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Semiclassical theory of two-photon polarization-dependent fractional optical collisions:
Application to the Mg-He„3s2 1S0˜3p 1P1˜5s 1S0, 4d 1D2… optical collision

D. V. Kupriyanov, I. M. Sokolov, A. V. Slavgorodskii, and A. I. Trubilko*
Department of Theoretical Physics, State Technical University, 195251 St. Petersburg, Russia

~Received 8 December 1998!

We have analyzed by perturbation theory technique two-photon polarization-dependent fractional optical
collisions. In its general form the cross section of the collision is expressed as the overlap integral of its
spectral profile with the spectrum of the second order correlation function of the electromagnetic field. Based
on the semiclassical expansion of radial wave functions and of a retarded Green function we have expressed
the spectral profile of the cross section in terms of well understood semiclassical characteristics of the process
such as the rotational transformations of the transition dipole moments and the transition amplitudes describing
the adiabatic or nonadiabatic dynamics of the electronic subsystem along classical trajectories. As a practical
example, we have calculated the Mg-He (3s2 1S0˜3p 1P1˜5s 1S0, 4d 1D2) fractional optical collision cross
section. The partial wave analysis for excitation up to the 5s 1S0 state has shown the nonvalidity of quasistatic
approximation based on successive single-photon transitions for some frequency detunings. For example, for
the positive detuning from two-photon atomic resonance we have obtained the dominant contribution coming
from the direct two-photon Franck-Condon transitions. Such a contribution gives the magnitude of the polar-
ization ratio, characterizing the dependence of the cross section on mutual laser polarizations at the first and at
the second steps of the photoexcitation, different than for successive single-photon Franck-Condon transitions.
In the more complicated case of excitation up to the 4d 1D2 state of magnesium the role of the interference
between different photoexcitation channels becomes important. The polarization ratio has a stable value close
to 1

7 in a broad spectral range in the blue wing of the second frequency detuning. There is a strong dependence
of the polarization ratio in the red wing of the second detuning. Such spectral behavior can be explained by the
partial selection in the red wing of the atomic resonance line, perturbed by the collisions of those Zeeman
transitions in which contributions in the polarization ratio have different orders and different signs.
@S1050-2947~99!08308-0#

PACS number~s!: 34.50.Rk, 34.80.Qb, 33.80.Gj
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I. INTRODUCTION

The experiments on optical collisions are successfu
used as a tool for the study of interatomic interactions a
internal dynamics of atomic collisions@1–9#. The idea of the
method is a probe by laser radiation of the diatomic sys
created in an atomic collision. The outgoing excited atom
fragments carrying the information about interrupted co
sion can be detected either directly in atomic beam exp
ments@7,9# or indirectly by measuring the atomic fluore
cence in cell experiments@3–6,8#. In the latter case the
transformation of exciting light into atomic fluorescence o
served in the experiment is often called in literature co
sional redistribution of light. Being an example of th
continuum-continuum spectroscopy, the optical collisi
technique provides effective and sometimes the only ac
sible information when no transitions to bound states c
tribute in an absorption spectrum. The general problem
description of experimental results is that typically there
many optical transitions and decaying channels involved
the process, which can interfere and interact with one
other. Therefore in practical realizations of the technique
additional polarization-dependent monitoring of optical c
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lision is very useful because it often makes the spec
analysis more clear. By measuring the polarization dep
dence of far-wing absorption profiles we can better und
stand such polarization-sensitive characteristics of the p
cess as the symmetry of the optical transitions a
nonadiabatic dynamics.

In Refs. @10–12# the optical collision method was dis
cussed in the more general case of two-photon collisio
redistribution of radiation. The photoexcitation and the pro
of a colliding pair by nonresonant photons under quasist
~or close to quasistatic! conditions makes it possible to prob
in experiment even a small segment of an atomic collis
trajectory. The preliminary demonstration of such a prom
ing experimental technique, named fractional optical co
sions, was done recently in experiments@13# on magnesium–
rare-gas partner optical collision. Because t
photoabsorption spectra are usually presented as a fun
of two detunings between the photon frequencies and
resonance frequencies relating to the transitions into up
and intermediate atomic states, the spectral analysis of f
tional optical collision is more complicated than in th
single-photon case. The experimental data provided in
experiments@13# showed that in such a case the polarizatio
dependent monitoring is most helpful and informative in t
analysis of the photoabsorption spectra.

There is another peculiarity of the two-photon optical c
lision technique connected with statistical properties of
citing light, which would be interesting to study in an expe
ment. For example, if there were mutual correlation
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PRA 60 2231SEMICLASSICAL THEORY OF TWO-PHOTON . . .
photon fluxes of both the exciting light beams, it would al
lead to the correlation of photoabsorption events. Such
ternal correlation could make it possible to observe the in
nal correlation of photoabsorption events directly connec
with the dynamics of the fractional collision itself. In
simple case, in quasistatic conditions, it makes possible
servation of the time delay in atomic motion between Co
don points. We can point out here some analogy with
experimental technique commonly used in modern pho
chemistry and based on ultrashort laser pulses, which d
onstrates the direct resolution and control of internal wa
packet dynamics in ~steplike! photoexcitation of the
molecules by time-delayed~-correlated! femtosecond lase
pulses, see Refs.@14,15#, and references therein.

In the present paper we are going to develop the theor
two-photon fractional optical collisions from two points o
view. First, we are motivated to make a physically cle
semiclassical analysis of two-photon polarization-depend
absorption based on second order of perturbation theory.
general expressions derived can be used for explanatio
polarization-dependent spectra of optical collisions obser
in experiments. We consider here the example of Mg-
fractional optical collision, because for such a pair the int
action potentials in the excited states can be calculated
better accuracy than for other rare-gas partners. Secondly
are motivated to involve in our analysis the correlation pro
erties of exciting light and we develop the theory valid f
the light with arbitrary statistics, which can be either clas
cal or nonclassical. It is important that in our discussion
treat in semiclassical approximation only the dynamics of
atomic subsystem, but we follow this with a complete qua
tum analysis in describing the electromagnetic field s
system. The effects of mutual correlation connected w
classical or quantum statistics of the excited light can
rather interesting for planning new experiments on tw
photon fractional optical collisions.

The paper is organized as follows. In Sec. II we pres
general perturbation theory analysis of the diatomic den
matrix based on Keldysh diagram technique. In Sec. III
derive the quantum and semiclassical expressions for the
tical collision cross section. In Sec. IV we present the res
of numerical calculations for Mg-He optical collisions. Se
tion V is devoted to conclusions.

II. GENERAL ANALYSIS OF THE OPTICAL EXCITATION
OF A DIATOMIC SYSTEM IN THE SECOND ORDER

OF PERTURBATION THEORY

A. Diagram expansion for the diatomic density matrix

In this section we derive general expressions for the d
sity matrix of a diatomic system produced by two-phot
optical excitation of an arbitrary initial state. Our approach
based on the perturbation theory with a quantum descrip
of exciting light valid for an arbitrary quantum state of a
electromagnetic field. We point out that in nonlinear optic
processes like two-photon absorption the quantum and c
sical descriptions of the light can lead to some difference
final results. To remove from our discussion possible in
curacy coming from the classical description, our analysi
based on a general second quantized formalism. We ad
to a convenient diagram approach developed by Konsta
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nov and Perel in@16# and Keldysh in@17#, see also@18#, for
arbitrary nonequilibrium many-particle quantum systems.
the Keldysh diagram formalism the density matrix of a
particle ~simple or compound! can be obtained through th
perturbation theory expansion of the following Green fun
tion:

iG f f 8
~21 !

~r t;r 8t8!56^C f 8
†

~r 8t8!C f~r t !&, ~2.1!

where C f(...) and C f 8
† (...) are thespace-time-dependen

annihilation and creation operators of the particles in
Heisenberg representation. We denote asr ,r 8 the center of
mass coordinates and asf , f 8 the sets of internal quantum
numbers of the particles. The angle brackets describe
averaging over the full initial density operator of the syste
We assume that initially the density operator can be spli
the product of the operators for different subsystems: p
ticles, fields, etc. Then the single-particle density matrix c
be obtained by taking the Green function~2.1! at coincident
times as follows:

r f f 8~r ,r 8;t !56 iG f f 8
~21 !

~r t;r 8t !. ~2.2!

The upper/lower signs in Eqs.~2.1!,~2.2! relate to boson or
fermion statistics, respectively.

Generalizing the approach of@16–18# we assume here
that C,C† operators can be treated as the second quant
operators of a compound diatomic system, i.e., quasim
cule. This means that we consider the gas medium where
active atoms~interacted with a field! are put in an environ-
ment of highly concentrated foreign gas. The energy str
ture of the active atoms is quasiresonant to the spectrum
optical excitation, but the interaction with foreign atoms
strong enough to perturb the energy levels of the active a
and it cannot be ignored in calculation of the photoabso
tion spectrum. In such a case quantum numbersf , f 8 are
associated with the full set of diatomic quantum numbers
in dependence on recoil energy they can related to either
bound or continuous spectrum of the system. Particularly
the optical collision case, when transitions are initiated
tween continuous spectra of both the lower and upper sta
we apply the Green function formalism to the system wh
internal states are nonbound and quantum numbersf , f 8 are
associated with the continuous spectrum of the quasim
cule. The presence of the quantum statistics permuta
change of the sign in Eqs.~2.1!,~2.2! is not really important
if the diatomic gas has Boltzmann statistics.

Let us assume that initially all the atoms and quasim
ecules are in the lower energy states described by the s
quantum numbersi and they can be excited in the upp
statesf by two-photon optical excitation only. We restric
ourselves by considering the interaction of the quasimolec
with the radiation in the dipole and rotating wave appro
mation when the interaction Hamiltonian in the interacti
representation is given by

V~r ,t !52(
ab

~dn!baEn
~1 !~r ,t !Cb

~0!†~r ,t !Ca
~0!~r ,t !1H.c.,

~2.3!

where En
(1)(...) is the positive frequency part of thenth
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component of an electric field vector and (dn)ba is the tran-
sition dipole matrix element between any lowera and upper
statesb. We use here and throughout covariant notation
tensor indices because the difference between covariant
contravariant components can be important in the irreduc
th
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representation, see@19#. TheC operators with zero indices in
Eq. ~2.3! are associated with the interaction representati
The excited-state Green function appears in the second o
of perturbation theory and it can be described by the follo
ing Keldysh-type diagram:
~2.4!
rder
ial
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he

s-
where we kept only the lowest order in the interaction of
quasimolecule with the electromagnetic field. Intern
straight lines in this diagram are retarded and advanced
atomic Green functions describing the evolution of the s
tem in an intermediate state. The waved lines and vert
are the photon propagation functions and interactions w
the field, respectively. The dashed block in diagram~2.4! is
the general second order correlation function of the elec
magnetic field, which was introduced by Glauber@20#, and
its analytical definition will be given below in Eq.~2.6!. We
assume in diagram~2.4! the general quantum state of th
light initiating the two-photon transitions.

Our analytical analysis of the diagram~2.4! is based on
the following assumptions. First, it is convenient to make
calculation in the center of mass frame. This permits of
kinetic energy of the system after excitation because i
much less in order of magnitude than the rate of spontane
decay. The latter characterizes the relaxation of excited
intermediate states and gives a natural scale for evalua
the integrals over internal time arguments. Secondly,
need to know the density matrix of the internal state of
diatomic system only, which is given by the integral
e
l
i-
-
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r f f 8~ t !56E iG f f 8
~21 !

~r t;r t !d3r . ~2.5!

To evaluate this integral we assume that the second o
electric field correlation function taken at coincident spat
points does not depend on spatial coordinates, i.e.,

^T̃@En
18

~2 !
~r t18!En

28
~2 !

~r t28!#T@En1

~1 !~r t1!En2

~1 !~r t2!#&

5Dn1n2 ;n
18n

28
~ t1 ,t2 ;t18 ,t28!, ~2.6!

whereT andT̃ are the time ordering and antiordering oper
tors andEn

(6)(...) are thepositive and negative frequenc
components of the electric field. Physically this means s
tial homogeneous excitation in an optically thin mediu
Third, we assume that the exciting radiation is quasimo
chromatic, so the integrals overt1 ,t18 and t2 ,t28 are deter-
mined mainly by the interaction with the modes near t
average frequenciesv̄1 and v̄2 , respectively.

With such assumptions we obtain the following expre
sion for the density matrix of the internal state:
r f f 8~ t !5(
i i 8

(
rr 8

E E E E dt1dt2dt18dt28

3expS 2
i

\
e f~ t2t2!2

1

2
g f~ t2t2!2

i

\
e r~ t22t1!2

1

2
g r~ t22t1!2

i

\
e i t1D

3expS i

\
e f 8~ t2t28!2

1

2
g f 8~ t2t28!1

i

\
e r 8~ t282t18!2

1

2
g r 8~ t282t18!1

i

\
e i 8t18D

3u~ t2t2!u~ t22t1!u~ t2t28!u~ t282t18!r i i 8

3S i

\ D 2

~dn2! f r~dn1!ri S 2
i

\ D 2

~dn28!r 8 f 8~dn18! i 8r 8Dn1n2 ;n
18n

28
~ t1 ,t2 ;t18 ,t28!, ~2.7!
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where e i ,e f ,e r are the internal energies for initial~i! and
final ~f !, and intermediate~r! states, respectively;g f ,g r are
the rates of spontaneous decays of excited states; andr i i 8 is
the initial density matrix of the quasimolecule. The st
function u~t! is equal to 1 or 0 fort.0 or t,0, respec-
tively.

B. Generalized distorted-wave approximation

The derived expression~2.7! shows the relationship be
tween initial and excited density matrices for weak exciti
light existing in an arbitrary quantum state. But such a g
eral expression is still formal as long as it does not spe
the basis sets for initial and excited states. Moreover, con
ered at arbitrary time arguments and in non-steady-state
ditions, it is too general and contains many details which
be unimportant for real experimental situations. Therefor
is convenient to transform Eq.~2.7! to a less general bu
clearer form of the collisional cross section where opti
excitation plays the role of a small perturbation interac
with the system during the collision. In quantum scatter
theory such an approach is known as the distorted-wave
proximation and it was introduced in optical collision theo
by Julienne and co-workers in@21,22# in the example of a
single-photon optical collision.

Let us define the density matrix in a coordinate repres
tation by the following transformation:

r~R,q;R8,q8;t !5(
f f 8

C f~R,q!r f f 8~ t !C f 8
* ~R8,q8!,

~2.8!

where we choose asf representation the basis of outgoin
wave functions determined by the following boundary co
dition:

C f~R,q![Ckm
~2 !~R,q!˜eik•Rcm~q!

1(
m̄

1

R
e2 i k̄Rf m̄m

~2 !~ k̄,k!cm̄~q!. ~2.9!

Here R is the radius vector of the internuclear axis andq
denotes the set of all electronic~including spin! coordinates.
The wave functioncm(q) is the atomic wave function of a
free atom. We consider here the case when the foreign a
is in the ground state with the1S0 configuration conserved
during the collision. To simplify notation here and throug
out, in the set of atomic quantum numbers we show only
angular momentum projectionm and omit the angular mo
mentumj as well as other quantum numbers whenever p
sible. However, we note that the internal atomic states ca
characterized by the quantum numbers relating to differ
recoil energies, so the incoming wave numberk̄ in scattering
amplitudef m̄m

(2)( k̄,k) can differ from the outgoing wave num
ber k.

Based on the coordinate representation of the density
trix ~2.8! we can introduce the probability flux of outgoin
particles as follows:
-
y
d-
n-
n
it
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-
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e
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nt

a-

j ~q,q8;R,t !5
i\

2m
@“R8r~R,q;R8,q8;t !

2“Rr~R,q;R8,q8;t !#U
R85R

. ~2.10!

The differential cross section in the center-of-mass frame
be associated with this flux propagating in an arbitrary dir
tion taken at asymptoteR,t˜` and normalized to the inci-
dent flux of incoming particles. In such a procedure we
nore radiative decay of upper and intermediate excited st
and substituteg f andg r by 10. It seems reasonable becau
the scattering asymptote of the wave packet, described
density matrix~2.7!, conserves its shape as long as the
cited quasimolecule disappears as a result of spontan
decay. However, it is important to save the decay consta
as 10 for the intermediate state because they show cor
analytical behavior of the energy denominators in the vici
ties of the resonance energy. We should point out here
such an approximation restricts our discussion and does
allow consideration of the cases of resonances relating
pure single- or two-photon absorption by free atoms.

As the basis set of initial statesi we use the set of incom
ing wave functions determined by the following bounda
condition:

C i~R,q![Ck0m0

~1 ! ~R,q!˜eik0•Rcm0
~q!

1(
m̄0

1

R
eik̄0Rf m̄0m0

~1 ! ~ k̄0 ,k0!cm̄0
~q!. ~2.11!

Such a basis set is most suitable to define the probability
of colliding atoms. For unit normalization volume the pro
ability flux is given by \k0 /m, where m is the reduced
atomic mass.

Substituting wave functions~2.9!,~2.11! into ~2.8!,~2.10!
and making typical scattering theory approximations w
respect to the asimptotic behavior of the wave packet,
obtain the following expression for the differential cross se
tion of the optical collision:

dsmm8
dVk

5E E E E dv1

2p

dv2

2p

dv18

2p

dv28

2p

3Dn1n2 ;n
18n

28
~v1 ,v2 ;v18 ,v28! (

m0m08

1

~2p!2

m2k

\4k0

3^Ckm
~2 !udn2G~1 !

„em0
~k0!1\v1…d

n1uCk0m0

~1 ! &rm0m
08

3^Ck0m
08

~1 ! udn18G~2 !
„em

08
~k0!1\v18…d

n28uCkm8
~2 ! &.

~2.12!

The differential cross section describes the formation of
excited atoms outgoing in the direction of solid angleVk and
characterized by the coherence betweenm,m8 atomic states.
The solid angle in Eq.~2.12! characterizes the direction o
the outgoing wave vectork in the reference frame with thez
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axis along incoming wave vectork0 . The evolution of the
system in an intermediate state is described by retarded
advanced Green operatorsG(1)(e) and G(2)(e) which are
given by

G~6 !~e !5
1

e2H6 i0
, ~2.13!
s-

rc
x-

gh
e
be
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ti-
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to
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whereH is the Hamiltonian of the diatomic system and t
arguments of the Green operators in Eq.~2.12! are the virtual
energies of the intermediate state. The polarization stat
the atom before the collision is described by its polarizat
density matrixrm0m

08
.

As follows from Eq.~2.12! the light correlation function
appears as a Fourier expansion
Dn1n2 ;n
18n

28
~v1 ,v2 ;v18 ,v28!5E E E E dt1dt2dt18dt28 exp~ iv1t11 iv2t22 iv18t182 iv28t28!

3Dn1n2 ;n
18n

28
~ t1 ,t2 ;t18 ,t28! ~2.14!
on
-
l
n
.
lar-

the

by

nd

n is
nts,

nd
of

trix

.
n

defined forv1 ,v2 ,v18 ,v28.0. We note also that the expre
sion for the differential cross section in the form~2.12! can
be derived under the assumption of a stationary light sou
whenv11v25v181v28 . In such a case the energies of e
cited atoms em(k)5em0

(k0)1\(v11v2) and em8(k)

5em
08
(k0)1\(v181v28) are equal,em(k)5em8(k) and k8

5k, because the Zeeman statesm,m8 belong to the same
degenerate atomic level. Otherwise, for a general li
source, it is possible to produce coherence not only betw
Zeeman states but also between outgoing wave num
k,k8. We restrict the possible view of the light correlatio
function by a stationary approximation in this paper. From
practical point of view, it means that the excitation is ini
ated by cw light sources or pulsed lasers with pulse dura
much longer than a typical collisional time.

The above analysis shows that, as in other two-pho
processes, in the optical collision case the electromagn
field of the exciting light governs the process by its gene
second order correlation function. Such a type of correlat
functions emphasizing the quantum nature of light appear
different applications of modern quantum optics: in the stu
of light statistics, correlation phenomena and high order
terference. If noncommutation of the operators or quant
behavior of the electric field fluctuations are important
the light statistics, the quantum nature of light can manif
itself in the excitations initiated by two-photon optical col
sions. However, in the existing experiments the two-pho
transitions in the collisional domain were initiated by t
radiation coming from two independent noncorrelated la
sources@13#. In such a case there is no difference betwee
quantum and classical description, because the second
correlation function is factorized as a product of two fi
order correlation functions relating to the independent la
sources.

III. OPTICAL COLLISION CROSS SECTION

A. Quantum-mechanical analysis

The incoming and outgoing wave functions~2.11!, ~2.9!
defined in a laboratory frame can be transformed to
R-helicity basis set as follows:
e

t
en
rs

a

n

n
tic
l
n
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y
-

m
r
t

n

r
a
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t
r

e

Ck0m0

~1 ! ~R,q!5(
V0

~2 !2 j 0Dm02V0

j 0* ~a0 ,b0,0!Ck0V0

~1 ! ~R,q!,

~3.1!

Ckm
~2 !~R,q!5(

V
DmV

j* ~a,b,0!CkV
~2 !~R,q!.

Here V0 and V are the angular-momentum projections
the directions2k0 andk, respectively. We call such projec
tions of angular-momentumR-helicity, because in a classica
picture of the collision the vectorR rotates in space betwee
two ‘‘in’’ and ‘‘out’’ asymptotes of a classical trajectory
Since in the adiabatic approximation the internal angu
momentum projection onR direction is conserved, an
R-helicity representation is more suitable as a basis for
scattering wave functions; see@23,24#. The transformations
between laboratory and helicity frames are described
WignerD functionsDm02V0

j 0 (a0 ,b0,0) andDmV
j (a,b,0) de-

pending on angles, which characterize the directions ofk0
and k in an arbitrary laboratory frame. We use here a
throughout the definition of theD function as in Ref.@19#.

Instead of Zeeman coherences, the atomic polarizatio
better described in terms of irreducible tensor compone
see@25,26,19#. The formation of aKQ irreducible compo-
nent ~defined in covariant form@27#! in the collision is de-
scribed by the following cross section;

dsKQ

dV
5 (

mm8
S 2K11

2 j 11 D 1/2

Cj mKQ
j m8

dsmm8
dV

, ~3.2!

where j is an angular momentum of the outgoing atom a
C... ...

... are the Clebsch-Gordan coefficients in the notation
Ref. @19#. In the same way we can expand the density ma
of the incoming atom in terms ofkq irreducible components
as follows;

rm0m
08
5(

kq
S 2k11

2 j 011D 1/2

C
j 0m0kq

j 0m08 rkq~ j 0!, ~3.3!

where j 0 is the angular momentum of the incoming atom
The polarization structure of electric field correlatio

function ~2.6!, ~2.14! is given by
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Dn1n2 ;n
18n

28
~v1 ,v2 ;v18 ,v28!5~e1!n1

~e2!n2
~e1* !n

18
~e2* !n

28

3D̃~v1 ,v2 ;v18 ,v28!, ~3.4!

wheree1 ,e2 are the polarization vectors of the light in th
vicinities of the average frequenciesv̄1 and v̄2 , i.e., at the
first and at the second steps of the excitation, respectiv
Then we can express the differential cross section~3.2! in the
following form:
to
te

a
n

ro
rre
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ex

c
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u
u
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-
s
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dsKQ

dVk
5E E E E dv1

2p
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2p

dv18

2p

dv28

2p
D̃~v1 ,v2 ;v18 ,v28!

3
ds̃KQ

dVk
~v1 ,v2 ;v18 ,v28!, ~3.5!

where we introduced the following spectral profile of th
cross section:
ds̃KQ

dVk
~v1 ,v2 ;v18 ,v28!5

1

~2p!2

m2k

\4k0
(

V0V08
(
VV8

(
kq

rkq~ j 0!~2 ! j 2V1 j 01V0Cj V8 j 2V
K~V82V!

3C
j 02V

08 j 0V0

k~V02V08!
DQV82V

K* ~a,b,0!DqV02V
08

k* ~a0 ,b0,0!

3^CkV
~2 !u~de2!G~1 !

„e0~k0!1\v1…~de1!uCk0V0

~1 ! &

3^CkV8
~2 ! u~de2!G~1 !

„e0~k0!1\v18…~de1!uCk0V
08

~1 !
&* . ~3.6!
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Here we used the relationship between Green opera
G(2)(e)5G(1)†(e) and assumed that all the Zeeman sta
V0 ,V08 have the same energy denoted ase0 . Let us note that
the spectral profile~3.6! does not have the dimensions of
cross section. We mark here and throughout by an additio
tilde sign the observables, which can be interpreted as c
sections after evaluating the overlap integral with the co
lation function, see Eq.~3.5!, and we will call them cross
sections in those cases where no confusion can arise.

It is useful to expand the wave functionsC (6) and Green
function G(1) in the basis set of adiabatic wave functio
with definite total angular momentum. Such partial wave
pansions of the wave functions are given by

Ck0V0

~1 ! ~R,q!5
1

R(
V̄0

(
J0M0

~2J011!

3D
M0V̄0

J0* ~aR ,bR,0!DM02V0

J0 ~a0 ,b0,0!

3eipJ0/2v
V̄0V0

~1 !J0~R!fV̄0
~R,q!,

~3.7!

CkV
~2 !~R,q!5

1

R(
V̄

(
JM

~2J11!D
MV̄

J* ~aR ,bR,0!

3DMV
J ~a,b,0!eipJ/2v

V̄V

~2 !J
~R!fV̄~R,q!,

wherefV̄0
(R,q) and fV̄(R,q) are the electronic adiabati

wave functions of lower and upper states of the quasim
cule, respectively. To simplify notation here and througho
wherever possible, we specify the quantum state of the q
simolecule by the electronic angular momentum projecti
on the internuclear directionV̄0 andV̄ and omit other quan-
tum numbers. The anglesaR andbR characterize the direc
tion of R in a laboratory frame. The radial wave function
rs
s

al
ss
-

-

-
t,
a-
s

v
V̄0V0

(1)J0(R) andv
V̄V

(2)J
(R) can be found as the solution of th

scattering equations in the molecular basis set, see Refs.@23,
24#, with the following boundary conditions:

v
V̄0V0

~1 !J0~R!˜
i

2~ k̄0k0!1/2
@dV̄0V0

e2 ik0R1 ipJ0/2

2eik0R2 ipJ0/2S
V̄0V0

~1 !J0~ k̄0 ,k0!#,

~3.8!

v
V̄V

~2 !J
~R!˜2

i

2~ k̄k!1/2
@dV̄VeikR2 ipJ/2

2e2 ikR1 ipJ/2S
V̄V

~2 !J
~ k̄,k!#

at R˜`. For the Green function@kernel of Green operato
G(1)(e)# the similar expansion is given by

G~1 !~R2 ,q2 ;R1 ,q1!5
1

4pR2R1
(

V2V1

3 (
J1M1

~2J111!DM1V2

J1* ~a2 ,b2,0!

3DM1V1

J1 ~a1 ,b1,0!GV2V1

J1 ~R2 ,R1!

3fV2
~R2 ,q2!fV1

* ~R1 ,q1!, ~3.9!

where anglesa1 ,b1 and a2 ,b2 show the directions of the
vectorsR1 andR2 , respectively. The radial Green functio
GV2V1

J1 (R2 ,R1) can be found as the solution of the system

the radial scattering equations for the energye with the fol-
lowing boundary conditions:
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GV2V1

J1 ~R2 ,R1!˜
im

\2~k2k1!1/2@SV2V1

~1 !J1~k2 ,k1!eik2R21 ik1R12 ipJ12dV2V1
eik1~R.2R,!# ~3.10!
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at R2 , R1˜` where we denotedR.5max$R2,R1% and R,

5min$R2,R1%.
The expansions~3.7!,~3.9! are very convenient for the

analysis of the slow atomic collisions at broad range of rec
energies. As long as an adiabatic approximation is valid in
interaction region the Green function is simply diagonal a
V25V1 . The nonadiabatic effects initiating the transitio
between different molecular states take place in the dom
located near the vicinities of the crossing or anticross
points of the potential curves of the molecule. The rotatio
nonadiabatic coupling is particularly important at large int
nuclear separations. The nonadiabatic transition amplitu
can be calculated by solving the scattering equations for
radial wave functions and the Green function in such
mains. There are many model approximations to solve
nonadiabatic problem and it is often possible to find even
analytical solution of scattering equations. General disc
sion of the problem can be found in many reviews, see,
instance,@23#, and references therein. In Appendix A w
derive the expansion of Green function~3.9! and show the
procedure of semiclassical solution of the scattering eq
tions for this example.

By substituting the wave functions and the Green funct
in the form ~3.7!,~3.9! into Eq. ~3.6! we could obtain a gen
eral partial expansion for the spectral profile of the differe
tial cross section describing the formation of arbitrary pol
ization for the excited atom outgoing in an arbitra
direction. However, in the present paper we restrict ourse
to the analysis of a simple but most practically importa
situation, when only the total population of outgoing fra
ments in the optical collisions of initially nonpolarized atom
is detected. Such a situation corresponds to a commonly
experimental detection scheme, one which we are goin
discuss. Also it lets us simplify the analysis of the excitati
channels and interference effects as well as their depend
on mutual orientation of polarization vectorse1 ande2 of the
il
n
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g
l

-
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e
-
e
e
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-
-

s
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first and the second lasers.
By averaging the differential cross section~3.6! over the

initial and final directions of the wave vectors and by subs
tuting expansions~3.7!,~3.9! we can express the spectral pr
file of the total cross section in the following form:

s̃~v1 ,v2 ;v18 ,v28![
1

4p E dVkE dVk0

3A2 j 11
ds̃00

dVk
~v1 ,v2 ;v18 ,v28!

5(
XJ

~2 !X1JFXJ~e1!FX2J~e2!

3Q̃~X!~v1 ,v2 ;v18 ,v28!, ~3.11!

where we introduced the irreducible components for the li
density matrix,

FXJ~e!52 (
n,n8

C1n81n
XJ

~e* !n8en

5 (
n,n8

~21!11n8C1n81n
XJ e2n8

* en ~3.12!

for both polarization vectorse1 and e2 . Expression~3.11!
shows that the total cross section is formed from the ten
product of the light irreducible components of the first a
the second laser weighted with the collisional fac
Q̃(X)(v1 ,v2 ;v18 ,v28) depending on tensor rank. The weigh
ing factor is given by
Q̃~X!~v1 ,v2 ;v18 ,v28!5
16pm2k

\4k0

1

2 j 011 (
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(
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(
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081n̄
18

J18V18 F
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J0J1J
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J0J18J*
~v18 ,v28!,

~3.13!



o-
u
Th
ia

-
te
e
on

ta

b
ur
re
o
b

th
th
ss
u
io
s
m
ar
an
xi

io
m

e
ra
in

Th
e
en
n
n
on

i
c

on.
ter-
s are
tion

di-

m
l

PRA 60 2237SEMICLASSICAL THEORY OF TWO-PHOTON . . .
where n̄15V12V̄0 , n̄185V182V̄08 , n̄25V̄2V2 , and n̄28

5V̄82V28 are the vector indices of the transition dipole m
ments characterizing the changes of the electronic ang
momentum from lower to intermediate and upper states.
transition overlap integral depending on the full set of init
and intermediate quantum numbers is given by

F
V0V̄0V1V2V̄V

J0J1J
~v1 ,v2!5E

0

`

dR1E
0

`

dR2v
V̄V

~2 !J* ~R2!

3~dn̄2
!V̄V2

GV2V1

J1 ~R2 ,R1!

3~dn̄1
!V1V̄0

v
V̄0V0

~1 !J0~R1!, ~3.14!

where (dn̄1
)V1V̄0

and (dn̄2
)V̄V2

are the transition dipole ma
trix elements defined in the body fixed frame and calcula
between adiabatic electronic states at the inter nuclear s
rationsR1 andR2 , respectively. The dependence on phot
frequenciesv1 andv2 appears in Eq.~3.14! from the energy
dependence of the Green function of the intermediate s
and of the wave function of the upper state.

B. Semiclassical approximation

The derived expressions~3.11!,~3.13! are restricted only
by the approximations of perturbation theory and they can
used for numerical calculation directly. In such a proced
the wave functions and Green function should be conside
as the exact solutions of quantum scattering equations. H
ever, the nuclear motion of the atoms is mainly described
classical mechanics that makes it possible to simplify
analysis by introducing a semiclassical approximation for
radial wave functions. The global advantage of a semicla
cal approach is in its clear physical sense and in the vis
representation of the wave functions and the Green funct
It is also important that for typical experimental condition
when the recoil energy is close to room temperature, a se
classical approximation has very good accuracy for comp
son with experimental data. We expect that all the import
physical effects will be well described by such an appro
mation.

In a semiclassical approximation the radial wave funct
at all internuclear separations can be presented as the su
two waves, namely, ‘‘in’’ and ‘‘out.’’ The waves ‘‘in’’ and
‘‘out,’’ being the running waves inside and outside of th
interaction region, exist for each incoming and outgoing
dial wave functions. Let us emphasize that the terms ‘‘
coming’’ and ‘‘in’’ or ‘‘outgoing’’ and ‘‘out’’ have different
physical meanings and they are not to be confused.
transformation from ‘‘in’’ to ‘‘out’’ waves takes place at th
turning points or near the regions of classically forbidd
motions. For simplicity we will assume that nonadiabatic a
classical forbidden regions are separated so the calculatio
nonadiabatic transition amplitudes and the transformati
from ‘‘in’’ to ‘‘out’’ waves can be made independently. In
such conditions the semiclassical approximation can be
troduced by the following expansion of the radial wave fun
tions:
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V̄0V0

~1 !J0~R!5( 8
l 0

i

2Ak0

eid
l 0

J0~k0 ,2 !

3H 1

@kl 0

J0~R,2 !#1/2al 0

J0~R,2 !e2 iS
l 0

J0~R,2 !2 ip/4

2
1

@kl 0

J0~R,1 !#1/2al 0

J0~R,1 !eiS
l 0

J0~R,1 !1 ip/4J ,

~3.15!

v
V̄V

~2 !J
~R!5( 8

l

i

2Ak
e2 id l

J
~k,1 !

3H 1

@kl
J~R,2 !#1/2bl

J~R,2 !e2 iSl
J
~R,2 !2 ip/4

2
1

@kl
J~R,1 !#1/2bl

J~R,1 !eiSl
J
~R,1 !1 ip/4J .

Here we introduced ‘‘path’’ indicesl 0 and l, which are the
sequences of quantum statesV̄0 ...V0 and V̄...V, respec-
tively, which are passed by the atoms during the collisi
The dots here denote the quantum numbers of all the in
mediate states. The transitions between adiabatic state
caused by the nonadiabatic dynamics and the transforma
from ‘‘in’’ to ‘‘out’’ waves takes place at the turning points
or near the classical violation regions. We can say that in
ces l 0 and l show the possible paths coupling the statesV̄0

with V0 and V̄ with V and the prime superscripts at su
signs in Eq.~3.15! show that all the paths with fixed initia
stateV0 ~for incoming wave function! or final stateV ~for
outgoing wave function! make the contribution in those
sums. The wave numbers, dependent onR, defined for ‘‘in’’
~with 2 sign! and for ‘‘out’’ ~with 1 sign! parts of the tra-
jectory, are given by

kl 0

J0~R,6 !5
1

\
F2mS E2Ul 0

~R,6 !2
\2~J01 1

2 !2

2mR2 D G1/2

,

~3.16!

kl
J~R,6 !5

1

\
F2mS E2Ul~R,6 !2

\2~J1 1
2 !2

2mR2 D G1/2

and the action integrals and phase shifts are given by

Sl 0

J0~R,6 !5E
Rl 0

R

kl 0

J0~R,6 !dR, ~3.17!

d l 0

J0~k0 ,2 !5 lim
R˜`

F E
Rl 0

R

kl 0

J0~R,2 !dR2k0R1
p

2 S J01
1

2D G ,

Sl
J~R,6 !5E

Rl

R

kl
J~R,6 !dR,

d l
J~k,1 !5 lim

R˜`
F E

Rl

R

kl
J~R,1 !dR2kR1

p

2 S J1
1

2D G ,
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whereRl 0
and Rl are the coordinates of the turning poin

which depend on ‘‘path’’ quantum numbers. The ‘‘path
potentials are defined asUl 0

(R,6)5UV̄0
(R),...,UV0

(R),

Ul(R,6)5UV(R),...,UV̄(R) where the choice of adiabati
potential is determined by the location ofR in the pathl 0 or
l. The amplitudesal

J0(R,6) and bl
J(R,6), slowly varying
0
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th

t
wl
on

’’
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he
tio
tu

e

1 1
on R, J, and onE ~not shown here!, are defined as a solutio
of the scattering equations in semiclassical form. For det
of the derivation of the semiclassical representations~3.15!
we refer the reader to Appendix B of@24#.

For a radial Green function the semiclassical represe
tion is derived in Appendix A. Finally we obtain
GV2V1

J1 ~R2 ,R1!5( 8
l 1 H im

\2@kl 1

J1~R2 ,1 !kl 1

J1~R1 ,2 !#1/2gl 1

J1~R2 ,R1 ;12 !eiS
l 1

J1~R2 ,R1 ;12 !1 ip/2

2
im

\2@kl 1

J1~R2 ,2 !kl 1

J1~R1 ,2 !#1/2gl 1

J1~R2 ,R1 ;2 !eiS
l 1

J1~R2 ,R1 ;2 !1 ip/2u~R12R2!

2
im

\2@kl 1

J1~R2 ,1 !kl 1

J1~R1 ,1 !#1/2gl 1

J1~R2 ,R1 ;1 !eiS
l 1

J1~R2 ,R1 ;1 !1 ip/2u~R22R1!J . ~3.18!
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Let us interpret the terms contributing to the right side of t
expression. The second and the third terms describe the
lution of the electronic subsystem from pointR1 to pointR2
when nuclei move along either ‘‘in’’ or ‘‘out’’ parts of the
classical trajectory, respectively. The first term relates to
case when the pointR1 is located in the ‘‘in’’ and the point
R2 is in the ‘‘out’’ part of the trajectory. It is important tha
for the retarded Green function the corresponding slo
varying amplitudes are the solutions of scattering equati
in semiclassical form associated with normalR(T)-ordered
motion of the nuclei along the classical trajectory in ‘‘path
potentialsUl 1

(R,6) and Ul 1
(R,12) marked by indexl 1 .

As in the case of the wave function the compiled indexl 1
5V1 ,...,V2 performs all the states passed by the atoms d
ing the fraction of the collision in intermediate state. T
prime superscript in the sum sign shows that the summa
is expanded over all intermediate states with fixed quan
numbersV1 andV2 . The action integrals in Eq.~3.18! are
defined as follows:

Sl 1

J1~R2 ,R1 ;12 !5E
Rl 1

R2
kl 1

J1~R,1 !dR1E
Rl 1

R1
kl 1

J1~R,2 !dR,

Sl 1

J1~R2 ,R1 ;2 !5E
R2

R1
kl 1

J1~R,2 !dR, ~3.19!

Sl 1

J1~R2 ,R1 ;1 !5E
R1

R2
kl 1

J1~R,1 !dR,

where the wave numbers dependent onR are defined as in
Eqs. ~3.17! with substitution of ‘‘path’’ potentialsUl 1

(R,

6) or Ul 1
(R,12). The ‘‘path’’ potentials are defined her

as Ul 1
(R,6),Ul 1

(R,12)5UV1
(R),...,UV2

(R), where the
choice of adiabatic potential is determined byR location and
by the type of classical trajectory ‘‘out’’ or ‘‘in’’. The slowly
varying amplitudesgl

J1(R2 ,R1 ;6) and gl
J1(R2 ,R1 ;12)
s
vo-

e

y
s

r-

n
m

can be found as the solution of scattering equations in se
classical form, see Appendix A.

We substitute the semiclassical expansions~3.15!,~3.18!
in the expressions~3.14!,~3.13! with the following assump-
tions. First, in the overlap integrals it is possible to keep o
the terms that are slowly oscillating onR1 and R2 whose
phases have a dependence on differences between actio
tegrals relating to the lower and upper potentials. The rap
oscillating terms, containing the sum of action integrals
exponential arguments, can be omitted in most of the pra
cal situations. Indeed, for small frequency detunings~in
comparison with recoil energy! it can be done because the
oscillate much faster than slowly oscillating terms and ma
negligible contribution. In the opposite case for far off res
nant detunings such terms relate to the situation w
nuclear velocity changes the direction of motion after t
photon absorption, a situation that is not compatible with
classical picture of optical transition. Therefore in the f
wings of the spectral profile we neglect these terms beca
they cannot be satisfied under the conditions of station
phase approximation, particularly, by the Franck-Cond
principle. Secondly, we may simplify the angular momentu
algebra by pointing out that for typical conditions the to
angular momentaJ,J0 ,J1 are much greater than unity and a
of them have similar values. This makes it possible to u
semiclassical asymptotic behavior of 6j symbols and
Clebsch-Gordan coefficients and to expand the action i
grals in Taylor’s series as a function of total angular mom
tum. In Taylor’s expansion we keep only the first derivati
of the action integrals which are expressed by the class
angle of the rotation of the internuclear axis between bou
ing points. For example,

]

]J1
Sl 1

J1~R2 ,R1 ;12 !52j l 1

J1~R2 ,R1 ;12 !, ~3.20!

wherej l
J1(R2 ,R1 ;12) is the rotation angle of the internu

1
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FIG. 1. ~a! The schematic dia-
gram showing the fractional opti-
cal collision with photon absorp-
tions on ‘‘in’’-‘‘out’’ part of a
classical trajectory.~b! The refer-
ence of deflection angles used i
overlap integral~3.24!.
ar
la

nt
gl
th
-
n

la

ls
l

the

erm,
clear axis from pointR1 to point R2 located in ‘‘in’’ and
‘‘out’’ parts of the trajectory, respectively. We use simil
notations for derivations of other action integrals. The re
tionship~3.20! lets us transform the sum overJ,J0 ,J1 ,J18 in
Eq. ~3.13! to the sum over only one angular momentum~im-
pact parameter! and introduce in the theory such importa
characteristics of classical scattering as the deflection an
It is important that all the deflection angles characterize
atomic motion in the ‘‘path’’ potential, i.e., they are com
piled as the sum of different partial adiabatic contributio
defined for each part of a real classical trajectory.

Finally the weighting factorQ̃(X) in Eq. ~3.13! can be
written as follows:

Q̃~X!~v1 ,v2 ;v18 ,v28!5
1

2X11 (
M

(
p1p18

(
p2p28

~2 !p11p28

3C12p11p
18

XM
C12p21p

28
XM

3Q̃p1p2 ;p
18p

28
~v1 ,v2 ;v18 ,v28!,

~3.21!

where the internal term is given by the sum of partial angu
momentum contributions
-

es.
e

s

r

Q̃p1p2 ;p
18p

28
~v1 ,v2 ;v18 ,v28!

5
pm2

\4k0
2 (

J
~2J11!

3
1

2 j 011 (
V0V

^VuFp1p2

J ~v1 ,v2!uV0&

3^VuFp
18p

28
J

~v18 ,v28!uV0&* . ~3.22!

Here we introduced Dirac’s notation for overlap integra
^VuFp1p2

J (v1 ,v2)uV0&. The motivation of such notation wil

be explained below, see Eq.~3.28!.
The overlap integrals can be expanded in the sum of

following three terms:

^VuFp1p2

J ~v1 ,v2!uV0&5^VuFp1p2

J ~v1 ,v2 ;12 !uV0&

1^VuFp1p2

J ~v1 ,v2 ;2 !uV0&

1^VuFp1p2

J ~v1 ,v2 ;1 !uV0&.

~3.23!

Such an expansion has a clear physical nature. The first t
which is given by
part
photons
^VuFp1p2

J ~v1 ,v2 ;12 !uV0&52
im

\2 eip~J11/2!( 8
l 0

(
l 1

(
l
E

R~1!

` E
R~2!

`

dR1dR2eiDSl l 1l 0

J
~R2 ,R1 ;12 !

3F ~kl
J~R2 ,1 !kl 1

J ~R2 ,1 !kl 1
J ~R1 ,2 !kl 0

J ~R1 ,2 !#21/2bl
J* ~R2 ,1 !~dn̄2

!V̄V2
gl 1

J ~R2 ,R1 ;12 !

3~dn̄1
!V1V̄0

al 0
J ~R1 ,2 !D n̄22p2

1 S 2
p

2
,2h l 1l 0

J ~R2 ,1 !,
p

2 DD n̄1p1

1 S 2
p

2
,2h l 0

J ~R1 ,2 !,
p

2 D ,

~3.24!

describes the contribution coming from the attachment of the upper ‘‘out’’ and lower ‘‘in’’ running waves to the ‘‘in-out’’
of the Green function. So, from a semiclassical point of view, it relates to the process when the first and the second
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are absorbed on ‘‘in’’ and ‘‘out’’ parts of the classical trajectory, respectively. This contribution as well as the refere
deflection anglesh l 1l 0

J (R2 ,1) andh l 0
J (R1 ,2) are shown in Fig. 1. The second term in Eq.~3.23!, which is given by

^VuFp1p2

J ~v1 ,v2 ;2 !uV0&52
im

\2 eip~J11/2!( 8
l 0

(
l 1

( 8
l

E
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dR2eiDSl l 1l 0

J
~R2 ,R1 ;2 !

3@kl
J~R2 ,2 !kl 1

J ~R2 ,2 !kl 1
J ~R1 ,2 !kl 0

J ~R1 ,2 !#21/2bl
J* ~R2 ,2 !~dn̄2

!V̄V2
gl 1

J ~R2 ,R1 ;2 !

3~dn̄1
!V1V̄0

al 0
J ~R1 ,2 !D n̄22p2

1 S 2
p

2
,2h l 1l 0

J ~R2 ,2 !,
p

2 DD
n̄1p1

1 S 2
p

2
,2h l 0

J ~R1 ,2 !,
p

2 D ,

~3.25!

describes the contribution coming from the attachment of the upper ‘‘in’’ and lower ‘‘in’’ waves to the ‘‘in’’ part of the G
function. It assumes that both the photons are absorbed on the ‘‘in’’ part of the classical trajectory. This contribution
as the reference of deflection anglesh l 1l 0

J (R2 ,2) andh l 0
J (R1 ,2) are shown in Fig. 2. The third term, which is given by

^VuFp1p2

J ~v1 ,v2 ;1 !uV0&52
im

\2 eip~J11/2!( 8
l 0

(
l 1

( 8
l

E
R~1!

`

dR2E
R~2!

R2
dR1eiDSl l 1l 0

J
~R2 ,R1 ;1 !

3@kl
J~R2 ,1 !kl 1

J ~R2 ,1 !kl 1
J ~R1 ,1 !kl 0

J ~R1 ,1 !#21/2bl
J* ~R2 ,1 !~dn̄2

!V̄V2
gl 1

J ~R2 ,R1 ;1 !

3~dn̄1
!V1V̄0

al 0
J ~R1 ,1 !D n̄22p2

1 S 2
p

2
,2h l 1l 0

J ~R2 ,1 !,
p

2 DD n̄1p1

1 S 2
p

2
,2h l 0

J ~R1 ,1 !,
p

2 D ,

~3.26!

FIG. 2. ~a! The schematic dia-
gram showing the fractional opti
cal collision with photon absorp-
tions on ‘‘in’’ part of a classical
trajectory.~b! The reference of de-
flection angles used in overlap in
tegral ~3.25!.
th

a
is
le

-

th

la
describes the contribution coming from the attachment of
upper ‘‘out’’ and lower ‘‘out’’ waves to the ‘‘out’’ part of
the Green function. It assumes that both the photons are
sorbed on the ‘‘out’’ part of the classical trajectory. Th
contribution as well as the reference of deflection ang
h l 1l 0

J (R2 ,1) andh l 0
J (R1 ,1) are shown in Fig. 3. In the in

tegrals~3.24!–~3.26! the lower limitsR(1) and R(2) are the
largest coordinates of the turning points taken for the pa
l 1 , l 0 and l, l 1 , respectively.

The arguments of exponential functions in the over
integrals~3.24!–~3.26! are defined as follows:
e

b-

s

s

p

DSl l 1l 0
J ~R2 ,R1 ;12 !5 lim

R,R0˜`
H ER2

R

kl
J~R8,1 !dR8

1E
Rl 1

R2
kl 1

J ~R8,1 !dR8

1E
Rl 1

R1
kl 1

J ~R8,2 !dR8

1E
R1

R0
kl 0

J ~R8,2 !dR82kR2k0R0J ,
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DSl l 1l 0
J ~R2 ,R1 ;2 !5 lim

R,R0˜`
H E

Rl

R

kl
J~R8,1 !dR8

1E
Rl

R2
kl

J~R8,2 !dR8

1E
R2

R1
kl 1

J ~R8,2 !dR8

1E
R1

R0
kl 0

J ~R8,2 !dR82kR2k0R0J ,

~3.27!

DSl l 1l 0
J ~R2 ,R1 ;1 !5 lim

R,R0˜`
H ER2

R

kl
J~R8,1 !dR8

1E
R1

R2
kl 1

J ~R8,1 !dR8

1E
Rl 0

R1
kl 0

J ~R8,1 !dR8

1E
Rl 0

R0
kl 0

J ~R8,2 !dR82kR2k0R0J .

Taken with additional contributionp(J1 1
2 ) these functions

perform the finite increment of the total classical acti
evaluated in the ‘‘path’’ potential along the compiled pa
l 0 ,l 1 ,l , see Figs. 1–3.

It is useful to analyze the formal behavior of the overl
integrals~3.24!–~3.26! in the limit of small frequency detun
ings D15v12v10, D25v22v20, wherev10 and v20 are
the atomic resonant frequencies, in the conditions clos
two-photon resonanceD11D250. For small detunings the
total angular momentaJ with large values give the main
contribution in the total cross section. For largeJ and at the
asymptoteR˜` we can estimate the overlap integrals in t
straight trajectory approximation. In such a case the trans
mations of electronic wave functions caused by Corio
nonadiabatic coupling are expressed in terms of pure rota
transformations from laboratory to molecular frame. The
teratomic interaction is negligible and the projection of t
electronic angular momentum on thez axis defined for initial
to

r-
s
n

-

or final helicity frame is conserved during the collision. B
cause the rotation transformation is unitary it is possible
express the overlap integrals in terms of matrix elements
the dipole moments in the atomic basis set with angular m
mentum eigenfunctions defined in the helicity frame

^VuFp1p2

J ~v1 ,v2!uV0&

}(
V1

~2 ! j^ j 2Vud2p2
u j 1V1&

1

D1
^ j 1V1udp1

u j 0V0&.

~3.28!

The } sign here means that the right side is proportional
the large overlap integral of the radial wave functions in t
asymptotic domain and it approaches infinity at resonan
All the matrix elements in this expression are defined in
R-helicity frame with z-quantized axis along2k0 . The
asymptotic relationship~3.28! shows that the overlap inte
grals reduce to the usual transition amplitude of the tw
photon absorption by free atom, which is estimated in
second order of perturbation theory. Dirac’s notation emp
sizes such asymptotic behavior of the overlap integrals.

Substituting the zero detuning asymptote of matrix e
ments~3.28! into Eqs.~3.22!,~3.21!, and then into Eq.~3.11!,
we can express the total cross section in the following fo

s̃~v1 ,v2 ;v18 ,v28!}(
XJ

~2 !X1JFXJ~e1!FX2J~e2!

3
~2 ! j 2 j 0

~2 j 011! H 1 1 X

j 1 j 1 j J
3H 1 1 X

j 1 j 1 j 0
J udj j 1

u2
1

D1D18
udj 1 j 0

u2,

~3.29!

which is in accordance with the general dependence of t
photon resonance photoabsorption on mutual laser pola
tion. Heredj j 1

, anddj 1 j 0
are the reduced matrix elements

the dipole moment and$ % denotes the 6j symbols, see@19#.
However, we point out here that, in spite of realis

asymptotic behavior, the relationships~3.28! and ~3.29! are
-

-

FIG. 3. ~a! The schematic dia-
gram showing the fractional opti
cal collision with photon absorp-
tions on ‘‘out’’ part of a classical
trajectory.~b! The reference of de-
flection angles used in overlap in
tegral ~3.26!.
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not exactly compatible with the case of resonance photo
sorption. Such important effects as spontaneous decay o
cited states and an interaction with other particles in lo
term time scale were completely ignored in our analys
Both the effects are responsible for the photoabsorp
spectrum near the resonance, where it can be correctly
scribed by Wigner-Weisskopf approximation. Actually, t
relationship~3.28! shows only the right polarization depen
dence of the two-photon absorption in the resonance co
tions but not the spectral profile itself. Therefore in the n
merical calculations of the polarization-dependent spect
based on Eqs.~3.21!–~3.26! we should restrict ourselves t
the case when both the detuningsD1 andD2 are comparable
to or larger but not less than critical valuetc

21; v̄/r0 , where
v̄ is average recoil velocity. The critical timetc can be esti-
mated in order of magnitude by the average time of collisi

C. Quasistatic picture of fractional optical collision

The qualitative and quantitative analysis of fractional o
tical collision can be simplified if the overlap integrals a
evaluated in the stationary phase approximation. The typ
conditions of the Franck-Condon approximation assume
all the detuningsD1 , D2 , andD5D11D2 are off resonant
and much larger thantc

21. We restrict our analysis to th
situation when stationary points exist for both the transitio

Ul 1
~R1!2Ul 0

~R1!5\v1 , Ul 1
~R18!2Ul 0

~R18!5\v18 ,

~3.30!

Ul~R2!2Ul 1
~R2!5\v2 , Ul~R28!2Ul 1

~R28!5\v28 ,

and we presume that the location ofR1 , R18 is separated
~from the semiclassical point of view! from the location of
R2 , R28 . The definitions of Condon points shown by E
~3.30! allow the general form of the electric field correlatio
function and its spectrum, see Eqs.~2.6!, ~2.14!, and ~3.4!.
We emphasize here that for the light with general correlat
properties the frequencyv1 differs from v18 and v2 differs
from v28 , which leads to the difference in locations of Co
don pointsR1 and R18 or R2 and R28 . However, we will
neglect the distinction between them in the slowly varyi
preexponential factors. This can be substantiated by the
that for our following analysis it is more interesting to co
sider the correlation function with narrow spectral profi
near the average frequenciesv̄1 and v̄2 . As shown in@28#
b-
x-
-
.
n
e-

i-
-
m

.

-

al
at

s

n

ct

the correlation effects are most important if the differen
v12v185v282v2 has the same order of magnitude as t
scaleDt21, whereDt is the time of the classical motion
between the Condon points. In such a case and in the s
classical conditions of an atomic motion the distinction
locations ofR1 andR18 or R2 andR28 is negligible for preex-
ponential factors. However, it can be very important in t
arguments of exponential functions containing the large
tion integrals.

For large frequency detunings all the Condon points
located inside the so-called decoupling sphere, i.e.,
Hund’s a region, see Appendix A. For simplicity we wil
restrict ourselves to the practically important situation wh
the slow variations onR amplitudes of the Green functio
~3.18! are determined by simple adiabatic dynamics a
given by

gl 1
J ~R2 ,R1 ;2 !5gV2V1

J ~R2 ,R1 ;2 !5dV2V1
, R2,R1

gl 1
J ~R2 ,R1 ;1 !5gV2V1

J ~R2 ,R1 ;1 !5dV2V1
, R2.R1

~3.31!

gl 1
J ~R2 ,R1 ;12 !5gV2V1

J ~R2 ,R1 ;12 !5dV2V1
.

Such an assumption is not critical for our approach, bu
makes the following discussion more clear. Moreover, in
quasistatic conditions of the photoexcitation, we can neg
in the product of the overlap integrals those interferen
terms which disappear after the averaging over impact
rameter~angular momentum! because of quasiclassical osc
lations. Also the nonadiabatic dynamics of lower and up
states of the fractional collision becomes unimportant.
deed, any nonadiabatic transformation describing the ev
tion of the electronic subsystem in the molecular regions
an example of a unitary transformation, so the square
transition amplitudeual 0

(R1 ;6)u2 or ubl(R1 ;6)u2 reduces to
unity because of the averaging over initial and final ele
tronic states.

Consider the spectral profile of the cross section written
the form ~3.11!. Evaluating the semiclassical overlap int
grals in the stationary phase approximation, the partial cr
sectionQ̃(X), which describes both the polarization and spe
tral dependencies of the fractional collision, can be expres
as follows:
Q̃~X!~v1 ,v2 ;v18 ,v28!5(
l

2pE
0

r l
rdrw̃l

~1!~r!w̃l
~2!~r!

1

~2 j 011!~2X11! (J̄ (
n̄1n̄18

(
n̄2n̄28

~2 !n̄281 n̄1

3C1n̄212 n̄
28

XJ̄
C12 n̄11n̄

18
XJ̄

@exp$ iSl
r~v1 ,v2 ;12 !2 iSl

r~v18 ,v28 ;12 !%dJ̄J̄

X
„j l

r~R2 ,R1 ;12 !…

1exp$ iSl
r~v1 ,v2 ;2 !2 iSl

r~v18 ,v28 ;2 !%u~R12R2!d
J̄J̄

X
„j l

r~R2 ,R1 ;2 !…

1exp$ iSl
r~v1 ,v2 ;1 !2 iSl

r~v18 ,v28 ;1 !%u~R22R1!d
J̄J̄

X
„j l

r~R2 ,R1 ;1 !…#. ~3.32!
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The outer sum in this expression is expanded over all p
sible classical pathsl crossing the Condon pointsR1 andR2
as well as over all the combinations of the Condon point
there is more than one for each detuning. To simplify no
tion we denote byl here and below the setl l 1l 0 . The cross
section~3.32! is written as the integral over impact parame
r5(J11/2)/k0 instead of a sum over total angular mome
tum J, as seems more reasonable in a classical descriptio
atomic collisions. We note here that because of angular
mentum conservation the definition of impact parameter
fers for the lower, intermediate, and upper states. The i
gral is bounded by the maximum valuer l for the limit
trajectory touching the inner Condon pointsR1 or R2 .
Wigner d functions are defined as in Ref.@19# and they de-
pend on the deflection angles referred to the classical tra
tories between the Condon points. In the arguments of
nonexponential functions in integral~3.32! we assume the
average location of the Condon points and neglect the dif
ence betweenR1 andR18 or R2 andR28 . However, we distin-
guish the difference in the arguments of the exponen
functions because of the large value of the action integra

The dependence of the action integrals on the light
quencies comes from two effects: from the variation in
location of Condon points and from the dependence of
action on recoil energy. Showing all the arguments in
classical action we can express the frequency dependen
follows:

Sl
r~v1 ,v2 ;6 !5DSll 1l 0

r
„R2~v2!,R1~v1!;E01\v1 ;6…,

~3.33!

Sl
r~v1 ,v2 ;12 !5DSll 1l 0

r
„R2~v2!,R1~v1!;E01\v1 ;12…,

whereE0 is the initial recoil energy and the action integra
in the right side are defined by Eqs.~3.27!. In the case of
stationary photoexcitation the spectrum of the correlat
function is restricted by the conditionv11v25v181v28 .
Thus in spite of the fact that each of the action integr
contributed in Eq.~3.32! depends on both the frequencie
the difference between the actions actually depends only
one frequency detuning,v12v185v282v2 .

The probabilities of photoexcitation at each Condon po
are given by

w̃l
~1!~r!5

1

\2 @~dn̄1
!V1V̄0

t l
~1!~r!#2,

~3.34!

w̃l
~2!~r!5

1

\2 @~dn̄2
!V̄V2

t l
~2!~r!#2,

where the tilde indicates that these parameters become
probabilities only after multiplying the dipole moment m
trix elements (dn̄1

)V1V̄0
and (dn̄2

)V̄V2
on the electric field

amplitudes. The transition times of the vicinities of the Co
don points are defined as follows:

t l
~ i !~r!5S 2p\

DF ~ i !v l
~ i !~r! D

1/2

, ~3.35!
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with i 51,2. HereDF (1), DF (2) are the differences betwee
the slopes of upper and lower potentials at the Condon po
R1 , R2 andv l

(1)(r), v l
(2)(r) are the radial velocities at thes

points,

v l
~ i !~r!5F2E

m S 12
Ul~Ri !

E
2

r2

Ri
2D G1/2

. ~3.36!

We assume that there is no difference for all the parame
defined by Eqs.~3.34!–~3.36! with the similar parameters
marked by primes.

The vector indicesn̄1 ,n̄18 and n̄2 ,n̄28 of the dipole mo-
ments in Eq.~3.32! relate to the molecular frame and a
follows from Eq.~3.31! we have the following selection rule
n̄152 n̄2 and n̄1852 n̄28 , permitting n̄15 n̄18 and n̄25 n̄28 as
well as the interference contributionn̄152 n̄18 , and n̄25

2 n̄28 , if the excitation is initiated through the1S0˜
1P1

˜

1S0 channel. Such an interference contribution does
disappear after the averaging over impact parameter.
inner sum in the expression~3.32! over the vector indices is
noninvariant and it should be evaluated in the molecu
frame. The result depends strongly on the symmetry of
excited transitions and the polarization-dependent part of
cross section can change even the sign for different type
Franck-Condon transitions. The presence ofd functions in
Eq. ~3.32! can be interpreted as the rotational transformat
of the irreducible components of the light density mat
~either for the first or for the second photons! along the clas-
sical trajectory following adiabatic change in orientation
the molecular frame. So, if we treat the fractional optic
collision in the recoil limit approximation with less influenc
of rotation effects, we obtain from Eq.~3.32! the simple
qualitative estimation of the polarization dependence of
process. We will illustrate this by practical calculations pr
sented in the next section.

The spectral dependence of the cross section is prese
in Eq. ~3.32! by two different effects. First, the spectral d
pendence appears from the frequency dependence of
Condon point locations. Secondly, and less obviously, t
can appear also because of the correlation between the
and the second photoabsorption events. This can be
when we approximate the difference in action integrals
the first increment of the action with respect to its ener
argument. We obtain that the corresponding action deriva
is just the classical propagation time of the atomic nuc
between the pointsR1 andR2 . Then we see that the corre
lation spectral dependence can take place if the system
probed by the light sources correlated on the time scale c
parable with the natural time delay between photoabsorp
events. We plan to discuss the problem of the correlat
control of fractional optical collision in more detail in futur
@28#.

IV. APPLICATION TO Mg-He
„3S2 1S0˜3P 1P1˜5S 1S0 , 4D 1D2…

FRACTIONAL OPTICAL COLLISION

In contrast to the single-photon transition, which can
ten be well understood in a quasistatic model, the tw
photon excitation is more complicated and less obvious
numerical calculations. Even in quasistatic conditions it
common for the stationary phase point to exist only for o
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2244 PRA 60KUPRIYANOV, SOKOLOV, SLAVGORODSKII, AND TRUBILKO
optical transition. It is also possible that a stationary ph
point exists for two-photon transitions and it does not ex
or makes negligible contribution for any single-photon tra
sitions. So the population of upper molecular state can t
place without population of intermediate molecular stat
There are also many situations with interference and com
tition between single- and two-photon Condon transitions

Our choice of Mg-He fractional optical collision for nu
merical calculations is motivated by the following reaso
First of all, the interatomic interaction of helium with ne
Rydberg states of magnesium can be calculated with be
accuracy than for other heavy rare-gas partners. Second
quasimolecule Mg-He is characterized by shallow poten
wells for excimer states, which makes it possible to ign
the resonance scattering caused by shape resonances a
approximate molecular electronic wave functions by atom
ones in a broader range of internuclear separations. Th
because of small reduced mass for the Mg-He pair the rol
interference effects as well as the precision of quasist
approximation can be tested here in a most critical situat

The most difficult point of numerical calculations is th
evaluation of rapidly oscillating overlap integrals~3.24!–
~3.26!. To define action integrals and deflection angles
used Mg-He interaction potentials calculated by Czuc
@29#, which are shown in Fig. 4. We assumed optical exc
tion by coherent noncorrelated laser pulses, which is a c
mon experimental situation, see@13#. In such a case the ligh
correlation function of the second order~2.6! can be ex-
pressed as a product of the first order correlation functio
and the spectral profile~3.11! as well as the transition over
lap integrals, considered as a function of the frequenc
should be taken at coincidence frequenciesv15v18 andv2

5v28 . In numerical procedure we improve the convergen
of the overlap integrals near the classical turning points
substituting the semiclassical representation of the w
functions by Airy function in accordance with general re
ommendation in quantum mechanics@30#. Such a correction
is negligible if we evaluate the overlap integrals in the co
ditions close to the stationary phase case, when the reg

FIG. 4. The Mg-He singlet potentials from@29#.
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with slowly oscillating integrands determine mainly the ma
nitude of the integrals. However, it can be rather importan
we evaluate the integrals for the long-range trajectories w
large angular momentum~impact parameter!, where there is
no stationary phase region, to reproduce the orthogonalit
the wave functions with better accuracy.

The calculations have been made for optical collisio
with excitation of magnesium atoms from the 3s2 1S0 lower
state up to 5s 1S0 and 4d 1D2 upper states via the 3p 1P1
intermediate state. The corresponding semiclassical ex
sions of the retarded Green function, correlated with
3p 1P1 state, is given in Appendix A. The semiclassical re
resentation of the radial wave functions, correlated with
4d 1D2 state, is shown in Appendix B. Lets i

J(D1 ,D2) and
s'

J (D1 ,D2) be the partial cross sections, considered as fu
tions of the frequency detunings, fore1ie2 and for e1'e2 ,
respectively. Their representations by the transition over
integrals can be easily derived from the general express
of Sec. III B. From the experimental point of view, in a ce
experiment the polarization ratio can be defined for the to
cross section only and it is given by

PL5PL~D1 ,D2!5
s i~D1 ,D2!2s'~D1 ,D2!

s i~D1 ,D2!1s'~D1 ,D2!
, ~4.1!

where

s i~D1 ,D2!5(
J

s i
J~D1 ,D2!,

~4.2!

s'~D1 ,D2!5(
J

s'
J ~D1 ,D2!

are the total cross sections. However, from a theoretical p
of view, it is very useful to discuss also the angular mome
tum behavior of the polarization ratio, because for cert
values of the total angular momentumJ the numerical results
can be better understood. So for the simplest optical exc
tion channel up to 5s 1S0 we have made a partial wav
analysis to discuss the angular momentum dependence o
cross sections and the polarization ratio as well.

The plot in Fig. 5~a! shows the angular momentum depe
dence of the partial cross sectionss i

J(D1 ,D2) and
s'

J (D1 ,D2) calculated at the recoil energy 450 K for th
detuningsD1530 cm21 and D252100 cm21. There is the
well isolated stationary phase point relating to the transit
3p 1S0

1
˜5s 1S0

1 , which is R2;11 a.u. In spite of the fac
that in the first photoexcitation step on the transiti
3s2 1S0

1
˜3p 1S0

1 there is also the stationary phase po
located atR1;12 a.u., its vicinity does not really determin
the full magnitude of the overlap integrals because for s
small detuning the transition probability has the same or
in the entire asymptotic regionR˜`. Because the secon
transition can be made on either ‘‘in’’ or ‘‘out’’ parts of the
classical trajectory, there is a strong interference contribu
between two possible paths. The dependence of the c
sections onJ shows the oscillating behavior caused by t
interference and it has the strongest maximum atJ.40. This
maximum relates to the special trajectory where there i
coincidence of the Condon point with the turning point. T
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quasistatic approximation averaging the interference osc
tion can fit here for the inner angular momenta less than
The polarization ratio in such an approximation can be e
mated using the expressions of Sec. III C, if we associateR1
with decoupling sphereRd . For a recoil limit it gives the
polarization ratio close to12 which is in accordance with the
polarization ratio obtained in full numerical calculation
0.35. The interesting peculiarity in the dependence of
partial cross sections as a function of the angular momen
is that even for largeJ.40 there is a sequence of small b
attenuating maxima in the dependence ofs i

J(D1 ,D2) on J
caused by long-range exchange interaction in the 5s 1S0

1

state. In Fig. 5~b! we show the comparative dependences
s i

J(D1 ,D2) ands'
J (D1 ,D2) on J for the same detunings a

in Fig. 5~a! but for the recoil energyE5300 K. All the
physical peculiarities in the behavior of the cross secti
here are similar to the case of Fig. 5~a! with slight differ-
ences in the locations of the maxima. The differences
caused mainly by the dependence of the locations of
turning points on the recoil energy. The polarization ratio
this case is 0.41, which is even closer to the recoil lim
estimation than for the energyE5450 K.

The plots in Fig. 6 show the more complicated situatio

FIG. 5. Partial cross sectionss i
J(D1 ,D2) ~dashed line! and

s'
J (D1 ,D2) ~dotted line! for Mg-He fractional optical collision

3s2 1S0˜3p 1P1˜5s 1S0 for detunings D15130 cm21, D25
2100 cm21, and for recoil energiesE5450 K ~a! and E5300 K
~b!.
a-
0.
i-

e
m

f

s

re
e

t

.

For the dependencies shown here the significant contribu
in the overlap integrals comes from the areaR1 , R2;R0 ,
where R0 is the solution of\v11\v25U(R0)2U0(R0),
whereU0(R) and U(R) are the potentials for 3s2 1S0

1 and
for 5s 1S0

1 states, respectively. Due to long-range repuls
interactions, caused by exchange forces, forS terms corre-
lated with 5s and 4d electronic shells, see Fig. 4, there is
possibility to absorb the photons in a two-photon Cond
transition if the sum of the detuningsD1 andD2 is positive.
In addition to the two-photon Condon transition it is al
possible to absorb the photons in successive single-ph
Condon transitions. The plots in Fig. 6 demonstrate the
terference and the comparative contribution coming fr
two-step single-photon and one-step two-photon excita
channels. We consider the example when single-photon t
sitions take place via the 3p 1S0

1 intermediate state. The
dependencies shown in Fig. 6 are plotted for the detuni
D15200 cm21 andD252150 cm21 and for the recoil ener-
gies 450 K@in Fig. 6~a!# and 300 K@in Fig. 6~b!#. There are
three stationary phase points: two single-photon Con
points located at 9.7 and 10.5 a.u. for the transitio
3s2 1S0

1
˜3p 1S0

1 and 3p 1S0
1
˜5s 1S0

1 , respectively, and
one two-photon Condon point located at 18 a.u. for the tr
sition 3s2 1S0

1
˜5s 1S0

1 . We chose the detuning in such
way that the two-photon Condon point would be located n
the maximum of the barrier in the 5s 1S0

1 poten-

FIG. 6. Same as in Fig. 5 for detuningsD151200 cm21, D2

52150 cm21.
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tial. As we see from the dependencies shown in Fig. 6 th
is a broad maximum for the partial cross sectionss i

J(D1 ,D2)
and s'

J (D1 ,D2) near the angular momentaJ;60– 70@Fig.
6~a!# and near 50–60@Fig. 6~b!#, which are determined by
the two-photon Condon transitions for the long-range traj
tories with large impact parameter. The oscillating behav
of the partial cross sections for smaller angular mome
indicate the interference effects as well as the contribution
single-photon Condon transitions. The important peculia
of the two-photon Condon transition is that the partial pol
ization ratio rises to unity here. That is clear because in s
a case the sum over all the intermediate Zeeman electr
states reduces to its invariant form like it does in two-pho
photoabsorption by a free atom, and the polarization dep
dence turns out to be the same as for the free atom also

In Figs. 7 and 8 we show the spectral dependencies of
polarization-independent total cross section

s~D1 ,D2!5s i~D1 ,D2!12s'~D1 ,D2! ~4.3!

FIG. 7. The spectra of the total cross section~a! and of the
polarization ratio~b! as a function of detuningD2 for Mg-He
3s2 1S0˜3p 1P1˜5s 1S0 fractional optical collision for detuning
D15130 cm21 and for recoil energyE5300 K.
re

-
r

ta
f

y
-
h
ic

n
n-
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as well as the polarization ratio for the fractional optical
collision 3s2 1S0˜3p 1P1˜5s 1S0 calculated at recoil en-
ergy 300 K. The calculated spectra are presented for two
detuningsD15130 cm21 ~Fig. 7! andD15230 cm21 ~Fig.
8! as a function of the second detuningD2 . As follows from
the numerical results the polarization ratio is positive and has
a large order in all the spectral domains. Near the two-photon
resonancesD11D2˜0 it rises to unity.

The experimental data exist for Mg-Ne, Ar fractional op-
tical collisions@13#. If we presume that the behavior of the
potentials for the Mg-Ne pair is approximately like that for
the Mg-He pair, we can obtain that our calculated spectra
show behavior similar to Mg-Ne experimental results. For
example, for negative detuningD15230 cm21 we obtain
nonmonotonic dependence of the polarization ratio in the
wings ofD2 , which is similar toPL experimental spectra for
Mg-Ne. As follows from the dependence plotted in Fig. 8~b!
there is a two-photon Franck-Condon transition forD2.0
which manifests itself whenPL approaches unity. For nega-
tive D2 there is some rise of the polarization ratio in a spec-
tral domain of the red wing near the zero detuning. Such
behavior of the polarization is in accordance with experi-
mental results@13#. It is most interesting here that the polar-

FIG. 8. Same as in Fig. 7 for detuningD15230 cm21.
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PRA 60 2247SEMICLASSICAL THEORY OF TWO-PHOTON . . .
ization with photon absorption in a wing is greater than
D250, i.e., in direct resonance absorption of polarized
oms. Again such peculiarity in spectral behavior can be
plained by the presence of some contribution coming fr
the two-photon Franck-Condon transition which is not s
sitive to rotation depolarization.

The case of 3s2 1S0˜3p 1P1˜4d 1D2 fractional colli-
sion is more complicated because of more channels invo
in the process. The important peculiarity here is that, due
long-range exchange interactions in the 4d 1S0

1 state, we
should consider two decoupling spheres restricting the in
ence of the Coriolis forces. The corresponding semiclass
expansion of the radial wave functions correlated w
4d 1D2 is given in Appendix B. Because the partial wa
analysis is less obvious here, in Figs. 9 and 10 we pre
only the spectral dependencies of the total cross sect
s(D1 ,D2), given by Eq.~4.3!, and of the polarization ratio
for the same detunings as in Figs. 7 and 8. A common
ture in the behavior of the total cross section as a function
frequency detuning, which is shown in Figs. 9~a! and 10~a!,

FIG. 9. The spectra of the total cross section~a! and of the
polarization ratio~b! as a function of detuningD2 for Mg-He
3s2 1S0˜3p 1P1˜4d 1D2 fractional optical collision for detuning
D15130 cm21 and for recoil energyE5300 K.
t
t-
-

-

d
to

-
al

nt
ns

a-
f

is in an asymmetry of its spectral profile. The cross section
typically bigger in the blue wing of the full detuningD1
1D2 because the main contribution comes here from dir
excitation via two-photon Franck-Condon transition to t
4d 1S0

1 state.
The spectral dependence of the polarization ratios

shown in Figs. 9~b! and 10~b!. For the two-photon resonanc
D11D2˜0 the polarization ratio approaches1

7, which is in
accordance with the polarization dependence of the tw
photon absorption by unperturbed atoms. By tuning in t
wings we partly break the atomic symmetry and select po
tive or negative contributions coming to17. This is illustrated
by the behavior of the polarization ratio shown in Figs. 9~b!
and 10~b!. In the blue wing the polarization ratio is almos
constant, which is due to the dominant role of direct tw
photon Condon transitions to the 4d 1S0

1 state, leading to the
same value of the polarization ratio as in the resonance c
i.e., 1

7. At the same time, for the blue wing the successi
single-photon Condon transitions to the 4d 1S0

1 via 3p 1P1 ,
1S0

1 states are also possible and they can give a larger p
tive polarization ratio. However, in the case of rather sm
first detuningD15630 cm21 and for a light foreign atom
such as He the role of these transitions is not so importan

FIG. 10. Same as in Fig. 9 for detuningD15230 cm21.
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for heavier atoms where they lead to a slight but clear rise
the polarization ratio in the blue wing of the spectrum, s
@8#.

In contrast to the blue wing, in the red wing the polariz
tion ratio decreases and becomes even negative for pa
cross sections relating to small impact parameters. Tha
dicates that the main contribution comes here from suc
sive photoexcitations up to 4d 1P1 and 4d 1D2 , which give
the negative polarization ratio. By tuning the laser frequen
in the wing and by measuring the polarization ratio we c
partially select the different Zeeman transitions without a
external magnetic or electric field. There is some analogy
this result with the case of single-photon optical collisions
polarized magnesium atoms discussed in Ref.@8#. In that
paper~relating to the case ofD1˜0) the similar behavior of
the polarization ratio was observed in experiment and
plained in the quasistatic model. However, the quasist
theory gives a larger difference for the polarization ratio
the resonance and in the wings. Thus we can see in
example that for the light rare-gas partners the descriptio
the fractional optical collision based on quasistatic appro
mation while ignoring two-photon Condon transitions a
interference effects is in an accordance with the real situa
only qualitatively.

V. CONCLUSION

We have analyzed by perturbation theory technique
two-photon polarization-dependent fractional optical co
sion. Based on the second order of a distorted wave appr
mation we have derived expressions for the cross section
the fractional collision, which are valid for light with arbi
trary statistical properties. In its general form the cross s
tion is expressed as the overlap integral of its spectral pro
with the spectrum of the second order correlation function
electromagnetic field.

The semiclassical expansion of both the wave functi
and the retarded Green function lets us express the spe
profile of the cross section in terms of well understood se
classical characteristics of the process. As follows from
results of Sec. III B the transition amplitudes are determin
by the overlap integrals depending on such well known ch
acteristics of classical scattering as classical actions and
flection angles calculated along the classical trajectories
volved in the process. The atoms can change th
trajectories of motion because of the general nonadiab
dynamics of the atomic collision. In the semiclassical rep
sentation the polarization-dependent part of the cross sec
is determined by rotational transformations of the transit
dipole moments and by adiabatic or nonadiabatic transi
amplitudes defined along the classical trajectory. In the g
eral case the polarization dependence of the fractional op
collision can be analyzed only numerically. However, in t
quasistatic limit, determined by large frequency detunin
the polarization dependence of the two-photon absorp
can be simply estimated as was discussed in Sec. III C.

In our numerical calculations we have considered the
ample of Mg-He (3s2 1S0˜3p 1P1˜5s 1S0,4d 1D2) frac-
tional optical collisions. In the case of the excitation up
the 5s 1S0 state of magnesium we have obtained that
negative detuningD11D2 the polarization ratio is in an ac
f
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cordance with its quasistatic estimation. The partial wa
analysis shows the validity of the quasistatic approximat
for such detunings in the general case. However, for the p
tive detuningD11D2 we have obtained the dominant role
the contribution coming from the two-photon Franc
Condon transitions. Such a contribution can give a differ
magnitude of the polarization ratio than in the quasista
model, because the two-photon Franck-Condon transiti
cannot be treated as successive single-photon excitat
Specifically for the 3s2 1S0˜3p 1P1˜5s 1S0 photoexcita-
tion channel the polarization ratio for two-photon Franc
Condon transitions approaches unity. In the more com
cated case of the excitation up to the 4d 1D2 state of
magnesium the role of the interference between all the
volved transitions becomes important and the quasistatic
proximation is suitable here only qualitatively. The polariz
tion ratio has a stable value close to1

7 in a broad range in the
blue wing of the second frequency detuning. There is als
strong dependence of the polarization ratio in the red wing
the second detuning. This result can be explained by
partial selection in the wing of the atomic resonance lin
perturbed by the collisions, those Zeeman atomic transiti
whose contributions in the polarization ratio have differe
orders and different signs.
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APPENDIX A: SEMICLASSICAL REPRESENTATION
OF THE RETARDED GREEN FUNCTION

1. General analysis

The retarded Green function@kernel of retarded Green
operator~2.13!# is defined as follows:

G~1 !~R2 ,q2 ;R1 ,q1!

5(
V

E d3k

~2p!3

CkV
~1 !~R2 ,q2!CkV

~1 !* ~R1 ,q1!

E2EkV1 i0

~A1!

and it performs one of the possible solutions of the Sch¨-
dinger equation,

$E2H%G~1 !~R2 ,q2 ;R1 ,q1!5d~R22R1!d~q22q1!,
~A2!

where the HamiltonianH is applied to the first set of vari
ables.

Making the expansion of the Green function in the ad
batic basis set with fixed total angular momentumJ and pro-
jection M,
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G~1 !~R2 ,q2 ;R1 ,q1!5
1

4pR2R1
(

V2V1
(
JM

~2J11!

3DMV2

J* ~a2 ,b2,0!DMV1

J ~a1 ,b1,0!

3GV2V1

J ~R2 ,R1!fV2
~R2 ,q2!

3fV1
* ~R1 ,q1!, ~A3!

we transform the Schro¨dinger equation~A2! to its radial
form

H E1
\2

2m

d2

dR2
22UV2

~R2!2\2
J~J11!2V2

2

2mR2
2 J GV2V1

J ~R2 ,R1!

2(
V8

~V̂V2V8
~R!

1VV2V8
~C!

!GV8V1

J
~R2,R1!5d~R22R1!dV2V1

,

~A4!

where nonadiabatic coupling is characterized by the follo
ing operators:

V̂V2V8
~R!

52
\2

m K V2U ]

]R2
UV8L d

dR2
2

\2

2m K V2U ]2

]R2
2UV8L

1
\2

2mR2 ^V2u j'
2 uV8&,

~A5!

VV2V8
~C!

5
\2

mR2
2 H @J~J11!2V2~V221!#1/2

3K V2U 1

&
j 11UV8L

2@J~J11!2V2~V211!#1/2K V2U 1

&
j 21UV8L J ,
s
tu

o
io

e
to
-

which are known as radial-type and Coriolis rotational-ty
nonadiabatic interactions, respectively. Here we use the
lowing set of irreducible components of electronic angu
momentum:

j 05 j z , j 6157
j j6 i j h

&
, j'

2 5 j j
21 j s

2, ~A6!

where we assume the following directions of a Cartes
frame: z axis is along theR direction, j axis is along
R3k, andh axis is alongR3(R3k).

The retarded-type solution of the radial scattering eq
tions ~A5! can be found by making the appropriate choice
the boundary conditions taken from the asymptotic behav
of Eq. ~A1!. It can be shown that the radial Green functio
should satisfy the following boundary condition:

GV2V1

J ~R2 ,R1!˜
im

\2~k2k1!1/2@SV2V1

~1 !J ~k2 ,k1!

3eik2R21 ik1R12 ipJ2dV2V1
eik1~R.2R,!#

~A7!

at R2 ,R1˜` where we denotedR.5max$R2,R1% and R,

5min$R2,R1%. Here SV2V1

(1)J (k2 ,k1) is the usualS matrix of

the multichannel scattering problem andk2 ,k1 are the wave
numbers of initial and final states relating to the same to
energy.

In semiclassical form the radial Green function can
expressed in a similar way as the radial wave functions,
Eqs. ~3.15!, i.e., in terms of slowly varying amplitudes an
rapidly oscillating exponential functions. For a radial wa
function the procedure was described in@24#. Here we briefly
show how to apply it to the Green function problem. Let
make the following substitution in the scattering equatio
~A4!:
GV2V1

J ~R2 ,R1!5( 8
l H im

\2@kl
J~R2 ,1 !kl

J~R1 ,2 !#1/2gl
J~R2 ,R1 ;12 !eiSl

J
~R2 ,R1 ;12 !1 ip/2

2
im

\2@kl
J~R2 ,2 !kl

J~R1 ,2 !#1/2gl
J~R2 ,R1 ;2 !eiSl

J
~R2 ,R1 ;2 !1 ip/2u~R12R2!

2
im

\2@kl
J~R2 ,1 !kl

J~R1 ,1 !#1/2gl
J~R2 ,R1 ;1 !eiSl

J
~R2 ,R1 ;1 !1 ip/2u~R22R1!J , ~A8!
n-
en
where l 5V2 ,V8,...,V9V1 and the prime sign indicate
that the sum is expanded over all intermediate quan
numbers. Plus or minus signs in the arguments
the R-dependent wave numbers and in the transit
amplitudes show the location ofR1 or R2 points on ‘‘out’’
or ‘‘in’’parts of the classical trajectory, respectively. Th
action integrals are evaluated along an actual trajec
m
f

n

ry

in the ‘‘path’’ potential obtained from the adiabatic pote
tials for each adiabatic part of atomic motion. They are giv
by

Sl
J~R2 ,R1 ;12 !5E

Rl

R2
kl

J~R,1 !dR1E
Rl

R1
kl

J~R,2 !dR,
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Sl
J~R2 ,R1 ;2 !5E

R2

R1
kl

J~R,2 !dR,

~A9!

Sl
J~R2 ,R1 ;1 !5E

R1

R2
kl

J~R,1 !dR.

Here Rl is the location of the turning point on the ‘‘path
potential Ul(R). Because ofu functions in Eq.~A8! the
pointsR1 andR2 are located on the classical trajectory in t
preferred order in accordance with a classical picture
atomic motion.

If the radii R1 andR2 are close to one another and bo
are inside of the adiabatic region, thengl

J(R2 ,R1 ;6)
5gV2V1

J (R2,R16)5dV2V1
and gl

J(R2,R1;12)5constR2,R1
.

It is easy to see that taking into account the second orde
wi

n

r-

e

ad
i-
gio

e

f

in

the derivative of rapidly oscillating exponential function
and only the first order in the derivative of slowly varyin
factors overR1 in Eq. ~A4! one can obtain thed function in
the left side of this equation.

Consider now the situations when there is only one n
adiabatic region located betweenR1 and R2 . If it is sepa-
rated from the classically forbidden regions, the ‘‘in’’ an
‘‘out’’ parts of the Green function can be found indepe
dently, because they are associated with two running wa
propagating via the nonadiabatic region from opposite dir
tions. In such a case we can introduce the semiclassical f
of scattering equations for slowly varying transition amp
tudesgV2V1

J (R2 ,R1 ;6), assuming a large magnitude of a

gular momentumJ and keeping only the derivative of thes
amplitudes in the first order:
]

]R2
gV2V1

J ~R2 ,R1 ;6 !5(
V8

H 2S kV8V1

J
~R2 ,6 !

kV2V1

J ~R2 ,6 !D 1/2K fV2
U ]

]R2
UfV8L

6
i

@kV2V1

J ~R2 ,6 !kV8V1

J
~R2 ,6 !#1/2

~J11/2!

R2
2 ^fV2

u j jufV8&J
3exp$ iSV8V1

J
~R2 ,R1 ;6 !2 iSV2V1

J ~R2 ,R1 ;6 !%gV8V1

J
~R2 ,R1 ;6 !. ~A10!
tion

a
In
i-
y
n
in

ic

ing

a

These equations should be considered in combination
the following boundary conditions:gV2V1

J (R2 ,R1 ;1)

˜dV2V1
at R2˜R110 and gV2V1

J (R2 ,R1 ;2)˜dV2V1
at

R2˜R120. It is important that by substituting the ‘‘in’’ and
‘‘out’’ terms of the Green function into scattering equatio
~A4! the d function vanishes if we neglect the terms

J1 1
2

kV2

J ~R2!kV1

J ~R1!R2 ^fV2
u j jufV1

&d~R22R1!,

where we denote kV2

J (R2)5kV2V1

J (R2 ,6), kV1

J (R1)

5kV1V1

J (R1 ,6). Such types of terms lead to the similar co

rection in the solution of differential equation~A4! as other
terms that are neglected, which come from higher order d
vations of slowly varying amplitudes.

In the general case there are several separated non
batic regions and we can express ‘‘out’’ and ‘‘in’’ ampl
tudes as the products of partial factors relating to each re
as follows:

gl
J~R2 ,R1 ;6 !5gV2V8,...,V9V1

J
~R2 ,R1 ;6 !

5gV2V8
J

~R2 ,R8;6 !¯gV9V1

J
~R9,R1 ;6 !,

~A11!

where R2.R8.¯.R9.R1 for the ‘‘out’’ wave and R2
,R8,¯,R9,R1 for the‘‘in’’ wave. In these products the
internal radii R8 and R9 have an arbitrary location insid
th

ri-

ia-

n

intermediate adiabatic domains and their possible varia
does not change the product itself.

The ‘‘in’’-‘‘out’’ contribution in the semiclassical expan-
sion of the Green function~A8! can also be formed as
product of partial solutions for each nonadiabatic region.
the asymptoteR1 ,R2˜` we should recover the semiclass
cal expansion of theS matrix in accordance with boundar
condition ~A7!. The most difficult is to expand the solutio
in the vicinities of the classically forbidden regions, but
the simple situation with only one turning pointR0 we can
express the amplitudegl

J(R2 ,R1 ;12) as follows:

gl
J~R2 ,R1 ;12 !5gV2V8,...,V IVV1

J
~R2 ,R1 ;12 !

5gV2V8
J

~R2 ,R8;1 !¯gV9V0

J
~R9,R0 ;1 !

3gV0V-
J

~R0,R-;2!¯gV IVV1

J
~RIV,R1;2!,

~A12!

where R2.R8.¯.R9.R0 and R0,R-,¯,RIV,R1
and internal radiiR8,...,RIV are located inside the adiabat
domains.

2. Application to the 1P1 state

Let us illustrate the general discussion of the preced
section by the practical example of a1P1 atomic state split
into 1S0

1 and 1P1 molecular states in the interaction with
rare-gas atom. There is only Coriolis~no radial! coupling as
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R˜` asymptote for these terms. We will use an approxim
tion that Coriolis coupling is negligible inside the sphe
with radiusRd5Rd(J) ~so-called decoupling sphere! and be-
comes important outside this sphere. Such a decoup
~locking! radius approximation is well known in the theo
of atomic collisions and particularly in the theory of optic
collisions, see@31–33#. It means that the change fromd to a
coupling schemes in Hund’s classification takes place i
narrow domain located near the decoupling radiusRd . The
optimal choice ofRd has been a subject of several discu
sions, see@32,33#. From a practical point of view the decou
pling sphere approximation is useful so long as the lo
range dynamical forces disappear at large internuc
separations more rapidly than long-range inertial Corio
forces. To estimate the location of decoupling radius we m
use the following:

\2~J11/2!

mRd
2 ;DU~Rd!, ~A13!

where we denote asDU(R) the splitting between theS and
P terms.

In such an assumption the slowly varying amplitudes c
be calculated as a solution of simplified Eqs.~A10!. On one
hand, outside of the decoupling sphere, where both ato
potentials approach zero, we can solve these equations
straight line trajectory approximation with strong Corio
coupling between theS and P states. On the other hand
inside the decoupling sphere we can use an adiabatic
proximation with neglect of the Coriolis coupling. The d
coupling sphere defines the sharp border betweend and a
Hund’s regions where we fit the solutions. Final results
pend on different relationships between total angular m
mentumJ, decoupling radiusRd , and radiiR1 ,R2 .

Consider the optical collision with large impact parame
r5(J11/2)/k.r0 wherer05Rd(r0) is the upper value of
impact parameter for the classical trajectory touching the
coupling sphere. That implies the scattering conditio
where the trajectory is located inside thed coupling scheme
region. There is no dynamical interaction between the ato
in Hund’s cased region ~atoms are free! and the slowly
varying amplitudes are defined as rotational transformati
characterizing the change in the orientation of the molec
frame for the motion along the trajectory from pointR1 to
point R2 :

gV2V1

J ~R2 ,R1 ;2 !5DV2V1

j
„2p/2,2jJ~R2 ,R1 ;2 !,p/2…,

R2,R1

~A14!

gV2V1

J ~R2 ,R1 ;1 !5DV2V1

j
„2p/2,2jJ~R2 ,R1 ;1 !,p/2…,

R2.R1

gV2V1

J ~R2 ,R1 ;12 !

5DV2V1

j
„2p/2,2jJ~R2 ,R1 ;12 !,p/2….

The WignerD functions describe the rotational transform
tion of the atomic wave functions with internal angular m
mentum j ( j 51) and they depend on deflection angl
-
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jJ(R2 ,R1 ;6), jJ(R2 ,R1 ;12). The references of the de
flection angles used here and throughout are shown in
11. We show here and below the full structure of thel index
in the subscript of theg functions and omit it in deflection
angles. This can be done because the deflection angles r
here to the straight parts of the classical trajectory and do
depend onl.

If r5(J11/2)/k,r0 and R2 ,R1.Rd then ‘‘in’’ and
‘‘out’’ parts of the trajectory betweenR1 andR2 are located
inside thed Hund case region, but the ‘‘in’’-‘‘out’’ part
crosses thea region. The Coriolis-type transition amplitude
are given by

gV2V1

J ~R2 ,R1 ;2 !5DV2V1

j
„2p/2,2jJ~R2 ,R1 ;2 !,p/2…,

R2,R1

gV2V1

J ~R2 ,R1 ;1 !5DV2V1

j
„2p/2,2jJ~R2 ,R1 ;1 !,p/2…,

R2.R1 ~A15!

gV2V8V1

J
~R2 ,R1 ;12 !5DV2V8

j
„2p/2,2jJ~R2 ,Rd;1!,p/2…

3DV8V1

j
„2p/2,2jJ~Rd,R1;2!,p/2….

If R1.Rd.R2 then the ‘‘in’’ and ‘‘in’’-‘‘out’’ parts of the
trajectory can cross the decoupling sphere and the am
tudes are given by

gV2V1

J ~R2 ,R1 ;2 !5DV2V1

j
„2p/2,2jJ~Rd ,R1 ;2 !,p/2…,

~A16!
gV2V1

J ~R2 ,R1 ;12 !5DV2V1

j
„2p/2,2jJ~Rd ,R1 ;2 !,p/2….

If R2.Rd.R1 then the ‘‘out’’ and ‘‘in’’-‘‘out’’ parts of the
trajectory can cross the decoupling sphere and the trans
amplitudes are the following:

gV2V1

J ~R2 ,R1 ;1 !5DV2V1

j
„2p/2,2jJ~R2 ,Rd ;1 !,p/2…,

~A17!
gV2V1

J ~R2 ,R1 ;12 !5DV2V1

j
„2p/2,2jJ~R2 ,Rd ;1 !,p/2….

If Rd.R1 ,R2 then all the parts of the trajectory are insid
Hund’s casea region and all the amplitudes are purely ad
batic,

gV2V1

J ~R2 ,R1 ;2 !5dV2V1
, R2,R1

gV2V1

J ~R2 ,R1 ;1 !5dV2V1
, R2.R1 ~A18!

gV2V1

J ~R2 ,R1 ;12 !5dV2V1
.

The last relation betweenR1 , R2 , andRd is typical for op-
tical transitions in quasistatic conditions when, in accorda
with the Frank-Condon principle, the optical excitation
initiated inside the molecular interaction region.
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APPENDIX B: SEMICLASSICAL REPRESENTATION
OF RADIAL WAVE FUNCTION V

V̄V

„2…

„R…

FOR THE 4d 1D2 STATE

The semiclassical representation of the radial wave fu
tion v

V̄V

(2)
(R) is defined by Eq.~3.15! as follows:

v
V̄V

~2 !J
~R!5( 8

l

i

2Ak
e2 id l

J
~k,1 !

3H 1

@kl
J~R,2 !#1/2bl

J~R,2 !e2 iSl
J
~R,2 !2 ip/4

2
1

@kl
J~R,1 !#1/2bl

J~R,1 !eiSl
J
~R,1 !1 ip/4J .

~B1!

General analysis of such kinds of semiclassical expansio
well as the details of the technique developed for calcula
of slowly varying amplitudesbl

J(R,6) can be found in@24#.
Here we present and briefly discuss only the results rela
to the 4d 1D2 state of magnesium in collision with a rare-g
atom.

We restrict ourselves by considering the Coriolis nonad
batic coupling and ignore the radial nonadiabatic interacti
As follows from the numerical results for Mg-He singlet p
tentials, see Fig. 4, there is no significant radial nonadiab
coupling betweenS terms correlated with 5s and 4d elec-
tronic configurations of magnesium. The most important
culiarity of the Coriolis interaction, coming from the beha
ior of potentials depicted in Fig. 4, is in the existence of tw
decoupling spheres splitting different Hund’s regions. T
outer sphere, characterized by decoupling radiusRd1
;38 a.u., bounds the interaction region from the outer reg
of the free motion, which is specified as Hund’s cased.
There is an extended region located between outer sp
Rd1 and inner sphereRd2;9 a.u., which cannot be specifie
in a regular Hund’s classification, where only the electro
shell with 4ds configuration has a significant repulsive i
teraction. The repulsive interaction comes from strong
change interaction of 4ds electron with the rare-gas atom
The 4dp and 4dd configurations are still degenerate at su
intermediate separations because of no exchange overlap
with the wave functions of the valence electrons of the ra
gas atom and the corresponding terms are determined
zero potentials. Therefore in the rotating molecular fra
there is a strong Coriolis coupling between1P and 1D elec-
tronic states in this intermediate region. In the inner reg
with internuclear separations less thanRd2 the interaction is
characterized by Hund’s casea.

For the long-range trajectories with impact parameter
5(J11/2)/k.r01, wherer015Rd1(r01) is its upper value
for the limit trajectory touching the outer decoupling sphe
all the amplitudes are given by

bl
J~R,1 !5b

V̄V

J
~R,1 !5D

V̄V

j
„2p/2,jJ~`,R;1 !,p/2…,

~B2!

bl
J~R,2 !5b

V̄V

J
~R,2 !5D

V̄V

j
„2p/2,jJ~`,R;12 !,p/2….
c-
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Here and below we use the same reference of deflec
angles as in Fig. 11.

For the intermediate trajectories with impact parame
r02,r,r01, wherer025Rd2(r02) is its upper value for the
limit trajectory touching the inner decoupling sphere, the a
plitudes have different representations in dependence on
relation betweenR andRd1 :

~1! ‘‘Out’’ trajectory with R.Rd1 ,

bl
J~R,1 !5b

V̄V

J
~R,1 !5D

V̄V

j
„2p/2,jJ~`,R;1 !,p/2….

~B3!

~2! ‘‘Out’’ trajectory with R,Rd1 ,

bl
J~R,1 !5b00V

J ~R,1 !5D0V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,1 !5b6161V

J ~R,1 !5cosjJ~Rd1 ,R;1 !

3D61V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,1 !5b6162V

J ~R,1 !52 i sinjJ~Rd1 ,R;1 !

3D62V
j ~2p/2,jd1

J ,p/2!, ~B4!

bl
J~R,1 !5b6262V

J ~R,1 !5cosjJ~Rd1 ,R;1 !

3D62V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,1 !5b6261V

J ~R,1 !52 i sinjJ~Rd1 ,R;1 !

3D61V
j ~2p/2,jd1

J ,p/2!,

wherejd1
J 5jJ(`,Rd1 ;1).

~3! ‘‘In’’ trajectory with R,Rd1 ,

bl
J~R,2 !5b00V

J ~R,2 !5D0V
j ~2p/2,jd1

J ,p/2!, ~B5!

bl
J~R,2 !5b6161V

J ~R,2 !5cosjJ~Rd1 ,R;12 !

3D61V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b6162V

J ~R,2 !52 i sinjJ~Rd1 ,R;12 !

3D62V
j ~2p/2,jd1

J ,p/2!,

FIG. 11. The reference of the deflection angles used in the
guments ofD functions in Eqs.~A14!–~A17!. Here the radiiRA and
RB are any ofR1 , R2 , or Rd .
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bl
J~R,2 !5b6262V

J ~R,2 !5cosjJ~Rd1 ,R;12 !

3D62V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b6261V

J ~R,2 !52 i sinjJ~Rd1 ,R;12 !

3D61V
j ~2p/2,jd1

J ,p/2!.

~4! ‘‘In’’ trajectory with R.Rd1 ,

bl
J~R,2 !5b

V̄ l 8

J
~R,2 !5D

V̄V8

j
„2p/2,jJ~Rd1 ,R;2 !,p/2…

3bl 8~Rd1 ,2 !, ~B6!

where bl 8(Rd1 ,2) is any of the amplitudes from case~3!

taken atR5Rd1 and byl 8 in path indexl 5V̄ l 8 we denoted
l 85V8,...,V. We do not mark the deflection angles in Eq
~B3!–~B6! by path index because all of them relate here
the straight trajectory approximation.

For the inner trajectories with impact parameterr,r02
the amplitudes have different representations in their dep
dence on the relation betweenR, Rd1 , andRd2 .

~1! ‘‘Out’’ trajectory with R.Rd1 . All the amplitudes
bl

J(R,1) are given by expression~B3!.
~2! ‘‘Out’’ trajectory with Rd1.R.Rd2 . All the ampli-

tudesbl
J(R,1) are given by expression~B4!.

~3! ‘‘Out’’ and ‘‘in’’ trajectories with R,Rd2 ,

bl
J~R,2 !5bl

J~R,1 !5bl
J~Rd2 ,1 !. ~B7!

This region relates to the region of adiabatic evolution a
bl

J(Rd2 ,1) with all possible l given by Eq. ~B4! at R
˜Rd2 .

~4! ‘‘In’’ trajectory with Rd1.R.Rd2 ,

bl
J~R,2 !5b000V

J ~R,2 !5D0V
j ~2p/2,jd1

J ,p/2!, ~B8!

bl
J~R,2 !5b616161V

J ~R,2 !5cosjJ~Rd2 ,R;2 !

3cosjJ~Rd1Rd2 ;1 !

3D61V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b616261V

J ~R,2 !

52sinjJ~Rd2 ,R;2 !sinjJ~Rd1Rd2 ;1 !

3D61V
j ~2p/2,jd1

J ,p/2!,
. A

s.

en
.
o

n-

d

bl
J~R,2 !5b616162V

J ~R,2 !52 i cosjJ~Rd2 ,R;2 !

3sinjJ~Rd1Rd2 ;1 !D62V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b616262V

J ~R,2 !

52 i sinjJ~Rd2 ,R;2 !cosjJ~Rd1Rd2 ;1 !

3D62V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b626262V

J ~R,2 !

5cosjJ~Rd2 ,R;2 !cosjJ~Rd1Rd2 ;1 !

3D62V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b626162V

J ~R,2 !

52sinjJ~Rd2 ,R;2 !sinjJ~Rd1Rd2 ;1 !

3D62V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b626261V

J ~R,2 !

52 i cosjJ~Rd2 ,R;2 !sinjJ~Rd1Rd2 ;1 !

3D61V
j ~2p/2,jd1

J ,p/2!,

bl
J~R,2 !5b626161V

J ~R,2 !

52 i sinjJ~Rd2 ,R;2 !cosjJ~Rd1Rd2 ;1 !

3D61V
j ~2p/2,jd1

J ,p/2!.

~5! ‘‘In’’ trajectory with R.Rd1 ,

bl
J~R,2 !5b

V̄ l 8

J
~R,2 !

5D
V̄V8

j
„2p/2,jJ~Rd1 ,R;2 !,p/2…bl 8~Rd1 ,2 !,

~B9!

where bl 8(Rd1 ,2) is any of the amplitudes from case~4!

taken atR5Rd1 and byl 8 in path indexl 5V̄ l 8 we denoted
l 85V8,...,V. All the deflection angles appearing in the
expressions can be calculated in zero potential, i.e., i
straight trajectory approximation.
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