="P(2,t) + Pc(Z,1), ) with o an atomic cross section, ad the density of active
atoms. The imaginary part gf; contributes to gain, and the
where real part to a population-inversion-dependent change in the
index of refraction. Absorbing the constants into a gain pa-
rameterg the resulting operator ign(7)/(1+ szg), ex-
pressed in frequency space, which we separate and rearrange
into the dominant zero-frequency gaign(7) and the
2 frequency-dependent correction. We ignore the real part of
& (ZH)EY(z,1) ; : . LY
x; in our simulation because it primarily corresponds to a
secular change in the group velocity, equal for both polariza-
and tions, which we assume could be absorbed inteecause in
5 the equilibrium operation of an EDFRL, the fluctuations in
'pKy(Z,t):X3{ ( 1&,(2,0)]2+ _|gx(z't)|2>gy(z't) n(r) are very small compared to its average value.
3 We point out there is some confusion in the literature
1 about the meaning of the “third-order nonlinearity” which
+ —é’;f(z,t)gi(z,t)], arises from this term. Some experiments measure the phase
3 shift induced by a long-term changslower thanT,) in
some applied electric field power. Running as a fiber ampli-
fier, and not a ring, surely would changeery substantially,

2
7DKX(th):X3( ( |€X(Z,t)|2+ §|8y(2,t)|2>gx(2,t)
1
"3

where we have identified the linear term in electric field

Piz1) z?md the nonll_n_ear or Kerr terri¥(z,t) which we and via Ref,) contribute to a large change in index of re-
have written out explicitly. . : o ; .
fraction which appears to change with input power, just as in

sc;—oicrdi';eni(i? tth:eterPnorgr;r(i)lmrgggéyenn;rz?jugid amgi%rol' ethe classical Kerr effect. However, for our study of commu-
pic g Y, emp y . 9hications in ring lasers, this is not important,rashanges far
polarization of £&. Defining a power-dependent index of

refraction n=nq+ n,|€|2 following the argument in15] slower than the signal time scales we consi@¢di0 ° s).

we find the following relation between, and ys ys=2n,/ We concern ourself. only withy,; attached to a fast-
Acr Where Ag is the “effective” core area of the optical respond_mg Kerr nonImeanty.

eff eff > optical The field’s wave equations thus become

fiber, accounting for the transverse mode function. Using

n,~1.2x10 22 m?/V? for ordinary fused silica glass 9E, (2,7)
and an effective area for the core of a single-mode fiber b
of 109 (um)? [9], we have a nominal value ofys
=2.2x10"1v2,

The linear term in the atomic polarization arises from the
interaction between the electric field and the active lasin
atoms. As discussed ifl6] the erbium system is a three-
“level” system in which a pump, for us an external diode
laser running at 980 nm inside the amplifier, takes thg,
ground state to the short livedl;, excited state, from Lyy=
whence it rapidly goes to the long livell; 5/, State where its '
fluorescence lifetime is 10.2 ms. The lasing transition is be-
tween this?l 5, state and the*l 5, state. Only the lasing

97 =gn( 7')gx,y"_I—x,ygx,y_i_ Nx,ygx,y' 4

L contains the linear parts of the propagation operator ex-
cluding gain, andN the Kerr nonlinearity. The linear opera-
Yor L, including birefringence, GVD, and gain dispersion, is
most naturally represented in the Fourier domain:

ikg(ny—ny) _ A [ )
e . AR R
* T +noclw 2B2w

. 1—gn(7)(1+ w?T3)

: )
transition between thél 5, and 5, States is relevant to 1+ w?T?
our discussion, so we treat the whole system as a pumped
two-level system. with w the signal angular frequency, and assuming tt{a)

An erbium-doped fiber laser is claBs meaning that we behaves as a very slowly varyingompared to signal fre-
can adiabatically eliminate the dynamics in the fast fluctuaquenciesw) external parameter. The first term i , only
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results in an overall arbitrary phase shift for the two polar-with 7g=L/v the round-trip time for the full laser cavity,
izations, which can be absorbed without loss of generalityand R the matrix representing absorption by the fiber. In
into the polarization controller in the passive leg of the ringgeneral the absorption in the two polarizations can be differ-
described in the next section. The term lineawimepresents ent, so we write

linear birefringence; the next term, quadratic dn is the

group velocity dispersion. The last term is associated with Ry O
. . _ R= , (]_]_)
the gain curve, and arises from the fact that the center fre 0 Ry
guency of the linew=0 is amplified more strongly than
frequencies on either side of the line. 0<R,,Ry<1. The phase factoe'“o"'r/¢ comes from the
The nonlinear operators are free propagation fronz=1, to z=L over a distancér.
) The pointsz=0 andz=L represent the same physical
_ 2, % 2 location, the input to the DFA. Dropping the lalebn the
N X3{ ( &z I+ 3|5V(Z’T)| )SX(Z’T) field, henceforth implicitly referring only ta=0, we have

* %5;(2, T>5y(z,7>2], (6) E(t+ 1) = (Re'“0F o cUyore ined P{EMD} . (12)

Finally we add to this equation a term which represents in-

2 jection of an externally generated electric field of complex
Nygy:XGs[ ( |Ey(z,7)[*+ §|5X(Z,T)|2) &y(z,7) amplitude
1 (A
+ 55’;(2,7)&(2,7)2]. (7) At)= A (13

We have assumed the lasing gaito be identical for bottx ~ @nd frequencyw, . This light is injected just beforg=0
andy polarizations. This appears to be true in the setup useWhere&(t) is defined, the entrance to the DR&ee Fig. 1.
by Roy and VanWiggereh9]. The physical implication is [N the frame rotating at frequenay,, where we have written
that an erbium atom in the upper state has an equal cro&$!l equations, this changes the relation betw&grn and
section for lasing in both polarizations and that the pumpingt(t+ 7r) to
does not favor either state, and that the reservoir of inverted B () — w0) (t+ 1)
atoms is evenly shared. E(t+ )= A(t+ Tg)e® T “OHTTR
These equations must be solved numerically to propagate iwonglg /e )
the light froqm its entry into the DFA a=0 to itg exi? atg ’ *(Re Jpcunotefioed PLECD}.  (14)
=l. From there we propagate the electric field around therhis discrete-time map, a recursion relation between the field
remainder of the passive fiber. This process we take up novt timet and timery, later, is one of the dynamical rules of
The electric field envelope at=1, is related to the field our ring laser system. The other is the population inversion

at z=0 by the symbolic expression equation in its simplified form.
The overall phase factor and Jones matrix of the real fiber
E(z=Ipt+1alv)=P{&(z=01)}, (8 are unknown and without loss of generality we can absorb

i ) _ them into Jpc. Any such matrix may be parametrized by
where we defineP to be the propagation operator which e angless, , 6,65 In experimental circumstances, the

transports the electric field from the beginning to the end ofhqo)yte values of these angles are unknown, although they
the active medium, an integration of the wave equations 'ehay be varied by rotating the appropriate optical elements of

cently derived. o the polarization controller.
The polarization state of the field influenced by the ran-

dom birefringence in the fiber arising from numerous small
effects associated with imperfections in the fiber, strains, etc.
Following [18] we write the net effect of passive fiber as a

unitary Jones matrix which we denotk;nie fier We integrate the equations of motion using a time step
which is a small fraction of the round-trip timeg: 6t
=7r/Ng, Ng=2500. The dynamics of the population inver-
sion is given by an ordinary differential equation which can
be integrated by conventional means at each integration time
where|u,|?+|u,|?=1. An overall phase and an attenuation Stepdt. Because the propagation mels}) connects electric
factor can be absorbed in the other terms to appear belovields a full 7 later, we must save a rolling bufféts steps
Similarly we associate a Jones matdix with the polariza- long for the complex coefficients of the electric fiedd and
tion controller. Y-

Transporting this field fronz=1, around the fiber and At each time step, we recall the values&(t) and&y(t)

lll. SOLUTION OF THE ELECTRIC-FIELD
PROPAGATION EQUATIONS

©)

Uy Uz)

* u*ic

U L=
whole fiber —u}

back to the input of the DFA a=L we have and operate on them with maps representing propagation
_ through the active medium followed by the passive compo-
&(z=L,t+ 75) = (Re'“0"'F €I U\ noie fibed P{E(Z=01)}, nents of the ring, then we store the future valuesCgs

(10 +7g) and&y(t+ 7g) in the buffer. Now time advances for-
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ward by 6t. We recall&,(t+ 6t) and & (t+ 6t), and we re- cessed. The number of sites in the lIddpis not the same as
peat. The map propagating the field through the passive fibdP! the FFT computation, unlike many existing optical simu-
is given explicitly by Eq.(14). We now discuss the transfor- lations in the literature. Integration strictly with the FFT as-
mation of the partial differential equationd) into maps Sumes periodic boundary conditions. Much of the existing
propagating the electric field from the beginning of the activeliterature is only concerned with repetitive pulses, and only
medium to the end of the active medium in one operationfor & single polarization(or examining only intensity in
just as we used the Jones matrices for the passive section Which case the identification of the entire loop with the FFT
fiber. input is acceptable, allowing one to advance an entire round-
In the time-asymptotic operation with realistic parameterdfip per large integration step. In our situation, however, that
corresponding to erbium-doped fiber lasers, neitheror N a_lpproach is inappropriate because we consider both polariza-
has a substantial influence in asjngle pass through the tOns, and the polarization controller strongly rotates the axes
lengths of active medium typically found in a commercial @1d the attenuation is different between the axes.
EDFA:1,~20 m. The dominant effect in the active medium Other than the evaluation of the linear operator, the re-
is gain, balanced by the net attenuation found in the rest ghainder of the integration algorithm proceeds strictly point-
the ring. This means that we can approximate the solution ofiS€, taking the envelope values storedciny, (t), operat-
the differential equatior{4) which simultaneously includes N9 on them with the nonlinear Kerr operator, the gain
all three operatord., N, and gn(t) by operating on by ~ Operator, the passive components of the ripglarization

each of the operators in turn. Each can be easily solved tgontroller, attenuation, external drivingand storing it in the
find € atz=1,, given& atz=0. buffer as&, ,(t+ 7g). n(t) is updated with a simple Euler

In an erbium-doped amplifier, the gain curve is veryintégration formula, and time advanced one discrete step to

broad. That is,T,w<<1 for the signal frequencies we may t+ ot. . . _ -
resolve with our spatial discretization of the loop. More pre-  The Kerr integration is also approximate. For realistic
cisely, we can resolve a maximum frequency about 5 GHz iféngths of active medium and birefringences, there are sig-
the present computation whileTL/~1000 GHz. nificant phase oscillations between th@andy components,

The differential equationy&/dz=L € is solved by&(z which result in the last terms in E@6) averaging to zero.
=1,)=exp(aL) £(z=0), and this has a simple representa-Th'S approximation is valid when propagating :[‘hrough chaf,-
tion in the frequency domain. Operationally, we take a chuni@Ccteristic lengths much larger than the modal “beat length
of £ from the buffer 2! steps long (¥<N), transform to Lg=N/[n,—ny| [15]. We estimatd. g~1 m whereas our ac-
frequency domain by a fast fourier transfoEFT), apply tive mediuml 5 is about. 20 m. In this standard approxima-
the operator expfL ), transform to real space, and save thesd!o": th? result is an intensity-dependent nonlinear phase
values, denoted, ., in new buffers. A certain number of Change:
points from each end are discarded before the result is saved
in the &y, auxiliary buffer in order to account for end ef- o ) , 2 2 B
fects which can bedevil Fourier-based methods. The  &x(Z=la)=expilaxs| [Ex°+3[E,7||E(2=0),
frequency-dependent term in the solution is expanded in (16)
powers ofw into 1—gIAn(t)T§w2 to simplify computations. 5
This form more clearly demonstrates the decreased gain for Sy(z=IA)=ex+ IAXS( |5y|2+_|5x|2)
frequencies further from the center of the line«at0. The 3
remaining imaginary terms ofL. apply a frequency- The full solution has been computed in the literafir@| and

dependent phase shift, i.e., dispersion, but not dISSIpatIOri‘hvolves Jacobi elliptic functions. The gain part of the propa-

&(z=0).

Explicitly, gation equation,
Eyi(@,2=12)=[1-glan(7) To0?] 9E(z,7)
5 =gn(z,n&z,7), a7
p( _Alx Bala z
Xexp vl—w—1—Fw
NoC 2 has the solution
XEyy(0,2=0). (15)

E(z,r)=ex;{gfozdz’n(r,z') &(z=0,7). (18

The value ofn(7) is assumed to be constant during the ap-

plication of this linear operator, fixed to the current value atsiven the electric field at the start of the active medium
the beginning of the domain. In the asymptotic eq_umb_rlumg(zzoﬁ) we have a formula giving its value at the end of
state for an erbium-doped fiber laser, the population INVETthe active medium whose only other time dependence is the

sion changes negligibly during a single traversal of the aCtiV%opuIation inversion averaged over the medium:
medium. :

This process of reading in points from tEebuffer, oper- E(ly,7)=e9"g(z=0,7), (19
ating on them with the linear operator, and saving them in
the auxiliary buffer happens independently from the mainwhere
integration loop: a counter keeps track of the latest point in |
time which has been saveddh . , and, if it is less than the w(7) = MAJ Adz’n(z’,r). (20)
“current time” in the main loop, an additional chunk is pro-
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The physics of the atomic polarization in the active medium 27(3.2X10°%° m2/W)(40 m) (3
is governed by external pumping, spontaneous emission, and = =
stimulated emission from the light propagating through it. (155 um)(109x 1012 m?) 12
This is described by the usual Bloch equations for the popu- (24)
lation inversion at timer and spatial locatiomz:

(136x10°3 W)

=102 (25)
an(z,r)
arT

1
= pumping term- _lf[n(z, 7)+1] This is the phase shift associated with one round-trip through
! the fiber cavity. In our work we investigate the results of
—én(z,7)|&z,1)|?, (21  hundreds of thousands of round-trips around the cavity, and
thus the effects of &, of this size can be quite substantial.
with T the lifetime of the excited statd0 ms for a typical We parametrize our dynamical simulations ®#y,, the
EDFRL) and¢ a constant relating to the optical cross sectiononly dynamically relevant combination of power and nonlin-
governing the transition rate between levels. With the soluearity. Physically this could be interpreted as varying the
tion (18) and assuming rea we can integrate Eq21) by = EDFA pump level, linearly increasing the optical power
|x1/dZ to arrive at the dynamics for the population inver- above threshold, or varying the length of the fiber catity
sion averaged over the entire active mediuw(7) The remaining parameters in the definition ®f, are as-

=w(l 5, 7), following Ref.[4], sumed to be generally fixed in any given experiment. Each
calculation allowed the ring laser to run for 500 000 round-

dw(7) trips before the dynamics was observed. This is relevant to
TZQ—7[W(7')+1+(62|A9W(T)—1)|€(Z=O,T)|2], erbium-doped fiber lasers where the lifetime of the upper

22) lasing state is about 10 ms and approximately 100 000 round-
trips are required for the population inversion dynamics to

here with time units rescaled by the round-trip time. play a role. The pumping level for the population inversion
This scalar quantity(7) is the only representation of the €duation w?s.a few times allnoye threshold, "’Il(nd thedq]:fssma-
population inversion state needed in the simulation. It is im{ON in X polarization andy polarization was taken to differ

portant to note that the magnitudi§l? is preserved by our by about 5% and each to be about 0.9 on each round-trip.

: : ; : . The size ofb, was chosen to be 1610 2, a slight increase
ropagation operations, except for the gain term, includin nl ; N L
bropag b P g 9 n the above nominal value. The difference in indices of

the nonlinear Kerr phase shifts. After the Kerr operator, the’ i %
main component of the gain is applied to the two complex€fraction was taken to be about 10(see Table)l

N : In Fig. 3 we show a typical time series for the total inten-
envelopes, multiplying each by eghw(7)], and finally we . , X o
account for the passive componen?s of the ring, to producd® With a single loop of passive fiber. The top graph shows
&, (t+ 1) the intensity at frequencies up to 6 GHz. In the experiments
X,y :

of Roy and co-worker$20] a photodiode used to measure
the intensity cannot resolve frequencies above 1 GHz. So
that our results will have the same frequency content as the

Using the numerical methods just described we havéXPeriment we passed the same data through a single pole
evaluated the dynamics of the model DFRLs derived earlierfilter to simulate the photodiode, a high-order far infrared
In these calculations we employed 2500 locations around theIR) filter to simulate the analog to digital converter in the
ring as points to sample the electric field. This corresponds t§Scilloscope, and down sampled to 1 GHz. This time series
/2500 or a time resolution of about 0.08 ns. We shouldS Shown in the middle of Fig. 3. Undemeath is an experi-
resolve fluctuations in electric field or light intensity up to 5 Meéntal time series from the laser of Roy and co-workers
or 6 GHz with this integration scheme. The experiments aré20] . , i
presently able to resolve about 1 GHz fluctuations with the 1he amplifier was pumped at 20 times the lasing thresh-
diode detectors available. old of the ring and there is no external injection, although

The only power-dependent dynamical quantity is the sizdypically the addition of external injection does not qualita-
of the third-order nonlinearity, which is is most easily char-
acterized by the nondimensional nonlinear phase shift
experienced by a@ field as it passes through the fiber is
given by[15]

IV. EXAMPLES OF THE EDFRL OPERATION

TABLE I. Typical parameters for our EDFRL model simula-
tions.

Quantity Symbol Value
2mn,L Linear modal birefringence n,—ny, 1.8x10°
ni— Mg (Pa+2Py), (23 Pump strength Q 3.4x10°°3
Gain times active length gla, 0.675x10°?
whereP,,P, are the optical powers in the parallel and per-Ratio of round-trip time to erbium lifetime y 10°°
pendicular direction. Round-trip time TR 200 ns
In a typical experimental ca$8] running at a pump level Polarization dephasing time T, 1 ps
of 20 times threshold, a typical output power is 136 mW.GVD coefficient B,  —20 pg/km
Splitting the power equally between polarizations and estii ength of active medium [a 20 m
mating a total fiber length of 40 m, we estimate an induced Nonlinear phase shift D, 1.5 102

nonlinear phase shift as
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FIG. 4. Power spectrum of the output of the laser simulation.
The original time series was sampled at 2500 fer This is a laser
FIG. 3. Top: A time series of the output of the laser simulation With a single loop 7a2nd no external injection. Heran~2.0
sampled at 12.5 GHz. This is a laser with a single loop and no<10 °» ®n=1.5x10"%, and the reflectances aRy=0.9 andR,
external injection. HereAn~2.0x107%, ®,=1.5x10 2, and the
reflectances arg,=0.9, andR,=0.85. Middle: The same data af-
ter a filter to simulate a photodiode and down sampled to 1 GHzAt each time step, the electric field variables are coupled not
Bottom: An experimental time series from Roy and VanWiggerenonly to the previous round-trip variables, but also with their
also sampled at 1 GHz. neighbors through the population inversion dynamics, GVD,
) ) S ~and linear birefringence effects. The complexity of the inte-
tively change the dynamics. The round-trip time in the simu-gration algorithm, especially the spectral evaluation of the
lations was 200 ns, while in the experiment it is 186 ns.inear propagator, makes a direct computation of the full
Figure 4 displays the Fourier power spectrum on two Sca|e§pectrum of Lyapunov exponentas was done if7]) im-
for the total intensity dISplayed in F|g 3. Notice that becaus%ractica| as one would need to take Jacobians of the one-

the time scale of light to go around the cavity is muchtime-step map implied by the integration algorithm. How-
smaller than the time scale for the population inversion or

any dynamics from®, most of the power is concentrated
into harmonics of one round-trip. In order to see any dynam-
ics on these time scales we can change the sampling period
to be equal torg, removing any changes within one round-
trip. A time series down sampled thus is given in Fig. 5. Here

Time (ns)

6000

5000r

we can see that, although the intensity appears to be mostly 4000

periodic from round-trip to round-trip, on long time scales 5

there are aperiodic fluctuations. § 3000
[=

In the future we plan to analyze these time series along
with the experimental time series of Roy and co-workers 2000y
[20] using well tested nonlinear analysis tof&i].

1000}
V. CHAOS IN THE ONE-RING EDFRL
O 1
The EDFRL model described above represents an ex- 0 4

tremely high-dimensional system. In our simulation, the Time (ms)

equations are integrated by separating the ring into 2500 FiG. 5. Time series of the output of the laser simulation. This
d|Screte't|me StepS. EaCh time Step contains fOUI‘ eleCtrIC f|e|q/as On|y Samp|ed once pek to remove the fast sub_round_trip
variables, R&,, Imé&,, Re&,, and Im&, . These, along fluctuations. As before, this is a laser with a single loop and no
with the constantly changing population inversion variableexternal injection. HereAn~2.0x 1078, ®,=1.5x10"2, and the
w(t)=n(t)l, results in 10001 state variables in the systemreflectances ar®,=0.9 andR,=0.85.
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ever, one may estimate the largest Lyapunov exponent . Di(t)
through the rate of divergence of nearby trajectories. A=1limIn D(0))’ (28
One EDFRL, called laseA, is integrated for X 10° o :

round-trips(equal to about 1/10 of a second in real tinte
reach what appears to be asymptotic behavior. At this poin
a secondidentica) laser, called laseB, with identical physi-
cal parameters is initialized with identical state variables a
laserA, with B’s electric fields€g perturbed by a very small
amount of noise, knocking it slightly off of the trajectory of
laserA. The noise is added to both the real and imaginar
parts of&g in both components, Gaussian distributed with a

nd we understanti—o as long times after the perturbing

ick is made to the orbit. When the system is chaotic, nearby
%rajectories diverge beyond the validity of the linear approxi-
mation governing the Lyapunov exponent. To compensate
for this, all the state variables of lasBrare renormalized

ack to withine of laserA whenever the round state differ-
ence grows to a size of &0

variance of size which is set as an external parameter of the Sali]-SAli]

simulation. In the following simulationse is a factor of Sgli]«Sali]+ , (29
10~ * smaller than the average magnitude of the electric field 10

components.

Concrete computation of Lyapunov exponents from tra-WhereS[.i] represepts the st_ate variables at time $.I é’ﬁ_\us
. . . : alculating the trajectory difference reduces to finding the
jectory d|vergenc_es requires a metric to be chosen. The me wmber of times normalization was performed and the final
ric we use here is value of the trajectory differences. The largest Lyapunov ex-
ponent is estimated by examining the slope, in the time-
[t 5 5 asymptotic linear region, of the logarithm of trajectory dif-
D=L JO dZ|5XA(Z)_5XB(Z)| + |5VA(Z)_5VB(Z)| ' ferences as a function of time. The initial trajectory
(26) perturbation will not necessarily lie upon the eigendirection
corresponding to the largest exponent, thus the initial stages
) ) ) . ) of the trajectory divergence will have contributions from all
with L corrt_aspondlng to a full rou_nditrlp. This metric mea- o exponents, though the largest Lyapunov exponent domi-
sures the difference in eqch elec'_mc field co_mpon_ent and th_eﬁ‘ates the trajectory divergence exponentially quickly. Since
calculates the squared distance in a four-dimensional Euclidye have no direct way of estimating the other exponents, the

ean manner. This metric is sensitive to phase deviation in;cy5| separation between the largest and the rest of the ex-
tensity and polarization differences. ‘ponents is difficult to estimate.

For an optical system, what is measured experimentally is
in many cases a projection of the general state space of the
system into a certain physically meaningful subspace. An
example is the detection of optical intensity by a photodiode. We examine the dependence of the trajectory divergence
This measurement would read the intensity of the electrion the nondimensional nonlinearity coefficiedt,. While
field wave, but by itself says nothing of the optical phase orthe other effects considered are important to the dynamics,
details about the polarization of the wave. Consequently, ifve identify the nonlinear polarization rotation to be neces-
one uses a polarization insensitive photodiode to record aary for chaos.
chaotic time series of electric field intensity, one cannot say As we see in Figs. 6 and 7 there is a definite increase in
anything regarding the phase chaos in their data set withodhe Lyapunov exponent as the nonlinear phase shit, is
further tools. In order to connect our simulation to this physi-increased. We see that even for a valuebgf equal to the
cal circumstance, we also examine a metric which is sensirominal value found in Eq25), we get a positive, although
tive only to intensity differences. It is conceivable that non-small, exponent. As we increask,, beyond the nominal
linearity produced by the Kerr effect, for instance, mightvalue we get an increasingly larger exponent. We go from a
only cause chaotic polarization or phase differences and natharacteristic trajectory divergence tinmg=(1/\) of about

A. Kerr coefficient

lead to chaotic amplitude fluctuations. 7.=1 ms for a nominalb,, to 7.=0.25 ms for a®,, of
The first metric, Dy, is sensitive to both phase and inten- 1.75 times that of the nominal value. At the largest value of
sity divergences, but the second metric, ®, we studied,®, was equal to 2.25 times its nominal

value, 7. was about 0.15 ms. These computations were done
with no external injection of light into the ring. We also see

L
D,= L‘1J dZ[|&,(2)[*+]&,,(2)]°] that the laser intensity also shows significant divergence. Al-
0 though the intensity Lyapunov exponent is generally about
_[|5xB(Z)|2+ |5VB(Z)|2]|’ 27) half of the trajectory exponent, it still follows the same pat-

tern of increasing\ with increasing®,, and thus an experi-

menter monitoring only laser intensity should observe the
only responds to intensity differences. Because the projedesults of these chaotic intensity fluctuations. Even though
tions of the full&(z) space down to thE(z)| intensity space the Kerr effect only directly influences the polarization
is not invertible, the Lyapunov exponents need not be the@ngle, in the whole ring system it leaks out to generate chaos
same. Intensity is more experimentally accessible, makingn the intensity as well.
this particular projection interesting. The trend ofA with changing®,, (Fig. 7) reveals a gen-

We quantify the divergence of nearby orbits in the largesterally linear, and certainly monotonic, dependence\ afn

Lyapunov exponent of the system which is defined by @, for both metrics. The error bars were calculated by look-
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FIG. 6. Trajectory divergences witih,, varying from zero to
0.5x 10 2. This is a laser with a single loop with no external injec- ~ FIG. 7. Trajectory(uppej and intensity(lower) Lyapunov ex-
tion. Here,An~2.0x 1078, and the transmission coefficients are Ponentsx varying ®. This is a laser with a single loop and no
R,=0.9 andR,=0.85. external injection. HereAn~2.0x 1078, and the transmission co-
efficients areR,=0.9 andR,=0.85.

ing at the standard deviation of the entire group of exponents
found if the linear fit is calculated subsequently over the
range of starting points between 4 and 16 ms and using an The linear birefringence term results from a net difference
ending point of 20 ms. This measurement gives an estimd-.n the refractive index experienced by the two electric field
tion of the variance of the exponent calculation dependind)olarizatio_ns as they travel thrpugh the fiber..This contrib-
upon where you look for a best linear slope. Thus we conUtes only linearly to the dynamics, and thus will not lead to
clude for the apparent relationship betwakp and\ that it chaotic dynamics on its own. This fact is confirmed numeri-
is valid to consider the Kerr effect as the source of the cha-

otic behavior in the single-loop EDFRL. Even though the 35
nonlinear polarization rotation conserves optical power in a
single pass through an ideal nonlinear medium, the overall
system produces chaos in the intensity even wA&»0,

i.e., equal transmission coefficients for both polarizations.
The actual value oh is altered by other effects in the
laser, though, as can be seen from Fig. 8. Although there is

substantial trajectory and intensity divergence fobg of

1.5 times the nominal value, we see that a nonzenand a
breaking of the transmission coefficient symmetxy, both
serve to increase the exponent value. As shown in the figure,
breaking the symmetry in transmission coefficient between
polarization states has a small effectAh is set to zero.
However, ifAn is raised to a physically reasonable value, we
see an almost threefold increaseniin this case. Now when . . .
the reflectance symmetry is broken, we get a fourfold in- ) 5 10 15 20

crease from thdn=AR=0 case. So while the Kerr nonlin- Time (ms)

ear phase shift is the prime initiator of the chaos, the other F|G. 8. Dependence on trajectory and intensity divergence for
linear effects do serve to emphasize the divergences and giVarying values of An and AR. When An>0 we use An

higher N values. Different R, and R, turn intensity- ~2.0x10 %, and whemAR>0 we useR,=0.9 andR,=0.85. This
dependent polarization rotations into nonlinear intensity flucis a laser with a single loop and no external injection. Hebg,
tuations after a full propagation. ~1.5X10°2,

B. An — Linear birefringence

1

Trajectory Divergence — D (arb. units)

10

log
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FIG. 9. Lyapunov exponents varyingn, with and without Kerr FIG. 10. Lyapunov exponents V_Vith varying _a_mpl?tude Of exter-
nonlinearity. This is a laser with a single loop and no externaln@l injection. A single-loop laser with external injection period ap-
injection. proximately 1/16 of a round trip, withn~2.0x 10 ® and trans-

mission coefficients ar&,=0.9 andR,=0.85. X axis is ratio of
cally by the lower curve in Fig. 9 where we see uniform injected field magnitude to average total field magnitude.
convergence for all values dfn. Naturally this convergence

is characterized by a negatiwe and occurs for all in a wide  that over a range of injection amplitudesl7—77 % of the
range ofAn values when the Kerr phase shift, is set to  average circulating electric field amplitude in the ring leads
Zero. to little variation in\.

However, when the Kerr phase shift is nonzero, variation oOn the whole we see similar behavior when we vary the
of the linear birefringence term was found to profoundly in- detuning frequency. Taking the same parametersbfgrand
fluence the value of. The upper curve of Fig. 9 shows that An and an injection amplitude about 55% of the average
varying An has a substantial effect on the trajectory andelectric field magnitude, we see in Fig. 11 that the detuning
intensity values oh at fixed®, though without any clear frequency also has little effect on the Lyapunov exponent,
trend inAn, unlike . Further explorations of thAn-®,,  for frequencies above=5 per round-trip. For smaller fre-
phase space will be necessary if a more complete exploratiofuencies, we see that the chaos is absent, even for values of
of the effect on\ of An with nonzero®,, is desired. Be- &, andAn which gave largex.
cause the common single-mode fibers have random linear Whether this is physically important depends on the range

birefringence, which is further influenced by the arbitrary of parameters which are experimentally realizable. In the ex-
mechanical stresses of the fiber in a laboratory, the magni-

tude of the Lyapunov exponent may be difficult to exactly 8¢
reproduce experimentally, evendf, can be accurately con- ® —15x10°2
trolled. 7H "
o q>nl=0
6_

C. External injection

Driving a nonlinear system by a periodic external force 5f 1
often leads to a rich set of bifurcation phenomena in the v
amplitude, frequency plane of the driving parameters. We %4' % |
certainly expect the same when we drive the ring laser with < 3l
an external injection of light of certain amplitude and fre- T
guency. We examine the case of external injection wlith ot
set to zero in Fig. 10. As in thAdn case, we see uniform
trajectory and intensity convergence for a wide range of in- 1r
jection amplitudes. It appears as though we again have the
case where there is no trajectory divergence if there is no { z ¥ 3 = =z 3T =T T T]
Kerr effect.

We now examine the effect of outside forcing through 0 20 oo ( (:2.1 atipy™) 60 80
injection of light from an external laser into the cavity at e
fixed An and nonzerab, . For these we choose to provide a  F|G. 11. Lyapunov exponents with varying frequency of ex-
large N using ®,=1.5x10"% and An of ~2.0x10 °. ternal injection. This is a laser with a single loop with injection
These resulted in~4100 s. We now choose the detun- amplitude ~55% of field amplitude. Heredp,=1.5x1072, An
ing between the external laser frequency and the optical fre~2.0x10° and the transmission coefficients d@g=0.9 andR,

qguency of the ring lase®, — wy~16/rz. In Fig. 10 we see =0.85.
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perimental situation of Roy and VanWiggerg#8], such a 6000
slow detuning frequency due to external injection is not one
which could be realized consistently, since the EDFRL lases
over a frequently changing range of wavelengths. So for in-
jection frequencies which are in a physically meaningful

range\ is essentially unaffected by changes in the detuning.

5000 ‘|
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D. Summary of variations in chaotic behavior 1000
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We conclude that in the case of a single-loop EDFRL, the

origin of_chao_tic oscillaf[ion_s is cle_arly the n_onlinear I_(_err 0 100 00 300 600 500 600
effect which mixes polarizations while preserving intensities. ime (ns, 7 = 200 ns)

The positive Lyapunov exponeit associated with nonzero

&, varies more or less linearly i, over the range we 6000

explored, and it varies substantially with the magnitude of

linear birefringence\ appears to be relatively insensitive to 5000¢

the amplitude and detuning frequency associated with exter-
nal injection into the laser cavity, though there are frequency =
values where the ring laser locks into periodic behavior and £ 3000
A—0. By no means does our small investigation cover the £

range of phenomena which may appear in the parameter 2000
space formed byAn, ®,, injection amplitude, andw, 1000
— Wq.
0 ) 1 I 1 I
0 5 10 15 0 25 30
VI. TWO-RING EDFRL Tithe (ns, , = 2007s)
VanWiggeren and Roy8] also investigated the oscilla- FIG. 12. A time series of the output of the laser simulation with

tions of a ring laser when a second loop of passive fiber waa second loop. In the lower graph one can see a near periodicity on
added to the ring. This adds a second time delay to the ringery small time scales. This is a laser with no external injection.
laser system and it affects the polarization of the light. Whertiere, 7, / 7r=0.4468, the coupling to the second loop is Q\h

light arrives at the entrance to the second loop a fractiafi ~ ~2.0x107°, the pumping is at 1% threshold, and the reflectances
its electric field enters the new ring ané-1r continues on in ~ areR,=0.9 andR,=0.85.

the new ring. The light in the second ring is propagated agpare the second Jones matrix is the identity, the cause of
desc_rlbed In detail above and encounters a Jones MiggiX  his effect can be seen by thinking of the second loop as the
on circulating about the loop. As the light from the second;yqetion of a FIR filter info the ring with the first coefficient

loop reenters the main ring, it is added to light in the main —a, « after a delay ofrp, and all other coefficients zero.
he transfer function of such a filter is

ring which has not undergone a propagation over the roun
trip time of the second loopp . This means we should re-
place the propagation equation we had befafesent exter- H(w)=(1—a)+ae™ D, (31

nal injection which is not affected by the new lgdpy )
Thus the second loop attenuates all frequencies not commen-

E(t+ ) =Re'“0lF €I, U1 oie fivel (1— @) P{E(T)} surate with the delay loop. Because most of the power is in
the harmonics of one round-trip, those harmonics that are
+ adioopP{E(t+ 7p)}]. (300 close to commensurate with the delay are given much more

ower. To remove this apparent periodicity, we made a stro-

This expression for the effect of the second loop of lengﬂﬁoscopic section, sampling the intensity once pefr1i-

7pC cannot be reprgsented solely by a red_efinition_of the tead of 2500 times petg. The result removes all of the
Jones matrix of the first loop. One can see th_|s by noting thaharmonics of 145 and is aperiodic. The result of this is seen
even atrp=0, the effect of the second loop is not given by .

. L in Fig. 14.
a unitary matrix in general. Ignoring nonlinearity for a moment, the net effect of hav-

_ ) ing a second loop is for the system to try to find a state which
A. Examples of the two-ring EDFRL operation is approximately commensurate with both the round-trip

The introduction of a second loop significantly changestimes of both paths. Most commonly, the system evolves a
the outward character of the laser oscillations. The time seperiodic signal whose period is significantly shorter than ei-
ries looks quite periodic, but on much smaller time scalegher round-trip, so that an integral number of these short
than in the single-loop configuration. This is shown in Fig.periods can fall through either loop and recombine construc-
12. With a single loop, the intensity was almost periodic withtively. This explains the dominant visual difference between
a period ofrg, but with the second loop activated, there arethe one- and two-ring simulation results.
about 45 periods within one round-trip when thg is _ .
slightly less than half of. The frequency spectrum is also B. Chaos in the two-ring EDFRL
changed, and with the second loop there is much more power Using the methods described above, we evaluatedr
in a few frequencies as one may see in Fig. 13. In the casthe two-ring system. We found that the introduction of the
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= FIG. 15. Trajectory divergences with varying coupling to the
g 50 | second loop. This is a laser with no external injection. Here,
E 7o/ 7r=0.4468,An~2.0X 10 %, the pumping is at 1% threshold,
3 0 ®,=5.0x10 3, and the reflectances aRy=0.9 andR,=0.85.
g
g =507 1 crease the magnitude of the Kerr effect, as it increases the
2 . . . . amount of power in the laser. In both cases, as the amount of
0-_1000 50 100 150 200 250 light put in the second loop increases, the highest Lyapunov
Frequency (MHz) exponent decreases. However, in both cases the laxgest

FIG. 13. Top: power spectrum of the output of the laser simu-Came from a two-loop, not a one-loop, ring laser.

lation with a second loop. Herey, / 7r=0.4468, the coupling to the . Despi'ge the Ia_lrge effect the dif_ference in indices (.)f refrac-
second loop is 0.1An~2.0x 10" 6, the pumping is at 1% thresh- tion ha_d in the single-loop case, it seemed to have Ilttl_e or no
old, and the reflectances aRg—0.9 andR, = 0.85. effect in the two-loop case. Figure 17 shows the trajectory
divergence for a range dfn and there is not much change in
second loop has a dramatic effect on the largest Lyapunolfi€ slope. The slopes do vary somewhat, but the uncertainty
exponent. in the calculation of the slopes is also I_arge. Changing the
Figure 15 shows the Euclidean distarg between two ength of the second loop changes the highest Lyapunov ex-
close trajectories for several different values of the coupling?@nent. Figure 18 shows the trajectory divergence for several
between the two loops including=0, that is, with the sec- delay timesrp . The slope varies with the delay time irregu-
ond loop decoupled from the first. Figure 16 is similar to Fig.larly, much as it did for varying\n in the single-loop case.
15, but we have increased the pump level into the first ring The other metrics for measuring trajectory divergence did
by a factor of about 2, an®,, was increased to 1.5 times its Not behave very differently from the Euclidean metric. The

nominal value. The increased pumping also serves to inSlOpes using metri®, were half those oD;. The physical
conclusion is that the chaos is uniformly mixed in phase and

5000
50
—— Coupling =0.0
4000} o —— Coupling = 0.01
g 40| —— Coupling = 0.1
g |— Coupling=0.3
230001 § 30 —— Coupling =0.5
[72] o=
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©
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Time (ms) 0 10 20 30 40
Time (ms)

FIG. 14. A stroboscopic section of the two-loop laser with
the sampling rate once per 4. As before the lack of periodicity FIG. 16. Trajectory divergences with varying coupling to the
on a long time scale can be seen. There is no external injectiorsecond loop and greater pumping. This is a laser with no external
Here, 7p / 7r=0.4468, the coupling to the second loop is A\T injection. Hererp / 7r=0.4468,An~2.0x 10" ®, the pumping is at
~2.0x10 %, the pumping is at 1% threshold, and the reflectances 20X threshold,®,=1.5X10 2, and the reflectances aR,=0.9
areR,=0.9 andR,=0.85. andR,=0.85.
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~ FIG. 17. Trajectory divergences with varyingn. As in the FIG. 18. Trajectory divergences with varying delay in the sec-
single-loop case, the highest exponent does have a simple depegyi |oop. There is no simple dependence of the highest Lyapunov

dence onAn. This is a laser with a double loop and no external gy nonent onr, . This is a laser with no external injection. Here, the
injection. Here,rp / Tr=0.4468, the coupling to the second loop is coupling to the second loop is 0.An~2.0x 10, the pumping is

0.1, the pumping is at 24 threshold,®,=5.0<10"% and the 5 o0y threshold, ®,,=1.5x 1072, and the reflectances am,

reflectances arR,=0.9 andR,=0.85. =0.9 andR,=0.85.
intensity, the particular difference being only in the defini- is set to zero, the effective Lyapunov expong&rassociated
tions of the metrics. with trajectory divergences is zero. When we incred@sg,
which is proportional tgy;, the Kerr term)\ becomes posi-
VII. CONCLUSIONS AND DISCUSSION tive even for values less than that known for pure fused

silica. This is a clear indication that chaos in the operation of

This paper has been the first in a pglO] investigating  this kind of laser arises from this optical nonlinearity.
synchronization and communication between realistic model We investigated the dependenceofon linear birefrin-
erbium-doped fiber ring lasers. We plan to discuss synchrogence and on the amplitude and frequency of externally in-
nization and communication in the future while this paperjected light and found that usually positid,, lead to cha-
has been devoted to the dynamics of an individual EDFRL otic behavior. The exceptions involve some circumstances

In order to account for the dynamics of a very slowly with externally injected monochromatic light which cause
changing population inversion compared to the round-triocking in the ring laser operation. In these cases0.
time of light through the fiber ring, we focused on three  The stage is set now for two directions of investigation.
dynamical effects which might appear to be of little interest (1) Couple two EDFRLs using the schemes discussed in
for a single round-trip: group velocity dispersion, linear bi- [7]. This is the subject of our companion pagp&6)].
refringence, and terms in the polarization of the medium cu- (2) Change the doping material to Nd or Pr which alters
bic in the electric field; the Kerr effect. three important parameters in this proble):the relaxation

Each of these had a major effect on the electric field andime of these rare earths is less by about a factor of 10:100
intensity of the light circulating in the fiber ring when we 4s for Pr and 40Qus for Nd. (2) The wavelength of inter-
looked at many hundreds of thousands of round-trip times ogsting laser action is about 1,8m which is within another
that |Ight This scale of round-trip times is dictated by theimportant communications window, ama) the GVD coef-
ratio of lifetime of the lasing state, about 10 ms, and theficient 3, is nearly zero at this wavelength.
optical cavity round-trip time, about 200 ns. The main role of  Qur simulations of the EDERL also raise the issue of
GVD during this large number of round-trips was to removeexperimental verification of the dependence of the largest
high-frequency components from the initial state of the elec{ yapunov exponent on the nonlinear phase sHiff or
tric field. The linear birefringence had a substantial effect inequivalently on the nonlinear optical effects pf. We plan
separating the dynamics of the two polarizations, and the key report[20] on our investigations of this in the near future.
role played by the Kerr effect was to create conditions whererhe collection of experimental data in this regard requires
chaotic oscillation of the electric field was pOSSible. We de'some care as the very |arge ratio of fluorescence lifetime to
veloped numerical techniques to permit rapid simulationcayity round-trip time means the wave forms whose chaotic
over long integration times, compared to explicit integrationpscillations we are investigating change on a quite slow time

of the underlying wave equations. scale compared to all other phenomena in this system.
Nonlinearity in the dynamics of the EDFRL appears only

in the Kerr terms associated with the polarization of the me-
dium and in the equation for the population inversion. The
latter is effectively constant during many hundreds of thou- We thank the members of INLS, Ulrich Parlitz, and G. P.
sands of round-trips, so the principal source of nonlineargrawal for numerous helpful discussions on this subject.
dynamics in this laser comes from the Kerr terms. We havaVe thank G. P. Agrawal for making a preprint of REt2]

shown quite explicitly in our simulation that when this term available to us. This work was part of a joint UCSD/Georgia
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