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Some properties of the eigenfunction perturbation seFigs,x) ==, _m(X)A™ for the self-adjoint eigen-
problemHW¥ =EW¥ with H=Hy+\V are studied. It is shown that both regular and singular perturbatais
the unperturbed HamiltoniaH, can generate partial-sum sequenf®s =3/ _o¢m\ -, that converge in
the norm of the Hilbert space in question and are nonuniformly bounded. This latter property is, for a given
value of\, characterized by an increasing separation between the t&i}, @h the larggx| region and that of
¥ asn—c, and causes the divergence of expectation value sequenEgsS¥ )}, -, with some symmetric
operatorsS. As model examples we consider one-dimensional operétgr®r which the perturbatiov can
be regular or singular and the eigenfunction series are obtained from the standard perturbation theory. The use
of summability methods to get approximating sequences of wave functions with a correct convergence is
explored. The results show that, independently of the regular or singular natMteacsummability method
(such as the Padene) can yield approximation®, from the ¥ 's that areL, convergent and uniformly
bounded, and hence correct physical quantities can be obtained fronRgschS1050-294{9)09406-4

PACS numbg(s): 31.15.Md, 03.65.Ge, 03.65.Ca

I. INTRODUCTION for the self-adjoint  eigenproblem H(N)W(X\,X)
=E(N)WP(\,x) with H(A)=Hy+AV, Hg being the unper-
The two main ways to compute the bound stafesind  turbed Hamiltonian. The study of formal perturbation series
eigenvalue< of the time-independent Schiimger equation is motivated by the fact that analytic perturbation theldy
HW=EW are the variational method and perturbation theoryprovides a classification of perturbatiovsf a givenH, for
[1]. For many problems of interest the convergence of variawhich such series converge; namelyVifs a regular pertur-
tional wave functionsP,(x) ==p,_1Camem(X) in the usual  pation of Ho, then, for smallx|, E(\) is a complex ana-
norm of the Hilbert spacé,(R") is guaranteed by a com- |ytic function and the serie.1) converges toF (\,x) in the
pleteness argument of the basis $ek} -, in a suitable |, norm. Nevertheless, in Sec. lll A it is shown by means of
Hilbert space2,3]. However, it was shown recenti] that  examples that the sequenf®,,} of partial-sum functions
the sequencé®,},_, may have an inherent property that y —sn _  \m can be nonuniformly bounded and there-

generates an incorrect convergence of expectation valugs,e the expectation value sequent®(¥,)}>_, may not
n/Jyn=

S(d)n)T((@?]!S;]I) n) W'tql sorlr;eihsymmetr]fc opErato;s ('jl'hIS converge to the correct vall& V). An example is included
property twhich we will call the nonunitormooundeaness v, shows how the Rayleigh-Scllinger perturbation

property is connected with the capability df,, to reproduce theory [6] can yield Fourier expansions of thath-order

emanon oot s o Sopatie it ey STy 02 ool bounded everifs g
P 9 ' P The well-known fact that almost evenpnregular(or sin-

eral co.nvergenceh.properktles b?]”}n=%and son:je ?as's seht gulan perturbationV of Hy generates eigenvalue perturba-
p(rjopertles[é_l].lcin this work we show that pert;lr hatlon MetN- 4ion series with a zero convergence radius has motivated the
ods can yield approximating sequences of the true WavQeelopment of several methods to compute the correct ei-

functions with the nonuniform boundedness property. genvalueE(\) from the coefficients of its divergent pertur-

.In Sec. Il we def!ne the concepts b} convergence and bation seried7-13 while the main results of the corre-
uniform and nonuniform boundedness properties of an ap

A ) . Sponding eigenfunctions serie€l.1) only exhibit the
proximating sequencgl »} and give a summary of their role. 5oy mptotic nature of such serigs,14,19. The results of
in the calculation of some expectation values; practical cri

Sec. Il B show that the partial-sum seque from the
teria to determine whefi',.} is either uniform or nonuni- P quertey}

series(1.1) can belL, convergent but nouniformly bounded
formly bounded are also given. In Sec. Il we study the 9 2 g Y

d the bounded ; ¢ for all A#0 for which the HamiltoniarH has bound state
convergence and the boundedness properties o Some_gi@enfunctionslf()\,x). This suggests that the eigenfunction
called by Katd 5]—formal eigenfunction perturbation series

series(1.1) from singularV's may be characterized by the
% nonuniform boundedness of their corresponding sequences
TONX)= D (O™ (1.2) {¥,} ra_ther thz_;m by theit, convergence.
m=0 Section IV is devoted to exploring some methods that,
independently of the regular or singular charactelptan
yield approximating sequences of wave functions with a cor-
*Electronic address: manp@xanum.uam.mx rect convergence toward the trde In Sec. Il we show that
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if {¥,} is L, convergent, then for eacH’, there is a
bounded regior}, in X space such that ES(XQn\Ifn)};LO

converges correctly for several operat&s xo(x) being 1
on  and O otherwise, despite the fact tHalr,} may be

nonuniformly bounded, and in Sec. IV A we propose a pro-

cedure to estimaté),. In Sec. IVB we apply the Pade
method to the seried.l) to show that summability methods
can yield approximating wave functiof%,(\,x) with a cor-
rect convergence toward the trid¢ even when the corre-
sponding partial-sum sequeng# .} has a wrongd., conver-

gence and is nonuniformly bounded. Section V is devoted to

some concluding remarks.
II. BASIC CONCEPTS AND RESULTS
HereafterL, denotes the Hilbert space,(0,) or L,

(—,%) and(-,-) and|-|| denote its inner product and
norm. The expectation valyd,Sf) of a symmetric operator

Sis denoted byS(f) and throughout we shall consider that
each wave functiori(x) is continuous and has a fast decay

[xK(f)=(f,x¥f) <o for all k=0].

The two features of a sequent® .}, _, of wave func-
tions that we shall consider afig the L, convergencéwhen
[¥,—¥|—0 asn—o) and (ii) the boundedness property
which involves the following concepts. Le® denote a
bounded region of space and lef2 € be its complement. We
say that{W,} is uniformly boundedUB) if there is at least
one rapidly decaying and positive functigry such that the
inequality | ¥ ,|< g holds in a regior2¢ for n=n, where
Q° is independent of; otherwise{W¥,} is nonuniformly

boundedNUB). The motivation to consider these properties

is their role in the correct calculation of the trae’s and

expectation value$§(W) as follows from the next results P
[16] (examples with Fourier and Ritz expansions that exhibit
graphically or numerically the concepts and results of this

section are given if4]). The first result is given byropo-
sition 1 If {¥} converges toV in thelL, norm and is UB,
then

lim xX(¥ ) =xX(¥) forall k=0.

n—oo

(2.1

Intuitively, this result is possible only §¥ .} tends “cor-
rectly” to ¥ on the wholex space; thus we say tha¥ .}
has a correcglobal convergence towards the trde if it is

L, convergent and UB. ¥} is L, convergent but NUB,
theL, convergence still guarantees certain cortecal con-
vergence. To see this consider an arbitrary bounded region
and letyq(x)=1 forxe ) andyq=0 otherwise. If¥} is
L, convergent, then the equation

lim S(xo¥,)=S(xaV)

n—oo

(2.2

holds for any operato6=s(x) defined by a functiors(x)
that is continuous on the whobespace. This includes any
s(x)=e~*~2%20% yith small & which can be used to mea-
sure the fit of¥, to ¥ on Q,,=[a—o,a+ o] through the
error AMS=|S(xq_V¥)—S(xa, ¥)|. Since AMS van-
ishes asi— o0, we can say that¥,,} tends correctly toV on
Q,., while its convergence o), may be completely
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FIG. 1. Graph of logyV,,/¥ vs x of example 1. In this figure
and the following one& stands for the exact state of the example
in question andR, is the functional Padapproximant(4.4) of the
unnormalized partial surd,,.

wrong as occurs with the NUB sequendek,} for which
the part of¥, in the large|x| region(a part that will subse-
quently be referred to as tlesymptotic tailof ¥,,) moves a
way from that of# asn—x (see Fig. %in such a way that
the sequencéX(¥ )}, diverges with a larg&. Fortunately,
since the() of Eq.(2.2) is arbitrary, for eachl, there exists
a bounded regiofi),, (which we call thereliability region of
o) that satisfie€),CQ ., and such that the equation

lim S(xo, W) =S(¥)

n—oo

2.3

holds for many operator§ including S=x* if k is large.
Thus thelL, convergence is indeed a criterion to guarantee
the correct calculation of many expectation val&¥) and
the true¥ by means of a sequenégq W} obtained prop-

erly from alL, convergent ongV }.

Since a formal study of the boundedness property of a
sequencd W} is not an easy task even if eadh, and the
true ¥ are known in a closed form, we shall use two criteria
to test thenonuniformboundedness property. The first one is
a geometric characterization of the fact that a NUB sequence
{¥,} cannot be bounded uniformly any fast decay func-
tion. Proposition 2[16]: If ¢ is a fast decay bound of each
¥, and the true? on an unbounded regiofl® and the
quantity max.o«(Vn/¥g) diverges asn does, then the
asymptotic tail of¥ , moves away from that afg on Q° as
n—o and hencd V¥ ,} is NUB. The second criterion follows
from proposition 1 .Corollary 1: If {¥} converges toV in
the L, norm but{x(¥,)} does not converge t*(¥) for
any k>0, then{¥,} is NUB. Finally, for the uniform
boundedness property we ha@erollary 2: if the ¥,,'s have
the monotonic property¥’,,.;|<|¥,| on an unbounded re-
gion Q¢ independent of, then{W}_,  ; is bounded by¥;
on Q°, and thereford ¥} is UB (see, e.g., Fig.)1
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Remark The results of this section do not depend on the 135
normalization of the wave functions. In fact, from the in-
equality

XKW ) = X(W) [< W= W[ XP(P ) Y2+ [x2R(W) ]V,

1.5 U,

it follows that thelL, convergence|(¥,,—¥|—0) and the o8

boundedness of the sequenp&X(V¥,)}, are sufficient to
guarantee that Eq2.1) holds true. Of coursel., conver- 7.5
gence implies that the norfiW || = x°(¥ )2 tends to|| V||
asn—o and the boundedness of the $&f“(¥,)}, holds

for any k>0 when the sequendel,} is UB, but the wave
functions need not be normalized. The motivation to con-
sider unnormalized functions lies in the fact that the partial >3
sums¥ =3 _ oty A™ of the seriesVP =3 _ ¢ A™ are in
general unnormalized even¥f is normalized. Furthermore, 1.5
since|| V|| may diverge a® increases, we consider it perti-

nent to study graphically the boundedness property of the_05 . .
¥,’'s by plotting the ratios¥',/¥ vs x without the effects ~o 5 10 15 20

generated by a possible incorrect convergence of the normal- r

ization factor|[W||. Accordingly, we report the values of Fig 2. Graph of log,W, /¥ and log,R, /¥ vs x of example 1.
x°(¥,) and fork>0 the ratiosx"(¥,,)/x°(¥,), these latter

ones being the standagkpectation valuesf the operators = saiq to be convergent or having a nonzero convergence ra-

xK, although, abusing the language, in this article we calyius Ay if the partial-sum sequendel',,} is L, convergent
“expectation value” the quantity(f) even iff is unnormal- ,ith IN| <Ay, that is, if

ized.

T T T T T T T T T T T T T

n=8
5.5 Ry

(B

T T T

lim||¥,—W¥|=0 holds for [\|<\y . (3.5
Ill. FORMAL PERTURBATION SERIES n—o

The sequencefl } to be studied are defined by the par-

tial sums According to analytic perturbation theof$] the two kinds

of perturbations/ for which the formalE and ¢ series have
n a nonzero convergence radius &nethe V's bounded by H
V(LX) =D (O™ (3.1)  (when |Vy¢{<al#|+bl|Hey| holds with y-independent
m=0 a,b) and (ii) the V's form bounded by ki (when |[{V, )|
<a'||y||?+b’{¥,Hoy) holds with g-independena’,b’). V
is referred to as aegular perturbation oH, if it is bounded
% or relatively form bounded by,; otherwiseV is called a
WONLX)= D hm(ON™, (3.2  singular perturbation ofH,. The perturbation theory results
m=0 for regularV’s can be summarized byroposition 3 If V is
regular, then th& and¥ series have a nonzero convergence
radius, while it is known that almost all the singulsis
generate formaE series with zero convergence radius. In
Secs. Il A and Il B we shall examine the convergence and
HOO)W(A,X)=E(\)W(\,X), (3.3  boundedness properties of formdll series associated with
regular and singulay’s. We use the notatioa,= d/dx and
where for simplicity we considad(N\)=Hy+AV(x) and as  d,=d/I\.
usual the zero-order eigenproblemHg o= Eqi,.
In order to expose the main ideas we shall study the so-
calledformal ¥ series of Katd5], which are obtained by a

direct substitution of Eq:3.2) and the correspondirig series Eéample 1 Consider the & hydrogen HamiltoniarH =
—305—x 1 and letH=Hy+Ax"! on L,(0°) with (f,g)

of the eigenfunction perturbation series

where the infinite series will be referred to as tHeseries
andW¥(\,x) is a solution of the self-adjoint eigenproblem in
L,,

A. Regular-V ¥ series

= - =[5f*g dx It can be shown that=x"1 is bounded byH,
E()\):mE:o Emh (3.4 [18] and therefore the(unnormalizegl 1s eigenstate
(N, x)=xe "M% has alL, convergent formal¥' series
into Eq.(3.3). We consider formal series because, as we shalvith convergence radiusy (<1). The coefficients/,, of
see below, their convergence properties are known for sexhe ¥ series are given byn! ¢,,= d\'¥|, _. Figures 1 and 2
eral perturbationsv of interest while rigorous results for show the graph of the ratio¥,/¥ with A\==x0.9; as ex-
other kinds of ¥ and E series are scarce. In Sec. V we pected we observe a correct local convergenc&€iof} on
consider other kinds o¥ series. the interval[0,7] of the x axis but on[10) there is a
The convergence of formd& series is understood in the marked difference between the figures. Por=0.9 the
usual sense of analytic complex functions whil# series is  asymptotic tail of¥, tends to that ol asn increases and
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TABLE I. Expectation valueg*(¥,) from the¥ 's of example

1. The quantities®(¥,)=|¥ > and the ratios*(¥,)/x°(¥,)

with k=2 are reported. In this table and the following ones the

notation 9.06— 6] (1.44]) means 9.08 10 © (1.4x 10%.

n x° X2 x3 x4
A=0.9

4 1.591] 1.91] 9.91] 5.92]

8 5.791] 4.91] 3.62] 3.43]

12 1.082] 7.91] 8.92] 9.93]

Ex? 2.502] 3.02] 7.93] 2.35]
A=-0.9

4 4.0-1] 3.91] 2.42] 1.93]

8 3.4-1] 9.91] 1.03] 1.74]

12 2.9-1] 1.42] 2.73] 4.104]

Ex2 3.6 8.3—1] 1.1 1.7

%Exact values from théunnormalizedl exact® =xe™ (17N,
FIG. 4. Graph of logy ¥ ,/¥ and logyR, /¥ vs x of example 2.
¥, 1<¥, holds on 10°) whereas foh = — 0.9 there is an
increasing separation between the tails. Hence the poasitive- , , .
sequencd ¥} is UB (Corollary 2 and the negative- one the ratioV,/¥ with A\==*=0.4 and we observe a correct

i . i . local convergence or{0,4] while the behavior of the
¥} is NUB (Proposition 2, the first result being supported - ' . o
E)y n}th e corr(ect pconvergzence of positiwe—gs]equp;)nces asymptotic tails indicates that the negatiypesitivej A se-

{xk(W )}, reported in Table | while the second one is Con_quence{\lfn} 's UB (NUB), a result confirmed by the correct

. _ k _
firmed by the divergence of negati\)&esequenceigx"(\I'n)}n (incorrec) convergence of largk-sequencesx(Wn)}q re

. g ported in Table II.
with k=2 reported in the same tab{€orollary 1). . _
Example 2 Consider the harmonic oscillator operator Suppose that the eigenprobleRyy=Eqyp has only

RPN _ 5 - nondegenerate eigenvalug§’ and their eigenfunctiong’
?fo >2_(fjxftx szaTtdisleéaHS :(LOJSF;Z( ch\r;—LXZZ( isooé:r)rﬁ are normalizedi(=0,1, . . .). If the se{y{’}"_, constitutes
bo’l(j]nc;ediémc gan;:i hence a¥e ular erturb;tion so that the® complete basis of the Hilbert spatg in question, the
formal T sﬁioes of the(normaliged gFr)ound state W (\,x) ®Rayleigh-Schidinger perturbation theoryRSPT provides
— o Veex — (1+20)V32/2], has a nonzero convergence the following Fourier series for the first-order terq of the

radius A\ ¢(<<0.5). The coefficients),, are given bym! ¢, ground statey’ series:
=9"P|,_o. The convergence properties of the sequence

.. . . : k s
{W,} are similar to those in example 1. Figures 3 and 4 show TABLE Il. Expectation values(Wy) from the Wy's of ex-
ample 2. The ratiog*(¥,,)/x°(¥,) are reported.

2 10 24 30

0 sttt o gy n X X X X
T *** A=-0.4
- TR 4 0.977 5.4p2] 2.410] 1.614]
SRR 12 1.106 1.403] 4.411) 6.715]
2k N K o 20 1.117 1.6{13] 9.311] 2.0116]
RN Ex? 1.118 1.653] 1.712] 3.316]
L . %
RN \=0.4

_al N 4 0.3817 17.9 1[®] 1.413]
A=—04 : \T_S 12 0.3730 7.52 178] 4.913]
I . \ 20 0.3727 6.84 3(8] 1.913]
oo Ex@ 0.3727 6.79 2/5] 2.939]

-6 *n=4

' A=0.6
| " 4 0.42 2.912] 5.610] 5.114]
. 12 0.59 1.084] 4.413] 1.718]
-8 1 1 I 1 1 1 1 1 1 * 20 2.24 2485] 46[15] 24[20]
0 2 4 i 6 8 10 Ex@ 0.34 4.110] 6.95] 5.1[8]
®Exact values from the (normalized ¥== Yexg—(1
FIG. 3. Graph of log,¥,,/¥ vs x of example 2. +20)Y2?/12].
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FIG. 6. Graph of logy¥,(\,x)/¥ vs x for example 2 with
FIG. 5. Graph of log z//fp/e‘x| vs x with Fourier z,//fp’s of increasing values of.
example 3 withA =0.1.
sequencgV,} from a¥ series has theniform boundedness
o setAYB if it is UB for A e AYB; in a similar way we define
P (0 =2, 8P VyHEP-EP). (3.6  thenonuniform boundedness skt'® of {¥,}.
=1 Remark 2If the sequencé¥ ,(A,x)} from aV series has
a nonemptyANYB and\; and\, are inANYB, we can say
that the nouniform boundedness {oF ,(\1,x)} is stronger
than that of{¥,(\,,X)} when the separation rate between
p the asymptotic tails o ,(\1,x) andW¥(\,X) is faster than
wfp(x)zg OGO VWEP-EY) (3.7  that between the tails d¥(A3,x) and W(A,,x) asn in-
i=1 creases. To illustrate this consider the ratlog/' ¥ plotted in
Fig. 6 with ¥ (\,x)’s from example 2 withn=8 and
A=0.2, 0.4, 0.6; we observe that the tail¥f, moves away
from that of " as\ increases and similar results are obtained
) o o with other n values; thus larger positive values vyield a
Exagmle 3 Consider the harmoniclike Hamiltoniaf,  stronger nonuniform boundednes. This suggests that
=—3dy+ex? with e=10"2 and let H=Ho+Ax™' on  ANUBZ(Qcc) and(ii) the sequence(W,)}, with k=0 has
L,(0,2) with the eigenstate boundary conditidl,-o=0  a worse convergence or diverges Xss made larger in
for all . V:X71 is form bOUHQed b)HO [19] and therefore ANUB_ As expected' Table Il shows th@(k(\l/n)}n diverges
the formal ground stat& series has a nonzero radius of from k=2 with A=0.6 whereagx?(¥,)}, with \=0.4 con-
convergence while the completeness of the{sg}_, [3]  verges correctly. The numerical evidentsee Fig. 3 and
guarantees that the ground state sequénég}p converges Table 1) also suggests thdtW,} is L, convergent and UB
to 4. To show that{z/rfp}p is NUB we shall use(in the  for \ in (—0.5,0, so that{V¥,} has a correct global conver-
absence of a closed-form expressionyg) a boundyg of  gence forh e AY®=(—0.5,0] (see proposition )L Similar
¢, and eachpfp in order to exhibit the increasing separation results from example 1 suggest that threW series yields a
between their asymptotic tails asncreasegproposition 2. sequence{¥} having AY?=[0,1) and ANY®=(—,0),
Since ¥ and eachy§) decay like exp—x%(e/2)2], every  {W¥} being, apparentlyl., convergent for alk in AY® (see
mth-order term of thel series also does and therefapg ~ Figs. 1 and 2 and Tablg.|
=e X is a fast-decay bound af; and lzDJF_p' Figure 5 shows Remark 3 We have considered the ground state of ex-
the increasing separation between the tailﬂzﬁj and g as ample 2 for wh|ch there is a one-to-one correspopdence be-
pincreases; hence the same result holds between thae of Ween the excited states of the unperturbed Hamiltoign
and yf and{z/fF } is NUB. and those oH(\). Numenpa} results from the first excited
1p 1p
Remark 1 Examples 1 and 2 show that the boundednesSta1S of example 2 are S|mllar to thqse of'the ground state,
property of {¥ } can change suddenly from UB to NUB SO that.the ﬁggrespondlng exgétdd series yield sequences
when\ varies continuously within the convergence interval{‘P”} with A™=(0) andA™=(-0.5,0].
[— Ny ,Ay] of theW series. Thigliscontinuityof the bound- _ )
edness property is worthy and motivates the use of the fol- B. Singular-V W series
lowing concept(which is independent of thé&, conver- It is well known that almost all singular perturbatioi®f
gencg to characterize better such a property. We say that the given HamiltoniarH, generate formaE series of eigen-

The completeness ¢i){)}™ , guarantees that the finite Fou-
rier series

tends to ¢y in the L, norm asp—«, but the sequence
{(ﬁfp};zl may be NUB. This is illustrated by the following
example.
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17.5

FIG. 7. Graph of log) ¥, /¥p| and loggR,/¥p| vs x of ex-
ample 4. In this figure and the following onds, is a normalized
Dirichlet approximation of.

valuesE(\) with a zero convergence radius while only for
some singulaV’s was it shown that thel series is an
asymptotic expansion of the tro up to a particular power
of \ [5,14,19, a weak result to assess the correct calculation
of the W’s or expectation valueS(¥). Let us examine the
convergence properties of soneseries associated with sin-
gularV'’s.

Example 4 Consider the & hydrogen HamiltoniaH =
—27%92—x" ! and letH=Hy+\x on L,(0,°) with A=0,
whereV=x is a singular perturbation dfl;. The true b
eigenfunction W (\,x) is approximated by anormalized
Dirichlet-type function¥ 5 (\,x) [20,21], and the¥ series is
obtained from the zeroth-order solutioris,=—1/2, ¢

[

n=6 .
n=4
=6

=8 Rp
=1

(@]

IV. CORRECT CALCULATION OF W'S

AND EXPECTATION VALUES

FIG. 8. Graph of log)¥,/¥5| and loggR,/¥p| vs x of ex-
ample 4.

Having examined the convergence properties of some se-
quenceqg¥ .} from formalV series the question is now how

to obtain a correct approximation toward the trie and
expectation valueS(¥) when{¥ .} doesnothave a correct
global convergence. In this section we shall attempt to an-

TABLE Ill. Expectation valuesx*(¥,,) from the ¥,'s of ex-
ample 4. The quantitiesx’(¥,)=|¥,|> and the ratios
XKW ) /X°(P ) with k=1 are reported.

=xe X, Figure 7[22] shows the ratioV',,/¥ for A=0.05
and we observe a correct but local convergencgdof} on

0

1

[0,8] whereas there is an increasing separation between the
asymptotic tails of¥, and ¥, as n—«; hence{¥,} is 4
NUB. Larger\ values yield a faster increasing separation g
between the asymptotic tails and a worse local convergenceg
as follows from the graph o¥ /¥ with A=0.2 plotted in 10
Fig. 8 and the faster divergence of the sequefzéeV )}, Ex@
reported in Table Il withk=0. This suggests thar"V®
=(0,2).

Example 5LetHy=2(—2+x?) and letH=Hy+\x* on 4
L,(—o,%) with A=0. This is a well-known singulay- 6
problem for which the correct calculation of the true energy g
E(\) from the formalE series has been a subject extensively |4
studied in the padt7,9,13. The true ground stat® is ap- Ex@
proximated by a(normalized Dirichlet wave functionW
[23], and theV¥ series is obtained from the zeroth-order so-

lutionsEq=1/2, o=~ Y4 "2, The ratio¥ /W, plotted 4
in Figs. 9 and 10 withh =0.01,0.05 shows the correct local 4
convergence of ¥,,} and the increasing separation between g
the asymptotic tails o¥ , andW¥, so thaf{ ¥, } is NUB. As
occurs with example 4, larger values yield a worse local
convergence and a stronger nonuniform boundedness; this

X X X X
A=0.05
0.2356 1.387 2.525 5.686
0.2355 1.386 2.521 5.680
0.2355 1.386 2.529 5.827
0.2356 1.390 2.616 7.490
1.385 2.514 5.616
A=0.2
1.50] 7.90] 6.31] 6.02]
2.42] 1.11] 1.92] 1.63]
1.95] 1.41] 2.02] 3.43]
1.78] 1.71] 2.92] 5.3]
1.2 1.9 3.49
A=1.0
7.45] 8.1 7.01] 6.92]
8.710] 1.11] 1.72] 1.53]
2.416] 1.41] 1.92] 2.93]
2.q22] 1.71] 2.92] 5.13]
0.9 1.0 1.4

suggests thaANVB=(0,x).

8Exact values from a normalized Dirichlet wave functi@i].
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FIG. 9. Graph of log)¥,,/¥p| and loggR,/¥p| vs x of ex-

ample 5.

above.
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A. Reliability region of the NUB sequence{apfp}p from RSPT

The Fourier sequenc{azpfp};:l of the first-order term
Ym=1 Of example 3 is NUB but according to the results of
Sec. Il itsL, convergence guarantees that emﬁa is reli-
able on a regio0x;,] which can be estimated as follows.
An arrangement of the terms aff,, Eq. (3.7), yields 5,
:Xexq_xz(dz)llz]d’lp(x) with  ¢y,= ¢1pq|q=2pfl and

$1pq given by

12.5

q
_ -1
¢1pq—j21 ClijJ )

10.0

7.5

5.0

2.5

0.0

-2.5

-5.0

-7.5 :

FIG. 10.

example 5.

Graph of log|¥,/¥p| and loggR,/¥p| vs x of

4.

PRA 60

TABLE IV. Convergence of the sequenéepq(x)}a2 5" with
p=8[Eq.(4.1)] for somex values, example 3 witk=0.1. The last
row reports approximates,,’s for which eachp fixed sequence
{p1pq(X)}5%5" satisfies Eq(4.2) with §=0.001.

q x=2 Xx=4 X=6 x=8 x=10
5 —1.104 -—-3.643 —-3.31] —-132] -342]
7 —1.000 3.020 4R] 3.02] 1.393]
9 —1.009 0.603 —-191] -3.722] —-243]
11 —1.009 1.069 7.9 1[e] 2.103]
13 —1.009 1.025 2.2 -2.31] -6.02]
15 —1.009 1.027 2.6 3.4 6.7
p 4 8 12 16
X1p 1.2 2.8 4.9 6.1

whosec,,;'s are p dependent. Table IV shows that for

=8 andx= 2,4 the numerical sequen(:¢pq(x)}2‘fl

property that A(ﬁlpq(x):|Qslp,qf1()()/‘1’1pq(x)_:I-|

has the
de-

creases monotonically agj—2p—1 whereas with x
=6,8,10,A¢;p4(X) does not exhibit a convergence pattern
asgq—2p—1. A survey of the ratio,z/fp/e*X plotted in Figs.
swer this question with the NUB sequences of exampleg and 11 shows that the valurs 2,4 belong to the interval

on which z,b;pzs exhibits a converged behavior while the
othersx’s are in the interval on which the tail Offipzs is
clearly wrong. This suggests the use of the convergence pat-
tern of {A ¢,q(X) 152" to estimatex,, by

le: Su

X=

AX:Adpg(x)<8 with q=2p—1}. (4.2
0

Table IV shows the;,’'s estimated withd= 102 for some
p’s [24]. The goodness df0x;,] to be the reliability region
of z//fp is supported by the following factsi) The increment
of Xy, asp increases is congruent with the fact that the
convergence owfp};:l toward ¢, guarantees that the reli-

145
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FIG. 11. Graph off /e ™ vs x with Fourier y/5,’s of example
3 with A=0.1.
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TABLE V. Local expectation values xk(Xp,pr) 19.0
:félpl|¢fp|2xkdx and expectation values*(y5,) (for which
X1pr =) from the Fourier expansioﬂ/fp for example 3 withe
=102 and\ =0.1. The quantities®(x, #5,) =Ilxp #5,I? and the ~ 1°C

17.5

ratiosxk(xp,«ﬁfp)/xo(xp,qpfp) with k=2 are reported. 145 F
13.0 |
p x° X2 x8 x° C
1.5
X1pr-g=2.8 100 L
4 1.346 14.09 4.05] 2.496] o .
8 1.371 13.76 4.75] 2.946] <ok
12 1.374 13.64 4.68] 2.976] 7.0 ¢
16 1.375 13.64 4.66] 2.906] 55
40 F
Xl,p’112:4'9 55 L
4 1.346 15.27 1.05] 8.746] r
8 1.371 14.45 7.16] 5.006] oo
12 1.374 14.38 6.99] 4.746] 05 5
16 1.375 14.37 6.83] 4.776] r
M =6.1 FIG. 12. Graph of logy¥,/¥ and logoR, /¥ vs x of exam-
Lpr=1em le 1
4 1.346 15.27 1.06] 8.746] pie L.
8 1371 14.48 9.45] 8.346] B. Functional Padeapproximant sequencegR,} from NUB
12 1.374 14.39 7.28] 5.346]
sequenceq{ W .}
16 1.375 14.37 6.99] 4.996]
Examples 1 and 2 showed that regular perturbat\dioé
Xypr = a given HamiltoniarH, can generate sequende,} with a
i NUB - H
4 1.346 15.27 1[B] 8.96] nonempty setA an?] therefore Wlth an incorrect global
8 1371 14.48 5] 8.46] convergence tom;gd the tru? despite itsL, convergence
for small N in A™®. If {¥} is L, convergent, we can, at
12 1.374 14.40 9[8] 9.96] | ti inciple. find th n liabilit . f cacH t
16 1375 14.37 1[6] 1.17] east in principle, fin e reliability region of each,, to

computeWV or the expectation valueS(¥) as was done
above but a more convenient way may be the use of a sum-
mability method that takes advantage of the fact thatis a
power series of. For instance¥ , can be approximated by
the functional Padapproximan{25]

ablity region of eachpfp increases ap—, (ii) a survey of
Figs. 5 and 11 shows thpd x,,] agrees well with the region
on which z//fp exhibits a converged behavior psncreases,
and (i) in agreement with Eqg2.2) and (2.3) the “local”
sequences{xk(xp/wfp)}p reported in Table V, where Ry(\,x)= /
Xp'(X)=1 for xe[0Oxy4p] and x,=0 otherwise, are de-

creasing and therefore convergent whereas the completghd the question is then to determine if the sequence
integral sequencels(y/41,)}, reported in the same table are {Ry(\,x)}, converges in some sense¥o(in particular if it
monotonically increasing with large as expected from the g L, convergentand is UB. This is not an easy task if we
nonuniform boundedness df/%,},. The same procedure consider that, under the assumption tHeh,xo) is A ana-
can be applied to estimate the reliability regidxmp 1 0f  |ytic in the usual sense of complex functions, the strongest
the Fourier expansion[;!xfnpm with p,, terms of themth-order  property that thQ(o-fixed sequencé¢R,(\,Xg)} may have is
coefficients . Thus, if xmp =1 0N [0Xmg ] and xmp_ given by the Padeonjecture; namely, there exists a subse-

_ . - , quence of R,(\,Xg)} that converges uniformly t& (\,Xg)
0 otherwise, the right-hand term of the expression on certain bounded sets bfspacd8]. In our case¥ (. xo)

may not be an analytic function for somg's or potentialsv
F m and the convergence of its form# series has been estab-

\If()\,x)~¢//0(x)+m§=:l memwmpm(x))\ (4.3 lished rigorously only in thé., sensd Eq. (3.4)] for regular

V. Since a rigorous proof of, for example, the conver-

) _ o ) gence and the uniform boundednes{&%,(\,x)}, is a for-
only considers the reliable part of each finite Fourier expanmidable mathematical problem, we shall examine numeri-
sion yr,, and tends to¥ in the L, norm as thep,'s are  cally the convergence and boundedness properties of the
made larger. Of course, if the partial sums from E4.3) sequencegR,(\,x)} associated with the examples of Sec.
constitute a UB sequence, then such partial sums can be usdt
to compute expectation values or to obtain a correct global Consider the & sequencqV,} of example 1 which is
convergence towar®; otherwise we have to combine Eq. NUB for A e ANYB=(—<,0). Figure 2 shows the graph of
(4.3) with a summability method as is done below. V¥, /¥ and the corresponding ratids,/¥ with A=-0.9.

n

> a (A

k=0

., (4.9

n
1+ >, b(x)\K
k=1

o
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TABLE VI. Padeapproximants (1) [Eq. (4.6)] and expecta- TABLE VII. Padeapproximants (\) [Eq. (4.6)] andg{¥(\)
tion valuesx(¥,) from the ¥,'s of example 1. The quantities [Eq. (4.8)] from the W series and their partial sumk,’s, respec-
rOM), xXOw,) and the ratiog W(\)/rO(\), xX(¥,)/x°(¥,) tively, of example 2. The quantitied® (), g{®(\) and the ratios

with k=2 are reported. rOMIrOMm), gPm)/q?(\) with k=2 are reported.
n XO X2 X3 X4 n X2 XlO x24 X30
A=-0.9 A=0.6
riom) riom)
4 3.723 1.327 3.306 1.18 4 0.3371 4.248 8.078] 2.9710]
8 3.645 0.8313 1.098 1.768 12 0.3371 4.114 6.809] 5.1148]
12 3.645 0.8310 1.093 1.727 20 0.3371 4.114 6.809] 5.1068]
Ex? 3.645 0.8310 1.093 1.727 Ex? 0.3371 4.114 6.809] 5.1068]
n x° xt x2 x3 n x0 X2 x® x8
A=-5.0 A=5.0
XKW ) riom)
4 8.95] 5.6 3.41] 2.32] 6 0.5581 0.1516 4.630-2] 6.642 — 2]
8 8.711] 9.7 9.81] 1.03] 12 0.5493 0.1508 5.182 2] 5.431—-2]
12 5.617] 1.41] 1.92] 2.93] 18 05491 01508  5.1892]  5.424-2]
Ex? 1.1571] 25-1] 8.333 3.472 Ex? 0.1508  5.13p-2]  5.424-2]
r) o)
4 1.208 3.360 1/n] 3.71] 6 1.182 1.643 2[A4] 1.42]
8 1.1571] 2.50-1] 1.195 1.11] 12 1.073 1.502 3[a] 3.22]
12 1.1571] 2.50-1] 8.333 3.472 18 1.045 1.432 4[1] 5.02]
Ex? 11571  250-1] 8.333 3.472 EX? 0.1508  5.13p-2]  5.424-2]
®Exact values from théunnormalizedl exact¥ = xe™ (1 7Mx, 4Exact values froml = 7~ Y4 exd —(1+20)Y%?/2].

. (4.6

n
1+, b\
=1

n
> ag!
=0

The results are surprising) {R,,} converges uniformly t&/  we get the Padapproximantg25]
on finite intervals[0xg] and (i) {R,} is UB, because the
R,’s have the monotonic proper®y, . 1<R, on[5,°) (Cor-

ollary 2). To these results we can add the following. It is ro)= /

known that Padeapproximants can accelerate the conver-

gence rate of many power series and extend their conver-

gence radius and th,’s are not the exception. Figures 2 As expected, Table VI shows that the sequer{wéig()\)}n
and 12 show the ratiod,/¥ and R,/¥ with A=-0.9,  converge to their correct limits with=—0.9~5 in ANYB
—5 and we observe that the convergence ratgRyl on @ whereas the corresponding sequené¢g§W,)}, diverge
finite interval[O,X()] is faster than that of its Corresponding from k=2 with a rate that increases B%OGS from—0.9 to
sequencgV }. On the other hand, the form# serieshasa —5 (see also Table)!

convergence radiudy less than 1 becausd(\) has no For example 2 we havaNYB=(0) but, as occurs with
bound eigenstate with=1, but Fig. 12 shows thafR,}  example 1, Fig. 4 shows that the sequefi&s} with A
converges correctly on a finite interidl xo] and is UB with = 0.4 converges correctly on a finite interya,7] and is UB

IN=—5[>\y. The correctglobal convergence offR,}  whereas the corresponding sequefis} has a slower con-
should be reflected by a correct convergence of expectatiofiergence o0rj0,7] and is NUB. Similar results are obtained
value sequencefS(Ry)}. In principle S(R,) can be com-  with larger \’s which can be greater than the convergence
puted by numerical quadrature but this procedure may reradius\y, (<0.5) of the formal¥ series. For example, a
quire large computational resources to @&f(\,x) on @  comparison between the moment{¥,) and their Pade
densex mesh. Instead one can compute Pageroximants approximantsﬁk)(x) reported in Tables Il and VI with

of the A series ofS(W¥); for example, from the series =0.6,5 shows the correct convergence{rdf)()\)}n whereas

{xk(¥ )}, diverges rapidly fromk=2. It should be noticed
that ¥, yields the series

]

X< (¥)= > xW\m, (4.53
m=e n 2n
k - (k) (k)
where X (‘I’n)—mE:O Xm }\m+m:2n+1 Xnmh ™ 4.7
m
() _ K where only thex'®)’s are given by Eq(4.5b and whose Pade
Xm = Xthm—1), 4.5h X m
m IZO <‘/’I wm I> ( ) apprOX|mant
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TABLE VIIl. Padé approximantsrY(\) [Eq. (4.6)] corre-  monitoring the ratiob, /5 With a g5 properly chosen or by
sponding to the expectation vaIu&%(‘\I.fn) (?f Table Il for the ]s means of the convergence of Sequen(:E'S(CDn)}ﬁ:l for
state of(o)example 4. The quantiies”(\) and the ratios |arge values ok (see Proposition 2 and Corollaries 1 and 2
Fa” (M)/ry7(A) with k=1 are reported. According to Proposition 1 the, convergence criterion and

N 0 o 2 3 the uniform boundedness vyield a suitable way to determine
the quality of theglobal convergence of® .}, _,: the L,
A=0.05 convergence guarantees a corréatal approximation to-
4 0.23551 1.3849 2.5147 5.6177  ward the true wave functio on bounded region , that
6 0.23551 1.3848 2.5143 5.6162 increase as does while the uniform boundedness guarantees
8 0.23550 1.3848 2.5142 5.6162  that the error of®, on the complementary regioQ; re-
10 0.23550 1.3848 2.5142 5.6162  mains bounded and, therefore, vanishesnas». Conver-
Ex? 1.3848 2.5142 5.6162  gence in the norm of ,(R") can be replaced by other crite-
ria but it has the feature of being a weak condition to be
A=02 satisfied by sequenceSb,} from variational procedures
4 0.2139 1.2110 1.885 3.537  [2,3] or some perturbation seri¢s] in L,(RY) with N>1,
6 0.2134 1.2059 1.869 3499 while the boundedness property can be studied with a suit-
8 0.2134 1.2049 1.866 3493 aple one-dimensional function as was dong1ifi] with the
10 0.2134 1.2047 1.865 3491  one-electron density for the lithium atom problem.
Ex? 1.2046 1.865 3.491 We dealt with formal¥’ series because analytic perturba-
tion theory provides a suitable classification of perturbations
A=1.0 to characterize some properties of thand ¥ series|5,7].
4 0.1876 0.987 1.21 1.66 Examples 1-3 showed that a regular perturbatbf a
6 0.1838 0.943 1.10 1.47 given HamiltonianHy can generate NUB sequencg¥ .},
8 0.1823 0.923 1.06 1.41 Eq. (3.1), despite itd , convergence for smaN’s. An inter-
10 0.1817 0.913 1.04 1.38 esting result is that the boundedness property of sequences
Ex? 0.900 1.02 1.36 {¥,} may be a discontinuous function &f when it varies
continuously within the set of values for which the Hamil-
8 xact values from a normalized Dirichlet wave functi@i]. tonian H(\)=Ho+\V has bound state&emark 2. It is
known that almost every singular perturbatidmgenerate&
n n . . . .
(k)()\): 2 N / 1+2 N 9 series W|t_h a zero convergence radjBs7] while the main
n &l Kl & . and practically unique result about the correspondinge-

ries is that it is an asymptotic power series expansion of the

diverges am— o with a largek and\ € ANYB. This is illus-  true ¥ up to a particular power of [5,14,15. Examples 4
trated by results reported in Table VII which shows thatand 5 show that the sequencek,} can bel, convergent
{r®(\)}, converges correctly withh =5 ANB whereas but even for smalk they are NUB; that is, they havs"®
the corresponding sequen{xﬁpﬁk)()\)}n diverges withk=6. ={0}. This result may be connected with the singular char-

Results from tha/-singular examples 4 and 5 showed thatacter ofV or considered as an inherent propertydofseries
the ground state sequencgk,,} have the set\NYB=(0,) Wl_th E series having a zero convergence radius. In fact, if
that (excepting\ =0) agrees with the set of’s for which  this were not the case, then the sequejnég} for the anhar-
H(\) has bounded states and therefard®={0}, a result monic oscillator would have a correct 'global' convergence
that may reflect the fact that the correspondingeries have With at least smalk’s, a result that, intuitively, is incongru-
a zero convergence radius. Fortunately, the correspondir@t With the zero convergence radius ofEiseries.
functional Padeapproximants{R,} behave like those from  Several methods to compukeseries without the diver-
examples 1 and 2. In fact, Figs. 710 show that the segence problems of formal perturbation seriémuch as
quences{R,} converge correctly on finite intervals and are Multiple-scale perturbation theofg8] or the Ricatti method
UB. As expected, these results are reflected by the corre¢€9,30) have been proposed but studies of the neweries
convergence of Padapproximants () for the 1s eigen- ~ &re scarce. It is clear that the study of thg convergence
state of example 4 reported in Table VI with and the boundedness property of the cprrespondlng partial-
=0.05,0.2,1.0 whereas their correspondiig¥’)'s diverge ~ SUM sequencef¥,} can yield valuable information about

rapidly except fo®(¥,) with A =0.05 as Table IIl shows. ("€ success of such procedures to compute therugor
example, a numerical calculation shows that the Riccati

method[30] provides sequenceV,} for the ground and
first excited states of examples 1 and 2 that are UB land
Several criteria for studying the quality of approximating convergent for all\ for which H(\) has bound states; that
wave functions such as information theory critdi2®] and  is, such a method yields partial-sum sequerd@s} with an
metrics in the Hilbert spade,(R") [27] have been proposed emptyset ANY® and a correct global convergence whereas
but they have the deficiency of being insensitive to the nonfor the formal sequencgal’,,} the setA"® is bounded by the
uniform boundedness problem. Examples 1-5 and the resultsnall convergence radius of the formilseries andANYB is
reported in[4] show that the boundedness property of a sethe semi-infinite interval £ «,0) or (0s) (remark 2.
quence of wave function§®.};_, can be determined by The so-called perturbation theory without a wave function

V. SUMMARY AND DISCUSSION
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provides the coefficients of form& series and other expec- the criterion proposed in Sec. IV A for Fourier sequences
tation values likex*(¥) without an explicit calculation of will be given in a forthcoming work.

the corresponding formal series31] but such a procedure  In this work and the previous orjé] we have considered
may hide the incorrect global convergence of the sequencée nonuniform boundedness of variational wave functions
{¥.}, Eq.(3.1), and, therefore, lead to wrong results or con-and eigenfunction perturbation se_rles_separately but there is
clusions. For example, since the coefficierf of xk(¥)  NO reason to expect that the combination of these approaches

[Eq. (4.53] are uniquely determined by those of tiieseries called'“variation—perturbation theory'T1] does' not yield
through Eq.(4.5b), the partial-sum sequenég (W)}, will nonuniformly bounded sequences of approximating wave

. X . : . functions. To date, the unique approach that in rigorous
he divergent W't.h alargeif {¥,} is NUB, mdepencjently of mathematical terms solves the nonuniform boundedness
the regular or singular character of the perturbatbn

; . roblem is the Dirichlet wave functions approach which, in
Wg conS|d,ered that for the examples studied here th imple terms, consists of the following. The exact Dirichlet
functional Padeapproximant sequencg®,}, Eq. (4.4, are  \yqve functionsW,, for the eigenproblemHW¥=EW¥ in

L, convergent and uniformly bounded with smalls by | RNy are the eigensolutions of the corresponding eigen-
considering the tendency of the fifgh’s although in strict  proplemH ¥, =E, ¥, on aboundedegion) of RN with
m.athemaucal tgrms such properties should be determinege condition¥,=0 on the boundaryQ of Q, H, being
with an analysis of the whole s¢R,},_, as Corollary 2 the self-adjoint Hamiltonian defined dn(Q) by the bound-
requires. To test numerically these properties with laxge ary condition orv(). TheW’s and their numerical approxi-
andn values one has to be careful with the loss of precisiormations ¥, ,, obtained from standard numerical methods
caused by the rapid growth of the coefficiehts,(x)| asm  (which include variational and finite difference methpds
increases with eackvalue, in particular with theb 's from  converge to the bound state eigenfunctiohsas Q—R"
singularV'’s whose coefficients increase as rapidly as thosé33,34 and in a natural way such functions are U,20.

of the corresponding series, because such a precision losgf We take into account that margingular perturbations/ of
may hide the true properties §R,,}*_, . This latter problem & HamiltonianH, in L,(RN) areregular perturbations of the

may be solved partly by scaling or using other summabilitycerresponding HamiltoniaH o, defined by Dirichlet bound-
methods[7—13. In principle any summability method ap- &Y conditions or() [35], it seems reasonable to expect that

plied to the formalE series to get the true ener@y\) can variation—perturbation theory c_ombjned with the. Dirichlet
also be applied to tha series[32]. Although the correct @PProach can also yield approximating wave functions with a
global convergence of the sequer{d®,} or approximating correct global convergence. This will be studied in a forth-
wave functions provided by other summability methods maycoming work.
fail, the study of their local convergence and boundedness

property can yield useful, reliable physical information com-

patible with their accuracy in some bounded redibmas was | wish to thank Professor Gustavo Izquierdo and Professor
done with the NUB sequent{@/fp} of Sec. IVA. A study of Ma. Trinidad N. P. for their suggestions and support. This
the problem of determining the reliability region of an ap- work was done under a contract at the Centro de Ciencias de
proximating wave function that includes a careful analysis ofla Atmosfera(UNAM).
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