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Low-energy electron-He scattering in a low-frequency laser field
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A method for calculating the laser-assisted, electron-potential scattering differential cross section that is
based on the Floquet-Lippmann-Schwinger equation is presented. The method is applied to the laser-assisted,
low-energy electron-helium scattering in a £@ser field, in the static no-exchange approximation, for the
scattering geometry in which the polarization vector of the laser field is parallel to the direction of the incident
electron. We compare our results with the low-frequency approximation of Kroll and W@bgs. Rev. A8,

804 (1973] and find, overall, reasonable agreement. An alternative derivation of the Kroll and Watson low-
frequency approximation, starting from the Floquet-Lippmann-Schwinger equation, is given in an appendix.
[S1050-294{@9)11208-3

PACS numbg(s): 34.80.Qb, 03.65.Nk, 32.80.Wr

I. INTRODUCTION LFA [8-22), in particular with respect to its validity at the
critical geometries. However, these theoretical studies have
In a variety of scattering processes involving the interacprovided conflicting assessments of the LFA, with reason-
tion of electromagnetic radiation and charged particles, @able agreement being found by some authors and differences
low-frequency limit for the differential scattering cross sec-of many orders of magnitude being obtained by othees,
tion can be obtained that factors into the elastic differentiak.g.,[21]). We note that it has been pointed out that double
cross section times a factor that depends on the electromageattering could play an important role under the experimen-
netic field and the momentum transfer of the projedfite a  tal conditions[13,17].
recent review, see, e.dl1]). For the scattering of fast elec-  we have recently addressed the issue of the validity of the
trons by a potential in an intense laser field, this factorization FaA at the critical geometries by numerically solving the
can be readily demonstrated when the projectile-potential ingjoquet-Lippmann-Schwinger equatiGRLSE) for electron-

teraction is treated in the first Born approxime}t[(ﬁj. Kr.oII potential scattering in a CQaser field[21]. In this paper we
and Watsorj3] have shown that such a factorization is pos-jseyss in detail the theory underlying our method and we

sible fpr the _scatterl_ng of slow elgctrpns In a lOW'frequer.‘Cycontinue our investigation of the validity of the LFA by con-
laser field, with the first Born elastic differential cross section

. : . . 'sidering laser-assisted, low-energy electron-helium scatterin
replaced by the exact, field-free differential cross section g 9y 9

evaluated with shifted initial and final projectile momenta. 1 & CQ, laser field, in the static no-exchange approximation.

The low-frequency requirement is that the incident eIectronThe scattering geometry considered is the one in which the

energy be much larger than the photon energy. This elega'[i)[olarization_ vgctor of the laser fie!d is parallel to the direc-
low-frequency approximatiofLFA) has been subsequently tion of the incident electron. In_ this geometry, the momen-
examined theoretically by a number of authdsee, e.g., tqm tr_ansfer becomes perpendlgular to the Iaser_ polarlzgt|on
[1,4,5). A particular feature of the LFA is that when the direction for small-angle scattering. Iq the following section
projectile momentum transfer becomes perpendicular to th&/e formulate the theory of laser-assisted electron-potential
polarization vector of the laser field, the approximationsscattering and we derive the FLSE that is used as the basis
leading to the derivation of the LFA break down. At these,for our numerical calculations. Our formulation of the prob-
henceforth to be called critical, geometries there is no reasolem falls within the framework of the usual time-dependent
to expecia priori that the LFA will give an accurate approxi- scattering theory23]; however, we remove the time depen-
mation of the true differential scattering cross section. dence from the time-dependent Lippmann-Schwinger equa-
Experiments have been carried out by Wallbatlal.[6]  tion from the onset by writing the scattering wave functions
in which the differential cross sections for the scattering ofin the Floquet-Fourier fornj24]. This formalism is akin to
electrons by argon in the presence of an intensg @8er that obtained when quantizing the electromagnetic fi2&.
field have been measured far from the critical geometry, i.e We then introduce the partial-wave form of the FLSE. In the
for momentum transfers nearly parallel to the laser polarizatast section we discuss some of the numerical aspects of our
tion. Good agreement with the LFA was obtained, once thepproach, and results are presented for the laser-assisted
experimental conditions were accounted (see, e.g.[1]). electron-He scattering cross section in the static no-exchange
In more recent experiments performed near the critical geapproximation. Finally, we give in the appendixes a brief
ometry, Wallbank and Holmels’] have measured differen- derivation of the Kroll and Watson result, starting from the
tial cross sections that differ by many orders of magnitudd=LSE, and discuss in further detail some aspects of our ap-
from those predicted by the LFA. These experimental resultproach. Unless otherwise indicated, atomic urésu) are
have renewed theoretical interest in the Kroll and Watsorused throughout.
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Il. THEORY A(t)=A, coswt, (2.9
A. Basic formalism .
with
The time-dependent Hamiltonian governing the laser-
assisted electron-potential scattering dynamics is c&

Ap=€Ap=€ —, (2.9
H(t)=Hgo+ Hiy(t) + V. (2.2) @

wheree is the polarization directiort, is the peak electric-
field strength, ana is the laser angular frequency. Since the
Hamiltonian(2.1) is periodic in time, with period 2/ w, the

1 1 states|W'{")(t)) and|x,(t)) can be written in the Floquet-
Hin(t) =2 A(t) - p+ ﬁAz(t)’ (2.2 Fourier form(see, e.g.[24])

Here the free-particle Hamiltonian K4, the electron-laser
interaction is given byH;(t), with

andV is the potential from which the electron scatters. The |\Ifg+)(t))=exp(—iEat) 2 exp(—ilwt)|ng)>,
A?(t) term in the Hamiltonian can be removed by a gauge ===

transformation, and in what follows we assume that this (2.10
transformation has been performed. The laser field is de-

scribed classically as a monomode, linearly-polarized, time- )= expy —iE.t exo —ilobh|fe ). (2.1
dependent electric field and in the dipole approximation. A (1)) X o) ;oo R=iloffey). (213

formal solution of the time-dependent Sctiieger equation, ) . . .
Inserting these Floquet-Fourier expansions into E7),

d one obtains for th&-matrix elements
I W) =HO[W(D), 2.3

_ (+)
can be cast in the form of the time-dependent Lippmann-Sb Op,a~ 2 |_z,oc 8(Ea=Ep= w(k=){foulVIFa,)
Schwinger equatiolfsee, e.g.[23]),

]

t =8y a2 D 8(Es—Ep— k)
0= a0+ [ drKOLVEn), v TS T

(2.4) -
E (ot VIFSY). (212
where the subscriph refers to the initial state. The states '
|xa(t)) are solutions of the time-dependent Salinger

ro i The required transition-matrix, dr-matrix, element is
equation in the absence of the potential

14
O =[Hot HnOIx(D), (29 2 (ToslVIFSD), (213

andK(*)(t,t") is the associated causal propagator satis -nédrom which the Qiffe_rgljtial Cross se_ction for the scattering of
(Gt I usal propag ISty n electron having initial enerdy,, into the solid anglelQ)

9 centered about the directidid, ¢), is

i —Ho— im(t)) KOt t)=68t—-t'). (2.6

Pb
_— o . . =(2m* "IThl” (2.14
Scattering information is then obtained by calculating the dQ ba
Smatrix elements
with p,= V2E,, pp= v2(E;—Kkw). In our notationk is the
Spa= lim (W) wiH(t)) number of photons emitted during the collision, so that posi-
tms o0 2 tive values ofk correspond to emission and negative ones to
absorption.
= _if dt HIV]W (1)), 2 We now obtalp an integral equatlop for tfﬁema.tnx ele-
ba OeOVYE(0) @7 ment T‘ga. Inserting the Floquet-Fourier expansio(&11)

and (2.10 as well as the following representation for the
from which the required scattering cross sections can be deropagator
termined.

For pulse durations that are sufficiently long so that, on n L , ,

average, the laser intensity does not vary much from its peak KON, t) =—io(t—t )Z xi(D){xi(t)], (2.19
intensity on times scales that are of the order of typical
“scattering times,” we can describe the scattering process itwhere the sum is over a complete set of solutions of Eqg.
terms of time-independent transition rates. In this adiabati€2.5), into Eqg.(2.4), and carrying out the time integration,
limit, the laser can be taken to be monochromatic. The vectothe Floquet-Fourier coefficients are found to satisfy the time-
potential can then be written as independent FLSE
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is the oscillation amplitude of the electron in the laser field.

|F(+))—|fa,>+2 Z Mfigem) From Eq.(2.21), and using the generating function for the
Bessel function, the function, (r)=(r|f, ) appearing in
1 the Floquet-Fourier expansid8.11), are readily found to be
X —(E;+mo)+i <fi,n+m|V|F§:n)>
irie)Tle foi(r)=(2m) %2 (p- ap)explip-r), (2.24
(2.19

with J; being an ordinary Bessel function. The required po-
In order to obtain an expression for the scattering transitionential matrix elements, Eq2.18), are
amplitudes, we first premultiply this equation b, .|V,

(Forat VIFED) = (fo il VIfa) VE(.B]=|:E_QC (fo, k1lVITo mer)

FosetlVIFim S
+2i m,nzw< o IVITi o) =I:Z_w Ji1(Pi- @) J) - m(Pj - @o)(pilV|p))

1
><E;,l—(Eierw)ﬂe( inem VIFSD). = Jk—m(Ajj - ao){pi|V|p;), (2.2

(2.17  with Ajj=p;—p;. The FLSE to be solved now takes the

form
Now defining the quantities
Té;?ﬁa(E) =Ji(Apa- ap){Pp| VIpa)
Vk M= 2 (fikat I VITj1om)s (2.18 <
+m;_w dpiJx—m(Api- @)
and using Eq(2.13, the on-energy shell-matrix elements
T, are found to satisfy the Floquet-Lippmann-Schwinger % (ol VIpi) TOME). (2.26
equation(FLSE) E—(Ei+mw)+ie pl Pa '
) . ) 1 This integral equation can be solved using standard numeri-
Tpa= Vba+2 > v —T0. cal methods. The size of the problem is effectively given by

™ e P E,—(Ei+mo)t+ie @ , U
tm a~ (Ei w)tie the number of Fourier components retained in the Floquet-

(219 Fourier expansion times the number of grid points in three

This is the fundamental equation to be solved. Note thaglmensmns retained in the evaluation of the integral. Since

Tlga: T;bk_ We also define the off-the-energy-shimatrix we will be concerned with scattering at low energies, where

eIementsT(+)k(E) by only a limited number of partial waves contribute to the
ba

cross section, the angular integrations can be efficiently car-
ried out by expanding the FLSE in terms of partial waves, as

TOKE)=VE+S S vk will be discussed in Sec. Il B.
a a = |
B. Partial-wave FLSE
(+) .
XEC (E; +mw)+|eT'a "(E). (2.20 Generally, theT matrix can be expanded as
The solution of the time-dependent Satlimger equation (H)k =y — (+)k.KQ
(2.5 is the well-known Gordon-Volkov wave function Top(E)= L, LZ 0 Kz :z Yio(p ,p,)T Py LL(P)
(2.27

xp(r,t)=(2m)  exfdi(p-r—p-a(t) —ED], (2.21)
5 where theYLL, are coupled spherical harmonics. Choosing
whereE=p®/2 and our coordinate system such that the laser polarization vector
defines the quantization axis,

1t .
a(t)zgj A(t")dt' = ay sinwt (2.22 =7, (2.28

corresponds to the quiver motion of a free classical electronq noting that the Hamiltonian remains invariant under ro-
in a monochromatic laser field. Setting= € o, the quan-  tations about this axis, the above expression simplifies to

tity

o Th X (E)= Z E Y 2(pi.p)) TE,*’;‘ 2 (p).
ag=— (2.23 ! LL =0 K '
w? (2.29
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If we now restrict ourselves to the geometry discussed in th&he scattering angle, i.e., the angle between the vegiprs
Introduction, i.e., the geometry in which the direction of theandp,, is # and we use the notatigi. ]=2L + 1. Likewise,

incident electron coincides with the laser polarization, we expand the potential matrix elements as
€=Pa, (2.30
] |
the above partial-wave decomposition of thenatrix ele- _ N S AvE (A o
ent teducos to PilVIpY =2 > Yim(P)Yin(P)Vi(Pi,Py)
o (2.32
Th 1. (E) 2 [LIPL(cos)TLS 1 (P).
(2.3) and we write
|
J(Aj-a)= 2 2 YVim(P)Yiin(@0) Yo (B) Y] (@0) T (Piato, P )
I,I"=0 m,m’
1
=— 2 [1,1"1P\(cos6)) Py (cos6;) T\ . (piao.pj o)., (2.33
(4m)2 =0

where in the second step we have used (B@®0. The functiona7:f|, are discussed in Appendix D. With these partial-wave
expansions, the resulting partial-wave FLSE is

|_|_r(pb pI’aO)T p Lr(p)

To . L(P)=V{(Pp,Pasag) +2 E 2 [L']] p2dp, (2.34
m=—= 7= (p|+2ma))+|6

The partial-wave potential matrix elements are

1 o) |// I[ IH L, 2
LL’(pI’era’O)_(4 )2”% 0[| |’ |/'] 00 0 0 0 j| |r(p|a’0 pja’o)Vw(p,,p]) (235)
and
Vlﬁ(pi,pj,ao)= > [L’]V'E’L,(pi,pj,ao)
L'=0
! 230: //( l,, L)Z k
“amt,m Mg o of Jur(PiaopiaolVir(prpy). (2.36

The required on-shell-matrix elements satisfy

pbp L(Pa)= VL(pb Pa,ag)+2 2 E [L]

m=-w | 7_g

V(P pivao) Ty L (Pa)

2
Pf prdp; 02— (it 2mo) _”kaVL Py Py, ao)T b P L(Pa) |- (2.37

In numerical calculations, only a finite number of Floquet-Fourier components are retained, and here we will only be con-
cerned with incident electron energies and laser parameters such that threshold effects and laser-induced resonances ar
negligible. Finally, the differential cross section for the scattering of the electron, having initial ebgrgyto the solid angle

dQ) and emittingk photons, is

[L,L'IPL(coSO)PL(cosO Ty, o L(P)T* Ty ) (/(Pa)- (2.39
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Ill. RESULTS AND DISCUSSION

We study laser-assisted electron-He scattering in the static
no-exchange approximation. At low energies, it is well
known that exchange is important and that the static approxi-
mation gives only a fair approximation of the scattering cross
section. However, it is not our goal to obtain quantitatively
accurate results for laser-assisted scattering of electrons by
helium as much as to test the validity of the LFA by treating
the model problem exactly. Since for the laser intensities and
frequency considered here the polarization of the target by
the laser is small[9,12,14, insight into laser-assisted
electron-atom scattering in a low-frequency laser field can be
gained by investigating, in the first instance, the scattering by
the static-direct potential. We note that a LFA for electron-
atom scattering has been considef26] and that a calcula-
tion of laser-assisted, low-energy electron-hydrogen in a
three-state approximation with exchange has recently been
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reported[20].

FIG. 1. The laser-assisted partial-differential cross section for

The static potential that we use is obtained from a four-Scaitering of 1.7-, 3.4-, and 6.8-eV electrons by He in the static
parameter fit to the Hartree-Fock helium ground-state wav80-€xchange approximation accompanied by the absorjioris-

function[27] and is given by

2 1 4AB
Ve(N=—2| —e 2| a+ —)Jr—e(‘“ﬂ)r
4a° N (a+p)?®
(at+pB) 1) B> 1
X —|+——e - .
5 ; +4ﬁ3e B+ ; (3.1

The parameter values arA=2.60505, B=2.08144, «
=1.41, andB=2.61, and the nuclear charge4s=2. The
required potential matrix elements are

(BVdpo Z [ A? 2(2a)?+A]
PSPy = = S 403 [(2a)°+ A2 T
4AB  2(a+p)i+Af

Tt p)? [(a+B)’+AfT?

B2 2(2B)%+Af

4R [(28)2+A2T?) 3.2

sion) of k=0, =1, and =2 photons. The laser frequency ds
=0.0043 a.u. (CQ@lase) anday=0.2 a.u., which corresponds to a
laser intensity of 4.8 10° W/cn?. The polarization vector of the
laser field is parallel to the direction of the incident electron. Shown
are the FLSE resultsolid lineg and the LFA(dashed lines Note
that fork=0 the two results cannot be distinguished here.

proximate the integral, with a symmetric interval chosen
about the singularity of the kernel. To obtain the functions
jﬂl, , we simply calculate the functiong] (see Appendix

D) on a grid and then use the expressi@4). Typical pa-
rameters used in our calculations were, for example afpr
=0.4, 9 partial waves, 17 Floquet-Fourier components, and
36 Gaussian integration points. Higher partial-wave contri-
butions can be readily included, since they are given, to a
very good approximation, by their first Born-Volkov ampli-
tudes. While the required matrix elements can be efficiently
calculated and the resulting linear system readily inverted,
available computer memory is the primary constraint, since
as the laser intensity increases, and hewmgethe number of
Floquet-Fourier components and the maximum number of
angular momenta required increase rapidly. Our calculations
were performed on the Cray J916 at the Brussels Free Uni-

The partial-wave expansion of the above potential matrix/ersity Computer Center.

elements is readily obtained. For example,

2(2a)?+A%2 27 O . - .
1= > ) Yim(P) YEm(py)

[(2a)2+A212 PP 2 v

202 =
Q) +— > [1,I"]

X
PiPj 1" =0
I 17 L\?
“lo o O) QYY) |, (33

We have calculated the laser-assisted differential cross
sections for three different incident electron energies and
three different laser intensities. The electron energies consid-
ered wereE,=1.7 eV, E,=3.4 eV, andE,=6.8 eV. For
each energy, calculations were made for the laser intensities
4.8x10° Wicn? (Fig. 1), 1.9x10° W/cn? (Fig. 2), and
7.7x10° W/cn? (Fig. 3. The corresponding quiver ampli-
tudes areap=0.2, @;=0.4, and «;=0.8. The laser fre-
guency was taken to be=0.0043 a.u. (CQ lase)p. Our
results, as well as the LFA laser-assisted differential cross
section, are shown in Figs. 1-3. The solid lines refer to the
FLSE results and the broken lines to the zeroth-order Kroll

with Q, being a Legendre function of the second kind andand Watson LFA result§29]. Shown are the elastic cross

y=[(2a)?+p/+p;1/(2pip;).-

sections and the cross sections for stimulated emission and

Our results have been obtained by numerically solving thebsorption of, respectively, one and two photons.

half-on-shell partial-wave FLSE. As discussed by Hewitt

From these figures, we see that, for the laser parameters

et al. [28], we have used a Gaussian quadrature rule to apand incident electron energy considered, the LFA gives,
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FIG. 2. Same as in Fig. 1; howevery= 0.4, which corresponds FIG. 4. The laser-assisted partial-differential cross section for
to a laser intensity of 1910° W/cn?. scattering of 1.7-, 3.4-, and 6.8-eV electrons by He in the static

no-exchange plus polarizatiaisee text approximation accompa-
overall, a reasonable approximation of the FLSE differentiahied by the absorptiofemission of k=0, =1, and=2 photons.
cross section. There are obviously clear discrepancies in thEhe laser frequency i® =0.0043 a.u. (C@lase) anday=0.4 a.u.
forward direction. However, the differences are never moreshown are the FLSE resultsolid lineg and the LFA (dashed
than an order of magnitude, with the FLSE cross section$ines). Fork=0 the two results cannot be distinguished here.
being larger than those of the LFA. For small angles, the
positions of the minima in the cross section occur at different It is important to stress that the calculated differential
angles. In particular, the dips in the cross section given bross sections corresponding to photon exchange vary over
the LFA are somewhat less pronounced and are slightlpix or more orders of magnitude, and therefore, due to the
shifted to larger angles. We note that the LFA differentialSensitive cancellation in the forward direction, nonconver-
cross sections become zero whigy- a,=0 fork+0. Inthe ~ gence in the partial-wave expansion or in the Floquet-Fourier
figures, no differences can be discerned between the LFA&XPansion has a dramatic effect on the differential cross sec-
and FLSE results for elastic scattering=(0). For stimu- tion for small scattering angles. Indeed, convergence of the
|lated absorptior(emissio') of one or two photons and for cross sections for backward Scattering can be obtained with a
scattering angles larger than about 40°, the LFA is a veryninimum Floquet-Fourier expansion, while convergence in
good approximation. The experimentally observed differencéhe neighborhood of the minimum in the cross section is
of many orders of magnitude with the Kroll and Watsonmuch more difficult to attain. One way the convergence of
LFA is not reproduced in our calculations. While the inten-the partial wave and Floquet-Fourier expansion can be
sities we consider are not as high as the experimental valuegauged is by numerically checking the sum rkl9) in
our results indicate that the agreement between the FLSE arftPpendix A.
LFA does not suffer as the laser intensity is increased. The We have also investigated the effects of a long-range po-

weak-field limit of the FLSE is discussed in Appendix C. larization potential by numerically solving the FLSE for
scattering by the static direct potenti@.2) plus the Buck-

E,=1.7 & E,=3.4 &V £,=6.8 eV ingham polarization potentidR3]

ap 1
Vp(r)=—?( (3.4

r2+r?)2’

We have chosen the polarizability,=1.38 and the cutoff

g E parameter .=1. The required potential matrix elements are
5 5

< < _ a,

s 8 (pilVplpy=— 16ﬂ_rceXF(_Aijrc)- (3.5

In Fig. 4 our results are shown for the same incident electron
. energies as in the previous figures anddge= 0.4. From this
10718 | - 1107 figure it can be seen that the presence of a long-range polar-
I ETTA TN R ization potential does not affect the accuracy of the LFA, in
0 OZC(’De:rZeSfOO OQ?De;ZeS)‘"’OO @2‘(’%;‘25350 agreement with previous findingf21,20. We note that
while partial-wave expansions converge very slowly when a
FIG. 3. Same as in Fig. 1; however,=0.8, which corresponds long-range polarization potential is present, in our case this
to a laser intensity of 7¥10° W/cn?. did not significantly increase the size of the calculation, since
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partial-wave amplitudes fdc greater than 9 are very accu- Alexander von Humboldt Foundation for finanical support.
rately approximated by the correponding first Born-Volkov
amplitudes.

APPENDIX A: DERIVATION OF THE KROLL-WATSON
IV. CONCLUSIONS LOW-FREQUENCY APPROXIMATION

We have described in detail a method for carrying out In this appendix we give a derivation of the Kroll-Watson
nonperturbative calculations of laser-assisted electrontFA, starting from the FLSH2.26. Using Eq.(2.24 we
potential scattering and we have illustrated the method fofirst write Eq.(2.13 as
electron-helium scattering in a GQaser field in the static
no-exchange approximation. Over the range of,d&xser @
intensities and incident electron energies considered, we-(+)k _ (+)
have found that, overall, the LFA doesga reasonable job of pb'pa(E)_|:E—oc {foy kil VIFp m i (B))
predicting the cross sections obtained by solving the FLSE "
for the geometry in which the incident electron momentum is _ 2 f (B
parallel to the laser polarization direction. While there are | ( Pb’k+'| (B)l Pavm+'>
clear differences between the FLSE results and the LFA for
small angles, both predict a large reduction of the cross sec-

s}

tions for small-angle scattering, i.e., when the absorption or =|:E_oc Ik 1(Po- @) Ji(Pa- ap)(Po| T)(E) | pa)
emission of photons is classically forbidd¢®,22]. Other
studies, including classical simulatiof8], calculations em- =Ji(Apa ap) (Pl T(E)|pa), (A1)

ploying the impulse approximatidri 7], and nonperturbative

calculations[14,21,20,22 have obtained similar results.

This is in contrast to the experimental findingg, in which ~ so that instead of working with thE-matrix elements evalu-
the measured cross sections near the critical geometries weaéed with the “dressed” plane waves, we use those evaluated
of the same order of magnitude as away from the criticawith plane-wave states. With this result, we obtain, after di-
geometries. Double scattering offers a possible explanatiowiding by Ji(Ap,- @), the following form of the FLSE:

for the experimental resultsl3,17]. Even a small double-

scattering contribution would be sufficient, due to the small

cross segtions at the critical geometries, to give rise to large (Pol TC(E)[pa) = (Pl VIpa)

enhancements of the cross sections. 1 o
Since the Kroll and Watson LFA gives a reasonable ap- T 2 f dpi(py|V|pi)
proximation to the FLSE results, it is interesting to consider Jk(Apa- ap) m==-

how this approximation can be improved in order to obtain a e (A ap) I (Aia atp)
LFA that is valid at the critical geometries. As is discussed in k= md Zbi” TO/Ym a0

Appendix B, the zeroth-order Kroll and Watson LFA E—(Eitmo)+ie

T-matrix element can be used as the starting point of a low- 1T(+)

frequency, iterative scheme that is valid at the critical geom- (P T (E)pa)- (A2)
etries. The result is the impulse approximation that has been

discussed, albeit in a different guise, previosiy17,18,22  Evidently, for k#0, if the cross section is to be nonzero
A comparison of the impulse approximation with exact re-when the momentum transfer is perpendicular to the laser
sults for the case of a zero range potential indicates that thigo|arization,(p,|T(*)(E)|p,) must become arbitrarily large
approximation is a good one, even at the critical geometrie@henAba, a, goes to zero such tha’ﬁ;)k(E) remains finite.

[22]. . .
Finally, we note that experimental and theoretical work. For small frequencies, we expand the energy denominator

has been directed towards testing the robustness of the LFA the integration kernel in EqA2),
close to threshold15,31. Under these conditions the re-

guirement that the photon energy be small compared with the 1 1
incident electron energy is not satisfied. The FLSE method
discussed here can provide a useful tool for investigating the
applicability of the LFA in these cases as well as those in- 1
volving higher laser frequencies, corresponding to, e.g., the X| 1+ mwm + O(w?).
Nd:YAG laser, and the high-frequency linji30]. :

E—(E+mo)tie E—E tie

(A3)
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1
<pblT(*’(°)(E)Ipa>=<pblvlpa>+J dpi(PolVIP) g e (PIT OB pa). (A4)

The T-matrix elementp,| T(MO(E,)|p,) simply satisfies the field-free Lippmann-Schwinger equation.
To first order inw the low-frequency FLSE is

1
<pb|T(+>‘1’(E)|pa>=<pblvlpa>+J dp(PolVIPY) =g 7 (PIT OV D(Epa)

Ji-m(Api- @) MIy(Aja- ap)
s 3 [ anievipy e o RTNE R (49
Carrying out the sum oven gives
(+)(1) Aia- A (H)()
(ol T (BN Pa)= (PolVIPa) + | dPiCPol VIR B e+ 20 Etie)? (Pl T (B ), (A6)
where we have introduced the vector
A= ‘ A7
_waoAba' ao' ( )
Keeping terms to orde®, Eq. (A6) is
1
<pb|T(+)(l)(E)|pa>:<pb|vlpa>+f dpi<pb|vlpi>E_Ei_Aia‘)\+i6<pi|T(+)(l)(E)|pa>, (A8)
so that
1
<prT‘+’(”(Ea)Ipa>=<pb|V|pa>+ZJ d|oi<|ob|V||0i>“OaH\'2 PN <p.IT<+)(”(Ea)Ip (A9)

The T-matrix element(p,| T'W(E,)|p.) satisfies the same Lippmann-Schwinger equation as the on-shell field-frestrix
element with the momenta shifted By Hence, the on-shell-matrix element is simply

(Pol TMUE Q) |Pa) = (Po+ N TO(€2)[PatN), (A10)

with the shifted energy
1
€,=E +pa N+ E)\Z. (A11)

This is the Kroll-Watson LFA, and is valid whed,,- ap|>k [3,22].
We conclude this appendix by deriving the zeroth-order Kroll-Watson LFA from the partial-wave FL34&. First the
expression(Al) for the T-matrix element is written as

TOHk (E )—— 2 [LIPL(cosO) TS (p)
1 2 2 [ |/ |H "L ? k (+) 2
(471_)3” = O[ L]PL(COSQ) 0 0 O u7|,|f(pba'Oapaao)pr’pa,w(p)a (A12)
so that
(+)k 1 S 1o ToLy? k (+)
Toh (D= s 2 I I]o o o T (Poo.Paa) Ty, (p). (A13)
"1"=0

Inserting this expansion foT(+) L(p) into the right-hand side of the partial-wave FLEE34) results in
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km
' '(p vp'vp 10[)
TEK L(p)=VE(po, pa,ao>+22 » (L] [ prcip, -t Po-PiPa:o) 1)

! ) A14
=—x m_g 2_(p|2+2mw)+|€ p; ,pa,L (p) ( )

with the partial-wave potential matrix elements now being

V t’VT'(pb vPi s Pa vaO)

1 © © (l |H

2
=—— > 2 LGB )Vlﬂ(pb:pi)jfrrm(Pbao'piao)j??jr(piao'Paao),

(4m)* 1171 =0 j.j =0 0 0 O
(A15)
|
and we have introduced the symbol together with Eq(2.33, gives immediately
|’ L 2 J jr L 2
ST 2 [t ](o 0 o) (o 0 o) '

(A16) JHfba)— 2 E[J]J "(b,c) 7T, (c.a).

Before proceeding, we must first calculate a sum involving (A18)
the functionaﬂ”,,(a b). A variety of sums can be evaluated

using properties of the Bessel functions. For example, th%\n additional sum rule, which we will require, may be de-

expression rived by again starting with Eq(A17). Multiplying both
o sides by, for example,pp|V|pi){pi|V|pa), using the partial-
J(Apa-ap)= 2 Jeem(Api- ap)Im(Aia- ap), wave expansion€.32 and(2.33, and then integrating over
m=—o

(A17) p;, results in

//] * .
‘7|k,|’(b’a) 5]”,|”_ E 2 [] J ]'—'J (K J”j (b,C)J]-,Yl,(C,a). (Alg)

m==<=jj’=0

We note that this expression gives a direct method for verifying the numerical convergence of the Floquet and partial-wave
expansions used in our calculations. Now retaining the zeroth-order contribution in the expansion fes anthlinaking use
of Eq. (A19), one obtains

(+)(0)
” "L\ Vir(Po, P Ty b 1#(P)
(+)k(0) — |,|,|"( ) jk, gD Vin , +zf 2d _
Th pel(P)= (477)2”% g o) Tin(Piaopiag)| Vir(po,pa) Pl e
(A20)
|
The superscripts on tiEmatrix elements refer, as before, to APPENDIX B: IMPULSE APPROXIMATION

the fact that we are dealing here with the zeroth-order ap-

proximation. Using Eq(A13), this reduces to With the knowledge that, to the zeroth order in the laser

frequency, the transition-matrix eleméim,| TV O)(E,) |pa)

T()(0) (P)=Vyr(Pp.Pa) sim_ply satisfies the figld-free Lippm_ann-Schyvinger equation,

Pp Pal” I"\Fb:Fa a simple approximation suggests itself. Using the field-free
(+)(0) transition-matrix elements in the right-hand side of &),

Vir(Po P Ty 5 1#(P) an improvement to the Kroll and Watson approximation can

+2f prdp, 02 p2+ . be obtained that is valid at the critical geometries. As will be

demonstrated below, this approximation is just the impulse
(A21) approximation(lA) that has been discussed in the literature
[3,17,18,22
which, as expected, is the partial-wave, field-free scattering Our starting point is the IA for the scattering cross sec-
Lippmann-Schwinger equation. tion,
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TRONE) =5 [ g explik s~ Ay s St v+ AHIETOONE @) TIpt AIS), (B
with 2E,(#) =[pa+A(¢)/c]?. Since theT-matrix element is a solution of the field-free Lippmann-Schwinger equation, Eq.
(B1) can be cast in the form

TLOKIA(E) = Jy(Apa: a0)(Po|VPa)

1 (2= : : (Pol VIPY(Pi T OLEa(¢)]IPa)
+ Efo do exp(ikp— Ay, aOSIngb)f dp; E. E,— wA, ayCosp i (B2)
As in Appendix A, we write to first order i,
1 B 1 wAj;- ayCOSh B3
E,—Ei—wAj,-aycosp+ie E,—E;+ie E,—E +ie (B3)
To first order inw, Eq. (B1) now becomes
(+)K(IA) e - -
TEOK (E)=Jk<Aba-ao><pb|VIpa>+5fo dep explikp— Az o Sinh)
(PolVIP){pi TIOUE,) | pa) Ay ap COS
XJ dp E,—E tie e TE e (B4)
Using the following expansion
wAja- @y COSPH| 1 mwAba~ @y COS¢h
(1 Ea_ E|+ ie k(Aba 0’0) 2 ‘]k m AbI aO)Jm(AIa aO) k( Ea_ E|+ |E) y (BS)
and performing the integration over ,
1 f2wd K de A ) 1 MwA, ;- @ COS¢
E o ¢ expike ba’ @ SiNg) +W
mwAba~ g
= Jk(Apa’ @) T [ I+ 1(Apa: @) + Iy 1(Apa- aO)]W
(A Mw
=Jk(Apa- ap)| 1+ E—E+io) (B6)
gives the final result
Tf);,),lg(ilA)(E ) k(Aba aO <pb|V|pa>
c i m( Api- @) Im( Aig- @)
. i | T(H(0)
# 3 [ dpdpylVipy Hp o S 0 T oy, ®7)

While the evaluation of Eq(B1) involves only the knowl- elements in the IA in terms of the field-free partial-wave
edge of the on-shell-matrix elements, Eq(B7) requires T-matrix elements. Expanding these matrix elements as in
that both on-shell and half-on-sheltmatrix elements be Eq.(A13) and inserting this into EqA14), gives

known. However, when solving the Lippmann-Schwinger

equation for the on-shell-matrix element, the half-on-shell

T-matrix elements are also determined. Moreover, in thel—(+)k(IA)(p) Pk k(D +Pas o) +2 2 E [L']

form of the IA given by Eq(B7) the T-matrix elements need o Pa b m=—e | 1—¢

be calculated for only one incident energy. These facts o

would suggest Eq(B7) as, within the formalism discussed Xf > VL (Po.Pi \Pa,ao) 40
here, a more convenient starting point for calculating the i dpi p2—(pi2+2mw)+ie b, pa, L P)s

T-matrix elements in the IA.
We now give the expression for the partial-walenatrix (B8)
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where the partial-wave potential matrix elementsThese equations provide a recursion relation forTreatrix
Vt’,T/(pb,pi .Pa,ag) are defined in Appendix Asee Eq. elementi. OOnce the on-shell anq half-on-shell matrix ele-
(A15)]. mentsTE,b ?pa(E) have been determined, they are used to cal-

culate an effective inhomogeneous teMﬁfﬁ?ﬁ(E) in a

Lippmann-Schwinger-type equation ')} (E). These in
In this appendix, we consider the weak-field limit of the tyrn are used to calculaf®")? (E), and so forth.
FLSE (2.26). The laser field is parametrized by the quantities b-Pa

» and aq, and this limit is characterized, for some fixed elagtlijg ::?iglstsszzz\(/)v:s"':hZ':gZ.rel;n‘la:hoc\)Arl,d;ts Sg?arlL:nr%EZ’e
by ag<0. Correct to first order inxg, Téz)o (E) is simply y 9

Pa larger than those for absorption and emissiorhe differ-

equal 1o the field-free elastic sca_ttteriﬁ'gmatrix_eI(_ament. ence is much less in the backward direction, with the cross
The T-matrix elements corresponding to the emission of ON&actions fork+ 1 being only about an order of magnitude

photon are of ordbeao, and therefore correct to second order g5 jer than the elastic cross sectjoihile this might sug-
N ao, are given by gest that a perturbative calculation, as outlined above, could
TE);)&(E):Jl(Aba' a5)(Py|V|pa) be satlsfa(_:tory for obtaining the Iaser-_a55|sted scattering

a cross sections for the values of, considered here, we

APPENDIX C: WEAK-FIELD LIMIT

would like to emphasize that this is not the case. For ex-
+m§51 J’ dpiJi—m(Api- ap) ample, we could not obtain converged results from a pertur-
’ bative calculation in which the FLSE was solved with a
(pulV|pi) (+)m minimum Floquet-Fourier expansion, i.&=—2,...,2.
E—(E;+mw)+ie P ,pa( ). (CY Finally, we note that the zeroth-order LFA, Ed\4), can

be recovered from the expressi@?2), by making use of Eq.
A similar expression is obtained fd= —1. Continuing in (A1) and the fact that, to ordét+1 in aq, Eq. (A17) re-
the same manner, tHematrix elements corresponding to the dyces to
emission ofk photons are of ordétin «, and hence correct
to orderk+1 in ag are

k
()k /= _ \/k(eff) (Pol VIPi) (+)k Jiem(Api- ) Im(Aig- ap) = (Apy- ag).  (C4
pr'pa(E)_Vpbe'pa(E)dl_fdpiE—(Ei—l—kw)—l—ieTpi'pa(E)' m§=:0 k-m(Api @) Im(Aja- ap) = Jx(Apa- ap).  (C4)
(C2
with
V;Sf;)a(E):Jk(Aba' @0)(Py| V|pa) APPENDIX D: SPHERICAL DECOMPOSITION OF THE

1 BESSEL FUNCTIONS
+mE:0 dPidi-m( Avi- 20) Here we will consider in more detail the functioué‘,l,
that appear in the partial-wave FLSE34). These functions

V|pi i
o e e SR
1

1 1
jlkl,(a,b)=4772J f dx dX Je(ax—Dbx')P,(x)P(x")
’ -1J-1
=16m—k+'+"Fdaj,(acose)jl,(—bcose)cos(ke)
0

, , w2
=16 K1+ (= 1)k ]f déj(acosh)j, (—bcosh)cogkd). (D1)
0

CIearij:‘l, is zero ifk+1+1" is not even.
For computational purposes, it is more convenient to make the following partial-wave expansion of the Bessel function:

Je(Ajj - “O)Zn;w I+ n(Pi- @) In(Pj - @)

=2 2 2 Yin(P)Yin(a0) Yim (P Y (@) TE " (piao) T1 (pjao), (D2)

N==%11"=0 mm’
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where the functions7| are defined by In numerical calculations, therefore, the functiafi§ need
. only be calculated and the requiret[', are obtained using
jr(a)zzﬂj dx J(ax)P(x) the relationshigD4).
-1 We now list some of the properties of the functhﬁfé

- and ~7| .- These follow readily from the properties of the
=4i'*kf dé j(acosh)cog ko) Bessel functions from which they are derived. As with the
0 Bessel functions, we have that

:4i"k[l+(—1)k+']fﬂlzdah(acosa)cos{ke), Ji@)=(-1 7, Xa). (D5)
’ (D3) We also deduce that
and are zero if+k mod 2# 0. Comparing with Eq(2.33), T\ (@)=~ 7y (b,a)=(- 17, i(a,b)
j:f,, can be expanded in terms of the functiafi§ as =J,‘,!‘|(b,a). (D6)
~7| L(ab)= 2 jk+n(a)j|n,(b)_ (D4) Using the well-known series expansion of the Bessel func-

tions, the following series expansions are obtained:

2n
- (—1)" E) 2n+1
Jk@)=2i"¥(m) 3/2< ) > 2n+1-1k| |, (D7)
n=0 _—
niT|S+n+l 2
2n 2n’
| v (_1)n+n'(§ (E) 2(n+n")+1+1’
Tk (ab)=4w~°’rk+'+"E —E) > 4] \4 2(n+n")+1+1"—|K| (D8)
NE 4 4 ~ '
nn=0 l+n+ S |T[1"+n"+ S /nin't 2

From the recursion relations of the Bessel functions and of the Legendre polynomials, the fuﬁ’(ftiom be shown to
satisfy the recursion relations

Ji(a)= Z(ZIH)[JH%(a) Jii(@) = Iia@)+ J51(@)]
a k+1 k+1
m{(Hl)[JHl(a+j|+1(a)]+|[7 H@+7 @] (D9)
The functions.7 also satisfy
d k k+1
gal1(@=3 [J i@-J¢ (a)]——J.(a) (D10)

1 k+1
St - S k@ Lot

:—2(2|+1){I[.7 Ya)- 7Na) -1+ 1T a) - TS N

k
= o7+ DI @+ T51(@)] - 2TK(@)

— oL+ DI @+ T @]+ 5 T,

and are solutions of the coupled differential equations, for fiked
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d? 1d (1+1)2 |2 K2\
2@ e nei+s) Tarna-n 2@
o (+Ha+2) 1(1—-1) )
=T @irn@a) 2T G- Y@ (D11
and for fixedl,
d® 1d 1 10+1
Ejr(a)'i'Za ﬁjr(a)+(§_! jr(a):[j:(”(a)hﬁ_z(a)], (D]_2)

with the boundary conditions
T\(@)|a=0=47 808 0.
(D13

ij:((a) :Eﬂil_k5k |5|1.
da aso 3 =

Similar results, though often more complicated, can be ob-

tained for the functionsﬂfl, .

Finally, we consider the partial-wave potential matrix el-

ements(2.35. These functions are zero if{1”+L)mod 2
#0, (I"+1"+L")mod 2#0, or if (I"+1"+k)mod 2#0.
Therefore, they are also zero if ¢ L' +k)mod 2#0, a re-

é:?',jayL(p) ask+L, the partial-wave potential matrix ele-

mentvt,’,_(piao,pjao) will only couple T-matrix elements
of the same parity. This has the important practical conse-
quence that Eq2.34) can be solved separately for even- and
odd-parity T-matrix elements.

From the properties Qﬁhl, , we also find that

Vi (ab)=(—DH Y (ba)
=(~DYV }.(ab)

=V (b,a). (D14)

sult that can also be deduced from parity considerations. Infhese relations are also of practical interest when obtaining a

deed, if we define the parity of th&-matrix element

numerical solution of Eq(2.34).
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