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Splitting a trap containing a Bose-Einstein condensate: Atom number fluctuations
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We theoretically study atom number fluctuations between the halves of a double-well trap containing a
Bose-Einstein condensate. The basic tool is the two-mode approximation, which assumes that only two one-
particle states are involved. An analytical harmonic-oscillator-like model is developed and verified numerically
for both stationary fluctuations in the ground state of the system, and for the fluctuations resulting from
splitting of a single trap by dynamically erecting a barrier in the middle. With increasing strength of the
atom-atom interactions and/or increasing height of the potential barrier, the fluctuations tend to evolve from
Poissonian to sub-Poissonian. Limits of validity of the two-mode model and its relations to the phase-atom-
number approach of Leggett and Sols@A. J. Leggett and F. Sols, Found. Phys.21, 353 ~1991!# are discussed
in detail. @S1050-2947~99!07809-9#

PACS number~s!: 03.75.Fi, 05.30.2d, 32.80.Pj
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I. INTRODUCTION

The recent experimental observations of Bose-Eins
condensates~BEC’s! have, among other things, reinvigo
rated theoretical studies of condensates in double-well tr
The most often cited goal is to understand the analog of
Josephson effect@1# in this type of system. Broadly speak
ing, there are two main approaches capable of dealing w
quantum fluctuations in this variant of the Josephson ef
@2#. Authors with a quantum optics background tend to fav
models in which two boson modes are involved@3–6#. Re-
cently a numerical simulation has been presented that e
takes into account both decoherence due to nonconden
atoms, and the detection of the atoms@7#. The second cat-
egory of theories is based on using the differences of c
densate phases and atom numbers between the two sid
the trap as conjugate quantum variables@8–10#.

The two quantum approaches have not coexisted ent
without friction. There has been a difference in opini
about the state of the system after a condensate is split in
by raising a potential barrier in the middle of a trap conta
ing a condensate@11,12#. This exchange serves as the po
of departure for the present paper. We address two spe
questions. First, what would the two-mode approach
about the state of the split trap? Second, more gener
what is the relationship between the two-mode and
phase-atom-number pictures?

We present and solve, for the most part analytically
two-mode description for the splitting of the trap. Unfort
nately, this analysis proves quantitatively accurate only
the limit of a weakly interacting gas. On the other hand
also turns out that in the limit of a weakly interacting gas, t
phase-atom-number approach does not correctly describ
unsplit trap. The two methods agree in the tunneling lim
when the barrier is high enough. However, we contend th
reliable quantitative treatment of splitting of a trap that co
PRA 601050-2947/99/60~3!/2351~9!/$15.00
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tains a strongly interacting condensate is yet to be dev
@12#.

In Sec. II we review the quantum-optics-style two-mo
approach. The ground state and the fluctuations in a
number between the sides of the double trap is the subje
Sec. III. We develop simple harmonic-oscillator and pert
bation theory expansions that cover the ground-state pro
ties of the two-mode model for all relevant problem para
eters, and verify the results against numerical computatio
In Sec. IV we analyze adiabaticity when the trap is sp
using the harmonic-oscillator approximation, and again v
date the results with numerical computations. The limitatio
of the two-mode approach in the case of a strongly intera
ing gas are discussed in Sec. V. A detailed comparison
tween the prevalent phase-atom-number approach and
two-mode approximation is the subject of Sec. VI. Where
the two-mode picture has problems in the limit of a strong
interacting gas, the phase-atom-number picture is quest
able for a weakly interacting gas and for modest atom nu
bers. Remarks in Sec. VII conclude the paper.

II. TWO-MODE MODEL

We begin by reviewing the two-mode approximation. W
are following a well-traveled path; in addition to numero
publications that deal directly with the double trap@3–7#,
there are numerous other BEC publications that resort to
form or another of the two-mode model@13–17#.

In a symmetric double-well potential, the ground state
a single particle is represented by an even wave functioncg
that belongs equally to both wells of the potential. Provid
the barrier between the halves of the potential is tall eno
so that the tunneling rate between the potential wells
small, nearby lies an excited odd statece that likewise be-
longs to both halves of the double well. The superpositio
c l ,r5(1/A2)(cg6ce) represent states in which the partic
2351 ©1999 The American Physical Society
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2352 PRA 60JUHA JAVANAINEN AND MISHA YU. IVANOV
lies predominantly on either the ‘‘left’’ or ‘‘right’’ side of the
barrier. These are not stationary states: a single particle
pared in the left-localized statec l slowly oscillates between
the halves of the potential, tunneling to the right-localiz
statec r and back.

Let us next consider interacting bosons. In the mean-fi
approximation one writes down the Gross-Pitaevskii eq
tion ~GPE! @18–20#. The interpretation of the GPE is that i
stationary solution gives a one-particle state such that put
all N bosons in this state gives a~variational! approximation
to a stationary state of the interacting many-particle Ham
tonian. One may check the validity of this description
using Bogoliubov theory. If the noncondensate fracti
proves sufficiently small@21#, the GPE presumably is usefu

It is intuitively obvious, and we have also checked th
numerically, that for a symmetric double-well potential wi
a high middle barrier, the GPE similarly has nearly degen
ate even and odd solutionscg and ce . However, since the
GPE is nonlinear, it does not readily tell us about the dyna
ics of a boson prepared in the left- or right-localized sta
c l ,r5(1/A2)(cg6ce). Our central questions are the follow
ing: how should one think about states in which the ato
live in the left and right halves of the double well in th
presence of atom-atom interactions, and how do the at
atom interactions modify the simple single-particle tunnel
between the wells?

Our basic assumption is that we take only two on
particle statescg andce to be available to theN bosons. We
adopt the usual two-particle contact interactionU(r1 ,r2)
5(4p\2a/m) d(r12r2), where a is the s-wave scattering
length andm is the atomic mass. Given the restricted st
space of precisely two one-particle states, the many-par
Hamiltonian is

H5 1
2 ~ee1eg!~ae

†ae1ag
†ag!1 1

2 ~ee2eg!~ae
†ae2ag

†ag!

1keeae
†ae

†aeae1kggag
†ag

†agag

1keg~ae
†ae

†agag1ag
†ag

†aeae14ae
†ag

†aeag!. ~1!

Here, and from here on, we set\[1, and correspondingly
use the terms energy and~angular! frequency interchange
ably. In Eq. ~1! ag and ae are the boson operators for th
ground and excited wave functions. The constantse and k
are the one- and two-particle matrix elements

ee5E d3r ce~r !F2
1

2m
¹21V~r !Gce~r !,

kee5
2pa

m E d3r uce~r !u2uce~r !u2,

keg5
2pa

m E d3r uce~r !u2ucg~r !u2, . . . . ~2!

V(r ) is the symmetric double-well binding potential. With
out restricting the generality, we assume that the wave fu
tions ce,g are real. By virtue of the inversion symmetry o
the wave functions, there are no off-diagonal one-part
matrix elements in this basis. The same symmetry also
moves a number of two-particle matrix elements.
re-
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Physically, there are two key parameters in this ma
body problem. First, there is the energy of one-particle ex
tations in the absence of atom-atom interactions,

d5ee2eg . ~3!

It also characterizes the single-particle tunneling rate
tween the left and right wells. The second parameter is
many-body interaction energy per atom. The expectat
value of the Hamiltonian when allN atoms are in the stateg
is given by E(N)5egN1N(N21)kgg . In the limit N@1
the chemical potential is therefore

dE

dN
5eg12Nkgg[eg1m. ~4!

The second term, which is the excess over the chemical
tential of the noninteracting system, determines the ma
body interaction energy per atom. Since the zero-point
ergy eg is somewhat trivial here, in what follows we drop
and refer tom52Nkgg as the chemical potential. It is intu
itively clear, and is confirmed by the analysis below, that
departure of the true many-body dynamics from sim
single-particle tunneling picture, valid in the noninteracti
limit, is determined by the relative magnitudes ofd andm.

To simplify the discussion a bit further, we note that wh
the trap is nearly split in two halves, the absolute square
the even and odd wave functions,

ucg,eu25 1
2 ~ uc l u21uc r u262c lc r !, ~5!

should be nearly equal since the overlapc lc r is small. For
the time being, we therefore set

keg5kee5kgg[k. ~6!

This approximation is lifted in Sec. V.
To discuss physics in terms of left- and right-localiz

states, we introduce the corresponding boson operators

al5
1

A2
~ag1ae!, ar5

1

A2
~ag2ae!, ~7!

and rewrite the Hamiltonian~1! in terms ofal ,r . Notice that
we may freely add or drop powers of the conserved part
numberN5ae

†ae1ag
†ag in the Hamiltonian. For a fixed tota

atom number, this kind of a variation will never have a
dynamical consequences, although the zero of the en
scale may vary in anN-dependent manner. The developme
we pursue thus runs as follows:
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H.
d

2
~ae

†ae2ag
†ag!1k~ae

†ae
†aeae1ag

†ag
†agag1ae

†ae
†agag1ag

†ag
†aeae14ae

†ag
†aeag!

5
d

2
~ae

†ae2ag
†ag!1k$ae

†ae
†agag1ag

†ag
†aeae2ae

†ae
†aeae2ag

†ag
†agag12@~ae

†ae1ag
†ag!22~ae

†ae1ag
†ag!#%

.
d

2
~ae

†ae2ag
†ag!1k$ae

†ae
†agag1ag

†ag
†aeae2ae

†ae
†aeae2ag

†ag
†agag%. ~8!
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Now, substituting the expressions foral ,r , and again ignor-
ing a function of the conserved particle number, we obta

H52
d

2
~al

†ar1ar
†al !24kal

†al ar
†ar . ~9!

The Hamiltonian, whether in the form of Eq.~8! or ~9!,
involves two modes, and in addition the particle number
conserved. This means that the state space for the sy
may be spanned with theN11 vectors

un&[un& l uN2n& r , n50, . . . ,N , ~10!

where the subscripts denote the number states for the left
right boson operators. Writing the state vector as a lin
combination ofun&, the action of Hamiltonian~9! is

H(
n

cnun&5(
n

F2
d

2
„An~N2n11! cn21

1A~n11!~N2n! cn11…24kn~N2n! cnG un&.

~11!

The meaning of the operatorsal ,r as left- and right-trap
operators is unambiguous only in the limit of a complete
split trap, but we nevertheless use them as our primary
scription of the double-trap states. Of course, the state s
of the system is not affected by substitutions~7!.

We next turn to the analysis of the Hamiltonian as in E
~11!. The key aspect is thatH is tridiagonal in a suitable
basis. For notational simplicity, from now on we always a
sume that the atom numberN is even. We also introducek,
the difference between the number of atoms in the wells,
the average numberN/2: n[N/21k.

III. GROUND STATE OF DOUBLE TRAP

Our first objective is to analyze the ground state and
number fluctuations for Hamiltonian~8! or ~9!; specifically,
fluctuations of atom number between the left and right si
of the trap. Modification of the atom-number fluctuatio
with increasing atom-atom interaction will answer the k
question of how does the atom-atom interaction affect t
neling between the wells.

Two limiting cases are handled easily. First, suppose
atom-atom interactions totally dominate, so that the Ham
tonian is

H524kal
†al ar

†ar . ~12!
s
em

nd
r

e-
ce

.

-

d

s

s

-

at
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The statesuk&[uN/21k& l uN/22k& r from Eq. ~10! are the
eigenstates in this limit, and their corresponding eigenen
gies arevk5k(4k22N2). The ground state isk50, with
atoms split evenly between the wells. Obviously, there are
fluctuations in atom number between the sides of the trap
any of these states.

Second, suppose there are no atom-atom interaction
all:

H5
d

2
~ae

†ae2ag
†ag!. ~13!

The ground state is the one with allN atoms in the stateg.
Raising another atom to the upper state always costs
energyd.

As in the previous case, the ground state has an e
number of atoms in each well. The difference is in the c
herence between the wells, which shows up in atom num
fluctuations between the sides of the trap~absent in the first
cased50). A simple calculation shows that, for the noni
teracting case, the ground state in thel 2r basis is

1

AN!
~ag

†!Nuvac&5
1

AN!
S al

†1ar
†

A2
D N

uvac&

5
1

2N/2 (
n50

N AS N

n D un&. ~14!

Hence, in the limitk50, the atom number statistics is bino
mial in the l 2r basis, and the difference between partic
numbers in the left and right sides has the standard devia
AN/2.

To see how tunneling is changed by the atom-atom in
action, we develop a more refined picture, valid when b
atom-atom interactions and tunneling are present simu
neously. To this end, we have to diagonalize the matrix
Eq. ~11!. We start with a simple approximate analytical pr
cedure, and then check it numerically.

Let us assume that the expansion coefficientscn[C(k)
(n[N/21k) change little from k to k61, and expand
cn61[C(k61) in Eq. ~11! as Taylor series@13#:

cn61[C~k61!5C~k!6C8~k!1 1
2 C9~k!1•••. ~15!

We also assume the limitN@1, and expand all the coeffi
cients in Eq.~11! in powers of 1/N. In the ensuing expressio
we pick and choose terms as follows. First, in the coeffici
of C9, which is proportional tod, we keep only the leading
order in 1/N, which is}dN1k0. Second, the coefficient ofC8
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2354 PRA 60JUHA JAVANAINEN AND MISHA YU. IVANOV
similarly is }dk1N21. Third, on the account that they simp
make a trivial shift in energy, in the coefficient ofC we
ignore all contributions that are independent ofk. Some of
the remaining terms are proportional tod, others tok. We
keep the leading order in 1/N for both these type of terms
}dk2N21 and }kk2. These choices lead to the time
independent Schro¨dinger equation

F2Nd

4

d2

dk2 1
dk

N

d

dk
1S d

N
14k D k2GC~k!5e C~k!.

~16!

Suppose that the typicalk scale for the solution is given b
Dn. Then we estimatek;Dn, d/dk;1/Dn. Hence the first-
derivative term has an estimateO(1/N), and is always much
smaller than the other two terms in Eq.~16! ~it transpires
shortly thatDn&AN is a reasonable estimate!. We therefore
ignore the first derivative altogether, and write our final
sult as

F2Nd

4

d2

dk2 1S d

N
14k D k2GC~k!5e C~k!. ~17!

Equation~17! is nothing but the Schro¨dinger equation for
the simple harmonic oscillator. In the ground state the ro
mean-square fluctuations of the variablek, and hence of the
variablen, are simply

Dn5AN

2 S d

d14Nk D 1/4

. ~18!

The frequency of the oscillator is

v5Ad~d14Nk!. ~19!

The state of a double condensate was studied in Ref.@17#
using an angular-momentum representation along with
projection of the Bloch sphere into a plane. Equation~18!
agrees with a result given in Ref.@17#. We believe that, even
though the approaches seem quite different, the pre
method and the method of Ref.@17# in the end are function-
ally equivalent.

Naturally, Eq.~18! agrees with the known limiting case
both for k˜0 andd˜0, although in the latter case part
for the wrong reasons; withd˜0 we haveDn˜0, and ex-
pansion~15! eventually fails. We will rectify this shortcom
ing momentarily. Meanwhile, we emphasize the main m
sage of our results: In the limit of largeN, the key
comparison of the parameters is betweend and Nk, essen-
tially the tunneling rate and chemical potential. As t
chemical potentialm increases and exceeds the tunnel
coupling between the wells, tunneling is suppressed, and
atom number fluctuations decrease.

Let us now return to the case withDn&1, whereupon
expansion~15! becomes dubious. We study this case us
standard time-independent perturbation theory. The zer
order states are the eigenstates of Eq.~12!, and the rest of Eq
~9! acts as the perturbation. In this way we find, to the le
ing order in 1/N, the fluctuations
-

t-

e

nt

-

he

g
h-

-

Dn5
1

8A2

dN

k
. ~20!

The transition between the forms of fluctuations~18! and
~20! occurs approximately where the sameDn is obtained
from both expressions. In the limit of largeN, this happens
when

d5
28/3k

N
. ~21!

In this case both Eqs.~18! and~20! give Dn50.56, which is
comfortably close to unity.

We have checked our arguments numerically. Stand
algorithms fromNumerical Recipes@22# were used to find
the eigenvalues of the tridiagonal Hamiltonian. However,
compute particle number fluctuations, one also needs
lowest-energy eigenvector. WithN approaching a couple o
hundred, the attendant algorithms for finding eigenvect
start sputtering on roundoff error. We find the ground-st
eigenvector by inverse iteration@22# instead.

The computed fluctuationsDn are shown in Fig. 1 as a
function of the tunneling rated. In this figure the fixed pa-
rameters areN55000 andk50.0002, so thatNk51. There
clearly are three different physical regimes in this grap
First, for the largest values ofd, we are in the regime with
Dn5AN/2. Whend is decreased, atd.kN.m.1, the de-
pendence of fluctuations on atom-atom interactions kicks
as in Eq.~18!. Finally, at aboutd.k/N.1027, expansion
~15! and the harmonic-oscillator model fail, and the syste
enters the regime of Eq.~20!. We also show the analytica
results from Eqs.~18! and~20!. They agree with the numeri
cal data where they should.

Summarizing, within the two-state model, we have a co
plete analytical picture of atom number fluctuations in

FIG. 1. Atom number fluctuationsDn between the left and righ
sides of a split trap as a function of the tunneling rated in the
ground state of the double trap. The fixed parameters are par
numberN55000 and the parameter characterizing atom-atom
teractions,k50.0002. Exact numerical results are plotted as a so
line. Also shown as dotted and dot-dashed lines are the small-
large-d limits from the respective equations~20! and ~18!. Here,
and elsewhere in this paper, the unit of frequency is arbitra
though naturally the same for all frequencies.
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double-well system for the limitN@1. The analytical argu-
ments have been verified by comparisons with direct num
cal computations. Large atom-atom interactionsm.kN.d
suppress atom number fluctuations between the sides o
well, partially ‘‘freezing’’ the tunneling.

IV. ADIABATICITY IN SPLITTING OF TRAP

Suppose next that the double-well system starts out in
ground state, and subsequently the potential barrier in
middle is ramped up, decreasing the tunneling rated. The
particle number fluctuations would also decrease@see Eq.
~18!#. The question is, how close to zero can one take
fluctuations@11#?

Let us assume that there is a time scalet to the decrease
of d, and that the harmonic-oscillator expansion~15! is valid.
The system’s ability to adjust its ground state, that is,
coefficientsC(k), to the changing potential is determined b
the frequencyv @Eq. ~19!#. As long ast@1/v, the change of
the potential is adiabatic, and the oscillator of Eq.~17! re-
mains in its ground state. Adiabaticity breaks down whend
has decreased to the point where@11#

v5Ad~d14Nk!5
1

at
. ~22!

Herea is a numerical parameter of the order of unity, whi
our crude argument can not determine. Below this point,
state can no longer follow the decreasing tunneling rated,
and fluctuations that prevail at the time of the decoupling
the wells will be seen thenceforth.

We solve Eq.~22!, and insert the result into Eq.~18!. This
gives the fluctuations once the wells are decoupled,

Dn`5AN

2 S A11~2Nakt!222Nakt

A11~2Nakt!212Nakt
D 1/4

. ~23!

Clearly, the time scale to whicht should be compared i
(2Nk)215m21. In the limit of slow ramp,t@m21, Eq.~23!
becomes

Dn`.
1

4Aakt
. ~24!

In the opposite limit of fast ramp,t!m21, we obtain

Dn`.AN

2
~12Nakt!. ~25!

The analytical expressions~22!–~25! come with a sub-
stantial dose of heuristics. A comparison against numer
results is thus in order. We start by choosingd0 large enough
to be firmly in the adiabatic limit, and find the stationa
solution for thisd0. Next we integrate the time-depende
Schrödinger equation starting from this initial ground sta
letting d decrease exponentially asd(t)5d0 e2t/t. As we go
along, we compute the fluctuationsDn as a function of time.

As before, the Hamiltonian is tridiagonal in the basisun&,
but now we are faced with a genuinely time-dependent in
gration. It turns out that standard general-purpose differen
equations solvers quickly fail on roundoff error by the time
i-

he

ts
e

e

e

e

f
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,

-
al

few hundred atoms are employed. Instead, we resort to
adaptation of the Crank-Nicholson method@22#. Basically, a
time step fromt to t1h is carried out as follows:

uc~ t1h!&5
12 1

2 ihH~ t1h/2!

11 1
2 ihH~ t1h/2!

uc~ t !&. ~26!

The operator inversion entails solving a set of linear eq
tions, but this set is tridiagonal. Algorithm~26! is unitary,
i.e., it preserves the norm of the state vector, and there
does not permit runaway roundoff errors. Moreover,
amend the algorithm by writing

uc~ t1h!&

5
12 1

2 ih@H~ t1h/2!2^c~ t !uH~ t1h/2!uc~ t !&#

11 1
2 ih@H~ t1h/2!2^c~ t !uH~ t1h/2!uc~ t !&#

uc~ t !&.

~27!

Here we subtract from the Hamiltonian its expectation val
and thus arrest any rapid time evolution that would en
from an inopportune choice of the zero of energy. Of cour
mathematically, adding any~even a time-dependent! scalar
to the Hamiltonian only amounts to modifying the overa
phase of the wave function, and has no effect on the phys
To integrate the wave function over any fixed finite tim
interval, we simply keep on halving the step sizeh until
convergence.

Results from our computations are shown in Fig. 2. H
we again chooseN55000,k50.0002, and thusNk51. The
figure shows the size of the fluctuationsDn as a function of
the value of the parameterd(t) reached while the time run
on. The solid line is the stationary value ofDn as in Fig. 1.
Formally, it corresponds to the choicet5`. The various
dashed lines depictDn(d) for the ramping time scalest
50.01, 0.1, 1, 10, and 100. One clearly sees how the w
first decreases adiabatically asd is decreased, then decouple

FIG. 2. Atom number fluctuationsDn as a function of time-
dependent tunneling rated(t) when the tunneling rate is decrease
exponentially asd(t)}e2t/t. The fixed parameters areN55000 and
k50.0002. The solid line gives the steady state fluctuations co
sponding tot5`, the dashed lines from top to bottom are fort
50.01, 0.1, 1, 10, and 100.
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2356 PRA 60JUHA JAVANAINEN AND MISHA YU. IVANOV
and freezes to a constant value. The fasterd is decreased, the
sooner nonadiabaticity sets in, i.e., the smaller the ramp
time scalet is.

We have compared the final widths with expression~23!.
It turns out that, after settinga52p, the analytical predic-
tion works at the level of 1% for all of the data in Fig.
This agreement validates our analytical argument.

In summary, at least while the fluctuations satisfyDn
*1, and therefore the harmonic-oscillator expansion~15! re-
mains useful, we have an accurate analytical description
the adiabaticity, or lack thereof, as a barrier is raised to s
the double well in two. The basic conclusion is that, start
from the cased@Nk and thus from fluctuations of the orde
AN/2, the key time scale ism215(2Nk)21. If the time scale
of adjusting the wellt is shorter than this, the fluctuation
cannot be reduced substantially from their initial valueAN/2.
For slow variation of the tunneling rated, the fluctuations are
brought down to a magnitude that scales ast21/2.

V. LIMITATIONS OF THE TWO-MODE MODEL

We have adopted two basic approximations in our reas
ing; that only two one-particle states are relevant, and
the assumption about the matrix elementskee5kgg5keg
5k @see Eq.~6!# holds. We shall discuss the validity of ou
model, paying attention to both of these assumptions.

In preparation, we note that there will be two major lim
iting cases, weakly interacting gas and strongly interact
gas. The watershed is the condition thatNkgg;v0, where
v0 is the natural frequency of the unsplit trap. Let us cor
spondingly denote the length scale of the unsplit trap bl,
whereupon the formulas for a harmonic oscillator give
estimate

v0;
1

ml2
. ~28!

On dimensional grounds, one estimates thatkgg;a/ml3. Us-
ing estimate~28!, the conditionNkgg;v0 then becomes
Na; l . In most current BEC experiments,Na@ l , which im-
plies that the gas is strongly interacting.

Nonetheless, let us begin with the case of weakly int
acting gas,Nkgg!v0. In this limit and for the unsplit trap
the very existence of the excited state is immaterial, and
atoms are in the single-particle statecg . As we split the trap
by increasing the barrier in the middle, the atom-atom int
action becomes essential. Whend.Nk.m, the ground state
is no longer obtained by simply depositing all atoms in t
state cg . For weak atom-atom interactions, this happe
when d!v0. Then the statescg and ce are close to one
another in energy but well separated from the other sta
and the two-mode approximation is justified. If our seco
approximationkee5kgg5keg5k is already valid at this
point, all previous results are quantitatively correct.

If the matrix elements are not equal, a more refined tre
ment is required. In the Hamiltonian~1!, we keep the various
matrix elementsk with the notations

k[keg , Kg[kgg2keg , Ke[kee2keg . ~29!
g

or
lit
g

n-
at

g

-

e

r-

ll

r-

s

s,
d

t-

While the left and right states (cg6ce)/A2 may not be suf-
ficiently well localized in this case, there is nothing in th
mathematics that would prevent us from introducing th
annihilation operators exactly as in Eq.~7!. We proceed to
do so. Of course, since we still have only two one-parti
states to deal with, the state space is once more spanne
the vectors~10!. We may look for the ground state in term
of these basis states and the corresponding expansion c
cientscn .

As before, in the limit of largeN we expand the coeffi-
cientscn as in Eq.~15!. It turns out that, sinceKgÞ0, the
Hamiltonian is no longer tridiagonal, andcn are also coupled
to cn62. Therefore, we also use the expansion

cn62[c~n62!5c~n!62c8~n!12c9~n!1•••. ~30!

Proceeding exactly as we did on going from Eq.~15! to Eq.
~17!, we obtain the effective Schro¨dinger equation forC(k)
[cN/21k :

H 2
1

4
N~d22NKg!

d2

dk2 1F 1

N
~d22NKg! 14kGk2J C~k!

5e C~k!. ~31!

This result is equivalent to the previous result@Eq. ~17!# with
the simple replacementd˜d22NKg . Hence the root-
mean-square fluctuations of particle number and the cha
teristic excitation frequency are simply

Dn5AN

2 S d22NKg

d22NKg14Nk D 1/4

, ~32!

v5A~d22NKg!~d22NKg14Nk!. ~33!

One might wonder why the coefficient characterizing t
ground-state atom-atom interactionsKg appears in these ex
pressions, yet not the corresponding excited-state coeffic
Ke . After all, Hamiltonian~1! treats the ground and excite
states exactly equally. The explanation is that the state v
tors with slowly varying coefficientcn have a preference fo
the ground state already built in. If nearly all atoms were
the excited state, the proper slowly varying expansion co
ficients should be defined asc̄n5(21)ncn . All of this fol-
lows from the choice of where to put the1 and2 signs in
Eqs.~7!.

Consider now the limit of strong atom-atom interaction
Nk*v0. The major weakness of our previous arguments
this case is not the validity or lack thereof of the equality~6!,
but instead the jitters of the two-mode assumption. Ato
atom interactions are a major part of the entire structure
the excitations, and of the stationary states lying far from
ground state that involve a large fraction of the atoms, s
as vortices. As anyone who has attempted to solve the
goliubov theory numerically knows, one has to include po
sibly a large a number of wave functions to arrive at a r
sonably accurate description of the elementary excitatio
Alternatively, one has a multitude of excited solutions to t
GPE available. As long as the system is not in a regime
which the GPE has two nearly degenerate solutions, th
simply is no outstanding single candidate for use as
excited-state wave functionce .
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We thus propose a heuristic model that hides as muc
our ignorance about the excited state as possible. First
take the frequency~33! to represent the actual, observe
frequency of the lowest elementary excitation in the syste
Second, we rewrite the particle number fluctuations~32! in
terms of this frequency and the chemical potentialm
52Nkgg , using the substitution 2Nk5(k/kgg)2Nkgg
˜bm:

Dn5AN

2 S v

bm1A~bm!21v2D 1/2

. ~34!

Hereb is a semiempirical parameter. In the limit of the sp
trap, where there is a dominant excited-state wave func
satisfying uceu2.ucgu2, b.1. In the unsplit trap,uceu2

should be something akin to particle density in the exci
states of the GPE, or the~zero-temperature! density profile of
noncondensate atoms. Either way,uceu2 would be more
spread out than the ground state, reducing the overlap
tween ucgu2 and uceu2. Our best guess is thatb,1, maybe
evenb!1.

Since we are back to the harmonic-oscillator model,
previous considerations about adiabatic ramping of the
tential barrier remain valid with minor modifications. Whe
the barrier is ramped up and the excitation frequency
creases on a time scalet, adiabatic following ceases by th
time v(t).1/(2pt), giving the final particle number fluc
tuations

Dn5AN

2 S 1

2pbmt1A11~2pbmt!2D 1/2

. ~35!

If the system has landed deep in the tunneling regime
makeb51, it may be verified easily that Eqs.~35! and~23!
agree. Unfortunately, we have no general prediction for
parameterb other thanb&1.

VI. COMPARISONS WITH MODELING OF LEGGETT
AND SOLS

A. General features

There is a long-standing tradition to describe a Joseph
junction in terms of the particle number difference betwe
the sides and the phase difference across the junction
particularly well-known line of thought of this type has be
put forward by Leggett, Sols, and their co-workers@8–10#.
We refer to this as the Leggett-Sols approach~LSA!. We
now examine the similarities and differences between
LSA and our modeling in detail.

In order to avoid various clashes in notation, we write t
basic Hamiltonian of the LSA as

HLS52EJ cosf1EC~DN!2/2. ~36!

HereEJ is called the Josephson coupling energy, andEC the
capacitive energy.DN is the difference in particle numbe
between the sides of the junction, andf is the phase canoni
cally conjugate toDN.

In order to compare with our approach, we first note t
eigenstates of the relative phase between the sides of the
may be chosen, in the notation of the present paper, as@23,5#
of
e

,
.

n

d

e-
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o-

-
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e
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A

e

e

t
rap

ufp&5
1

AN11
(
n50

N

einfpun&. ~37!

As there is only a finite number of relative-number statesun&,
there is only a finite number of phase eigenstates as w
Here we choose them asfp52pp/(N11), with p5
2N/2,2N/211, . . . ,N/2. The vectorsufp& make an ortho-
normal basis in the same Hilbert space as the vectorsun&.
The phase operator is then written

f5(
p

ufp&fp^fpu. ~38!

In the basisun&, the difference-in-particle-number operator
evidently

DN5(
n

~2n2N!un&^nu. ~39!

Equations~38! and~39! do not define canonical conjugat
operators. As a matter of fact, it may be shown that, with
the two-mode picture and for any finite number of partic
N, there cannot exist an operator conjugate toDN. If such a
f existed, we would have the nonsensical chain of reason

2 i 5^N/2u@DN,f#uN/2&

5~^N/2uDN! fuN/2&2^N/2uf ~DNuN/2&!

50. ~40!

The familiar position and momentum operatorsx andpx get
past an analogous objection because the variablex is con-
tinuous, an escape that is not available in the present ca

Since there are, strictly speaking, no canonical num
difference and phase operators within the two-mode mode
comparison with the LSA is by necessity somewhat ambi
ous. In the absence of any better alternatives we plug in
operators~39! and ~38! to Eq. ~36!. The spectral representa
tion of the two-mode version of the LSA Hamiltonian~36! is
then

HLS52 1
2 EJ (

k
~ uN/21k11&^N/21ku1H.c.!

12EC (
k

k2uN/21k&^N/21ku. ~41!

We once more use a summation indexk such thatn5N/2
1k. The motivation is to facilitate comparison with our form
of the Hamiltonian from Eq.~9!,

H52
d

2 (
k

SAS N

2
1k11D S N

2
2kD uN/21k11&

3^N/21ku1H.c.D 14k(
k

k2uN/21k&^N/21ku.

~42!

The difference is small. When acting on a state vec
(ncnun& such that only expansion coefficientscN/21k with
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uku!N are materially nonzero, Hamiltonians~41! and ~42!
produce approximately the same results, provided we m
the identifications

EJ↔
Nd

2
, EC↔ 2k. ~43!

To make the assertionuku!N somewhat more quantita
tive, we derive the time-independent Schro¨dinger equation
from Hamiltonian~41! following exactly the same steps th
we took going from Eq.~15! to Eq. ~17!. Using identifica-
tions ~43!, instead of Eq.~17! we have

S 2Nd

4

d2

dk2 14kk2DC~k!5e C~k!. ~44!

A stiffness term}(d/N)k2 is missing here, the term tha
would limit particle number fluctuations to be at most of t
orderAN whend@Nk.

We have carried out a detailed comparison by restrict
the LSA to two boson modes. However, the basic feature
the comparison are generic, and apply no matter what
microscopic meanings of the operatorsf andDN are in Eq.
~36!. In our approach there are three independent parame
N, k, andd, while in the LSA there are only two, basicall
Nd and k. The difference shows in the limit of a weakl
interacting gas. As a matter of fact, in the LSA particle nu
ber fluctuations then diverge. The LSA does not have a co
terpart of the ground stateg built in.

B. Fluctuations in a split trap

There has recently been some discussion about fluc
tions of the particle number after a trap has been split. W
the remark that ‘‘at the moment we have no proof to t
effect, but at least in the limit of weak interactions the a
sumption is clearly valid,’’ we have assumed@5# that the
fluctuations are of the orderAN. Leggett and Sols criticized
this assumption@11#. They applied basically the same adi
baticity argument to their Hamiltonian that we have adop
here for our model. Our response was@12# that the question
cannot be regarded as closed, because the model of Le
and Sols does not seem to apply to the unsplit trap.

In the present paper we have given a description of
events that take place when the trap is split. Unfortunat
our model describes the splitting of the trap from the beg
ning to the end in a quantitatively reliable manner only fo
weakly interacting gas. In this case we see from Eq.~24!
that, inasmuch as the barrier is raised on a time scale
longer thant;m21*v0

21, where m is the change in the
chemical potential due to atom-atom interactions,AN fluc-
tuations apply at the end of the splitting.

As we have already noted, the descriptions of the splitt
of the trap as in Eqs.~23! and ~35! both apply and agree
~even if the atom-atom interactions are strong! if the trap
manages to make it far enough into the tunneling reg
with the atoms in the~many-body! ground state. This hap
pens if the trap is split slowly enough. We write the splittin
time scale ast51/(lv0), wherev0 is the trap frequency
and at the same time the frequency scale for the elemen
excitations of the~unsplit! condensate, and the numeric
ke

g
of
e

rs,

-
n-

a-
h

-

d

ett

e
y,
-

no

g

e

ry

parameterl is as small as it takes to make it deep into t
tunneling regime. For strong atom-atom interactions we
variably haveNk@d, and so, from Eq.~24! we have the
result

Dn`5AN

2

1

2
Alv0

pm
. ~45!

In the Thomas-Fermi limit@19,20# the chemical potential of
N/2 atoms in a spherically symmetric potential well is

m5j2/5v0 , j5
15Na

27/2l
, ~46!

wherea is the scattering length andl 5A1/mv0 is the char-
acteristic length scale of the trap. Inserting this into Eq.~45!,
we have

Dn`5AN

2

1

2Ap

Al

j1/5
. ~47!

Equation~47! displays exactly the same parameter dep
dences as the result of Leggett and Sols in Ref.@11#. The
difference fromAN is important as a matter of principles
However, according to Leggett and Sols, ‘‘the fluctuatio
are . . . by no means of the order ofAN, but much smaller’’
@11#. Given that we do not know how large the parametel
could be, and that the parameterj even in the most extreme
of the present alkali experiments only reaches up to ab
j.105, such a statement may be overly categorical.

For a strongly interacting gas, we have not been able
come up with a quantitatively reliable description of splittin
of the trap, or even of the left-right fluctuations in the grou
state of the unsplit trap. Leggett and Sols went even furth
in that they denied us the unsplit ground state altogeth
their ‘‘argument . . . does not depend on the~incorrect! as-
sumption that@the many-particle state with all atoms in th
ground state of the GPE# describes the unsplit well’’@11#.
However, as they do not elaborate, we do not know what
statement is intended to mean or imply. We have to reg
the question of splitting a strongly interacting gas as u
solved, just as it was when we began the present work.

VII. CONCLUDING REMARKS

It is relatively easy to discuss both atom number fluctu
tions and adiabaticity of the splitting of the trap in a tw
mode description, as we have done in this paper. The p
lem is that the two-mode description is, generally speaki
valid only for either a weakly interacting gas, or when t
condensate has already been split in two. As most of
current BEC experiments operate in the limit of strong int
actions, a major gap remains in the understanding of
condensate.

Besides questions about the process of splitting, the li
of an unsplit trap containing a strongly interacting conde
sate leads to another even more basic question. The op
tional meaning of the left and right annihilation operato
may be vague, but what the left and right sides of the trap
is not; more generally, one might inquire about particle nu
ber fluctuations in any part of the condensate@6#. If Eq. ~34!
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could be relied on, one would expect sub-Poissonian lo
fluctuations. Given that the coherence properties of a c
densate analogous to the coherence properties of light
likely to be a major focus in the discussion of condensa
and atom lasers, the case of a strongly interacting gas
presumably have to be solved in the end. As another fu
development, we anticipate that the loss of phase coher
in multiple traps, i.e., atomic tunnel arrays@24#, will furnish
v.
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ce

an interesting topic of study already in the experimental c
@24# of a weakly interacting gas.
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