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Low-energy electron-He scattering in a low-frequency laser field
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A method for calculating the laser-assisted, electron-potential scattering differential cross section that is
based on the Floquet-Lippmann-Schwinger equation is presented. The method is applied to the laser-assisted,
low-energy electron-helium scattering in a CO2 laser field, in the static no-exchange approximation, for the
scattering geometry in which the polarization vector of the laser field is parallel to the direction of the incident
electron. We compare our results with the low-frequency approximation of Kroll and Watson@Phys. Rev. A8,
804 ~1973!# and find, overall, reasonable agreement. An alternative derivation of the Kroll and Watson low-
frequency approximation, starting from the Floquet-Lippmann-Schwinger equation, is given in an appendix.
@S1050-2947~99!11208-3#

PACS number~s!: 34.80.Qb, 03.65.Nk, 32.80.Wr
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I. INTRODUCTION

In a variety of scattering processes involving the inter
tion of electromagnetic radiation and charged particles
low-frequency limit for the differential scattering cross se
tion can be obtained that factors into the elastic differen
cross section times a factor that depends on the electrom
netic field and the momentum transfer of the projectile~for a
recent review, see, e.g.,@1#!. For the scattering of fast elec
trons by a potential in an intense laser field, this factorizat
can be readily demonstrated when the projectile-potentia
teraction is treated in the first Born approximation@2#. Kroll
and Watson@3# have shown that such a factorization is po
sible for the scattering of slow electrons in a low-frequen
laser field, with the first Born elastic differential cross secti
replaced by the exact, field-free differential cross sect
evaluated with shifted initial and final projectile momen
The low-frequency requirement is that the incident elect
energy be much larger than the photon energy. This ele
low-frequency approximation~LFA! has been subsequent
examined theoretically by a number of authors~see, e.g.,
@1,4,5#!. A particular feature of the LFA is that when th
projectile momentum transfer becomes perpendicular to
polarization vector of the laser field, the approximatio
leading to the derivation of the LFA break down. At thes
henceforth to be called critical, geometries there is no rea
to expecta priori that the LFA will give an accurate approx
mation of the true differential scattering cross section.

Experiments have been carried out by Wallbanket al. @6#
in which the differential cross sections for the scattering
electrons by argon in the presence of an intense CO2 laser
field have been measured far from the critical geometry,
for momentum transfers nearly parallel to the laser polar
tion. Good agreement with the LFA was obtained, once
experimental conditions were accounted for~see, e.g.,@1#!.
In more recent experiments performed near the critical
ometry, Wallbank and Holmes@7# have measured differen
tial cross sections that differ by many orders of magnitu
from those predicted by the LFA. These experimental res
have renewed theoretical interest in the Kroll and Wats
PRA 601050-2947/99/60~3!/2255~14!/$15.00
-
a
-
l
g-

n
-

-
y

n
.
n
nt

e
s
,
on

f

.,
-
e

-

e
ts
n

LFA @8–22#, in particular with respect to its validity at th
critical geometries. However, these theoretical studies h
provided conflicting assessments of the LFA, with reas
able agreement being found by some authors and differe
of many orders of magnitude being obtained by others~see,
e.g.,@21#!. We note that it has been pointed out that dou
scattering could play an important role under the experim
tal conditions@13,17#.

We have recently addressed the issue of the validity of
LFA at the critical geometries by numerically solving th
Floquet-Lippmann-Schwinger equation~FLSE! for electron-
potential scattering in a CO2 laser field@21#. In this paper we
discuss in detail the theory underlying our method and
continue our investigation of the validity of the LFA by con
sidering laser-assisted, low-energy electron-helium scatte
in a CO2 laser field, in the static no-exchange approximatio
The scattering geometry considered is the one in which
polarization vector of the laser field is parallel to the dire
tion of the incident electron. In this geometry, the mome
tum transfer becomes perpendicular to the laser polariza
direction for small-angle scattering. In the following sectio
we formulate the theory of laser-assisted electron-poten
scattering and we derive the FLSE that is used as the b
for our numerical calculations. Our formulation of the pro
lem falls within the framework of the usual time-depende
scattering theory@23#; however, we remove the time depe
dence from the time-dependent Lippmann-Schwinger eq
tion from the onset by writing the scattering wave functio
in the Floquet-Fourier form@24#. This formalism is akin to
that obtained when quantizing the electromagnetic field@25#.
We then introduce the partial-wave form of the FLSE. In t
last section we discuss some of the numerical aspects of
approach, and results are presented for the laser-ass
electron-He scattering cross section in the static no-excha
approximation. Finally, we give in the appendixes a br
derivation of the Kroll and Watson result, starting from th
FLSE, and discuss in further detail some aspects of our
proach. Unless otherwise indicated, atomic units~a.u.! are
used throughout.
2255 ©1999 The American Physical Society
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II. THEORY

A. Basic formalism

The time-dependent Hamiltonian governing the las
assisted electron-potential scattering dynamics is

H~ t !5H01H int~ t !1V. ~2.1!

Here the free-particle Hamiltonian isH0, the electron-laser
interaction is given byH int(t), with

H int~ t !5
1

c
A~ t !•p1

1

2c2
A2~ t !, ~2.2!

andV is the potential from which the electron scatters. T
A2(t) term in the Hamiltonian can be removed by a gau
transformation, and in what follows we assume that t
transformation has been performed. The laser field is
scribed classically as a monomode, linearly-polarized, tim
dependent electric field and in the dipole approximation
formal solution of the time-dependent Schro¨dinger equation,

i
]

]t
uC~ t !&5H~ t !uC~ t !&, ~2.3!

can be cast in the form of the time-dependent Lippma
Schwinger equation~see, e.g.,@23#!,

uCa
(1)~ t !&5uxa~ t !&1E

2`

t

dt8K (1)~ t,t8!VuCa
(1)~ t8!&,

~2.4!

where the subscripta refers to the initial state. The state
uxa(t)& are solutions of the time-dependent Schro¨dinger
equation in the absence of the potentialV,

i
]

]t
ux~ t !&5@H01H int~ t !#ux~ t !&, ~2.5!

andK (1)(t,t8) is the associated causal propagator satisfy

S i
]

]t
2H02H int~ t ! DK (1)~ t,t8!5d~ t2t8!. ~2.6!

Scattering information is then obtained by calculating
S-matrix elements

Sba5 lim
t˜1`

^Cb
(2)~ t !uCa

(1)~ t !&

5db,a2 iE
2`

`

dt^xb~ t !uVuCa
(1)~ t !&, ~2.7!

from which the required scattering cross sections can be
termined.

For pulse durations that are sufficiently long so that,
average, the laser intensity does not vary much from its p
intensity on times scales that are of the order of typi
‘‘scattering times,’’ we can describe the scattering proces
terms of time-independent transition rates. In this adiab
limit, the laser can be taken to be monochromatic. The ve
potential can then be written as
-

e
e
s
e-
-

-

g

e

e-

n
ak
l

in
ic
or

A~ t !5A0 cosvt, ~2.8!

with

A05 ê A05 ê
cE0

v
, ~2.9!

whereê is the polarization direction,E0 is the peak electric-
field strength, andv is the laser angular frequency. Since t
Hamiltonian~2.1! is periodic in time, with period 2p/v, the
statesuCa

(1)(t)& and uxb(t)& can be written in the Floquet
Fourier form~see, e.g.,@24#!

uCa
(1)~ t !&5exp~2 iEat ! (

l 52`

`

exp~2 ilvt !uFa,l
(1)&,

~2.10!

uxb~ t !&5exp~2 iEbt ! (
l 52`

`

exp~2 ilvt !u f b,l&. ~2.11!

Inserting these Floquet-Fourier expansions into Eq.~2.7!,
one obtains for theS-matrix elements

Sba5db,a22p i (
k,l 52`

`

d„Ea2Eb2v~k2 l !…^ f b,kuVuFa,l
(1)&

5db,a22p i (
k52`

`

d~Ea2Eb2vk!

3 (
l 52`

`

^ f b,k1 l uVuFa,l
(1)&. ~2.12!

The required transition-matrix, orT-matrix, element is

Tba
k 5 (

l 52`

`

^ f b,k1 l uVuFa,l
(1)&, ~2.13!

from which the differential cross section for the scattering
an electron having initial energyEa , into the solid angledV
centered about the direction~u,f!, is

dsba
k

dV
5~2p!4

pb

pa
uTba

k u2, ~2.14!

with pa5A2Ea, pb5A2(Ea2kv). In our notation,k is the
number of photons emitted during the collision, so that po
tive values ofk correspond to emission and negative ones
absorption.

We now obtain an integral equation for theT-matrix ele-
ment Tba

k . Inserting the Floquet-Fourier expansions~2.11!
and ~2.10! as well as the following representation for th
propagator

K (1)~ t,t8!52 iu~ t2t8!(
i

ux i~ t !&^x i~ t8!u, ~2.15!

where the sum is over a complete set of solutions of
~2.5!, into Eq. ~2.4!, and carrying out the time integration
the Floquet-Fourier coefficients are found to satisfy the tim
independent FLSE
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uFa,l
(1)&5u f a,l&1(

i
(

m,n52`

`

u f i ,l 1m&

3
1

Ea2~Ei1mv!1 ie
^ f i ,n1muVuFa,n

(1)&.

~2.16!

In order to obtain an expression for the scattering transi
amplitudes, we first premultiply this equation by^ f b,k1 l uV,

^ f b,k1 l uVuFa,l
(1)&5^ f b,k1 l uVu f a,l&

1(
i

(
m,n52`

`

^ f b,k1 l uVu f i ,l 1m&

3
1

Ea2~Ei1mv!1 ie
^ f i ,n1muVuFa,n

(1)&.

~2.17!

Now defining the quantities

Vi j
k2m5 (

l 52`

`

^ f i ,k1 l uVu f j ,l 1m&, ~2.18!

and using Eq.~2.13!, the on-energy shellT-matrix elements
Tba

k are found to satisfy the Floquet-Lippmann-Schwing
equation~FLSE!

Tba
k 5Vba

k 1(
i

(
m52`

`

Vbi
k2m 1

Ea2~Ei1mv!1 ie
Tia

m.

~2.19!

This is the fundamental equation to be solved. Note t
Tba

k 5Tab
2k . We also define the off-the-energy-shellT-matrix

elementsTba
(1)k(E) by

Tba
(1)k~E!5Vba

k 1(
i

(
m52`

`

Vbi
k2m

3
1

E2~Ei1mv!1 ie
Tia

(1)m~E!. ~2.20!

The solution of the time-dependent Schro¨dinger equation
~2.5! is the well-known Gordon-Volkov wave function

xp~r ,t !5~2p!23/2exp@ i„p–r2p–a~ t !2Et…#, ~2.21!

whereE5p2/2 and

a~ t !5
1

cE
t

A~ t8!dt85a0 sinvt ~2.22!

corresponds to the quiver motion of a free, classical elec
in a monochromatic laser field. Settinga05 ê a0, the quan-
tity

a05
E 0

v2
~2.23!
n

r

t

n

is the oscillation amplitude of the electron in the laser fie
From Eq.~2.21!, and using the generating function for th
Bessel function, the functionsf p,l (r )5^r u f p,l& appearing in
the Floquet-Fourier expansion~2.11!, are readily found to be

f p,l~r !5~2p!23/2Jl~p–a0!exp~ ip–r !, ~2.24!

with Jl being an ordinary Bessel function. The required p
tential matrix elements, Eq.~2.18!, are

Vpi ,pj

k2m5 (
l 52`

`

^ f pi ,k1 l uVu f pj ,m1 l&

5 (
l 52`

`

Jk1 l~pi•a0!Jl 1m~pj•a0!^pi uVupj&

5Jk2m~Di j •a0!^pi uVupj&, ~2.25!

with Di j 5pi2pj . The FLSE to be solved now takes th
form

Tpb , pa

(1)k ~E!5Jk~Dba•a0!^pbuVupa&

1 (
m52`

` E dpiJk2m~Dbi•a0!

3
^pbuVupi&

E2~Ei1mv!1 ie
Tpi ,pa

(1)m~E!. ~2.26!

This integral equation can be solved using standard num
cal methods. The size of the problem is effectively given
the number of Fourier components retained in the Floqu
Fourier expansion times the number of grid points in th
dimensions retained in the evaluation of the integral. Sin
we will be concerned with scattering at low energies, wh
only a limited number of partial waves contribute to th
cross section, the angular integrations can be efficiently
ried out by expanding the FLSE in terms of partial waves,
will be discussed in Sec. III B.

B. Partial-wave FLSE

Generally, theT matrix can be expanded as

Tpi ,pj

(1)k~E!5 (
L,L850

`

(
K50

`

(
Q52K

K

YLL8
KQ

~ p̂i ,p̂j !Tpi ,pj ,LL8
(1)k,KQ

~p!,

~2.27!

where theYLL8
KQ are coupled spherical harmonics. Choosi

our coordinate system such that the laser polarization ve
defines the quantization axis,

ê5 ẑ, ~2.28!

and noting that the Hamiltonian remains invariant under
tations about this axis, the above expression simplifies to

Tpi ,pj

(1)k~E!5 (
L,L850

`

(
K50

`

YLL8
K0

~ p̂i ,p̂j !Tpi ,pj ,LL8
(1)k,K0

~p!.

~2.29!
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If we now restrict ourselves to the geometry discussed in
Introduction, i.e., the geometry in which the direction of t
incident electron coincides with the laser polarization,

ê5p̂a , ~2.30!

the above partial-wave decomposition of theT-matrix ele-
ment reduces to

Tpb ,pa

(1)k ~E!5
1

4p (
L50

`

@L#PL~cosu!Tpb ,pa ,L
(1)k ~p!.

~2.31!
eThe scattering angle, i.e., the angle between the vectorpb

andpa , is u and we use the notation@L#52L11. Likewise,
we expand the potential matrix elements as

^pi uVupj&5(
l 50

`

(
m52 l

l

Ylm~ p̂i !Ylm* ~ p̂j !Vl~pi ,pj !,

~2.32!

and we write
ve

e con-
ances are
Jk~Di j •a0!5 (
l ,l 850

`

(
m,m8

Ylm~ p̂i !Ylm* ~â0!Yl 8m8~ p̂j !Yl 8m8
* ~â0!J l ,l 8

k
~pia0 ,pja0!

5
1

~4p!2 (
l ,l 850

`

@ l ,l 8#Pl~cosu i !Pl 8~cosu j !J l ,l 8
k

~pia0 ,pja0!, ~2.33!

where in the second step we have used Eq.~2.30!. The functionsJ l ,l 8
k are discussed in Appendix D. With these partial-wa

expansions, the resulting partial-wave FLSE is

Tpb ,pa ,L
(1)k ~p!5V L

k~pb ,pa ,a0!12 (
m52`

`

(
L850

`

@L8#E pi
2dpi

V_L,L8
k2m

~pb ,pi ,a0!Tpi ,pa ,L8
(1)m

~p!

p22~pi
212mv!1 ie

. ~2.34!

The partial-wave potential matrix elements are

V L,L8
k

~pi ,pj ,a0!5
1

~4p!2 (
l ,l 8,l 950

`

@ l ,l 8,l 9#S l l 9 L

0 0 0D
2S l 8 l 9 L8

0 0 0 D 2

J l ,l 8
k

~pia0 ,pja0!Vl 9~pi ,pj ! ~2.35!

and

V L
k~pi ,pj ,a0!5 (

L850

`

@L8#V_L,L8
k

~pi ,pj ,a0!

5
1

~4p!2 (
l ,l 8,l 950

`

@ l ,l ,l 9#S l l 9 L

0 0 0D
2

J l ,l 8
k

~pia0 ,pja0!Vl 9~pi ,pj !. ~2.36!

The required on-shellT-matrix elements satisfy

Tpb ,pa ,L
k ~pa!5V L

k~pb ,pa ,a0!12 (
m52`

`

(
L850

`

@L8#

3S PE pi
2dpi

V_L,L8
k2m

~pb ,pi ,a0!Tpi ,pa ,L8
m

~pa!

pa
22~pi

212mv!
2 ipkbV_L,L8

k2m
~pb ,pb ,a0!Tpb ,pa ,L8

m
~pa!D . ~2.37!

In numerical calculations, only a finite number of Floquet-Fourier components are retained, and here we will only b
cerned with incident electron energies and laser parameters such that threshold effects and laser-induced reson
negligible. Finally, the differential cross section for the scattering of the electron, having initial energyEa , into the solid angle
dV and emittingk photons, is

dsba
k

dV
5p2

pb

pa
(

L,L850

`

@L,L8#PL~cosu!PL8~cosu!@Tpb ,pa ,L
k ~pa!#* Tpb ,pa ,L8

k
~pa!. ~2.38!
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III. RESULTS AND DISCUSSION

We study laser-assisted electron-He scattering in the s
no-exchange approximation. At low energies, it is w
known that exchange is important and that the static appr
mation gives only a fair approximation of the scattering cro
section. However, it is not our goal to obtain quantitative
accurate results for laser-assisted scattering of electron
helium as much as to test the validity of the LFA by treati
the model problem exactly. Since for the laser intensities
frequency considered here the polarization of the targe
the laser is small@9,12,14#, insight into laser-assiste
electron-atom scattering in a low-frequency laser field can
gained by investigating, in the first instance, the scattering
the static-direct potential. We note that a LFA for electro
atom scattering has been considered@26# and that a calcula-
tion of laser-assisted, low-energy electron-hydrogen in
three-state approximation with exchange has recently b
reported@20#.

The static potential that we use is obtained from a fo
parameter fit to the Hartree-Fock helium ground-state w
function @27# and is given by

VS~r !52ZF A2

4a3
e22ar S a1

1

r D1
4AB

~a1b!3
e2(a1b)r

3S ~a1b!

2
1

1

r D1
B2

4b3
e22br S b1

1

r D G . ~3.1!

The parameter values areA52.605 05, B52.081 44, a
51.41, andb52.61, and the nuclear charge isZ52. The
required potential matrix elements are

^pi uVSupj&52
Z

2p2 S A2

4a3

2~2a!21D i j
2

@~2a!21D i j
2 #2

1
4AB

~a1b!3

2~a1b!21D i j
2

@~a1b!21D i j
2 #2

1
B2

4b3

2~2b!21D i j
2

@~2b!21D i j
2 #2D . ~3.2!

The partial-wave expansion of the above potential ma
elements is readily obtained. For example,

2~2a!21D i j
2

@~2a!21D i j
2 #2

5
2p

pipj
(
L50

`

(
M52L

L

YLM~ p̂i !YLM* ~ p̂j !

3S QL~y!1
2a2

pipj
(

l l 850

`

@ l ,l 8#

3S l l 8 L

0 0 0D
2

Ql~y!Ql 8~y!D , ~3.3!

with Ql being a Legendre function of the second kind a
y5@(2a)21pi

21pj
2#/(2pipj ).

Our results have been obtained by numerically solving
half-on-shell partial-wave FLSE. As discussed by Hew
et al. @28#, we have used a Gaussian quadrature rule to
tic
l
i-
s

by

d
y

e
y
-

a
en

-
e

x

e
t
p-

proximate the integral, with a symmetric interval chos
about the singularity of the kernel. To obtain the functio
J l ,l 8

n , we simply calculate the functionsJ l
n ~see Appendix

D! on a grid and then use the expression~D4!. Typical pa-
rameters used in our calculations were, for example, fora0
50.4, 9 partial waves, 17 Floquet-Fourier components,
36 Gaussian integration points. Higher partial-wave con
butions can be readily included, since they are given, t
very good approximation, by their first Born-Volkov ampl
tudes. While the required matrix elements can be efficien
calculated and the resulting linear system readily invert
available computer memory is the primary constraint, sin
as the laser intensity increases, and hencea0, the number of
Floquet-Fourier components and the maximum number
angular momenta required increase rapidly. Our calculati
were performed on the Cray J916 at the Brussels Free U
versity Computer Center.

We have calculated the laser-assisted differential cr
sections for three different incident electron energies a
three different laser intensities. The electron energies con
ered wereEa51.7 eV, Ea53.4 eV, andEa56.8 eV. For
each energy, calculations were made for the laser intens
4.83105 W/cm2 ~Fig. 1!, 1.93106 W/cm2 ~Fig. 2!, and
7.73106 W/cm2 ~Fig. 3!. The corresponding quiver ampli
tudes area050.2, a050.4, and a050.8. The laser fre-
quency was taken to bev50.0043 a.u. (CO2 laser!. Our
results, as well as the LFA laser-assisted differential cr
section, are shown in Figs. 1–3. The solid lines refer to
FLSE results and the broken lines to the zeroth-order K
and Watson LFA results@29#. Shown are the elastic cros
sections and the cross sections for stimulated emission
absorption of, respectively, one and two photons.

From these figures, we see that, for the laser parame
and incident electron energy considered, the LFA giv

FIG. 1. The laser-assisted partial-differential cross section
scattering of 1.7-, 3.4-, and 6.8-eV electrons by He in the st
no-exchange approximation accompanied by the absorption~emis-
sion! of k50, 61, and 62 photons. The laser frequency isv
50.0043 a.u. (CO2 laser! anda050.2 a.u., which corresponds to
laser intensity of 4.83105 W/cm2. The polarization vector of the
laser field is parallel to the direction of the incident electron. Sho
are the FLSE results~solid lines! and the LFA~dashed lines!. Note
that for k50 the two results cannot be distinguished here.
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2260 PRA 60N. J. KYLSTRA AND C. J. JOACHAIN
overall, a reasonable approximation of the FLSE differen
cross section. There are obviously clear discrepancies in
forward direction. However, the differences are never m
than an order of magnitude, with the FLSE cross secti
being larger than those of the LFA. For small angles,
positions of the minima in the cross section occur at differ
angles. In particular, the dips in the cross section given
the LFA are somewhat less pronounced and are slig
shifted to larger angles. We note that the LFA different
cross sections become zero whenDba•a050 for kÞ0. In the
figures, no differences can be discerned between the L
and FLSE results for elastic scattering (k50). For stimu-
lated absorption~emission! of one or two photons and fo
scattering angles larger than about 40°, the LFA is a v
good approximation. The experimentally observed differe
of many orders of magnitude with the Kroll and Wats
LFA is not reproduced in our calculations. While the inte
sities we consider are not as high as the experimental va
our results indicate that the agreement between the FLSE
LFA does not suffer as the laser intensity is increased.
weak-field limit of the FLSE is discussed in Appendix C.

FIG. 2. Same as in Fig. 1; however,a050.4, which corresponds
to a laser intensity of 1.93106 W/cm2.

FIG. 3. Same as in Fig. 1; however,a050.8, which corresponds
to a laser intensity of 7.73106 W/cm2.
l
he
e
s
e
t
y
ly
l

A

y
e

-
es,
nd
e

It is important to stress that the calculated different
cross sections corresponding to photon exchange vary
six or more orders of magnitude, and therefore, due to
sensitive cancellation in the forward direction, nonconv
gence in the partial-wave expansion or in the Floquet-Fou
expansion has a dramatic effect on the differential cross
tion for small scattering angles. Indeed, convergence of
cross sections for backward scattering can be obtained w
minimum Floquet-Fourier expansion, while convergence
the neighborhood of the minimum in the cross section
much more difficult to attain. One way the convergence
the partial wave and Floquet-Fourier expansion can
gauged is by numerically checking the sum rule~A19! in
Appendix A.

We have also investigated the effects of a long-range
larization potential by numerically solving the FLSE fo
scattering by the static direct potential~3.2! plus the Buck-
ingham polarization potential@23#

Vp~r !52
ap

2

1

~r c
21r 2!2

. ~3.4!

We have chosen the polarizabilityap51.38 and the cutoff
parameterr c51. The required potential matrix elements a

^pi uVpupj&52
ap

16pr c
exp~2D i j r c!. ~3.5!

In Fig. 4 our results are shown for the same incident elect
energies as in the previous figures and fora050.4. From this
figure it can be seen that the presence of a long-range p
ization potential does not affect the accuracy of the LFA,
agreement with previous findings@21,20#. We note that
while partial-wave expansions converge very slowly whe
long-range polarization potential is present, in our case
did not significantly increase the size of the calculation, sin

FIG. 4. The laser-assisted partial-differential cross section
scattering of 1.7-, 3.4-, and 6.8-eV electrons by He in the st
no-exchange plus polarization~see text! approximation accompa
nied by the absorption~emission! of k50, 61, and62 photons.
The laser frequency isv50.0043 a.u. (CO2 laser! anda050.4 a.u.
Shown are the FLSE results~solid lines! and the LFA ~dashed
lines!. For k50 the two results cannot be distinguished here.
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partial-wave amplitudes forL greater than 9 are very accu
rately approximated by the correponding first Born-Volk
amplitudes.

IV. CONCLUSIONS

We have described in detail a method for carrying o
nonperturbative calculations of laser-assisted electr
potential scattering and we have illustrated the method
electron-helium scattering in a CO2 laser field in the static
no-exchange approximation. Over the range of CO2 laser
intensities and incident electron energies considered,
have found that, overall, the LFA does a reasonable job
predicting the cross sections obtained by solving the FL
for the geometry in which the incident electron momentum
parallel to the laser polarization direction. While there a
clear differences between the FLSE results and the LFA
small angles, both predict a large reduction of the cross
tions for small-angle scattering, i.e., when the absorption
emission of photons is classically forbidden@3,22#. Other
studies, including classical simulations@8#, calculations em-
ploying the impulse approximation@17#, and nonperturbative
calculations @14,21,20,22#, have obtained similar results
This is in contrast to the experimental findings@7#, in which
the measured cross sections near the critical geometries
of the same order of magnitude as away from the criti
geometries. Double scattering offers a possible explana
for the experimental results@13,17#. Even a small double-
scattering contribution would be sufficient, due to the sm
cross sections at the critical geometries, to give rise to la
enhancements of the cross sections.

Since the Kroll and Watson LFA gives a reasonable
proximation to the FLSE results, it is interesting to consid
how this approximation can be improved in order to obtai
LFA that is valid at the critical geometries. As is discussed
Appendix B, the zeroth-order Kroll and Watson LF
T-matrix element can be used as the starting point of a l
frequency, iterative scheme that is valid at the critical geo
etries. The result is the impulse approximation that has b
discussed, albeit in a different guise, previously@3,17,18,22#.
A comparison of the impulse approximation with exact
sults for the case of a zero range potential indicates that
approximation is a good one, even at the critical geomet
@22#.

Finally, we note that experimental and theoretical wo
has been directed towards testing the robustness of the
close to threshold@15,31#. Under these conditions the re
quirement that the photon energy be small compared with
incident electron energy is not satisfied. The FLSE meth
discussed here can provide a useful tool for investigating
applicability of the LFA in these cases as well as those
volving higher laser frequencies, corresponding to, e.g.,
Nd:YAG laser, and the high-frequency limit@30#.

ACKNOWLEDGMENTS

This work was supported by the U.K. Engineering a
Physical Sciences Research Council~EPSRC!, the European
Commission ‘‘Human Capital and Mobility’’~HCM! Pro-
gram, and the Belgian Institut Interuniversitaire des Scien
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APPENDIX A: DERIVATION OF THE KROLL-WATSON
LOW-FREQUENCY APPROXIMATION

In this appendix we give a derivation of the Kroll-Watso
LFA, starting from the FLSE~2.26!. Using Eq. ~2.24! we
first write Eq.~2.13! as

Tpb ,pa

(1)k ~E!5 (
l 52`

`

^ f pb ,k1 l uVuFpa ,m1 l
(1) ~E!&

5 (
l 52`

`

^ f pb ,k1 l uT(1)~E!u f pa ,m1 l&

5 (
l 52`

`

Jk1 l~pb•a0!Jl~pa•a0!^pbuT(1)~E!upa&

5Jk~Dba•a0!^pbuT(1)~E!upa&, ~A1!

so that instead of working with theT-matrix elements evalu-
ated with the ‘‘dressed’’ plane waves, we use those evalua
with plane-wave states. With this result, we obtain, after
viding by Jk(Dba•a0), the following form of the FLSE:

^pbuT(1)~E!upa&5^pbuVupa&

1
1

Jk~Dba•a0! (
m52`

` E dpi^pbuVupi&

3
Jk2m~Dbi•a0!Jm~Dia•a0!

E2~Ei1mv!1 ie

3^pi uT(1)~E!upa&. ~A2!

Evidently, for kÞ0, if the cross section is to be nonze
when the momentum transfer is perpendicular to the la
polarization,^pbuT(1)(E)upa& must become arbitrarily large
whenDba•a0 goes to zero such thatTkb

(1)k(E) remains finite.

For small frequencies, we expand the energy denomin
in the integration kernel in Eq.~A2!,

1

E2~Ei1mv!1 ie
5

1

E2Ei1 ie

3S 11mv
1

E2Ei1 ie D1O~v2!.

~A3!

Now calling ^pbuT(1)(n)(E)upa& the T-matrix element that
contains contributions to ordervn, the zeroth-order approxi
mation can be obtained by settingv to zero in the denomi-
nator of Eq.~A2!. Then the summation overm is carried out
with the result
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^pbuT(1)(0)~E!upa&5^pbuVupa&1E dpi^pbuVupi&
1

E2Ei1 ie
^pi uT(1)(0)~E!upa&. ~A4!

The T-matrix element̂ pbuT(1)(0)(Ea)upa& simply satisfies the field-free Lippmann-Schwinger equation.
To first order inv the low-frequency FLSE is

^pbuT(1)(1)~E!upa&5^pbuVupa&1E dpi^pbuVupi&
1

E2Ei1 ie
^pi uT(1)(1)~E!upa&

1
v

Jk~Dba•a0! (
m52`

` E dpi^pbuVupi&
Jk2m~Dbi•a0!mJm~Dia•a0!

~E2Ei1 ie!2
^pi uT(1)(1)~E!upa&. ~A5!

Carrying out the sum overm gives

^pbuT(1)(1)~E!upa&5^pbuVupa&1E dpi^pbuVupi&S 1

E2Ei1 ie
1

Dia•l

~E2Ei1 ie!2D ^pi uT(1)(1)~E!upa&, ~A6!

where we have introduced the vector

l5va0

k

Dba•a0
. ~A7!

Keeping terms to orderv, Eq. ~A6! is

^pbuT(1)(1)~E!upa&5^pbuVupa&1E dpi^pbuVupi&
1

E2Ei2Dia•l1 ie
^pi uT(1)(1)~E!upa&, ~A8!

so that

^pbuT(1)(1)~Ea!upa&5^pbuVupa&12E dpi^pbuVupi&
1

upa1lu22upi1lu21 ie
^pi uT(1)(1)~Ea!upa&. ~A9!

The T-matrix element̂ pbuT(1)(Ea)upa& satisfies the same Lippmann-Schwinger equation as the on-shell field-freeT-matrix
element with the momenta shifted byl. Hence, the on-shellT-matrix element is simply

^pbuT(1)~Ea!upa&5^pb1luT(0)~ea!upa1l&, ~A10!

with the shifted energy

ea5Ea1pa•l1
1

2
l2. ~A11!

This is the Kroll-Watson LFA, and is valid whenuDba•a0u@k @3,22#.
We conclude this appendix by deriving the zeroth-order Kroll-Watson LFA from the partial-wave FLSE~2.34!. First the

expression~A1! for the T-matrix element is written as

Tpb ,pa

(1)k ~E!5
1

4p (
L50

`

@L#PL~cosu!Tpb ,pa ,L
(1)k ~p!

5
1

~4p!3 (
l ,l 8,l 950

`

(
L50

`

@ l ,l 8,l 9,L#PL~cosu!S l l 9 L

0 0 0D
2

J l ,l 8
k

~pba0 ,paa0!Tpb ,pa ,l 9
(1)

~p!, ~A12!

so that

Tpb ,pa ,L
(1)k ~p!5

1

~4p!2 (
l ,l 8,l 950

`

@ l ,l 8,l 9#S l l 9 L

0 0 0D
2

J l ,l 8
k

~pba0 ,paa0!Tpb ,pa ,l 9
(1)

~p!. ~A13!

Inserting this expansion forTpb ,pa ,L
(1)k (p) into the right-hand side of the partial-wave FLSE~2.34! results in
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Tpb ,pa ,L
(1)k ~p!5V L

k~pb ,pa ,a0!12 (
m52`

`

(
L-50

`

@L8#E pi
2dpi

V L,L8
k,m

~pb ,pi ,pa ,a0!

p22~pi
212mv!1 ie

Tpi ,pa ,L8
(1)

~p!, ~A14!

with the partial-wave potential matrix elements now being

V L,L8
k,m

~pb ,pi ,pa ,a0!

5
1

~4p!4 (
l ,l 8,l 950

`

(
j , j 850

`

@ l ,l 8,l 9, j , j 8# J l 8, j ,l 9,L8 S l l 9 L

0 0 0D
2

Vl 9~pb ,pi !J l ,l 8
k2m

~pba0 ,pia0!J j , j 8
m

~pia0 ,paa0!,

~A15!
in
d
th

e-

r

and we have introduced the symbol

J l ,l 8, j , j 85 (
L50

`

@L#S l l 8 L

0 0 0D
2S j j 8 L

0 0 0D
2

.

~A16!

Before proceeding, we must first calculate a sum involv
the functionsJ l ,l 8

n (a,b). A variety of sums can be evaluate
using properties of the Bessel functions. For example,
expression

Jk~Dba•a0!5 (
m52`

`

Jk2m~Dbi•a0!Jm~D ia•a0!,

~A17!
to
ap

rin
g

e

together with Eq.~2.33!, gives immediately

J l ,l 8
k

~b,a!5
1

4p (
m52`

`

(
j 50

`

@ j #J l , j
k2m~b,c!J j ,l 8

m
~c,a!.

~A18!

An additional sum rule, which we will require, may be d
rived by again starting with Eq.~A17!. Multiplying both
sides by, for example,̂pbuVupi&^pi uVupa&, using the partial-
wave expansions~2.32! and~2.33!, and then integrating ove

p̂i , results in
ial-wave
J l ,l 8
k

~b,a! d j 9,l 95
@ l 9#

~4p!2 (
m52`

`

(
j j 850

`

@ j , j 8# J j ,l 9, j 8, j 9 J l , j
k2m~b,c!J j 8,l 8

m
~c,a!. ~A19!

We note that this expression gives a direct method for verifying the numerical convergence of the Floquet and part
expansions used in our calculations. Now retaining the zeroth-order contribution in the expansion for smallv and making use
of Eq. ~A19!, one obtains

Tpb ,pa ,L
(1)k(0) ~p!5

1

~4p!2 (
l ,l 8,l 950

`

@ l ,l ,l 9#S l l 9 L

0 0 0D
2

J l ,l 8
k

~pia0 ,pja0!S Vl 9~pb ,pa!12E pi
2dpi

Vl 9~pb ,pi !Tpi ,pa ,l 9
(1)(0)

~p!

p22pi
21 ie

D .

~A20!
er

on,
ree

an
be
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The superscripts on theT-matrix elements refer, as before,
the fact that we are dealing here with the zeroth-order
proximation. Using Eq.~A13!, this reduces to

Tpb ,pa ,l 9
(1)(0)

~p!5Vl 9~pb ,pa!

12E pi
2dpi

Vl 9~pb ,pi !Tpi ,pa ,l 9
(1)(0)

~p!

p22pi
21 ie

,

~A21!

which, as expected, is the partial-wave, field-free scatte
Lippmann-Schwinger equation.
-

g

APPENDIX B: IMPULSE APPROXIMATION

With the knowledge that, to the zeroth order in the las
frequency, the transition-matrix element^pbuT(1)(0)(Ea)upa&
simply satisfies the field-free Lippmann-Schwinger equati
a simple approximation suggests itself. Using the field-f
transition-matrix elements in the right-hand side of Eq.~A2!,
an improvement to the Kroll and Watson approximation c
be obtained that is valid at the critical geometries. As will
demonstrated below, this approximation is just the impu
approximation~IA ! that has been discussed in the literatu
@3,17,18,22#.

Our starting point is the IA for the scattering cross se
tion,
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Tpb ,pa

(1)k(IA)~E!5
1

2pE0

2p

df exp~ ikf2Dba•a0 sinf!^pb1A~f!/cuT(1)(0)@Ea~f!#upa1A~f!/c&, ~B1!

with 2Ea(f)5@pa1A(f)/c#2. Since theT-matrix element is a solution of the field-free Lippmann-Schwinger equation,
~B1! can be cast in the form

Tpb ,pa

(1)k(IA)~E!5Jk~Dba•a0!^pbuVupa&

1
1

2pE0

2p

df exp~ ikf2Dba•a0 sinf!E dpi
^pbuVupi&^pi uT(1)(0)@Ea~f!#upa&

Ea2Ei2vDia•a0 cosf1 ie
. ~B2!

As in Appendix A, we write to first order inv,

1

Ea2Ei2vDia•a0 cosf1 ie
5

1

Ea2Ei1 ie S 11
vDia•a0 cosf

Ea2Ei1 ie D . ~B3!

To first order inv, Eq. ~B1! now becomes

Tpb ,pa

(1)k(IA)~E!5Jk~Dba•a0!^pbuVupa&1
1

2pE0

2p

df exp~ ikf2Dba•a0 sinf!

3E dpi

^pbuVupi&^pi uT(1)(0)~Ea!upa&
Ea2Ei1 ie S 11

vDia•a0 cosf

Ea2Ei1 ie D . ~B4!

Using the following expansion

S 11
vDia•a0 cosf

Ea2Ei1 ie D5
1

Jk~Dba•a0! (
m52`

`

Jk2m~Dbi•a0!Jm~Dia•a0!S 11
mvDba•a0 cosf

k~Ea2Ei1 ie! D , ~B5!

and performing the integration overf ,

1

2pE0

2p

df exp~ ikf2Dba•a0 sinf!S 11
mvDba•a0 cosf

k~Ea2Ei1 ie! D
5Jk~Dba•a0!1@Jk11~Dba•a0!1Jk21~Dba•a0!#

mvDba•a0

2k~Ea2Ei1 ie!

5Jk~Dba•a0!S 11
mv

~Ea2Ei1 ie! D , ~B6!

gives the final result

Tpb ,pa

(1)k(IA)~Ea!5Jk~Dba•a0!^pbuVupa&

1 (
m52`

` E dpi^pbuVupi&
Jk2m~Dbi•a0!Jm~Dia•a0!

Ea2~Ei1mv!1 ie
^pi uT(1)(0)~Ea!upa&. ~B7!
e
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th

d
th
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in
While the evaluation of Eq.~B1! involves only the knowl-
edge of the on-shellT-matrix elements, Eq.~B7! requires
that both on-shell and half-on-shellT-matrix elements be
known. However, when solving the Lippmann-Schwing
equation for the on-shellT-matrix element, the half-on-she
T-matrix elements are also determined. Moreover, in
form of the IA given by Eq.~B7! theT-matrix elements need
be calculated for only one incident energyEa . These facts
would suggest Eq.~B7! as, within the formalism discusse
here, a more convenient starting point for calculating
T-matrix elements in the IA.

We now give the expression for the partial-waveT-matrix
r

e

e

elements in the IA in terms of the field-free partial-wa
T-matrix elements. Expanding these matrix elements as
Eq. ~A13! and inserting this into Eq.~A14!, gives

Tpb ,pa ,L
(1)k(IA)~p!5V L

k~pb ,pa ,a0!12 (
m52`

`

(
L850

`

@L8#

3E pi
2dpi

V L,L8
k,m

~pb ,pi ,pa ,a0!

p22~pi
212mv!1 ie

Tpi ,pa ,L8
(1)

~p!,

~B8!
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where the partial-wave potential matrix elemen
V L,L8

k,m (pb ,pi ,pa ,a0) are defined in Appendix A@see Eq.
~A15!#.

APPENDIX C: WEAK-FIELD LIMIT

In this appendix, we consider the weak-field limit of th
FLSE~2.26!. The laser field is parametrized by the quantit
v anda0, and this limit is characterized, for some fixedv,
by a0!0. Correct to first order ina0 , Tpb ,pa

(1)0 (E) is simply

equal to the field-free elastic scatteringT-matrix element.
TheT-matrix elements corresponding to the emission of o
photon are of ordera0, and therefore correct to second ord
in a0, are given by

Tpb ,pa

(1)1 ~E!5J1~Dba•a0!^pbuVupa&

1 (
m50,1

E dpiJ12m~Dbi•a0!

3
^pbuVupi&

E2~Ei1mv!1 ie
Tpi ,pa

(1)m~E!. ~C1!

A similar expression is obtained fork521. Continuing in
the same manner, theT-matrix elements corresponding to th
emission ofk photons are of orderk in a0, and hence correc
to orderk11 in a0 are

Tpb ,pa

(1)k ~E!5Vpb ,pa

k(eff) ~E!1E dpi

^pbuVupi&
E2~Ei1kv!1 ie

Tpi ,pa

(1)k ~E!,

~C2!

with

Vpb ,pa

k(eff) ~E!5Jk~Dba•a0!^pbuVupa&

1 (
m50

k21 E dpiJk2m~Dbi•a0!

3
^pbuVupi&

E2~Ei1mv!1 ie
Tpi ,pa

(1)m~E!. ~C3!
s

e
r

These equations provide a recursion relation for theT-matrix
elements. Once the on-shell and half-on-shell matrix e
mentsTpb ,pa

(1)0 (E) have been determined, they are used to c

culate an effective inhomogeneous termVpb ,pa

k(eff) (E) in a

Lippmann-Schwinger-type equation forTpb ,pa

(1)1 (E). These in

turn are used to calculateTpb ,pa

(1)2 (E), and so forth.

Our results shown in Figs. 1–4 show, at small angl
elastic cross sections that are many orders of magnit
larger than those for absorption and emission.~The differ-
ence is much less in the backward direction, with the cr
sections fork61 being only about an order of magnitud
smaller than the elastic cross section.! While this might sug-
gest that a perturbative calculation, as outlined above, co
be satisfactory for obtaining the laser-assisted scatte
cross sections for the values ofa0 considered here, we
would like to emphasize that this is not the case. For
ample, we could not obtain converged results from a per
bative calculation in which the FLSE was solved with
minimum Floquet-Fourier expansion, i.e.,k522, . . . ,2.

Finally, we note that the zeroth-order LFA, Eq.~A4!, can
be recovered from the expression~C2!, by making use of Eq.
~A1! and the fact that, to orderk11 in a0, Eq. ~A17! re-
duces to

(
m50

k

Jk2m~Dbi•a0!Jm~Dia•a0!5Jk~Dba•a0!. ~C4!

APPENDIX D: SPHERICAL DECOMPOSITION OF THE
BESSEL FUNCTIONS

Here we will consider in more detail the functionsJ l ,l 8
k

that appear in the partial-wave FLSE~2.34!. These functions
are defined by
ction:
J l ,l 8
k

~a,b!54p2E
21

1 E
21

1

dx dx8 Jk~ax2bx8!Pl~x!Pl~x8!

516p i2k1 l 1 l 8E
0

p

du j l~a cosu! j l 8~2b cosu!cos~ku!

516p i2k1 l 1 l 8@11~21!k1 l 1 l 8#E
0

p/2

du j l~a cosu! j l 8~2b cosu!cos~ku!. ~D1!

ClearlyJ l ,l 8
k is zero if k1 l 1 l 8 is not even.

For computational purposes, it is more convenient to make the following partial-wave expansion of the Bessel fun

Jk~Di j •a0!5 (
n52`

`

Jk1n~pi•a0!Jn~pj•a0!

5 (
n52`

`

(
l ,l 850

`

(
m,m8

Ylm~ p̂i !Ylm* ~â0!Yl 8m8~ p̂j !Yl 8m8
* ~â0!J l

k1n~pia0!J l 8
n

~pja0!, ~D2!
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where the functionsJ l
k are defined by

J l
k~a!52pE

21

1

dx Jk~ax!Pl~x!

54il 2kE
0

p

du j l~a cosu!cos~ku!

54il 2k@11~21!k1 l #E
0

p/2

du j l~a cosu!cos~ku!,

~D3!

and are zero ifl 1k mod 2Þ0. Comparing with Eq.~2.33!,
J l ,l 8

k can be expanded in terms of the functionsJ l
k as

J l ,l 8
k

~a,b!5 (
n52`

`

J l
k1n~a!J l 8

n
~b!. ~D4!
In numerical calculations, therefore, the functionsJ l
k need

only be calculated and the requiredJ l ,l 8
n are obtained using

the relationship~D4!.
We now list some of the properties of the functionsJ l

k

andJ l ,l 8
k . These follow readily from the properties of th

Bessel functions from which they are derived. As with t
Bessel functions, we have that

J l
k~a!5~21!kJ l

2k~a!. ~D5!

We also deduce that

J l ,l 8
k

~a,b!5~21! l 1 l 8J l 8,l
k

~b,a!5~21!kJ l ,l 8
2k

~a,b!

5J l 8,l
2k

~b,a!. ~D6!

Using the well-known series expansion of the Bessel fu
tions, the following series expansions are obtained:
J l
k~a!52 il 2k ~p!3/2 S a

4D l

(
n50

` ~21!n S a

4D 2n

n! GS 3

2
1n1 l D S

2n1 l

2n1 l 2uku
2

D , ~D7!

J l ,l 8
k

~a,b!54p3 i2k1 l 1 l 8S a

4D l S 2
b

4D l 8

(
n,n850

` ~21!n1n8S a

4D 2nS b

4D 2n8

GS l 1n1
3

2DGS l 81n81
3

2Dn! n8!
S 2~n1n8!1 l 1 l 8

2~n1n8!1 l 1 l 82uku
2

D . ~D8!

From the recursion relations of the Bessel functions and of the Legendre polynomials, the functionsJ l
k can be shown to

satisfy the recursion relations

J l
k~a!5

a

2~2l 11!
@J l 11

k11~a!2J l 21
k11~a!2J l 11

k21~a!1J l 21
k21~a!#

5
a

2k~2l 11!
$~ l 11!@J l 11

k11~a!1J l 11
k21~a!#1 l @J l 21

k11~a!1J l 21
k21~a!#%. ~D9!

The functionsJ l
k also satisfy

d

da
J l

k~a!5
1

2
@J l 21

k21~a!2J l 21
k11~a!#2

l 11

a
J l

k~a! ~D10!

52
1

2
@J l 11

k11~a!2J l 11
k21~a!#1

l

a
J l

k~a!

5
1

2~2l 11!
$ l @J l 21

k21~a!2J l 21
k11~a!#2~ l 11!@J l 11

k11~a!2J l 11
k21~a!#%

5
1

2l 11
@~ l 11!J l 11

k21~a!1 lJ l 21
k21~a!#2

k

a
J l

k~a!

52
1

2l 11
@~ l 11!J l 11

k11~a!1 lJ l 21
k11~a!#1

k

a
J l

k~a!,

and are solutions of the coupled differential equations, for fixedk,
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d2

da2
J l

k~a!1
1

a

d

da
J l

k~a!1S ~ l 11!2

~2l 11!~2l 13!
1

l 2

~2l 11!~2l 21!
2

k2

a2DJ l
k~a!

52
~ l 11!~ l 12!

~2l 11!~2l 13!
J l 12

k ~a!2
l ~ l 21!

~2l 11!~2l 21!
J l 22

k ~a!, ~D11!

and for fixedl,

d2

da2
J l

k~a!12
1

a

d

da
J l

k~a!1S 1

2
2

l ~ l 11!

a2 DJ l
k~a!5@J l

k12~a!1J l
k22~a!#, ~D12!
ob

l-

. I

-

se-
nd

g a
with the boundary conditions

J l
k~a!ua5054p dk,0d l ,0 ,

~D13!
d

da
J l

k~a!U
a50

5
2

3
p i l 2k dk,6 ld l ,1 .

Similar results, though often more complicated, can be
tained for the functionsJ l ,l 8

k .
Finally, we consider the partial-wave potential matrix e

ements~2.35!. These functions are zero if (l 1 l 91L)mod 2
Þ0, (l 81 l 91L8)mod 2Þ0, or if (l 81 l 91k)mod 2Þ0.
Therefore, they are also zero if (L1L81k)mod 2Þ0, a re-
sult that can also be deduced from parity considerations
deed, if we define the parity of theT-matrix element
.

rt
-

n-

Tpb ,pa ,L
(1)k (p) as k1L, the partial-wave potential matrix ele

mentV L8,L
k (pia0 ,pja0) will only couple T-matrix elements

of the same parity. This has the important practical con
quence that Eq.~2.34! can be solved separately for even- a
odd-parityT-matrix elements.

From the properties ofJ l ,l 8
k , we also find that

V L8,L
k

~a,b!5~21!L1L8V L8,L
k

~b,a!

5~21!kV L,L8
2k

~a,b!

5V L8,L
2k

~b,a!. ~D14!

These relations are also of practical interest when obtainin
numerical solution of Eq.~2.34!.
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