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One-dimensional eigenfunctions from their perturbation series
for regular and singular perturbations
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Some properties of the eigenfunction perturbation seriesC(l,x)5(m50
` cm(x)lm for the self-adjoint eigen-

problemHC5EC with H5H01lV are studied. It is shown that both regular and singular perturbationsV of
the unperturbed HamiltonianH0 can generate partial-sum sequences$Cn5(m50

n cmlm%n50
` that converge in

the norm of the Hilbert space in question and are nonuniformly bounded. This latter property is, for a given
value ofl, characterized by an increasing separation between the tail ofCn on the largeuxu region and that of
C asn→`, and causes the divergence of expectation value sequences$^Cn ,SCn&%n50

` with some symmetric
operatorsS. As model examples we consider one-dimensional operatorsH0 for which the perturbationV can
be regular or singular and the eigenfunction series are obtained from the standard perturbation theory. The use
of summability methods to get approximating sequences of wave functions with a correct convergence is
explored. The results show that, independently of the regular or singular nature ofV, a summability method
~such as the Pade´ one! can yield approximationsRn from the Cn’s that areL2 convergent and uniformly
bounded, and hence correct physical quantities can be obtained from suchRn’s. @S1050-2947~99!09406-8#

PACS number~s!: 31.15.Md, 03.65.Ge, 03.65.Ca
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I. INTRODUCTION

The two main ways to compute the bound statesC and
eigenvaluesE of the time-independent Schro¨dinger equation
HC5EC are the variational method and perturbation the
@1#. For many problems of interest the convergence of va
tional wave functionsFn(x)5(m51

n cnmwm(x) in the usual
norm of the Hilbert spaceL2(RN) is guaranteed by a com
pleteness argument of the basis set$wm%m51

` in a suitable
Hilbert space@2,3#. However, it was shown recently@4# that
the sequence$Fn%n51

` may have an inherent property th
generates an incorrect convergence of expectation va
S(Fn)5^Fn ,SFn& with some symmetric operatorsS. This
property ~which we will call the nonuniformboundedness
property! is connected with the capability ofFn to reproduce
the tail of C on the largeuxu region in the limitn→`, is
independent of rounding errors, and is compatible with s
eral convergence properties of$Fn%n51

` and some basis se
properties@4#. In this work we show that perturbation meth
ods can yield approximating sequences of the true w
functions with the nonuniform boundedness property.

In Sec. II we define the concepts ofL2 convergence and
uniform and nonuniform boundedness properties of an
proximating sequence$Cn% and give a summary of their rol
in the calculation of some expectation values; practical
teria to determine when$Cn% is either uniform or nonuni-
formly bounded are also given. In Sec. III we study theL2
convergence and the boundedness properties of some
called by Kato@5#—formal eigenfunction perturbation serie

C~l,x!5 (
m50

`

cm~x!lm ~1.1!

*Electronic address: manp@xanum.uam.mx
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for the self-adjoint eigenproblem H(l)C(l,x)
5E(l)C(l,x) with H(l)5H01lV, H0 being the unper-
turbed Hamiltonian. The study of formal perturbation ser
is motivated by the fact that analytic perturbation theory@5#
provides a classification of perturbationsV of a givenH0 for
which such series converge; namely, ifV is a regular pertur-
bation of H0, then, for smallulu, E(l) is a complex ana-
lytic function and the series~1.1! converges toC(l,x) in the
L2 norm. Nevertheless, in Sec. III A it is shown by means
examples that the sequence$Cn% of partial-sum functions
Cn5(m50

n cmlm can be nonuniformly bounded and ther
fore the expectation value sequence$S(Cn)%n50

` may not
converge to the correct valueS(C). An example is included
that shows how the Rayleigh-Schro¨dinger perturbation
theory @6# can yield Fourier expansions of themth-order
termcm that are nonuniformly bounded even ifV is regular.

The well-known fact that almost everynonregular~or sin-
gular! perturbationV of H0 generates eigenvalue perturb
tion series with a zero convergence radius has motivated
development of several methods to compute the correc
genvaluesE(l) from the coefficients of its divergent pertu
bation series@7–13# while the main results of the corre
sponding eigenfunctions series~1.1! only exhibit the
asymptotic nature of such series@5,14,15#. The results of
Sec. III B show that the partial-sum sequence$Cn% from the
series~1.1! can beL2 convergent but nouniformly bounde
for all lÞ0 for which the HamiltonianH has bound state
eigenfunctionsC(l,x). This suggests that the eigenfunctio
series~1.1! from singularV’s may be characterized by th
nonuniform boundedness of their corresponding sequen
$Cn% rather than by theirL2 convergence.

Section IV is devoted to exploring some methods th
independently of the regular or singular character ofV, can
yield approximating sequences of wave functions with a c
rect convergence toward the trueC. In Sec. II we show that
224 ©1999 The American Physical Society
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PRA 60 225ONE-DIMENSIONAL EIGENFUNCTIONS FROM THEIR . . .
if $Cn% is L2 convergent, then for eachCn there is a
bounded regionVn in x space such that a$S(xVn

Cn)%n50
`

converges correctly for several operatorsS, xV(x) being 1
on V and 0 otherwise, despite the fact that$Cn% may be
nonuniformly bounded, and in Sec. IV A we propose a p
cedure to estimateVn . In Sec. IV B we apply the Pad´
method to the series~1.1! to show that summability method
can yield approximating wave functionsRn(l,x) with a cor-
rect convergence toward the trueC even when the corre
sponding partial-sum sequence$Cn% has a wrongL2 conver-
gence and is nonuniformly bounded. Section V is devoted
some concluding remarks.

II. BASIC CONCEPTS AND RESULTS

HereafterL2 denotes the Hilbert spaceL2(0,̀ ) or L2
(2`,`) and ^•,•& and i•i denote its inner product an
norm. The expectation valuêf ,S f& of a symmetric operato
S is denoted byS( f ) and throughout we shall consider th
each wave functionf (x) is continuous and has a fast dec
@xk( f )5^ f ,xkf &,` for all k>0#.

The two features of a sequence$Cn%n50
` of wave func-

tions that we shall consider are~i! theL2 convergence~when
iCn2Ci→0 asn→`) and ~ii ! the boundedness propert
which involves the following concepts. LetV denote a
bounded region ofx space and letVc be its complement. We
say that$Cn% is uniformly bounded~UB! if there is at least
one rapidly decaying and positive functioncB such that the
inequality uCnu<cB holds in a regionVc for n>n0 where
Vc is independent ofn; otherwise $Cn% is nonuniformly
bounded~NUB!. The motivation to consider these properti
is their role in the correct calculation of the trueC ’s and
expectation valuesS(C) as follows from the next result
@16# ~examples with Fourier and Ritz expansions that exh
graphically or numerically the concepts and results of t
section are given in@4#!. The first result is given byPropo-
sition 1: If $Cn% converges toC in the L2 norm and is UB,
then

lim
n→`

xk~Cn!5xk~C! for all k>0. ~2.1!

Intuitively, this result is possible only if$Cn% tends ‘‘cor-
rectly’’ to C on the wholex space; thus we say that$Cn%
has a correctglobal convergence towards the trueC if it is
L2 convergent and UB. If$Cn% is L2 convergent but NUB,
theL2 convergence still guarantees certain correctlocal con-
vergence. To see this consider an arbitrary bounded regioV
and letxV(x)51 for xPV andxV50 otherwise. If$Cn% is
L2 convergent, then the equation

lim
n→`

S~xVCn!5S~xVC! ~2.2!

holds for any operatorS5s(x) defined by a functions(x)
that is continuous on the wholex space. This includes an
s(x)5e2(x2a)2/2s2

with small s which can be used to mea
sure the fit ofCn to C on Vas5@a2s,a1s# through the
error D (n)S5uS(xVas

Cn)2S(xVas
C)u. Since D (n)S van-

ishes asn→`, we can say that$Cn% tends correctly toC on
Vas while its convergence onVas

c may be completely
-

to

it
s

wrong as occurs with the NUB sequences$Cn% for which
the part ofCn in the largeuxu region~a part that will subse-
quently be referred to as theasymptotic tailof Cn) moves a
way from that ofC asn→` ~see Fig. 5! in such a way that
the sequence$xk(Cn)%n diverges with a largek. Fortunately,
since theV of Eq. ~2.2! is arbitrary, for eachCn there exists
a bounded regionVn ~which we call thereliability region of
Cn) that satisfiesVn,Vn11 and such that the equation

lim
n→`

S~xVn
Cn!5S~C! ~2.3!

holds for many operatorsS including S5xk if k is large.
Thus theL2 convergence is indeed a criterion to guaran
the correct calculation of many expectation valuesS(C) and
the trueC by means of a sequence$xVn

Cn% obtained prop-

erly from aL2 convergent one$Cn%.
Since a formal study of the boundedness property o

sequence$Cn% is not an easy task even if eachCn and the
trueC are known in a closed form, we shall use two crite
to test thenonuniformboundedness property. The first one
a geometric characterization of the fact that a NUB seque
$Cn% cannot be bounded uniformly byany fast decay func-
tion. Proposition 2@16#: If cB is a fast decay bound of eac
Cn and the trueC on an unbounded regionVc and the
quantity maxxPVc(Cn /cB) diverges asn does, then the
asymptotic tail ofCn moves away from that ofcB on Vc as
n→` and hence$Cn% is NUB. The second criterion follows
from proposition 1.Corollary 1: If $Cn% converges toC in
the L2 norm but$xk(Cn)% does not converge toxk(C) for
any k.0, then $Cn% is NUB. Finally, for the uniform
boundedness property we haveCorollary 2: if the Cn’s have
the monotonic propertyuCn11u<uCnu on an unbounded re
gion Vc independent ofn, then$Cn%n5 j 11

` is bounded byC j

on Vc, and therefore$Cn% is UB ~see, e.g., Fig. 1!.

FIG. 1. Graph of log10 Cn /C vs x of example 1. In this figure
and the following onesC stands for the exact state of the examp
in question andRn is the functional Pade´ approximant~4.4! of the
unnormalized partial sumCn .
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Remark. The results of this section do not depend on
normalization of the wave functions. In fact, from the i
equality

uxk~Cn!2xk~C!u<iCn2Ci$@x2k~Cn!#1/21@x2k~C!#1/2%,

it follows that theL2 convergence (iCn2Ci→0) and the
boundedness of the sequence$x2k(Cn)%n are sufficient to
guarantee that Eq.~2.1! holds true. Of course,L2 conver-
gence implies that the normiCni5x0(Cn)1/2 tends toiCi
as n→` and the boundedness of the set$x2k(Cn)%n holds
for any k.0 when the sequence$Cn% is UB, but the wave
functions need not be normalized. The motivation to co
sider unnormalized functions lies in the fact that the par
sumsCn5(m50

n cmlm of the seriesC5(m50
` cmlm are in

general unnormalized even ifC is normalized. Furthermore
sinceiCni may diverge asn increases, we consider it pert
nent to study graphically the boundedness property of
Cn’s by plotting the ratiosCn /C vs x without the effects
generated by a possible incorrect convergence of the nor
ization factor iCni . Accordingly, we report the values o
x0(Cn) and fork.0 the ratiosxk(Cn)/x0(Cn), these latter
ones being the standardexpectation valuesof the operators
xk, although, abusing the language, in this article we c
‘‘expectation value’’ the quantityS( f ) even if f is unnormal-
ized.

III. FORMAL PERTURBATION SERIES

The sequences$Cn% to be studied are defined by the pa
tial sums

Cn~l,x!5 (
m50

n

cm~x!lm ~3.1!

of the eigenfunction perturbation series

C~l,x!5 (
m50

`

cm~x!lm, ~3.2!

where the infinite series will be referred to as theC series
andC(l,x) is a solution of the self-adjoint eigenproblem
L2,

H~l!C~l,x!5E~l!C~l,x!, ~3.3!

where for simplicity we considerH(l)5H01lV(x) and as
usual the zero-order eigenproblem isH0c05E0c0.

In order to expose the main ideas we shall study the
called formal C series of Kato@5#, which are obtained by a
direct substitution of Eq.~3.2! and the correspondingE series

E~l!5 (
m50

`

Emlm ~3.4!

into Eq.~3.3!. We consider formal series because, as we s
see below, their convergence properties are known for s
eral perturbationsV of interest while rigorous results fo
other kinds ofC and E series are scarce. In Sec. V w
consider other kinds ofC series.

The convergence of formalE series is understood in th
usual sense of analytic complex functions while aC series is
e

-
l

e

al-

ll

o-

ll
v-

said to be convergent or having a nonzero convergence
dius lC if the partial-sum sequence$Cn% is L2 convergent
with ulu,lC , that is, if

lim
n→`

iCn2Ci50 holds for ulu,lC . ~3.5!

According to analytic perturbation theory@5# the two kinds
of perturbationsV for which the formalE andc series have
a nonzero convergence radius are~i! theV’s bounded by H0
~when iVci<aici1biH0ci holds with c-independent
a,b) and ~ii ! the V’s form bounded by H0 ~when u^Vc,c&u
<a8ici21b8^c,H0c& holds withc-independenta8,b8). V
is referred to as aregular perturbation ofH0 if it is bounded
or relatively form bounded byH0; otherwiseV is called a
singular perturbation ofH0. The perturbation theory result
for regularV’s can be summarized byProposition 3: If V is
regular, then theE andC series have a nonzero convergen
radius, while it is known that almost all the singularV’s
generate formalE series with zero convergence radius.
Secs. III A and III B we shall examine the convergence a
boundedness properties of formalC series associated with
regular and singularV’s. We use the notation]x5]/]x and
]l5]/]l.

A. Regular-V C series

Example 1. Consider the 1s hydrogen HamiltonianH05
2 1

2 ]x
22x21 and letH5H01lx21 on L2(0,̀ ) with ^ f ,g&

5*0
` f * g dx. It can be shown thatV5x21 is bounded byH0

@18# and therefore the ~unnormalized! 1s eigenstate
C(l,x)5xe2(12l)x has aL2 convergent formalC series
with convergence radiuslC (,1). The coefficientscm of
theC series are given bym!cm5]l

mCul50. Figures 1 and 2
show the graph of the ratiosCn /C with l560.9; as ex-
pected we observe a correct local convergence of$Cn% on
the interval @0,7# of the x axis but on@10,̀ ) there is a
marked difference between the figures. Forl50.9 the
asymptotic tail ofCn tends to that ofC asn increases and

FIG. 2. Graph of log10 Cn /C and log10 Rn /C vs x of example 1.
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PRA 60 227ONE-DIMENSIONAL EIGENFUNCTIONS FROM THEIR . . .
Cn11,Cn holds on@10,̀ ) whereas forl520.9 there is an
increasing separation between the tails. Hence the positivl
sequence$Cn% is UB ~Corollary 2! and the negative-l one
$Cn% is NUB ~Proposition 2!, the first result being supporte
by the correct convergence of positive-l sequences
$xk(Cn)%n reported in Table I while the second one is co
firmed by the divergence of negative-l sequences$xk(Cn)%n
with k>2 reported in the same table~Corollary 1!.

Example 2. Consider the harmonic oscillator operat
H05 1

2 (2]x
21x2) and let H5H01lx2 on L2(2`,`),

^ f ,g&5*2`
` f * g dx. It is easy to see thatV5x2 is form

bounded byH0 and hence a regular perturbation so that
formal C series of the~normalized! ground state,C(l,x)
5p21/4exp@2(112l)1/2x2/2#, has a nonzero convergenc
radiuslC(,0.5). The coefficientscm are given bym!cm

5]l
mCul50. The convergence properties of the seque

$Cn% are similar to those in example 1. Figures 3 and 4 sh

TABLE I. Expectation valuesxk(Cn) from theCn’s of example
1. The quantitiesx0(Cn)5iCni2 and the ratiosxk(Cn)/x0(Cn)
with k>2 are reported. In this table and the following ones t
notation 9.06@26# (1.4@4#) means 9.0631026 (1.43104).

n x0 x2 x3 x4

l50.9
4 1.59@1# 1.8@1# 9.9@1# 5.9@2#

8 5.75@1# 4.5@1# 3.6@2# 3.2@3#

12 1.08@2# 7.9@1# 8.5@2# 9.9@3#

Exa 2.50@2# 3.0@2# 7.5@3# 2.3@5#

l520.9
4 4.0@21# 3.5@1# 2.4@2# 1.8@3#

8 3.8@21# 9.5@1# 1.0@3# 1.2@4#

12 2.9@21# 1.8@2# 2.7@3# 4.1@4#

Exa 3.6 8.3@21# 1.1 1.7

aExact values from the~unnormalized! exactC5xe2(12l)x.

FIG. 3. Graph of log10 Cn /C vs x of example 2.
-

-

e

e
w

the ratio Cn /C with l560.4 and we observe a correc
local convergence on@0,4# while the behavior of the
asymptotic tails indicates that the negative-~positive-! l se-
quence$Cn% is UB ~NUB!, a result confirmed by the correct
~incorrect! convergence of large-k sequences$xk(Cn)%n re-
ported in Table II.

Suppose that the eigenproblemH0c05E0c0 has only
nondegenerate eigenvaluesE0

( i ) and their eigenfunctionsc0
( i )

are normalized (i 50,1, . . . ). If the set$c0
( i )% i 50

` constitutes
a complete basis of the Hilbert spaceL2 in question, the
Rayleigh-Schro¨dinger perturbation theory~RSPT! provides
the following Fourier series for the first-order termc1 of the
ground stateC series:

FIG. 4. Graph of log10 Cn /C and log10 Rn /C vs x of example 2.

TABLE II. Expectation valuesxk(Cn) from the Cn’s of ex-
ample 2. The ratiosxk(Cn)/x0(Cn) are reported.

n x2 x10 x24 x30

l520.4
4 0.977 5.42@2# 2.4@10# 1.6@14#

12 1.106 1.41@3# 4.4@11# 6.7@15#

20 1.117 1.61@3# 9.3@11# 2.0@16#

Exa 1.118 1.65@3# 1.2@12# 3.3@16#

l50.4
4 0.3817 17.9 1.6@9# 1.4@13#

12 0.3730 7.52 1.7@9# 4.8@13#

20 0.3727 6.84 3.4@8# 1.8@13#

Exa 0.3727 6.79 2.3@6# 2.3@9#

l50.6
4 0.42 2.91@2# 5.6@10# 5.1@14#

12 0.59 1.08@4# 4.2@13# 1.2@18#

20 2.24 2.45@5# 4.6@15# 2.4@20#

Exa 0.34 4.11@0# 6.8@5# 5.1@8#

aExact values from the ~normalized! C5p21/4 exp@2(1
12l)1/2x2/2#.
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228 PRA 60MARCO A. NÚÑEZ
c1~x!5(
i 51

`

c0
( i )^c0

( i ) ,Vc0
(0)&/~E0

(0)2E0
( i )!. ~3.6!

The completeness of$c0
( i )% i 50

` guarantees that the finite Fou
rier series

c1p
F ~x!5(

i 51

p

c0
( i )^c0

( i ) ,Vc0
(0)&/~E0

(0)2E0
( i )! ~3.7!

tends toc1 in the L2 norm as p→`, but the sequence
$c1p

F %p51
` may be NUB. This is illustrated by the following

example.
Example 3. Consider the harmoniclike HamiltonianH0

52 1
2 ]x

21ex2 with e51022 and let H5H01lx21 on
L2(0,̀ ) with the eigenstate boundary conditionCux5050
for all l. V5x21 is form bounded byH0 @19# and therefore
the formal ground stateC series has a nonzero radius
convergence while the completeness of the set$c0

( i )% i 50
` @3#

guarantees that the ground state sequence$c1p
F %p converges

to c1. To show that$c1p
F %p is NUB we shall use~in the

absence of a closed-form expression ofc1) a boundcB of
c1 and eachc1p

F in order to exhibit the increasing separatio
between their asymptotic tails asp increases~proposition 2!.
Since C and eachc0

( i ) decay like exp@2x2(e/2)1/2#, every
mth-order term of theC series also does and thereforecB

5e2x is a fast-decay bound ofc1 andc1p
F . Figure 5 shows

the increasing separation between the tails ofc1p
F andcB as

p increases; hence the same result holds between thosec1

andc1p
F and$c1p

F % is NUB.
Remark 1. Examples 1 and 2 show that the boundedn

property of $Cn% can change suddenly from UB to NU
whenl varies continuously within the convergence interv
@2lC ,lC# of theC series. Thisdiscontinuityof the bound-
edness property is worthy and motivates the use of the
lowing concept~which is independent of theL2 conver-
gence! to characterize better such a property. We say that

FIG. 5. Graph of log10uc1p
F /e2xu vs x with Fourier c1p

F ’s of
example 3 withl50.1.
s

l

l-

e

sequence$Cn% from aC series has theuniform boundedness
setDUB if it is UB for lPDUB; in a similar way we define
the nonuniform boundedness setDNUB of $Cn%.

Remark 2. If the sequence$Cn(l,x)% from aC series has
a nonemptyDNUB and l1 and l2 are in DNUB, we can say
that the nouniform boundedness of$Cn(l1 ,x)% is stronger
than that of$Cn(l2 ,x)% when the separation rate betwee
the asymptotic tails ofCn(l1 ,x) andC(l1 ,x) is faster than
that between the tails ofCn(l2 ,x) and C(l2 ,x) as n in-
creases. To illustrate this consider the ratiosCn /C plotted in
Fig. 6 with Cn(l,x)’s from example 2 withn58 and
l50.2, 0.4, 0.6; we observe that the tail ofCn moves away
from that ofC asl increases and similar results are obtain
with other n values; thus larger positivel values yield a
stronger nonuniform boundednes. This suggests that~i!
DNUB5(0,̀ ) and~ii ! the sequence$xk(Cn)%n with k>0 has
a worse convergence or diverges asl is made larger in
DNUB. As expected, Table II shows that$xk(Cn)%n diverges
from k>2 with l50.6 whereas$x2(Cn)%n with l50.4 con-
verges correctly. The numerical evidence~see Fig. 3 and
Table II! also suggests that$Cn% is L2 convergent and UB
for l in ~20.5,0#, so that$Cn% has a correct global conver
gence forlPDUB5(20.5,0# ~see proposition 1!. Similar
results from example 1 suggest that the 1s C series yields a
sequence$Cn% having DUB5@0,1) and DNUB5(2`,0),
$Cn% being, apparently,L2 convergent for alll in DUB ~see
Figs. 1 and 2 and Table I!.

Remark 3. We have considered the ground state of e
ample 2 for which there is a one-to-one correspondence
tween the excited states of the unperturbed HamiltonianH0
and those ofH(l). Numerical results from the first excite
states of example 2 are similar to those of the ground st
so that the corresponding excitedC series yield sequence
$Cn% with DNUB5(0,̀ ) andDUB5(20.5,0#.

B. Singular-V C series

It is well known that almost all singular perturbationsV of
a given HamiltonianH0 generate formalE series of eigen-

FIG. 6. Graph of log10 Cn(l,x)/C vs x for example 2 with
increasing values ofl.
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valuesE(l) with a zero convergence radius while only f
some singularV’s was it shown that theC series is an
asymptotic expansion of the trueC up to a particular power
of l @5,14,15#, a weak result to assess the correct calculat
of the C ’s or expectation valuesS(C). Let us examine the
convergence properties of someC series associated with sin
gular V’s.

Example 4. Consider the 1s hydrogen HamiltonianH05
2221]x

22x21 and letH5H01lx on L2(0,̀ ) with l>0,
where V5x is a singular perturbation ofH0. The true 1s
eigenfunctionC(l,x) is approximated by a~normalized!
Dirichlet-type functionCD(l,x) @20,21#, and theC series is
obtained from the zeroth-order solutionsE0521/2, c0
5xe2x. Figure 7@22# shows the ratioCn /CD for l50.05
and we observe a correct but local convergence of$Cn% on
@0,8# whereas there is an increasing separation between
asymptotic tails ofCn and CD as n→`; hence$Cn% is
NUB. Larger l values yield a faster increasing separati
between the asymptotic tails and a worse local converge
as follows from the graph ofCn /CD with l50.2 plotted in
Fig. 8 and the faster divergence of the sequences$xk(Cn)%n
reported in Table III withk>0. This suggests thatDNUB

5(0,̀ ).
Example 5. Let H05 1

2 (2]x
21x2) and letH5H01lx4 on

L2(2`,`) with l>0. This is a well-known singular-V
problem for which the correct calculation of the true ener
E(l) from the formalE series has been a subject extensiv
studied in the past@7,9,13#. The true ground stateC is ap-
proximated by a~normalized! Dirichlet wave functionCD
@23#, and theC series is obtained from the zeroth-order s
lutionsE051/2, c05p21/4e2x2/2. The ratioCn /CD plotted
in Figs. 9 and 10 withl50.01,0.05 shows the correct loc
convergence of$Cn% and the increasing separation betwe
the asymptotic tails ofCn andCD , so that$Cn% is NUB. As
occurs with example 4, largerl values yield a worse loca
convergence and a stronger nonuniform boundedness;
suggests thatDNUB5(0,̀ ).

FIG. 7. Graph of log10uCn /CDu and log10uRn /CDu vs x of ex-
ample 4. In this figure and the following onesCD is a normalized
Dirichlet approximation ofC.
n
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IV. CORRECT CALCULATION OF C ’S
AND EXPECTATION VALUES

Having examined the convergence properties of some
quences$Cn% from formalC series the question is now how
to obtain a correct approximation toward the trueC and
expectation valuesS(C) when$Cn% doesnot have a correct
global convergence. In this section we shall attempt to a

FIG. 8. Graph of log10uCn /CDu and log10uRn /CDu vs x of ex-
ample 4.

TABLE III. Expectation valuesxk(Cn) from the Cn’s of ex-
ample 4. The quantitiesx0(Cn)5iCni2 and the ratios
xk(Cn)/x0(Cn) with k>1 are reported.

n x0 x1 x2 x3

l50.05
4 0.2356 1.387 2.525 5.686
6 0.2355 1.386 2.521 5.680
8 0.2355 1.386 2.529 5.827
10 0.2356 1.390 2.616 7.490
Exa 1.385 2.514 5.616

l50.2
4 1.5@0# 7.3@0# 6.3@1# 6.0@2#

6 2.4@2# 1.1@1# 1.8@2# 1.6@3#

8 1.3@5# 1.4@1# 2.0@2# 3.0@3#

10 1.7@8# 1.7@1# 2.9@2# 5.3@3#

Exa 1.2 1.9 3.49

l51.0
4 7.8@5# 8.1 7.0@1# 6.5@2#

6 8.2@10# 1.1@1# 1.2@2# 1.5@3#

8 2.6@16# 1.4@1# 1.9@2# 2.9@3#

10 2.0@22# 1.7@1# 2.9@2# 5.1@3#

Exa 0.9 1.0 1.4

aExact values from a normalized Dirichlet wave function@21#.



le

of

s.

rn

l
e

pat-

-

230 PRA 60MARCO A. NÚÑEZ
swer this question with the NUB sequences of examp
above.

A. Reliability region of the NUB sequencê c1p
F
‰p from RSPT

The Fourier sequence$c1p
F %p51

` of the first-order term
cm51 of example 3 is NUB but according to the results
Sec. II itsL2 convergence guarantees that eachc1p

F is reli-
able on a region@0,x1p# which can be estimated as follow
An arrangement of the terms ofc1p

F , Eq. ~3.7!, yields c1p
F

5xexp@2x2(e/2)1/2#f1p(x) with f1p5f1pquq52p21 and
f1pq given by

f1pq5(
j 51

q

c1p jx
j 21, ~4.1!

FIG. 9. Graph of log10uCn /CDu and log10uRn /CDu vs x of ex-
ample 5.

FIG. 10. Graph of log10uCn /CDu and log10uRn /CDu vs x of
example 5.
s

whosec1p j’s are p dependent. Table IV shows that forp
58 andx52,4 the numerical sequence$fpq(x)%q51

2p21 has the
property that Df1pq(x)5uf1p,q21(x)/f1pq(x)21u de-
creases monotonically asq→2p21 whereas with x
56,8,10, Df1pq(x) does not exhibit a convergence patte
asq→2p21. A survey of the ratioc1p

F /e2x plotted in Figs.
5 and 11 shows that the valuesx52,4 belong to the interva
on which c1,p58

F exhibits a converged behavior while th
othersx’s are in the interval on which the tail ofc1,p58

F is
clearly wrong. This suggests the use of the convergence
tern of $Dfpq(x)%q51

2p21 to estimatex1p by

x1p5sup
x>0

$x:Df1pq~x!,d with q52p21%. ~4.2!

Table IV shows thex1p’s estimated withd51023 for some
p’s @24#. The goodness of@0,x1p# to be the reliability region
of c1p

F is supported by the following facts:~i! The increment
of x1p as p increases is congruent with the fact that theL2

convergence of$c1p
F %p51

` towardc1 guarantees that the reli

TABLE IV. Convergence of the sequence$f1pq(x)%q55
2p21 with

p58 @Eq. ~4.1!# for somex values, example 3 withl50.1. The last
row reports approximatedx1p’s for which eachp fixed sequence
$f1pq(x)%q55

2p21 satisfies Eq.~4.2! with d50.001.

q x52 x54 x56 x58 x510

5 21.104 23.643 23.3@1# 21.3@2# 23.4@2#

7 21.000 3.020 4.3@1# 3.0@2# 1.3@3#

9 21.009 0.603 21.9@1# 23.2@2# 22.4@3#

11 21.009 1.069 7.9 1.6@2# 2.1@3#

13 21.009 1.025 2.2 22.3@1# 26.0@2#

15 21.009 1.027 2.6 3.4 6.7

p 4 8 12 16
x1p 1.2 2.8 4.9 6.1

FIG. 11. Graph ofc1p
F /e2x vs x with Fourierc1p

F ’s of example
3 with l50.1.
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ablity region of eachc1p
F increases asp→`, ~ii ! a survey of

Figs. 5 and 11 shows that@0,x1p# agrees well with the region
on whichc1p

F exhibits a converged behavior asp increases,
and ~iii ! in agreement with Eqs.~2.2! and ~2.3! the ‘‘local’’
sequences$xk(xp8c1p

F )%p reported in Table V, where
xp8(x)51 for xP@0,x1p8# and xp850 otherwise, are de
creasing and therefore convergent whereas the comp
integral sequences$xk(c1p

F )%p reported in the same table a
monotonically increasing with largek as expected from the
nonuniform boundedness of$c1p

F %p . The same procedur
can be applied to estimate the reliability region@0,xmpm

# of

the Fourier expansionscmpm

F with pm terms of themth-order

coefficientscm . Thus, if xmpm
51 on @0,xmpm

# and xmpm

50 otherwise, the right-hand term of the expression

C~l,x!;c0~x!1 (
m51

`

xmpm
cmpm

F ~x!lm ~4.3!

only considers the reliable part of each finite Fourier exp
sion cmpm

F and tends toC in the L2 norm as thepm’s are

made larger. Of course, if the partial sums from Eq.~4.3!
constitute a UB sequence, then such partial sums can be
to compute expectation values or to obtain a correct glo
convergence towardC; otherwise we have to combine Eq
~4.3! with a summability method as is done below.

TABLE V. Local expectation values xk(xp8c1p
F )

5*0
x1p8uc1p

F u2xk dx and expectation valuesxk(c1p
F ) ~for which

x1p85`) from the Fourier expansionc1p
F for example 3 withe

51022 andl50.1. The quantitiesx0(xp8c1p
F )5ixp8c1p

F i2 and the
ratiosxk(xp8c1p

F )/x0(xp8c1p
F ) with k>2 are reported.

p x0 x2 x8 x9

x1,p85852.8
4 1.346 14.09 4.02@5# 2.45@6#

8 1.371 13.76 4.73@5# 2.94@6#

12 1.374 13.64 4.68@5# 2.92@6#

16 1.375 13.64 4.66@5# 2.90@6#

x1,p851254.9
4 1.346 15.27 1.05@6# 8.70@6#

8 1.371 14.45 7.10@5# 5.00@6#

12 1.374 14.38 6.89@5# 4.78@6#

16 1.375 14.37 6.83@5# 4.72@6#

x1,p851656.1
4 1.346 15.27 1.06@6# 8.76@6#

8 1.371 14.48 9.40@5# 8.36@6#

12 1.374 14.39 7.27@5# 5.34@6#

16 1.375 14.37 6.99@5# 4.95@6#

x1,p85`

4 1.346 15.27 1.1@6# 8.8@6#

8 1.371 14.48 9.5@5# 8.6@6#

12 1.374 14.40 9.8@5# 9.9@6#

16 1.375 14.37 1.0@6# 1.1@7#
te-

-

sed
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B. Functional Padé-approximant sequenceŝ Rn‰ from NUB
sequenceŝ Cn‰

Examples 1 and 2 showed that regular perturbationsV of
a given HamiltonianH0 can generate sequences$Cn% with a
nonempty setDNUB and therefore with an incorrect globa
convergence toward the trueC despite itsL2 convergence
for small l in DNUB. If $Cn% is L2 convergent, we can, a
least in principle, find the reliability region of eachCn to
computeC or the expectation valuesS(C) as was done
above but a more convenient way may be the use of a s
mability method that takes advantage of the fact thatCn is a
power series ofl. For instance,Cn can be approximated by
the functional Pade´ approximant@25#

Rn~l,x!5F (
k50

n

ak~x!lkG Y F11 (
k51

n

bk~x!lkG , ~4.4!

and the question is then to determine if the seque
$Rn(l,x)%n converges in some sense toC ~in particular if it
is L2 convergent! and is UB. This is not an easy task if w
consider that, under the assumption thatC(l,x0) is l ana-
lytic in the usual sense of complex functions, the strong
property that thex0-fixed sequence$Rn(l,x0)% may have is
given by the Pade´ conjecture; namely, there exists a subs
quence of$Rn(l,x0)% that converges uniformly toC(l,x0)
on certain bounded sets ofl space@8#. In our caseC(l,x0)
may not be an analytic function for somex0’s or potentialsV
and the convergence of its formalC series has been estab
lished rigorously only in theL2 sense@Eq. ~3.4!# for regular
V. Since a rigorous proof of, for example, theL2 conver-
gence and the uniform boundednes of$Rn(l,x)%n is a for-
midable mathematical problem, we shall examine num
cally the convergence and boundedness properties of
sequences$Rn(l,x)% associated with the examples of Se
III.

Consider the 1s sequence$Cn% of example 1 which is
NUB for lPDNUB5(2`,0). Figure 2 shows the graph o
Cn /C and the corresponding ratiosRn /C with l520.9.

FIG. 12. Graph of log10 Cn /C and log10 Rn /C vs x of exam-
ple 1.
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The results are surprising:~i! $Rn% converges uniformly toC
on finite intervals@0,x0# and ~ii ! $Rn% is UB, because the
Rn’s have the monotonic propertyRn11<Rn on @5,̀ ) ~Cor-
ollary 2!. To these results we can add the following. It
known that Pade´ approximants can accelerate the conv
gence rate of many power series and extend their con
gence radius and theRn’s are not the exception. Figures
and 12 show the ratiosCn /C and Rn /C with l520.9,
25 and we observe that the convergence rate of$Rn% on a
finite interval @0,x0# is faster than that of its correspondin
sequence$Cn%. On the other hand, the formalC series has a
convergence radiuslC less than 1 becauseH(l) has no
bound eigenstate withl>1, but Fig. 12 shows that$Rn%
converges correctly on a finite interval@0,x0# and is UB with
ul525u.lC . The correctglobal convergence of$Rn%
should be reflected by a correct convergence of expecta
value sequences$S(Rn)%. In principle S(Rn) can be com-
puted by numerical quadrature but this procedure may
quire large computational resources to getRn(l,x) on a
densex mesh. Instead one can compute Pade´ approximants
of the l series ofS(C); for example, from the series

xk~C!5 (
m50

`

xm
(k)lm, ~4.5a!

where

xm
(k)5(

l 50

m

^c l ,xkcm2 l&, ~4.5b!

TABLE VI. Padéapproximantsr n
(k)(l) @Eq. ~4.6!# and expecta-

tion valuesxk(Cn) from the Cn’s of example 1. The quantities
r (0)(l), xn

(0)(Cn) and the ratiosr n
(k)(l)/r n

(0)(l), xk(Cn)/x0(Cn)
with k>2 are reported.

n x0 x2 x3 x4

l520.9
r n

(k)(l)
4 3.723 1.327 3.306 1.18@1#

8 3.645 0.8313 1.098 1.768
12 3.645 0.8310 1.093 1.727
Exa 3.645 0.8310 1.093 1.727

n x0 x1 x2 x3

l525.0
xk(Cn)

4 8.9@5# 5.6 3.4@1# 2.3@2#

8 8.2@11# 9.7 9.8@1# 1.0@3#

12 5.6@17# 1.4@1# 1.9@2# 2.8@3#

Exa 1.157@1# 2.5@21# 8.333 3.472

r n
(k)(l)

4 1.208 3.360 1.1@1# 3.7@1#

8 1.157@1# 2.50@21# 1.195 1.1@1#

12 1.157@1# 2.50@21# 8.333 3.472
Exa 1.157@1# 2.50@21# 8.333 3.472

aExact values from the~unnormalized! exactC5xe2(12l)x.
-
r-

on

e-

we get the Pade´ approximants@25#

r n
(k)~l!5F(

l 50

n

akll
l G Y F11(

l 51

n

bkll
l G . ~4.6!

As expected, Table VI shows that the sequences$r n
(k)(l)%n

converge to their correct limits withl520.9,25 in DNUB

whereas the corresponding sequences$xk(Cn)%n diverge
from k52 with a rate that increases asl goes from20.9 to
25 ~see also Table I!.

For example 2 we haveDNUB5(0,̀ ) but, as occurs with
example 1, Fig. 4 shows that the sequence$Rn% with l
50.4 converges correctly on a finite interval@0,7# and is UB
whereas the corresponding sequence$Cn% has a slower con-
vergence on@0,7# and is NUB. Similar results are obtaine
with larger l ’s which can be greater than the convergen
radiuslC (,0.5) of the formalC series. For example, a
comparison between the momentsxk(Cn) and their Pade´
approximantsr n

(k)(l) reported in Tables II and VII withl
50.6,5 shows the correct convergence of$r n

(k)(l)%n whereas
$xk(Cn)%n diverges rapidly fromk52. It should be noticed
that Cn yields the series

xk~Cn!5 (
m50

n

xm
(k)lm1 (

m5n11

2n

xnm
(k)lm, ~4.7!

where only thexm
(k)’s are given by Eq.~4.5b! and whose Pade´

approximant

TABLE VII. Padéapproximantsr n
(k)(l) @Eq. ~4.6!# andqn

(k)(l)
@Eq. ~4.8!# from theC series and their partial sumsCn’s, respec-
tively, of example 2. The quantitiesr (0)(l), qn

(0)(l) and the ratios
r n

(k)(l)/r n
(0)(l), qn

(k)(l)/qn
(0)(l) with k>2 are reported.

n x2 x10 x24 x30

l50.6
r n

(k)(l)
4 0.3371 4.248 8.073@6# 2.97@10#

12 0.3371 4.114 6.809@5# 5.110@8#

20 0.3371 4.114 6.809@5# 5.106@8#

Exa 0.3371 4.114 6.809@5# 5.106@8#

n x0 x2 x6 x8

l55.0
r n

(k)(l)
6 0.5581 0.1516 4.630@22# 6.642@22#

12 0.5493 0.1508 5.132@22# 5.431@22#

18 0.5491 0.1508 5.139@22# 5.424@22#

Exa 0.1508 5.139@22# 5.424@22#

qn
(k)(l)

6 1.182 1.643 2.4@1# 1.6@2#

12 1.073 1.502 3.6@1# 3.2@2#

18 1.045 1.432 4.7@1# 5.0@2#

Exa 0.1508 5.139@22# 5.424@22#

aExact values fromC5p21/4 exp@2(112l)1/2x2/2#.
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qn
(k)~l!5F(

l 50

n

ckll
l G Y F11(

l 51

n

dkll
l G ~4.8!

diverges asn→` with a largek andlPDNUB. This is illus-
trated by results reported in Table VII which shows th
$r n

(k)(l)%n converges correctly withl55PDNUB whereas
the corresponding sequence$qn

(k)(l)%n diverges withk>6.
Results from theV-singular examples 4 and 5 showed th

the ground state sequences$Cn% have the setDNUB5(0,̀ )
that ~exceptingl50) agrees with the set ofl ’s for which
H(l) has bounded states and thereforeDUB5$0%, a result
that may reflect the fact that the correspondingE series have
a zero convergence radius. Fortunately, the correspon
functional Pade´ approximants$Rn% behave like those from
examples 1 and 2. In fact, Figs. 7–10 show that the
quences$Rn% converge correctly on finite intervals and a
UB. As expected, these results are reflected by the cor
convergence of Pade´ approximantsr n

(k)(l) for the 1s eigen-
state of example 4 reported in Table VIII withl
50.05,0.2,1.0 whereas their correspondingxk(Cn)’s diverge
rapidly except forx0(Cn) with l50.05 as Table III shows

V. SUMMARY AND DISCUSSION

Several criteria for studying the quality of approximatin
wave functions such as information theory criteria@26# and
metrics in the Hilbert spaceL2(RN) @27# have been propose
but they have the deficiency of being insensitive to the n
uniform boundedness problem. Examples 1–5 and the re
reported in@4# show that the boundedness property of a
quence of wave functions$Fn%n51

` can be determined by

TABLE VIII. Padé approximantsr n
(k)(l) @Eq. ~4.6!# corre-

sponding to the expectation valuesxk(Cn) of Table III for the 1s
state of example 4. The quantitiesr n

(0)(l) and the ratios
r n

(k)(l)/r n
(0)(l) with k>1 are reported.

n x0 x1 x2 x3

l50.05
4 0.23551 1.3849 2.5147 5.6177
6 0.23551 1.3848 2.5143 5.6162
8 0.23550 1.3848 2.5142 5.6162
10 0.23550 1.3848 2.5142 5.6162
Exa 1.3848 2.5142 5.6162

l50.2
4 0.2139 1.2110 1.885 3.537
6 0.2134 1.2059 1.869 3.499
8 0.2134 1.2049 1.866 3.493
10 0.2134 1.2047 1.865 3.491
Exa 1.2046 1.865 3.491

l51.0
4 0.1876 0.987 1.21 1.66
6 0.1838 0.943 1.10 1.47
8 0.1823 0.923 1.06 1.41
10 0.1817 0.913 1.04 1.38
Exa 0.900 1.02 1.36

aExact values from a normalized Dirichlet wave function@21#.
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monitoring the ratioFn /cB with a cB properly chosen or by
means of the convergence of sequences$xk(Fn)%n51

` for
large values ofk ~see Proposition 2 and Corollaries 1 and 2!.
According to Proposition 1 theL2 convergence criterion and
the uniform boundedness yield a suitable way to determ
the quality of theglobal convergence of$Fn%n51

` : the L2

convergence guarantees a correctlocal approximation to-
ward the true wave functionC on bounded regionsVn that
increase asn does while the uniform boundedness guarant
that the error ofFn on the complementary regionVn

c re-
mains bounded and, therefore, vanishes asn→`. Conver-
gence in the norm ofL2(RN) can be replaced by other crite
ria but it has the feature of being a weak condition to
satisfied by sequences$Fn% from variational procedures
@2,3# or some perturbation series@5# in L2(RN) with N.1,
while the boundedness property can be studied with a s
able one-dimensional function as was done in@17# with the
one-electron density for the lithium atom problem.

We dealt with formalC series because analytic perturb
tion theory provides a suitable classification of perturbatio
to characterize some properties of theE andC series@5,7#.
Examples 1–3 showed that a regular perturbationV of a
given HamiltonianH0 can generate NUB sequences$Cn%,
Eq. ~3.1!, despite itsL2 convergence for smalll ’s. An inter-
esting result is that the boundedness property of seque
$Cn% may be a discontinuous function ofl when it varies
continuously within the set ofl values for which the Hamil-
tonian H(l)5H01lV has bound states~remark 1!. It is
known that almost every singular perturbationV generatesE
series with a zero convergence radius@5,7# while the main
and practically unique result about the correspondingC se-
ries is that it is an asymptotic power series expansion of
true C up to a particular power ofl @5,14,15#. Examples 4
and 5 show that the sequences$Cn% can beL2 convergent
but even for smalll they are NUB; that is, they haveDUB

5$0%. This result may be connected with the singular ch
acter ofV or considered as an inherent property ofC series
with E series having a zero convergence radius. In fact
this were not the case, then the sequence$Cn% for the anhar-
monic oscillator would have a correct global convergen
with at least smalll ’s, a result that, intuitively, is incongru
ent with the zero convergence radius of itsE series.

Several methods to computeE series without the diver-
gence problems of formal perturbation series~such as
multiple-scale perturbation theory@28# or the Ricatti method
@29,30#! have been proposed but studies of the newC series
are scarce. It is clear that the study of theL2 convergence
and the boundedness property of the corresponding par
sum sequences$Cn% can yield valuable information abou
the success of such procedures to compute the trueC. For
example, a numerical calculation shows that the Ricc
method @30# provides sequences$Cn% for the ground and
first excited states of examples 1 and 2 that are UB andL2
convergent for alll for which H(l) has bound states; tha
is, such a method yields partial-sum sequences$Cn% with an
emptyset DNUB and a correct global convergence where
for the formal sequences$Cn% the setDUB is bounded by the
small convergence radius of the formalC series andDNUB is
the semi-infinite interval (2`,0) or (0,̀ ) ~remark 2!.

The so-called perturbation theory without a wave functi
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provides the coefficients of formalE series and other expec
tation values likexk(C) without an explicit calculation of
the corresponding formalC series@31# but such a procedure
may hide the incorrect global convergence of the seque
$Cn%, Eq. ~3.1!, and, therefore, lead to wrong results or co
clusions. For example, since the coefficientsxm

(k) of xk(C)
@Eq. ~4.5a!# are uniquely determined by those of theC series
through Eq.~4.5b!, the partial-sum sequence$xk(Cn)%n will
be divergent with a largek if $Cn% is NUB, independently of
the regular or singular character of the perturbationV.

We considered that for the examples studied here
functional Pade´ approximant sequences$Rn%, Eq. ~4.4!, are
L2 convergent and uniformly bounded with smalll ’s by
considering the tendency of the firstRn’s although in strict
mathematical terms such properties should be determ
with an analysis of the whole set$Rn%n51

` as Corollary 2
requires. To test numerically these properties with largel
andn values one has to be careful with the loss of precis
caused by the rapid growth of the coefficientsucm(x)u asm
increases with eachx value, in particular with theCn’s from
singularV’s whose coefficients increase as rapidly as th
of the correspondingE series, because such a precision lo
may hide the true properties of$Rn%n51

` . This latter problem
may be solved partly by scaling or using other summabi
methods@7–13#. In principle any summability method ap
plied to the formalE series to get the true energyE(l) can
also be applied to theC series@32#. Although the correct
global convergence of the sequence$Rn% or approximating
wave functions provided by other summability methods m
fail, the study of their local convergence and boundedn
property can yield useful, reliable physical information co
patible with their accuracy in some bounded regionV as was
done with the NUB sequence$c1p

F % of Sec. IV A. A study of
the problem of determining the reliability region of an a
proximating wave function that includes a careful analysis
s
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the criterion proposed in Sec. IV A for Fourier sequenc
will be given in a forthcoming work.

In this work and the previous one@4# we have considered
the nonuniform boundedness of variational wave functio
and eigenfunction perturbation series separately but the
no reason to expect that the combination of these approa
called ‘‘variation-perturbation theory’’@1# does not yield
nonuniformly bounded sequences of approximating wa
functions. To date, the unique approach that in rigoro
mathematical terms solves the nonuniform boundedn
problem is the Dirichlet wave functions approach which,
simple terms, consists of the following. The exact Dirich
wave functionsCV for the eigenproblemHC5EC in
L2(RN) are the eigensolutions of the corresponding eig
problemHVCV5EVCV on aboundedregionV of RN with
the conditionCV50 on the boundary]V of V, HV being
the self-adjoint Hamiltonian defined onL2(V) by the bound-
ary condition on]V. TheCV’s and their numerical approxi
mations CV,n obtained from standard numerical metho
~which include variational and finite difference method!
converge to the bound state eigenfunctionsC as V→RN

@33,34# and in a natural way such functions are UB@17,20#.
If we take into account that manysingularperturbationsV of
a HamiltonianH0 in L2(RN) areregular perturbations of the
corresponding HamiltonianH0,V defined by Dirichlet bound-
ary conditions on]V @35#, it seems reasonable to expect th
variation-perturbation theory combined with the Dirichl
approach can also yield approximating wave functions wit
correct global convergence. This will be studied in a for
coming work.
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