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Splitting a trap containing a Bose-Einstein condensate: Atom number fluctuations
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We theoretically study atom number fluctuations between the halves of a double-well trap containing a
Bose-Einstein condensate. The basic tool is the two-mode approximation, which assumes that only two one-
particle states are involved. An analytical harmonic-oscillator-like model is developed and verified numerically
for both stationary fluctuations in the ground state of the system, and for the fluctuations resulting from
splitting of a single trap by dynamically erecting a barrier in the middle. With increasing strength of the
atom-atom interactions and/or increasing height of the potential barrier, the fluctuations tend to evolve from
Poissonian to sub-Poissonian. Limits of validity of the two-mode model and its relations to the phase-atom-
number approach of Leggett and Sp#s J. Leggett and F. Sols, Found. Phg4, 353(1991)] are discussed
in detail. [S1050-294{@9)07809-9

PACS numbgs): 03.75.Fi, 05.30-d, 32.80.Pj

[. INTRODUCTION tains a strongly interacting condensate is yet to be devised
[12].

The recent experimental observations of Bose-Einstein In Sec. Il we review the quantum-optics-style two-mode
condensatesBEC’s) have, among other things, reinvigo- approach. The ground state and the fluctuations in atom
rated theoretical studies of condensates in double-well trapsuumber between the sides of the double trap is the subject of
The most often cited goal is to understand the analog of th&ec. Ill. We develop simple harmonic-oscillator and pertur-
Josephson effedtl] in this type of system. Broadly speak- bation theory expansions that cover the ground-state proper-
ing, there are two main approaches capable of dealing witties of the two-mode model for all relevant problem param-
guantum fluctuations in this variant of the Josephson effeceters, and verify the results against numerical computations.
[2]. Authors with a quantum optics background tend to favorin Sec. IV we analyze adiabaticity when the trap is split
models in which two boson modes are invol&3-6]. Re-  using the harmonic-oscillator approximation, and again vali-
cently a numerical simulation has been presented that eveiate the results with numerical computations. The limitations
takes into account both decoherence due to noncondensatthe two-mode approach in the case of a strongly interact-
atoms, and the detection of the atofid. The second cat- ing gas are discussed in Sec. V. A detailed comparison be-
egory of theories is based on using the differences of conween the prevalent phase-atom-number approach and the
densate phases and atom numbers between the two sidest§p-mode approximation is the subject of Sec. VI. Whereas
the trap as conjugate quantum variaiés 10). the two-mode picture has problems in the limit of a strongly

The two quantum approaches have not coexisted entirel{téracting gas, the phase-atom-number picture is question-
without friction. There has been a difference in opinion ble for a weakly interacting gas and for modest atom num-

about the state of the system after a condensate is split in tw%ers. Remarks in Sec. VIl conclude the paper.

by raising a potential barrier in the middle of a trap contain-
ing a condensatEl1,17. This exchange serves as the point
of departure for the present paper. We address two specific
questions. First, what would the two-mode approach say We begin by reviewing the two-mode approximation. We
about the state of the split trap? Second, more generallyre following a well-traveled path; in addition to numerous
what is the relationship between the two-mode and theublications that deal directly with the double trg®-7],
phase-atom-number pictures? there are numerous other BEC publications that resort to one
We present and solve, for the most part analytically, aform or another of the two-mode moddl3—17.
two-mode description for the splitting of the trap. Unfortu-  In a symmetric double-well potential, the ground state of
nately, this analysis proves quantitatively accurate only ira single particle is represented by an even wave funatipn
the limit of a weakly interacting gas. On the other hand, itthat belongs equally to both wells of the potential. Provided
also turns out that in the limit of a weakly interacting gas, thethe barrier between the halves of the potential is tall enough
phase-atom-number approach does not correctly describe tise that the tunneling rate between the potential wells is
unsplit trap. The two methods agree in the tunneling limitsmall, nearby lies an excited odd stag that likewise be-
when the barrier is high enough. However, we contend that &ngs to both halves of the double well. The superpositions
reliable quantitative treatment of splitting of a trap that con-w.,,=(1/\/§)(wgi o) represent states in which the particle

Il. TWO-MODE MODEL
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lies predominantly on either the “left” or “right” side of the Physically, there are two key parameters in this many-
barrier. These are not stationary states: a single particle pré&ody problem. First, there is the energy of one-particle exci-
pared in the left-localized staig slowly oscillates between tations in the absence of atom-atom interactions,
the halves of the potential, tunneling to the right-localized
statey, and back.

Let us next consider interacting bosons. In the mean-field 0= €~ €g. 3)
approximation one writes down the Gross-Pitaevskii equa-
tion (GPE) [18-20. The interpretation of the GPE is that its
stationary solution gives a one-particle state such that puttiny also characterizes the single-particle tunneling rate be-
all N bosons in this state gives(aariationa) approximation tween the left and right wells. The second parameter is the
to a stationary state of the interacting many-particle Hamil-many-body interaction energy per atom. The expectation
tonian. One may check the validity of this description byvalue of the Hamiltonian when a atoms are in the statg
using Bogoliubov theory. If the noncondensate fractionis given by E(N)=€e,N+N(N—1)kgq. In the limit N>1
proves sufficiently smafl21], the GPE presumably is useful. the chemical potential is therefore

It is intuitively obvious, and we have also checked this
numerically, that for a symmetric double-well potential with
a high middle barrier, the GPE similarly has nearly degener- dE
ate even and odd solution, and .. However, since the d_,\|:'59+2’\"<ggE €T - 4
GPE is nonlinear, it does not readily tell us about the dynam-
ics of a boson prepared in the left- or right-localized states

¥1,r=(L2) (¢4 i) . Our central questions are the follow- The second term, which is the excess over the chemical po-
ing: how should one think about states in which the atomsential of the noninteracting system, determines the many-
live in the left and right_halves_of the double well in the body interaction energy per atom. Since the zero-point en-
presence of atom-atom interactions, and how do the atomsgy ¢ is somewhat trivial here, in what follows we drop it
atom interactions modify the simple single-particle tunneling;ng refer tow=2Nkyq as the chemical potential. It is intu-
between the wells? itively clear, and is confirmed by the analysis below, that the
Our basic assumption is that we take only two one-geparture of the true many-body dynamics from simple
particle stateg/; andy, to be available to thél bosons. We  gjngle-particle tunneling picture, valid in the noninteracting
adopt the usual two-particle contact interactiofry,r)  |imit, is determined by the relative magnitudesdand .
=(4mh?a/m) 5(r;—r,), wherea is the swave scattering To simplify the discussion a bit further, we note that when

length andm is the atomic mass. Given the restricted statehe trap is nearly split in two halves, the absolute squares of
space of precisely two one-particle states, the many-particlghe even and odd wave functions,

Hamiltonian is

H=3 (€ct€g)(agactagag) + 3 (o~ €g) (dcdeag3g) g ol2= 2| 1l2+ | g 22 200 01), 5)

tot tot
+ KeeBoBplleBeT Kgg@g@gagag

+ Kegalalagag+ajalaca.+4alalacay). (1)  should be nearly equal since the overlag), is small. For
the time being, we therefore set
Here, and from here on, we skt&1, and correspondingly
use the terms energy andngulaj frequency interchange-
ably. In Eqg.(1) a4 anda, are the boson operators for the Keg™ Kee™ Kgg=K- (6)
ground and excited wave functions. The constantnd «
are the one- and two-particle matrix elements
This approximation is lifted in Sec. V.

1, To discuss physics in terms of left- and right-localized

~om ¥ V(D) [ de(r), states, we introduce the corresponding boson operators

€e= f d®r (1)

2ma
Keez%f d3r|¢e(r)|2|¢e(r)|21 1 1
a|=_2(ag+ae), Q== (7)

, \/— \/E(ag_ae)!
a
ke | &Pl @

and rewrite the Hamiltoniafil) in terms ofa, , . Notice that
V(r) is the symmetric double-well binding potential. With- we may freely add or drop powers of the conserved particle
out restricting the generality, we assume that the wave funmumberN=a:§ae+ agag in the Hamiltonian. For a fixed total
tions ¢, 4 are real. By virtue of the inversion symmetry of atom number, this kind of a variation will never have any
the wave functions, there are no off-diagonal one-particlelynamical consequences, although the zero of the energy
matrix elements in this basis. The same symmetry also rescale may vary in aiN-dependent manner. The development
moves a number of two-particle matrix elements. we pursue thus runs as follows:
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)
= Z(atg _at Tt Tt Tt Tt Tt
H= 5 (Agde—agag) + K(eedelet gAGAGAG T AeBedgAg T AgAgRede T 43,34acg)

o
- T t tat tat tot ot T Ta V2_(at T
=5 (Ag@e—agag) + k{AeBpBgAg+ BgAyAede — ApBeele — BgAgAgag T 2[ (2edet 8gag)“— (AedeT agag) I}

o
~Ziata _at tat tofa a _atafa o _afal
—z(aeae agdg) + K{8eae8gag T AyAgAc8e — AeBelede— gAgdgag} - (8

Now, substituting the expressions fay,, and again ignor- The statesk)=|N/2+k);|N/2—k), from Eq. (10) are the

ing a function of the conserved particle number, we obtain eigenstates in this limit, and their corresponding eigenener-
gies arew,= k(4k*—N?). The ground state i&=0, with
atoms split evenly between the wells. Obviously, there are no
fluctuations in atom number between the sides of the trap for
any of these states.

The Hamiltonian, whether in the form of E(g) or (9), Second, suppose there are no atom-atom interactions at
involves two modes, and in addition the particle number isg||:
conserved. This means that the state space for the system
may be spanned with thd+ 1 vectors

1)
H=-3 (afa,+afa)—4«ala ala, . 9

H=

NS

(afae—alay). (13)
[ny=|n)IN—n),, n=0,...N, (10

where the subscripts denote the number states for the left ar-?g; ?Signrou;ndotsggtre;fometgrlﬁewﬁh aellra:;r:: I:Ivt/ge sSt(?(ggs.ts the
right boson operators. Writing the state vector as a linear 9 PP y

N . S . energyo.
combination fjn), the action of Hamiltoniar®) is As in the previous case, the ground state has an equal

P number of atoms in each well. The difference is in the co-
HY, cyny=> | - S(In(N=n+1)c,y herence between the wells, which shows up in atom number
n n fluctuations between the sides of the tfapsent in the first

cased=0). A simple calculation shows that, for the nonin-
+(n+1)(N=n) c,;1)—4xkn(N—n) c,||n). teracting case, the ground state in ther basis is
(11) L Mg 1 [a+al N| >
—(ay)"|vag= —| ———| |vag
g
The meaning of the operatoss , as left- and right-trap NI INEL 2
operators is unambiguous only in the limit of a completely N N
split trap, but we nevertheless use them as our primary de- _ i Z A /( ) In). (14)
scription of the double-trap states. Of course, the state space N2 7 =0 n

of the system is not affected by substitutiqi@.

We next turn to the analysis of the Hamiltonian as in Eq.Hence, in the limitk=0, the atom number statistics is bino-
(11). The key aspect is thatl is tridiagonal in a suitable mial in thel—r basis, and the difference between particle
basis. For notational simplicity, from now on we always as-numbers in the left and right sides has the standard deviation
sume that the atom numbBkis even. We also introdude IN/2.
the difference between the number of atoms in the wells, and To see how tunneling is changed by the atom-atom inter-

the average numbeéd/2;: n=N/2+k. action, we develop a more refined picture, valid when both
atom-atom interactions and tunneling are present simulta-
IIl. GROUND STATE OF DOUBLE TRAP neously. To this end, we have to diagonalize the matrix in

i o _ Eq.(11). We start with a simple approximate analytical pro-
Our first objective is to analyze the ground state and itgequre, and then check it numerically.

number fluctuations for Hamiltoniaf8) or (9); specifically, Let us assume that the expansion coefficients C(k)
fluctuations of atom number between the left and right sidegn=N/2+k) change little fromk to k=1, and expand
of the trap. Modification of the atom-number fluctuationscnﬂEC(kil) in Eq. (11) as Taylor serie§13];

with increasing atom-atom interaction will answer the key

guestion of how does the atom-atom interaction affect tun- Che1=C(k=1)=C(k)=C'(k)+:C"(k)+---. (15
neling between the wells.

Two limiting cases are handled easily. First, suppose thajve also assume the limNi>1, and expand all the coeffi-
atom-atom interactions totally dominate, so that the Hamilcients in Eq(11) in powers of 1N. In the ensuing expression
tonian is we pick and choose terms as follows. First, in the coefficient

R of C”, which is proportional ta5, we keep only the leading
H=—4«kaja aa. (12 orderin 1N, which is= SNKk°. Second, the coefficient &’
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similarly is o< k!N 2. Third, on the account that they simply
make a trivial shift in energy, in the coefficient & we :
ignore all contributions that are independentkofSome of 10 L
the remaining terms are proportional & others tox. We :
keep the leading order in N/for both these type of terms,
«8k?N"1 and «kk?. These choices lead to the time-

independent Schdinger equation s I
01 L
“Nod® akd (8 VLl -
7 de TN gk TN Ak jcto=eClh). 001 L
(16) 7
_ coootl o o0 o
Suppose that the typicél scale for the solution is given by 10% 10% 10* 102 10° 10°  10°

An. Then we estimatek~An, d/dk~1/An. Hence the first-
derivative term has an estima®1/N), and is always much
smaller than the other two terms in E@.6) (it transpires FIG. 1. Atom number fluctuationsn between the left and right
shortly thatAn=</N is a reasonable estimat&Ve therefore sides of a split trap as a function of the tunneling ratén the
ignore the first derivative altogether, and write our final re-ground state of the double trap. The fixed parameters are particle
sult as numberN=5000 and the parameter characterizing atom-atom in-
teractionsx«=0.0002. Exact numerical results are plotted as a solid
line. Also shown as dotted and dot-dashed lines are the small- and
C(k)=€C(k). a7 large-s limits from the respective equatiorf@0) and (18). Here,
and elsewhere in this paper, the unit of frequency is arbitrary,
though naturally the same for all frequencies.

_ 2
[ Né d 2

Td?+(ﬁ+4“

Equation(17) is nothing but the Schringer equation for

the simple harmonic oscillator. In the ground state the root-
) . 1 6N
mean-square fluctuations of the variakleand hence of the An= —— —. (20)
variablen, are simply 82 K
N 5 1/4 The transition between the forms of fluctuatiofi8) and
An= \ﬁ —) (18)  (20) occurs approximately where the same is obtained
2\0+4N« from both expressions. In the limit of lardé this happens
when
The frequency of the oscillator is
28/3K
w=/5(6+4Nx). (19) =N (21

The state of a double condensate was studied in[R&f.  In this case both Eq$18) and(20) give An=0.56, which is
using an angular-momentum representation along with theomfortably close to unity.
projection of the Bloch sphere into a plane. Equat{@8) We have checked our arguments numerically. Standard
agrees with a result given in R¢fL7]. We believe that, even algorithms fromNumerical Recipe$22] were used to find
though the approaches seem quite different, the presethe eigenvalues of the tridiagonal Hamiltonian. However, to
method and the method of R¢f.7] in the end are function- compute particle number fluctuations, one also needs the
ally equivalent. lowest-energy eigenvector. Wit approaching a couple of

Naturally, Eq.(18) agrees with the known limiting cases hundred, the attendant algorithms for finding eigenvectors
both for k—0 and §—0, although in the latter case partly start sputtering on roundoff error. We find the ground-state
for the wrong reasons; with—0 we haveAn—0, and ex-  eigenvector by inverse iteratig22] instead.
pansion(15) eventually fails. We will rectify this shortcom- The computed fluctuationAn are shown in Fig. 1 as a
ing momentarily. Meanwhile, we emphasize the main mesfunction of the tunneling raté. In this figure the fixed pa-
sage of our results: In the limit of larg®l, the key rameters ar&=5000 andx=0.0002, so thaNx=1. There
comparison of the parameters is betwetand N«, essen- clearly are three different physical regimes in this graph.
tially the tunneling rate and chemical potential. As theFirst, for the largest values af, we are in the regime with
chemical potentialu increases and exceeds the tunnelingAn=/N/2. When4 is decreased, af=«xN=u=1, the de-
coupling between the wells, tunneling is suppressed, and theendence of fluctuations on atom-atom interactions kicks in
atom number fluctuations decrease. as in Eq.(18). Finally, at abouté=«/N=10"', expansion

Let us now return to the case withn<1, whereupon (15 and the harmonic-oscillator model fail, and the system
expansion(15) becomes dubious. We study this case usingenters the regime of Eq20). We also show the analytical
standard time-independent perturbation theory. The zerothesults from Eqs(18) and(20). They agree with the numeri-
order states are the eigenstates of @#4), and the rest of Eq. cal data where they should.
(9) acts as the perturbation. In this way we find, to the lead- Summarizing, within the two-state model, we have a com-
ing order in 1N, the fluctuations plete analytical picture of atom number fluctuations in a
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double-well system for the limiN>1. The analytical argu-
ments have been verified by comparisons with direct numeri- S ]
cal computations. Large atom-atom interactiurss kN> & 100;‘ 3
suppress atom number fluctuations between the sides of the F
well, partially “freezing” the tunneling. 10¢

IV. ADIABATICITY IN SPLITTING OF TRAP 1

An

Suppose next that the double-well system starts out in its s
ground state, and subsequently the potential barrier in the 01
middle is ramped up, decreasing the tunneling &tdhe F

particle number fluctuations would also decregsee Eq. 0.01E
(18)]. The question is, how close to zero can one take the :
fluctuations[11]? 0001 bl 1+ 0L
Let us assume that there is a time scal® the decrease 0% 10% 10* 107  10®° 10® 10
of 8, and that the harmonic-oscillator expansiab) is valid. a(t)

The system’s ability to adjust its ground state, that is, the
coefficientsC(k), to the changing potential is determined by  Fig. 2. Atom number fluctuationdn as a function of time-
the frequencyw [Eq. (19)]. As long asr> l/w, the change of  dependent tunneling rawt) when the tunneling rate is decreased

the potential is adiabatic, and the oscillator of E#j7) re-  exponentially asi(t)=e~"'". The fixed parameters aN=5000 and
mains in its ground state. Adiabaticity breaks down wi#en «=0.0002. The solid line gives the steady state fluctuations corre-

has decreased to the point whétd] sponding tor=o¢, the dashed lines from top to bottom are for
1 =0.01, 0.1, 1, 10, and 100.
w=V6(6+4Nk)= ar (22)  few hundred atoms are employed. Instead, we resort to an

adaptation of the Crank-Nicholson methi@®]. Basically, a
Herea is a numerical parameter of the order of unity, whichtime step fromt to t+h is carried out as follows:
our crude argument can not determine. Below this point, the
state can no longer follow the decreasing tunneling &te 1—%ihH(t+h/2)
and fluctuations that prevail at the time of the decoupling of lp(t+h))=—— [(D). (26)
the wells will be seen thenceforth. 1+zihH(t+hi2)

We solve Eq(22), and insert the resultinto EGL8). This  The gperator inversion entails solving a set of linear equa-

gives the fluctuations once the wells are decoupled, tions, but this set is tridiagonal. Algorithrt26) is unitary,
5 14 i.e., it preserves the norm of the state vector, and therefore
An \ﬁ 1+(2Nak7)"—2Naxt 23) does not permit runaway roundoff errors. Moreover, we
* 2\ 1+ (2Nak7r)2+2Nakr amend the algorithm by writing

Clearly, the time scale to which should be compared is |(t+h))
-1_ -1 T, s, -1
(2Nk) ™ *=pu " *. In the limit of slow ramp,/>u™ ", EQ.(23) — Lih[H(t+h/2)— (g(O|H(E+h/2) | g(1))]

becomes = |y (1)).
1+ 3ih[H(t+h/2) = {(t)[H(t+h/2)| (t))]
1
An,,= . 2
SN (24) (27)
Here we subtract from the Hamiltonian its expectation value,
In the opposite limit of fast ramps< 1, we obtain and thus arrest any rapid time evolution that would ensue
from an inopportune choice of the zero of energy. Of course,
\ﬁ mathematically, adding anfeven a time-dependenscalar
An,= 2 (1=Nax7). 29 {0 the Hamiltonian only amounts to modifying the overall

phase of the wave function, and has no effect on the physics.

The analytical expression®2)—(25) come with a sub- To integrate the wave function over any fixed finite time
stantial dose of heuristics. A comparison against numericahterval, we simply keep on halving the step sizeuntil
results is thus in order. We start by choosifygarge enough  convergence.
to be firmly in the adiabatic limit, and find the stationary  Results from our computations are shown in Fig. 2. Here
solution for this§;. Next we integrate the time-dependent we again chooshl=5000, x=0.0002, and thublk=1. The
Schralinger equation starting from this initial ground state, figure shows the size of the fluctuatioAs as a function of
letting & decrease exponentially #t)=5,e V7. Aswe go  the value of the parameté(t) reached while the time runs
along, we compute the fluctuatioAs as a function of time. on. The solid line is the stationary value &fi as in Fig. 1.

As before, the Hamiltonian is tridiagonal in the basis, Formally, it corresponds to the choice=o. The various
but now we are faced with a genuinely time-dependent intedashed lines depicAn(d) for the ramping time scales
gration. It turns out that standard general-purpose differentia=0.01, 0.1, 1, 10, and 100. One clearly sees how the width
equations solvers quickly fail on roundoff error by the time afirst decreases adiabatically &ss decreased, then decouples
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and freezes to a constant value. The fastisrdecreased, the While the left and right statesj;+ o)/ \2 may not be suf-
sooner nonadiabaticity sets in, i.e., the smaller the rampingiciently well localized in this case, there is nothing in the
time scaler is. mathematics that would prevent us from introducing their
We have compared the final widths with expresdi®8). annihilation operators exactly as in E{). We proceed to
It turns out that, after setting =2, the analytical predic- do so. Of course, since we still have only two one-particle
tion works at the level of 1% for all of the data in Fig. 2. states to deal with, the state space is once more spanned by
This agreement validates our analytical argument. the vectorg10). We may look for the ground state in terms
In summary, at least while the fluctuations satifp  of these basis states and the corresponding expansion coeffi-
=1, and therefore the harmonic-oscillator expangith) re-  cientsc,,.
mains useful, we have an accurate analytical description for As before, in the limit of largeN we expand the coeffi-
the adiabaticity, or lack thereof, as a barrier is raised to splitientsc, as in Eq.(15). It turns out that, sinc&y#0, the
the double well in two. The basic conclusion is that, startingHamiltonian is no longer tridiagonal, amg are also coupled
from the case’> N« and thus from fluctuations of the order to c,-.,. Therefore, we also use the expansion
JN/2, the key time scale i ~=(2N«k) . If the time scale
of adjusting the wellr is shorter than this, the fluctuations Cnxp=C(N*E2)=c(n)*2¢’(n)+2c"(n)+---. (30
cannot be reduced substantially from their initial vai(\/2.
For slow variation of the tunneling ra# the fluctuations are
brought down to a magnitude that scalesras”,

Proceeding exactly as we did on going from E&f) to Eq.
(17), we obtain the effective Schdmger equation foC(k)

=CnN/2+k -
d2

V. LIMITATIONS OF THE TWO-MODE MODEL _ %N((g_z,\] Ko)gz +

1
N (8= 2NKg) +4x

kz] C(k)
We have adopted two basic approximations in our reason-
ing; that only two one-particle states are relevant, and that = € C(k). (32)
the assumption about the matrix elemerig= xqq= Keg
=k [see Eq.(6)] holds. We shall discuss the validity of our
model, paying attention to both of these assumptions.
In preparation, we note that there will be two major lim-
iting cases, weakly interacting gas and strongly interactin

This result is equivalent to the previous regit. (17)] with

the simple replacement— 6—2NKg. Hence the root-
mean-square fluctuations of particle number and the charac-
éeristic excitation frequency are simply

gas. The watershed is the condition tiit g4~ wo, Where N S5—2NK 1/4
wq is the natural frequency of the unsplit trap. Let us corre- An= \ﬁ —9) , (32
spondingly denote the length scale of the unsplit trad,by 21 6—2NKg+ 4Nk
whereupon the formulas for a harmonic oscillator give the
estimate 0=(8—2NKy)(6—2NKy+4Nk). (33
One might wonder why the coefficient characterizing the
1 ground-state atom-atom interactiokg appears in these ex-
@O 2 (28) pressions, yet not the corresponding excited-state coefficient

K.. After all, Hamiltonian(1) treats the ground and excited
states exactly equally. The explanation is that the state vec-
tors with slowly varying coefficient,, have a preference for
the ground state already built in. If nearly all atoms were in
the excited state, the proper slowly varying expansion coef-

ficients should be defined ag=(—1)"c,. All of this fol-
lows from the choice of where to put the and — signs in

On dimensional grounds, one estimates tl‘beg,twa/ml3. Us-
ing estimate(28), the conditionN«q,~w, then becomes
Na~I. In most current BEC experimentda>1, which im-
plies that the gas is strongly interacting.

Nonetheless, let us begin with the case of weakly inter
acting gasN«yg<wq. In this limit and for the unsplit trap, 7
the very existence of the excited state is immaterial, and alllz'qé'( ).'d he limit of . .
atoms are in the single-particle statg. As we split the trap N onsider now the limit of strong atom-atom interactions,

by increasing the barrier in the middle, the atom-atom inter- K= Wo. The major W??k”ess of our previous arguments in
action becomes essential. Whés N«= u, the ground state this case Is not th_e validity or lack thereof of the equa(lﬁy
: but instead the jitters of the two-mode assumption. Atom-

is no longer obtained by simply depositing all atoms in the ; . ) .
9 y ply dep g atom interactions are a major part of the entire structure of

state ;. For weak atom-atom interactions, this happens o . X
when 5<w,. Then the statess, and iy, are close to one the excitations, and of the stationary states lying far from the

another in energy but well separated from the other Stateground'state that involve a large fraction of the atoms, such
and the two-mode approximation is justified. If our secondds vortices. As anyone who has attempted 10 $°'Ve the Bo-
APPrOXIMALION Kee— Kgq= Keg— K IS already valid at this goliubov theory numerically knows, one has to include pos-

' . N sibly a large a number of wave functions to arrive at a rea-
point, all previous results are quantitatively correct.

If the matrix elements are not equal, a more refined treat§onably accurate description of the elementary excitations.

: . e : Alternatively, one has a multitude of excited solutions to the
ment is required. In the Hamiltonidd), we keep the various . . X , )
. . . GPE available. As long as the system is not in a regime in
matrix elementsc with the notations . .
which the GPE has two nearly degenerate solutions, there
simply is no outstanding single candidate for use as the
K=Keg, Kg=kgg—Keg, Ke=kee—Keg- (29  excited-state wave functioi, .
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We thus propose a heuristic model that hides as much of 1 N o
our ignorance about the excited state as possible. First, we | p)= > e"?|n). (37)
take the frequency33) to represent the actual, observed, VN+1n=o0

frequency of the lowest elementary excitation in the system, . - .
Second, we rewrite the particle number fluctuatied®) in  ~S there is only a finite number of relative-number stags

terms of this frequency and the chemical potential there is only a finite number of phase eigenstates as well.

_ i TR _ Here we choose them ag,=2mp/(N+1), with p=
=2Nky4, UsSiNg the substitution Rxk=(«/ 2N p
o9 g w=(lrgg)2Nigg N/2,—N/2+1, ... N/2. The vectorgs,) make an ortho-

R normal basis in the same Hilbert space as the vedtors
N o 12 The phase operator is then written
An= \ﬁ : 2) (34
2\ But+(Bu)+w

¢=2 |dp) bp{ bpl- (38)
Here B is a semiempirical parameter. In the limit of the split P
trap, where there is a dominant excited-state wave functio
satisfying | e|?=|4g|%, B=1. In the unsplit trap,|ie|?
should be something akin to particle density in the excite
states of the GPE, or tgero-temperatupedensity profile of
noncondensate atoms. Either wayj.|?> would be more AN=2 (2n—N)|n)(n|. (39
spread out than the ground state, reducing the overlap be- "

tween |4g|* and|y|?. Our best guess is thai<1, maybe Equations38) and(39) do not define canonical conjugate

ever],B<1. ) ] operators. As a matter of fact, it may be shown that, within
Since we are back to the harmonic-oscillator model, outpe tyo-mode picture and for any finite number of particles

previous considerations about adiabatic ramping of the POR,, there cannot exist an operator conjugaté . If such a

tential bgrrigr remain valid with minor modifications. When & existed, we would have the nonsensical chain of reasoning
the barrier is ramped up and the excitation frequency de-

th the basign), the difference-in-particle-number operator is
devidently

creases on a time scate adiabatic following ceases by the —j=(N/2|[AN, $]|N/2)
time w(t)=1/(277), giving the final particle number fluc-
tuations =((N/2|AN) $|N/2)—(N/2| ¢ (AN|N/2))
N 1 1/2 =0. (40)
An= \ﬁ . (39 - i
2\ 27Bur+ N1+ (27Bur)? The familiar position and momentum operatarand p, get

past an analogous objection because the varirhtecon-
If the system has landed deep in the tunneling regime teinuous, an escape that is not available in the present case.

makeB=1, it may be verified easily that Eq&5) and(23) Since there are, strictly speaking, no canonical number
agree. Unfortunately, we have no general prediction for thelifference and phase operators within the two-mode model, a
parameter3 other thanB=<1. comparison with the LSA is by necessity somewhat ambigu-
ous. In the absence of any better alternatives we plug in the
VI]. COMPARISONS WITH MODELING OF LEGGETT operatorg39) and(38) to Eq.(36). The spectral representa-
AND SOLS tion of the two-mode version of the LSA Hamiltoni&Bo) is
then

A. General features

There is a long-standing tradition to describe a Josephson _ 1

junction in terms of the particle number difference between His=—2E, ; (INf2+ k+1)(N/2+ k| +H.c)

the sides and the phase difference across the junction. A

particularly well-known line of thought of this type has been 2

put forward by Leggett, Sols, and their co-workégs-10]. *2Ec ; KNI (N/2-+ K] 41

We refer to this as the Leggett-Sols approdt8A). We

now examine the similarities and differences between th&Ve once more use a summation indesuch thatn=N/2

LSA and our modeling in detail. +k. The motivation is to facilitate comparison with our form
In order to avoid various clashes in notation, we write theof the Hamiltonian from Eq(9),

basic Hamiltonian of the LSA as

é N N
H s=—Ejcos¢+Ec(AN)?/2. (36) H:—Ez ( \/ §+k+1 (E—k)|N/2+k+1>
HereE; is called the Josephson coupling energy, Badhe
capacitive energyAN is the difference in particle number X (N/2+k|+H.c. +4K2 k?|N/2+ K)(N/2+K|.
between the sides of the junction, as#ds the phase canoni- k
cally conjugate tQAN. (42)

In order to compare with our approach, we first note that
eigenstates of the relative phase between the sides of the trape difference is small. When acting on a state vector
may be chosen, in the notation of the present papd2&8] = ,c,/n) such that only expansion coefficientg, with
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|k|<N are materially nonzero, Hamiltoniari¢1) and (42) parametemn is as small as it takes to make it deep into the

produce approximately the same results, provided we makeinneling regime. For strong atom-atom interactions we in-

the identifications variably haveN«> §, and so, from Eq(24) we have the
result

NS
EJ<—>7, Ec < 2k. (43 N1 /\wg
22 T

To make the assertiofk| <N somewhat more quantita- S ) .
tive, we derive the time-independent Satirger equation In the Thomas-Ferml_Ilmlﬁlg,Zq the_chemlca_l potent_|al of
from Hamiltonian(41) following exactly the same steps that N/2 atoms in a spherically symmetric potential well is
we took going from Eq(15) to Eq. (17). Using identifica-

i i 15Na
tions (43), instead of Eq(17) we have p=Pw,, &= R (46)
—N& d? 5
4 dKk2 +4xk® | C(k) =€ C(k). (44 \herea is the scattering length arid- V1/maw, is the char-

acteristic length scale of the trap. Inserting this into &),

A stiffness termec(8/N)k? is missing here, the term that We have

would limit particle number fluctuations to be at most of the

order YN when 5> N«. An. = \ﬁiﬂ (47
We have carried out a detailed comparison by restricting - 22w V5

the LSA to two boson modes. However, the basic features of

the comparison are generic, and apply no matter what the Equation(47) displays exactly the same parameter depen-

microscopic meanings of the operatgfgsandAN are in Eq.  dences as the result of Leggett and Sols in Ref]. The

(36). In our approach there are three independent parameterifference from+/N is important as a matter of principles.

N, «, and 8, while in the LSA there are only two, basically However, according to Leggett and Sols, “the fluctuations

Né and . The difference shows in the limit of a weakly are ... by no means of the orderéﬂ, but much smaller”

interacting gas. As a matter of fact, in the LSA particle num-[11]. Given that we do not know how large the paramater

ber fluctuations then diverge. The LSA does not have a courcould be, and that the parameteeven in the most extreme

terpart of the ground statg built in. of the present alkali experiments only reaches up to about
£=10°, such a statement may be overly categorical.
B. Fluctuations in a split trap For a strongly interacting gas, we have not been able to

. . m with ntitatively reliabl ription of splittin
There has recently been some discussion about fluctuzgu:)—O e up with a quantitatively refiable description of splitting

. i . .- 0f the trap, or even of the left-right fluctuations in the ground
tions of the particle number after a trap has been split. Wit -
the remark that “at the moment we have no proof to thisr%tate of the unsplit trap. Leggett and Sols went even further,

effect, but at least in the limit of weak interactions the as—m that they denied us the unsplit ground state altogether;

o - their “argument ... does not depend on tlirecorrec} as-
sumpthn is clearly valid,” we have assumé] th"’.‘t. t.he sumption tha{the many-particle state with all atoms in the
flu_ctuat|ons are of the ordefﬁ._LeggetF and Sols C”“C'ZG‘?' ground state of the GRHlescribes the unsplit wellT11].
th|§ gssumpuorﬁll]. They appl!ed pasmally the same adia- owever, as they do not elaborate, we do not know what this
baticity argument to their Hamiltonian that we have ad_opte tatement is intended to mean or imply. We have to regard
here for our model. Our response wWag] that the question o uestion of splitting a strongly interacting gas as un-
cannot be regarded as closed, because the model of Leggggwed, just as it was when we began the present work.
and Sols does not seem to apply to the unsplit trap.

In the present paper we have given a description of the
events that take place when the trap is split. Unfortunately,
our model describes the splitting of the trap from the begin- |t is relatively easy to discuss both atom number fluctua-
ning to the end in a quantitatively reliable manner only for ations and adiabaticity of the splitting of the trap in a two-
weakly interacting gas. In this case we see from E4)  mode description, as we have done in this paper. The prob-
that, inasmuch as the barrier is raised on a time scale nem is that the two-mode description is, generally speaking,
longer thant~u *=wgy*, where u is the change in the valid only for either a weakly interacting gas, or when the
chemical potential due to atom-atom interactiogd| fluc-  condensate has already been split in two. As most of the
tuations apply at the end of the splitting. current BEC experiments operate in the limit of strong inter-

As we have already noted, the descriptions of the splittingactions, a major gap remains in the understanding of the
of the trap as in Eqs(23) and (35 both apply and agree condensate.

(even if the atom-atom interactions are strpiigthe trap Besides questions about the process of splitting, the limit
manages to make it far enough into the tunneling regimef an unsplit trap containing a strongly interacting conden-
with the atoms in thémany-body ground state. This hap- sate leads to another even more basic question. The opera-
pens if the trap is split slowly enough. We write the splitting tional meaning of the left and right annihilation operators
time scale asr=1/(\wg), Where wg is the trap frequency may be vague, but what the left and right sides of the trap are
and at the same time the frequency scale for the elementary not; more generally, one might inquire about particle num-
excitations of the(unspli condensate, and the numerical ber fluctuations in any part of the condenddk If Eq. (34)

VIl. CONCLUDING REMARKS
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could be relied on, one would expect sub-Poissonian locahn interesting topic of study already in the experimental case
fluctuations. Given that the coherence properties of a con24] of a weakly interacting gas.

densate analogous to the coherence properties of light are
likely to be a major focus in the discussion of condensates
and atom lasers, the case of a strongly interacting gas will

presumably have to be solved in the end. As another future
development, we anticipate that the loss of phase coherence This work is supported in part by NSF, Grant No. PHY-
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