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Semiclassical theory of two-photon polarization-dependent fractional optical collisions:
Application to the Mg-He(3s?1S,—3p P,—5s!S,, 4d1D,) optical collision
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Department of Theoretical Physics, State Technical University, 195251 St. Petersburg, Russia
(Received 8 December 1998

We have analyzed by perturbation theory technique two-photon polarization-dependent fractional optical
collisions. In its general form the cross section of the collision is expressed as the overlap integral of its
spectral profile with the spectrum of the second order correlation function of the electromagnetic field. Based
on the semiclassical expansion of radial wave functions and of a retarded Green function we have expressed
the spectral profile of the cross section in terms of well understood semiclassical characteristics of the process
such as the rotational transformations of the transition dipole moments and the transition amplitudes describing
the adiabatic or nonadiabatic dynamics of the electronic subsystem along classical trajectories. As a practical
example, we have calculated the Mg-Hes{3S,—3p 'P,—5s1S,, 4d 'D,) fractional optical collision cross
section. The partial wave analysis for excitation up to teé%, state has shown the nonvalidity of quasistatic
approximation based on successive single-photon transitions for some frequency detunings. For example, for
the positive detuning from two-photon atomic resonance we have obtained the dominant contribution coming
from the direct two-photon Franck-Condon transitions. Such a contribution gives the magnitude of the polar-
ization ratio, characterizing the dependence of the cross section on mutual laser polarizations at the first and at
the second steps of the photoexcitation, different than for successive single-photon Franck-Condon transitions.
In the more complicated case of excitation up to thie'®, state of magnesium the role of the interference
between different photoexcitation channels becomes important. The polarization ratio has a stable value close
to % in a broad spectral range in the blue wing of the second frequency detuning. There is a strong dependence
of the polarization ratio in the red wing of the second detuning. Such spectral behavior can be explained by the
partial selection in the red wing of the atomic resonance line, perturbed by the collisions of those Zeeman
transitions in which contributions in the polarization ratio have different orders and different signs.
[S1050-2947@9)08308-0

PACS numbgs): 34.50.Rk, 34.80.Qb, 33.80.Gj

[. INTRODUCTION lision is very useful because it often makes the spectral
analysis more clear. By measuring the polarization depen-
The experiments on optical collisions are successfullydence of far-wing absorption profiles we can better under-
used as a tool for the study of interatomic interactions angtand such polarization-sensitive characteristics of the pro-
internal dynamics of atomic collisioid—9]. The idea of the cess as the symmetry of the optical transitions and
method is a probe by laser radiation of the diatomic systenffonadiabatic dynamics.
created in an atomic collision. The outgoing excited atomic N Refs.[10-13 the optical collision method was dis-

fragments carrying the information about interrupted colli-cussed in the more general case of two-photon collisional
sion can be detected either directly in atomic beam experi[edlstnbutmn of radiation. The photoexcitation and the probe

ments[7,9] or indirectly by measuring the atomic fluores- of a colliding pair by nonresonant photqns under guasistatic
cence in cell experiments3—6,8. In the latter case the _(or Close_ to quasistaiconditions makes it p055|ble_ to prc_Jb_e
transformation of exciting light into atomic fluorescence ob-" experiment even a small segment Qf an atomic CO"'S'_On
served in the experiment is often called in literature coIIi—.traJeCtory'. The prehmmgry demonstrat|on.of such a promis-
) N i . ing experimental technique, named fractional optical colli-
S'O”‘."" redlstrlbytlon of light. Being an exar_nple of.the sions, was done recently in experimefrit8] on magnesium—
continuum-continuum spectroscopy, the optical CO”'S'Onrare-gas partner  optical  collision. Because the
technique provides effective and sometimes the only accegspatoabsorption spectra are usually presented as a function
sible information when no transitions to bound states conys wwo detunings between the photon frequencies and the
tribute in an absorption spectrum. The general problem ifesonance frequencies relating to the transitions into upper
description of experimental results is that typically there areand intermediate atomic states, the spectral analysis of frac-
many optical transitions and decaying channels involved inional optical collision is more complicated than in the
the process, which can interfere and interact with one ansingle-photon case. The experimental data provided in the
other. Therefore in practical realizations of the technique thexperiment§13] showed that in such a case the polarization-
additional polarization-dependent monitoring of optical col-dependent monitoring is most helpful and informative in the
analysis of the photoabsorption spectra.
There is another peculiarity of the two-photon optical col-

*Present address: Department of Theoretical Physics and Adision technique connected with statistical properties of ex-
tronomy, State Pedagogical University, 191187 St. Petersburggiting light, which would be interesting to study in an experi-
Russia. ment. For example, if there were mutual correlation in

1050-2947/99/6(8)/223025)/$15.00 PRA 60 2230 ©1999 The American Physical Society



PRA 60 SEMICLASSICAL THEORY OF TWO-PHOTON . .. 2231

photon fluxes of both the exciting light beams, it would alsonov and Perel ii16] and Keldysh inf17], see als¢18], for
lead to the correlation of photoabsorption events. Such exarbitrary nonequilibrium many-particle quantum systems. In
ternal correlation could make it possible to observe the interthe Keldysh diagram formalism the density matrix of any
nal correlation of photoabsorption events directly connectegbarticle (simple or compoundcan be obtained through the
with the dynamics of the fractional collision itself. In a perturbation theory expansion of the following Green func-
simple case, in quasistatic conditions, it makes possible oltion:
servation of the time delay in atomic motion between Con-
don points. We can point out here some analogy with an Gl (et = =(WL(r't ) We(rt)), 21
experimental technique commonly used in modern photo-
chemistry and based on ultrashort laser pulses, which demyhere ¥(...) and qf;r,(___) are thespace-time-dependent
onstrates the direct resolution and control of internal waveznnjhilation and creation operators of the particles in the
packet dynamics in(steplik9 photoexcitation of the Heisenberg representation. We denote @ the center of
molecules by time-delayettcorrelated femtosecond laser mass coordinates and 4sf’ the sets of internal quantum
pulses, see Ref§14,15, and references therein. numbers of the particles. The angle brackets describe the
In the present paper we are going to develop the theory ofyeraging over the full initial density operator of the system.
two-photon fractional optical collisions from two points of \ye assume that initially the density operator can be split as
view. First, we are motivated to make a physically clearthe product of the operators for different subsystems: par-
semiclassical analysis of two-photon polarization-dependenicies; fields, etc. Then the single-particle density matrix can

absorption based on second order of perturbation theory. Thes gptained by taking the Green functith1) at coincident
general expressions derived can be used for explanation gfes as follows:

polarization-dependent spectra of optical collisions observed
in experiments. We consider here the example of Mg-He pff/(r,r’;t)ztiG(f;,“(rt;r’t). (2.2
fractional optical collision, because for such a pair the inter-
action potentials in the excited states can be calculated witho upper/lower signs in Eq€2.1),(2.2) relate to boson or
better accuracy than for other rare-gas partners. Secondly, Wgrmion statistics, respectively.
are motivated to involve in our analysis the correlation prop- Generalizing the approach ¢16—1§ we assume here
erties of exciting light and we develop the theory valid forthat\lf,\lf* operators can be treated as the second quantized
the light with arbitrary statistics, which can be either ClaSSi'operators of a compound diatomic system, i.e., quasimole-
cal or nonclassical. It is important that in our discussion Weje. This means that we consider the gas medium where the
treat _in semiclassical approximation only the dynamics of anyqtjve atomg(interacted with a fieldare put in an environ-
atomic subsystem, but we follow this with a complete quan-nent of highly concentrated foreign gas. The energy struc-
tum analysis in describing the electromagnetic field subyyre of the active atoms is quasiresonant to the spectrum of
system. The effects of mutual correlation connected withyptical excitation, but the interaction with foreign atoms is
classical or quantum statistics of the excited light can b&rong enough to perturb the energy levels of the active atom
rather interesting for planning new experiments on two-gnq it cannot be ignored in calculation of the photoabsorp-
photon fractional optical collisions. tion spectrum. In such a case quantum numbefé are

The paper is organized as follows. In Sec. Il we presenfsgociated with the full set of diatomic quantum numbers and
general perturbation theory analysis of the diatomic density, jependence on recoil energy they can related to either the
matrix based on Keldysh diagram technique. In Sec. Il We,onqd or continuous spectrum of the system. Particularly in
derive the quantum and semiclassical expressions for the Ogse ptical collision case, when transitions are initiated be-
tical collision cross section. In Sec. IV we present the result$,een continuous spectra of both the lower and upper states,
of numerical calculations for Mg-He optical collisions. Sec- ;¢ apply the Green function formalism to the system where

tion V is devoted to conclusions. internal states are nonbound and quantum numhdfsare
associated with the continuous spectrum of the quasimole-
Il. GENERAL ANALYSIS OF THE OPTICAL EXCITATION cule. The presence of the quantum statistics permutation
OF A DIATOMIC SYSTEM IN THE SECOND ORDER change of the sign in Eq$2.1),(2.2) is not really important
OF PERTURBATION THEORY if the diatomic gas has Boltzmann statistics.
) _ _ ) _ _ Let us assume that initially all the atoms and quasimol-
A. Diagram expansion for the diatomic density matrix ecules are in the lower energy states described by the set of

In this section we derive general expressions for the denquantum numbers and they can be excited in the upper
sity matrix of a diatomic system produced by two-photonstatesf by two-photon optical excitation only. We restrict
optical excitation of an arbitrary initial state. Our approach isourselves by considering the interaction of the quasimolecule
based on the perturbation theory with a quantum descriptiowith the radiation in the dipole and rotating wave approxi-
of exciting light valid for an arbitrary quantum state of an mation when the interaction Hamiltonian in the interaction
electromagnetic field. We point out that in nonlinear opticalrepresentation is given by
processes like two-photon absorption the quantum and clas-
sical descriptions of the light can Iegd to some diff(_arenpe in V(r,t)= _E (dV)baE<V+>(r’t)\pg)Oﬁ(r,t)q,gO)(r,t)+ H.c.,
final results. To remove from our discussion possible inac- ab
curacy coming from the classical description, our analysis is (2.3
based on a general second quantized formalism. We adhere
to a convenient diagram approach developed by Konstantivhere E(V*)(...) is the positive frequency part of theth
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component of an electric field vector and’},, is the tran-  representation, s¢&9]. The'W operators with zero indices in
sition dipole matrix element between any loveeand upper Eq. (2.3) are associated with the interaction representation.
statesh. We use here and throughout covariant notation forThe excited-state Green function appears in the second order
tensor indices because the difference between covariant amd perturbation theory and it can be described by the follow-
contravariant components can be important in the irreducibléng Keldysh-type diagram:

|

I,

f rt 2 1 1! 97 fl r't

() (pr Y =
Gy (vt r't) = (2.4

where we kept only the lowest order in the interaction of the (=)

quasimolecule with the electromagnetic field. Internal pre(t)= ij iGyp, (rt;rt)d3r. (2.9
straight lines in this diagram are retarded and advanced di-

atomic Green functions describing the evolution of the sysTo evaluate this integral we assume that the second order
tem in an intermediate state. The waved lines and verticeglectric field correlation function taken at coincident spatial

are the photon propagation functions and interactions wittpoints does not depend on spatial coordinates, i.e.,
the field, respectively. The dashed block in diagré) is

the general second order correlation function of the electro- <7I'[E(VT)(rti)E(VT)(rtg)]T[E(f)(rtl)E(V”(rtz)])
magnetic field, which was introduced by Glauljgf], and 1 2 . 2
its analytical definition will be given below in E¢2.6). We
assume in diagrani2.4) the general quantum state of the
light initiating the two-photon transitions. ~ ) ) _ )
Our analytical analysis of the diagra(®.4) is based on whereT angT are the time ordering and antiordering opera-
the following assumptions. First, it is convenient to make thetors andE{™)(...) are thepositive and negative frequency
calculation in the center of mass frame. This permits of thecomponents of the electric field. Physically this means spa-
kinetic energy of the system after excitation because it idial homogeneous excitation in an optically thin medium.
much less in order of magnitude than the rate of spontaneoughird, we assume that the exciting radiation is quasimono-
decay. The latter characterizes the relaxation of excited anchromatic, so the integrals oveéy,t; andt,,t; are deter-
intermediate states and gives a natural scale for evaluatingined mainly by the interaction with the modes near the
the integrals over internal time arguments. Secondly, weverage frequencias; and w,, respectively.
need to know the density matrix of the internal state of the With such assumptions we obtain the following expres-
diatomic system only, which is given by the integral sion for the density matrix of the internal state:

:Dvlvz;vivé(t11t2;t11té)y (26)

pff,(t)zz > ffffdtldtzdtidtg
i’ orr’
i 1 i 1 !
xexp — 7 el(t—t) — 5 yi(t—ty) — welta—t) — S y(ta—t) — ety

h

—_

i 1 i 1 i
XeXF(%Ef/(t_tz)_ E’yV(t_tz)'F gfrr(tz_tl)_ E‘yr/(tz_tl)‘f‘ _Ei’tl

X O(t—1t,) O(ta—ty) O(t—1t3) O(t;—t1) i

2
X

i 2 ’ !
7 (d"z)n(d”l)n( - g) (d72)pr g (d"0)ir /Dy uri(teutaity 1), 2.7)
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where €; ,€;,€, are the internal energies for initi&l) and i%

final (f), and intermediatér) states, respectivelyy ,y, are 10,05 RO =5-[Vrp(RGR",q"1)

the rates of spontaneous decays of excited statespanis

the initial density matrix of the quasimolecule. The step

function #(7) is equal to 1 or O forr>0 or 7<0, respec- —Vre(R,q;R",0"1)] - (210
tively. R'=R

The differential cross section in the center-of-mass frame can
B. Generalized distorted-wave approximation be associated with this flux propagating in an arbitrary direc-

The derived expressiof2.7) shows the relationship be- ton taken at asymptot®,t—c and normalized to the inci-
tween initial and excited density matrices for weak excitingd€nt flux of incoming particles. In such a procedure we ig-
light existing in an arbitrary quantum state. But such a gen"0re radiative decay of upper and intermediate excited states

eral expression is still formal as long as it does not specifyAd substitutey; andy, by +0. It seems reasonable because
the basis sets for initial and excited states. Moreover, consid€ Scattering asymptote of the wave packet, described by
ered at arbitrary time arguments and in non-steady-state cof€nSity matrix(2.7), conserves its shape as long as the ex-
ditions, it is too general and contains many details which caff!t€d guasimolecule disappears as a result of spontaneous
be unimportant for real experimental situations. Therefore il€Cay. However, it is important to save the decay constants
is convenient to transform Eq2.7) to a less general but 25 +0 for the intermediate state because they show correct
clearer form of the collisional cross section where optical@nalytical behavior of the energy denominators in the vicini-
excitation plays the role of a small perturbation interactedi€S Of the resonance energy. We should point out here that
with the system during the collision. In quantum scatteringSUCh an approximation restricts our discussion and do_es not
theory such an approach is known as the distorted-wave al§1_Ilow consideration of the cases of resonances relating to
proximation and it was introduced in optical collision theory PUr€ single- or two-photon absorption by free atoms.
by Julienne and co-workers {21,29 in the example of a As the basis set of initial statésve use the set of incom-
single-photon optical collision. ing wave functions determined by the following boundary
Let us define the density matrix in a coordinate represencondition:
tation by the following transformation:

Vi(R,a)=W|!) (Rg)—e*o Ry, (q)
P(RA:R' 051 = 2 Wi(R.@pre (DWW (R',Q"), 1 —
" +2 2 @R (ko ko) Uy(@). (2.1

(2.8 s R pomgr 010 Pt ’

where we choose asrepresentation the basis of outgoing Such a basis set is most suitable to define the probability flux
wave functions determined by the following boundary con-of colliding atoms. For unit normalization volume the prob-
dition: ability flux is given by Aky/m, where m is the reduced
atomic mass.
_ Substituting wave function§.9),(2.13) into (2.8),(2.10
V(R =V, (Ra)—e* Ry, (q) and making typical scattering theory approximations with
1 - respect to the asimptotic behavior of the wave packet, we
o ikRe(5) (e obtain the following expression for the differential cross sec-
+% Re fﬂ“(k’k)wﬁ(q)' 29 tion of the optical collision:

Here R is the radius vector of the internuclear axis and do g, :J' J’ f ﬂ%d_‘”id_“’é
denotes the set of all electroniimcluding spin coordinates.  d() 27 27 2w 27
The wave function/,(q) is the atomic wave function of a
free atom. We consider here the case when the foreign atom
is in the ground state with théS, configuration conserved
during the collision. To simplify notation here and through-

D ol o S 1 m%k
el 2 e i
0o

out, in the set of atomic quantum numbers we show only the ><(\If(k;)|dVZG<+)('sM0(k0)+hwl)dVll\Iff(gll())pﬂoﬂéJ
angular momentum projection and omit the angular mo-

mentumj as well as other quantum numbers whenever pos- (W) |d"1G ) (e,r (ko) +Fiw])d 2| W)Y

. . . Kk M/ Mo 0 1 ku'/*
sible. However, we note that the internal atomic states can be 0o
characterized by the quantum numbers relating to different (2.12

recoil energies, so the incoming wave numken scattering

amplitudef%;)(k,k) can differ from the outgoing wave num- The differential cross section describes the formation of the
berk. excited atoms outgoing in the direction of solid anfllgand
Based on the coordinate representation of the density maharacterized by the coherence betwggp’ atomic states.
trix (2.8) we can introduce the probability flux of outgoing The solid angle in Eq(2.12 characterizes the direction of
particles as follows: the outgoing wave vectde in the reference frame with the
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axis along incoming wave vectdt,. The evolution of the ~WhereH is the Hamiltonian of the diatomic system and the
system in an intermediate state is described by retarded ariguments of the Green operators in Ej12) are the virtual
advanced Green operato® *)(e) and G(")(e) which are  €nergies of the intermediate state. The polarization state of
given by the atom before the collision is described by its polarization
density matrixp ol
GH)(e)= 1 2.13 As follows from Eq.(2.12 the light correlation function
e—H=*i0’ ' appears as a Fourier expansion

Dylyz;yiyé(wl,wz;wi,wé)ZJffJ'dtldtzdtidtéEXinltl-i-iwztz—iwiti—iwété)

XDVIVZ;V:’lVé(tlrtZ;tivté) (214)

defined forw;,w,,w;,w;>0. We note also that the expres- (+) iomiok ()

sion for the differential cross section in the fo 12 can q’kouo(R’Q):gt () ODMO—QO(C“O'ﬂO’O)WkOQO(qu)v
be derived under the assumption of a stationary light source ° (3.1)
whenw;+ w,=w;+w5. In such a case the energies of ex- . '
cited atoms e,(k) =€, (Ko) +h (w1t w;) and e, (k) \If{(;)(R,q)=% Dlo(a,8,0¥ i (R,0).
=e#6(ko)+h(wi+ w,) are equal,e, (k)=¢, (k) and k’

=k, because the Zeeman stajesu’ belong to the same Here ), and Q are the angular-momentum projections on
degenerate atomic level. Otherwise, for a general lighthe directions—k, andk, respectively. We call such projec-
source, it is possible to produce coherence not only betweetions of angular-momenturR-helicity, because in a classical
Zeeman states but also between outgoing wave numbepscture of the collision the vectdr rotates in space between
k,k’. We restrict the possible view of the light correlation two “in” and “out” asymptotes of a classical trajectory.
function by a stationary approximation in this paper. From aSince in the adiabatic approximation the internal angular-
practical point of view, it means that the excitation is initi- momentum projection onR direction is conserved, an
ated by cw light sources or pulsed lasers with pulse duratiof-helicity representation is more suitable as a basis for the
much longer than a typical collisional time. scattering wave functions; 3@324]. The transforma_tions
The above analysis shows that, as in other tvvo-photorl?etwee” laboratory and helicity frames are described by
processes, in the optical collision case the electromagnetid/ignerD functionsDifOiQo(ao,ﬁo,O) andD},(«,3,0) de-
field of the exciting light governs the process by its generabending on angles, which characterize the direction&of
second order correlation function. Such a type of correlatiorand k in an arbitrary laboratory frame. We use here and
functions emphasizing the quantum nature of light appears ithroughout the definition of th® function as in Ref[19].
different applications of modern quantum optics: in the study Instead of Zeeman coherences, the atomic polarization is
of light statistics, correlation phenomena and high order inbetter described in terms of irreducible tensor components,
terference. If noncommutation of the operators or quantunsee[25,26,19. The formation of aKQ irreducible compo-
behavior of the electric field fluctuations are important fornent(defined in covariant forni27]) in the collision is de-
the light statistics, the quantum nature of light can manifesscribed by the following cross section;
itself in the excitations initiated by two-photon optical colli-
sions. However, in the existing experiments the two-photon doko
transitions in the collisional domain were initiated by the do =2
radiation coming from two independent noncorrelated laser
sourceg13]. In such a case there is no difference between herej is an angular momentum of the outgoing atom and

quantum and classical description, because the second ordgr. are the Clebsch-Gordan coefficients in the notation of

correlation function is factorized as a product of two first R'é'f”['19] In the same wav we can expand the density matrix
order correlation functions relating to the independent laser, . -~ """ way expand y
sources of the incoming atom in terms o¢q irreducible components

as follows;

1/2 d

s g ’
Cliko dgL ; (3.2

2K+1
2j+1

’
s

2,
Clo0 palio), (3.3

JoMoKd

2k+1
2jot1

IIl. OPTICAL COLLISION CROSS SECTION Py = E
Mokq q

A. Quantum-mechanical analysis

The incoming and outgoing wave functiof.11), (2.9 wherej, is the angular momentum of the incoming atom.
defined in a laboratory frame can be transformed to the The polarization structure of electric field correlation
R-helicity basis set as follows: function (2.6), (2.14) is given by
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DV 12 ‘V'V'(wler;wiiwé):(el)v (eZ)V (e’{)y’(eé),,’ dO'KQ da)l dwz dwi dwéN
17207172 1 2 1 2 — e L TTe N '
N dQ, j j j f o7 2m 2m 2m D\@1@2i01,02)
XD(wy,w5;07,03), (3.4
dokg o
wheree;,e, are the polarization vectors of the light in the X dO, (1,072,071, 05), (3.9

vicinities of the average frequencieg and w,, i.e., at the

first and at the second steps of the excitation, respectively.

Then we can express the differential cross sedf®®) inthe  where we introduced the following spectral profile of the
following form: cross section:

dﬁ'KQ(w 0, 0! )= 1 m_zk z E E el )(_)j—g+jo+gocl_<(g/_m
dQy pre T (277)2 ﬁ4k000(25 Q' «9q Ko e

k(Qo=Q0) _Kx

XC. .
fo-QigRg Q' 0

(aaﬁvo)Dg;;O_Q(’)(ab!BOio)

X{(Wlo)|(dey) G (eg(ko) +Awy)(dey) | WY )

0o

X (Wi (de) G (ol ko) + i )(dey) W g, )™ 3.6

Here we used the relationship between Green operatog;‘_*)Jo(R) andvt)J(R) can be found as the solution of the
G (e)=GM)T(¢) and assumed that all the Zeeman states %o Qo _

Q0,0 have the same energy denotedegsLet us note that scattering equations in the molecular paas set, see RSs.
the spectral profilg3.6) does not have the dimensions of a 241 With the following boundary conditions:

cross section. We mark here and throughout by an additional

tilde sign the observables, which can be interpreted as cross+)Jo i — —ikgR+imIg/2
- : - : Vg o (R ———[dg 0 0
sections after evaluating the overlap integral with the corre- 2,04 2(?k )12 0%
lation function, see Eq(3.5), and we will call them cross oo
sections in those cases where no confusion can arise. _eikoR*ino/ZS(_*”O(? Ko)]
It is useful to expand the wave functiods™) and Green Qg0 010N
function G(*) in the basis set of adiabatic wave functions (3.8
with definite total angular momentum. Such partial wave ex- B i o
) . . (=) . — AikR=i7J/2
pansions of the wave functions are given by Vao (R— ——[6nqe
2(kk)l/2
1
Vit (RQ)== 2Jo+1 _ amikRrimIa
go(R.0) RQZO o (23t D) e SRCASY
Jo* J .
XDN(I) - (ar.BrOIDY _ (0,B0.0) at R—o. For the Green functiofkernel of Green operator

G(")(€)] the similar expansion is given by

imdgl (j—)‘]o —
Xel OZVQOQO(R)¢QO(RIq)1

G(Rp,02:R1, 0= 75"
1 3.7 (R2,02;R1,01) 477R2R19§11
PR = = 23+1)D)"~(ar,Br0
ko' (R.Q) R% %( )Dyaler:Ar0) X > (2\]1+1)D,J\,|1:92(a2,32,0)
Iy

X DYyo(a,B,0€ ™25 (R) po(R,Q),
M oo X Dinllgl(alv,Bl,O)Gﬁllzgl(RzaRl)

where ¢ (R,q) and ¢o(R,q) are the electronic adiabatic
o " X ¢ (Ro.0) %, (R1.G1), (3.9

wave functions of lower and upper states of the quasimole-
cule, respectively. To simplify notation here and throughout, o
wherever possible, we specify the quantum state of the quavhere anglesy;,8; and a,,B, show the directions of the
simolecule by the electronic angular momentum projectioné’eJCtorSRl andR,, respectively. The radial Green function
on the internuclear directioft, andQ and omit other quan- Ca,0,(R2;R1) can be found as the solution of the system of
tum numbers. The anglesg and Br characterize the direc- the radial scattering equations for the eneggyith the fol-
tion of R in a laboratory frame. The radial wave functions lowing boundary conditions:
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3 im J _ KR —im _ B
Get0,(Ro RO = fz el S (Ko k)@t mmmi— g g gl 7Ro)) (3.10

atR,, R;—» where we denote®R. =maxR,,R;} andR. first and the second lasers.
=min{R;,Ry}. By averaging the differential cross secti(®6) over the

The expansion$3.7),(3.9) are very convenient for the initial and final directions of the wave vectors and by substi-
analysis of the slow atomic collisions at broad range of recoituting expansion$3.7),(3.9) we can express the spectral pro-
energies. As long as an adiabatic approximation is valid in afiile of the total cross section in the following form:
interaction region the Green function is simply diagonal and
Q,=Q,. The nonadiabatic effects initiating the transitions 1
between different mo!e_cglar states take place in thg domams T(w1,0;0],wh)= _f kof dQ,
located near the vicinities of the crossing or anticrossing am 0
points of the potential curves of the molecule. The rotational do
nonadiabatic coupling is particularly important at large inter- X \2j+ 1_00(601,(02;(01 ,@5h)
nuclear separations. The nonadiabatic transition amplitudes dQ
can be calculated by solving the scattering equations for the
radial wave functions and the Green function in such do- 22 (—)X*Etbxg(el)CDX,E(ez)
mains. There are many model approximations to solve the X
nonadiabatic problem and it is often possible to find even the
analytical solution of scattering equations. General discus-
sion of the problem can be found in many reviews, see, for
instance,[23], and references therein. In Appendix A We \yhere we introduced the irreducible components for the light
derive the expansion of Green functi¢®.9 and show the density matrix,
procedure of semiclassical solution of the scattering equa-
tions for this example.

By substituting the wave functions and the Green function _ XE &
in the form(3.7),(3.9) into Eq. (3.6) we could obtain a gen- Px=(€)= VEV Cron(€) e,
eral partial expansion for the spectral profile of the differen-
tial cross section describing the formation of arbitrary polar- _ _ 1+ ~AXE
ization for the excited atom outgoing in an arbitrary B VEV, (-1 Cru1,8o 8y (3.12
direction. However, in the present paper we restrict ourselves
to the analysis of a simple but most practically important
situation, when only the total population of outgoing frag- for both polarization vectorg; ande,. Expression(3.11)
ments in the optical collisions of initially nonpolarized atoms shows that the total cross section is formed from the tensor
is detected. Such a situation corresponds to a commonly usdoduct of the light irreducible components of the first and
experimental detection scheme, one which we are going t8e¢ second laser weighted with the collisional factor
discuss. Also it lets us simplify the analysis of the excitationé(x)(wl,wz;wi ,w5) depending on tensor rank. The weight-
channels and interference effects as well as their dependenizey factor is given by
on mutual orientation of polarization vectasande, of the

XQX(wy, w05 ,05),  (3.1D

~ 16mm?k 1 ,
Q(X)(wl'wz;wi’w,):h“—ko2j0+1% IS SIS T (<Rt

Q% 00" 0,0] 0,0] 0,05 I Jo g3

1 1 X)(1 1 X
><(230+1)[(2J1+1)(2J1+1)]1’2[ H ]

A R I B I T PR
- . ! ’ ’
J0 10 Ja’ 31y Jod1d Jody I* ro
XC -C — _C C = _ = ~ (0,0 = — (w10
910517530001, 70510, T 300 107 QOQOQlQZQQ( L Z)fQOQSQiQéQ’Q( 1,03),

(3.13
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where 7,=0,-Qg, 11=0{-04, 7,=0-0Q,, and 7} B i
=0’ -} are the vector indices of the transition dipole mo- Va_o (R)=

2 = X 00 lo 2\/k_0
ments characterizing the changes of the electronic angular
momentum from lower to intermediate and upper states. The I iSY(R, ) imla
transition overlap integral depending on the full set of initial X [kJO(R _)]1/2a|0(R’_)e oo "
and intermediate quantum numbers is given by ot

. J
elﬁlg(ko,—)

1 3 - Jo .
- Aav0 iS (R, +)+iml4
o I [K(R, )72 T)E s ]

90609192(_2(2((”11‘02)_ B 1 B ZVQQ ( 2) (3 13
3 _ i :
“(d— 1 oy N —i8k,+)
(dvz)ﬂﬂzegzgl(RZ!Rl) VQQ (R)—El 2\/Re 1o

_ ()

X (d; v— (Ry), 3.1
(dv)a,0, QOQO( 1 (314 % 1 b (R _)e—iSl](R,—)—i-rr/4

[ki(R, =¥

where @71)9150 and (d;z)gﬂ2 are the transition dipole ma-

trix elements defined in the body fixed frame and calculated B [k}(R,+)]"?

between adiabatic electronic states at the inter nuclear sepa-

rationsR, andR;, respectively. The dependence on photonHere we introduced “path” indices, and!, which are the

frequencies»; andw, appears in Eq3.14) from the energy  sequences of quantum sta@s...Q, and Q...Q), respec-

dependence of the Green function of the intermediate star{?\,eﬂy which are passed by the atoms during the collision.

and of the wave function of the upper state. The dots here denote the quantum numbers of all the inter-

mediate states. The transitions between adiabatic states are

caused by the nonadiabatic dynamics and the transformation

. _ . from “in” to “out” waves takes place at the turning points
The derived expressior(8.11),(3.13 are restricted only or near the classical violation regions. We can say that indi-

by the approximations of perturbation theory and they can b%eslo and| show the possible paths coupling the staﬁs

used for numerical calculation directly. In such a procedure . = . .
the wave functions and Green function should be considere\@(Ith Q.O and €} with ( and the prime supe_rscrllpts "’?t sum
. . ; signs in Eq.(3.195 show that all the paths with fixed initial
as the exact solutions of quantum scattering equations. HOWs'tateQ (for incoming wave functionor final statec} (for
ever, the nuclear motion of the atoms is mainly described b)é ¢ -0 p ? n make th tribution in_ th
classical mechanics that makes it possible to simplify the u gon’_n;,:]h wave func It? m% € 3 COI’]K;I fy 'O(';f'n 9se
analysis by introducing a semiclassical approximation for th?su.rphs'_ .ewavedr}um“ er$: egﬁnfn.ﬂo e|r;e f% Irt]
radial wave functions. The global advantage of a semiclassi". sign) and tor -ou (wi sign parts of the tra-
cal approach is in its clear physical sense and in the visué?cmry' are given by
representation of the wave functions and the Green function. 5 1o\ 112
It is also important that for typical experimental conditions, Ko 1 ( _ _ h™(Jo+3) )

X : . (R,x)=—|2m| E-U, (R,*) ,
when the recoil energy is close to room temperature, a semi- o h 0 2mR?
classical approximation has very good accuracy for compari- (3.16
son with experimental data. We expect that all the important
physical effects will be well described by such an approxi-
mation.

In a semiclassical approximation the radial wave function
at all internuclear separations can be presented as the sum#id the action integrals and phase shifts are given by
two waves, namely, “in” and “out.” The waves “in” and
“out,” being the running waves inside and outside of the R
interaction region, exist for each incoming and outgoing ra- Sf;’(R,iF fR k|§(R:i)d R, (3.17
dial wave functions. Let us emphasize that the terms “in- 'o
coming” and “in” or “outgoing” and “out” have different
physical meanings and they are not to be confused. The
transformation from “in” to “out” waves takes place at the §|J°( Kg,—)=lim
turning points or near the regions of classically forbidden 0 R
motions. For simplicity we will assume that nonadiabatic and
classical forbidden regions are separated so the calculation of
nonadiabatic transition amplitudes and the transformations
from “in” to “out” waves can be made independently. In
such conditions the semiclassical approximation can be in-
troduced by the following expansion of the radial wave func- b‘ﬂ(k, +)= lim
tions: R

b|J(R,+)ei‘57](R’+)+i”/4 )

B. Semiclassical approximation

| 1 h2(J+3)? w2
+)=_ — ) —
K(R=)=>|2m| E-U(R %)~ —

o

RkJO dR—k !
fRIO |O(R,_) R_ 0R+ 2 J0+§

R
Sf(R,i)=ka|J(R,i)dR,
|

T 1
T J+_)

R
k'(R,+)dR—kR+ 5

R 2
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where R|O and R, are the coordinates of the turning points on R, J, and onE (not shown herg are defined as a solution
which depend on “path” quantum numbers. The “path” of the scattering equations in semiclassical form. For details
potentials are defined ad; (R,+)=Uq (R),....Uq (R), of the derivation of the semiclassical representatib
Ui(R,=)=Uq(R),...,Us(R) where the choice of adiabatic We refer the reader to Appendix B fi24].

potential is determined by the location Bfin the pathl, or For a radial Green function the semiclassical representa-
[. The amplitudesalj;’(R,i) andb(R,+), slowly varying tion is derived in Appendix A. Finally we obtain

G‘(])lﬂ (Rz,Rl):Z, 2r 1,91 im-ll 1/
24 T | A7k AR, KRy, —))]

J . i JIR Ry;+—)+im/2
Zg|j(R21Rl!+_)elsll( 2Rt JHim

im
- g
A2 Ry, =K H(Ry, —)]"2

s J .
PRy Ry; =)@l (Re Raim ) Him2g R, —R,)

im
A2k A(Ra, )k ARy, +)]Y

.o .
2gff(R2.R1;+)G'SIE(RZ’Rl;+)+m/29(R2_ Ryt (3.18

Let us interpret the terms contributing to the right side of thiscan be found as the solution of scattering equations in semi-
expression. The second and the third terms describe the evolassical form, see Appendix A.

lution of the electronic subsystem from polRi to pointR, We substitute the semiclassical expansi¢®45),(3.18
when nuclei move along either “in” or “out” parts of the in the expression$3.14),(3.13 with the following assump-
classical trajectory, respectively. The first term relates to théions. First, in the overlap integrals it is possible to keep only
case when the poirR; is located in the “in” and the point the terms that are slowly oscillating dR, and R, whose

R, is in the “out” part of the trajectory. It is important that phases have a dependence on differences between action in-
for the retarded Green function the corresponding slowlytegrals relating to the lower and upper potentials. The rapidly
varying amplitudes are the solutions of scattering equationsscillating terms, containing the sum of action integrals in
in semiclassical form associated with norni(T)-ordered exponential arguments, can be omitted in most of the practi-
motion of the nuclei along the classical trajectory in “path” cal situations. Indeed, for small frequency detunifgs
potentialsU; (R, %) andU, (R,+—) marked by index ;. comparison with recoil energyit can be done because they
As in the case of the wave function the compiled index ©scillate much faster than slowly oscillating terms and make
=Q,4,....Q, performs all the states passed by the atoms durhedgligible cpntnbuuon. In the opposite case for far .off reso-
ing the fraction of the collision in intermediate state. TheNant detunings such terms relate to the situation when
prime superscript in the sum sign shows that the summatiofuclear velocity changes the direction of motion after the
is expanded over all intermediate states with fixed quantun@hoton absorption, a situation that is not compatible with a

numbersQ; andQ,. The action integrals in Eq3.18 are classical picture of optical transition. Therefore in the far
defined as follows: wings of the spectral profile we neglect these terms because

they cannot be satisfied under the conditions of stationary
R, R, phase approximation, particularly, by the Franck-Condon
Sljl(Rz,Rl;Jr —)=J kfl(R,+)dR+f lil(R,—)d R, principle. Secondly, we may simplify the angular momentum
' R, * R, 1 algebra by pointing out that for typical conditions the total
angular momentd, J,,J; are much greater than unity and all
i Ri 5, of them have similar values. This makes it possible to use
,(Re, Ry =)= fR ki;(R,—)dR, (319  semiclassical asymptotic behavior ofj 6symbols and
2 Clebsch-Gordan coefficients and to expand the action inte-
grals in Taylor’s series as a function of total angular momen-
R, , . . L
311( Rz,R1;+)=f le(R,Jr)dR, tum. In Ta_lylor_s expansion we keep only the first derlvatl\_/e
1 R, 'L of the action integrals which are expressed by the classical
angle of the rotation of the internuclear axis between bound-
where the wave numbers dependentRuare defined as in ing points. For example,
Egs. (3.17 with substitution of “path” potentialsU, (R,

+) or U,l(R,+ —). The “path” potentials are defined here P
J
asU; (R, +),U; (R,+—)=Uq (R),....Uq,(R), where the E&]f(Rz,Rl;+ —)==§(Ry,Ry;+-), (320
choice of adiabatic potential is determinedRyocation and
by the type of classical trajectory “out” or “in”. The slowly
varying amplitudesgfll(Rz,Rl;i) and glJll(Rz,Rl; +-) Wheregfll(Rz,Rl;Jr —) is the rotation angle of the internu-
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) FIG. 1. (a) The schematic dia-
:Cj U (R) gram showing the fractional opti-
s cal collision with photon absorp-
:.c; \v//j/// tions on “in”-“out” part of a
& classical trajectory(b) The refer-

U, R) ence of deflection angles used in

\'“\ overlap integral3.24).

R
@ (b)

clear axis from pointR; to point R, located in “in” and Qplpz;p’p’(wler;wiawé)

“out” parts of the trajectory, respectively. We use similar

notations for derivations of other action integrals. The rela-
tionship(3.20 lets us transform the sum ovérdy,J;,J; in h“k
Eq. (3.13 to the sum over only one angular moment(im- 0
pact parametgrand introduce in the theory such important

Z (2J+1)

2 <Q| plp2 w11w2)|90>

characteristics of classical scattering as the deflection angles. 2 14
It is important that all the deflection angles characterize the Jo
atomic motion in the “path” potential, i.e., they are com- S (Q|F AN TORY: 3.2
piled as the sum of different partial adiabatic contributions (€ pipé(wl'w2)| 0" .22
defined for each part of a real classical trajectory. _ - . .
Finally the weighting facto®® in Eq. (3.13 can be Here we introduced Dirac’s notation for overlap integrals
written zg/s, f0||0WS'g 9 q. {o. <Q|fg1p2(wl,w2)|00>. The motivation of such notation will
' be explained below, see E(B.28).
The overlap integrals can be expanded in the sum of the
QM wy,wr; 0}, w)) = 2X+1E E pzzp (— )PLP following three terms:
1 2
' <Q| p pz(wl,wz)mo) <Q| plpz(wlvw2;+_)|‘Q’0>
xcM oM
1-p,1 1-p,1
PPy TL7PLP QIR p (@1,02;-)]Q0)
XQoypaipipy( 01102101, 03) QI (01,021 +)] Q).
(3.21 (3.23

where the internal term is given by the sum of partial angulaiSuch an expansion has a clear physical nature. The first term,

momentum contributions which is given by

o __ (312N iAS) | (Rp,Ry;+—)
<Q| P1P, (1)1,(1)2,"’ )|Qo> ﬁz e ZO |E:LE| fR(l) J’R<2)dedR2e 1l 271

X (kf(Rz,+)k|J1(R2,+)k|Jl(Rl,—)ka(Rl,—)]71/2b|J*(R2,+)(d;2)5ﬂzgf1(R2,R1;+ =)

3 1 a J a J a
X(dy))a,048i (R, =)Dy ) —51—77|1|0(R21+), > Djlpl >~ MR =) 5
(3.29

describes the contribution coming from the attachment of the upper “out” and lower “in” running waves to the “in-out” part
of the Green function. So, from a semiclassical point of view, it relates to the process when the first and the second photons
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FIG. 2. (@) The schematic dia-
gram showing the fractional opti-
cal collision with photon absorp-
tions on “in” part of a classical
trajectory.(b) The reference of de-
flection angles used in overlap in-
tegral (3.25.

Potential Energy

@ (b)

are absorbed on “in” and “out” parts of the classical trajectory, respectively. This contribution as well as the reference of
deflection anglesnfll (R,,+) and nfo(Rl,—) are shown in Fig. 1. The second term in E8§.23, which is given by
0

im 0 Ry )
. __ D iaarn N ' iIAS) | (Ry.Ry:—)
<Q|fglp2(wl,w2, Qo) 52 ¢€ 20: |§1: Z fR(l)de R(2>dRZe 1R Re
X[k (Rp, =)k} (Rp, =)k} (Ry, =)k} (Ry, =)1 %" (R, ) (dl7,) 00,07, (Ro Ry —)
X(d)o.mal (R, —)DE [ =2~ (Ry—)vm|DE [ =2 — Ry =)o
( Vl)QlQOaIO( 19 ) V= Py 21 nlllo( 2 )12 1Py 21 77|0( 1 )12 ’

(3.29

describes the contribution coming from the attachment of the upper “in” and lower “in” waves to the “in” part of the Green
function. It assumes that both the photons are absorbed on the “in” part of the classical trajectory. This contribution as well
as the reference of deflection anglxﬂ%1| (R,,—) and nﬂo(Rl,—) are shown in Fig. 2. The third term, which is given by

0

im . , , (= Ra ' )
<Q|f€)lp2(w1!w2;+)|00>: _ ﬁelw(J-%—l/Z)Zo lz Z fR(l)dszR(z}d RlelAS'J'1|0(R2’R1’+)
1

X[K'(Rz, )k} (R, )k} (R, )k} (Ry, )17, (R, +)(07,) 00,07, (Ro, Ry +)

— 23 1 77 J LA 77 J 77
X(dul)nlﬂoa|o(R1a+)Dy2pz(_5:_7I|1|0(R2,+),§)Dylpl(_51_77|0(R1,+),§ :
(3.26

R
K(R’,+)dR’

upper “out” and lower “out” waves to the “out” part of A3|]|1|0(R2,R1: +-)= Im .
2

the Green function. It assumes that both the photons are ab- RRo—
sorbed on the “out” part of the classical trajectory. This
contribution as well as the reference of deflection angles +f
”'Ju (R,,+) and 77i]0(R1:+) are shown in Fig. 3. In the in-

0

describes the contribution coming from the attachment of the [ J

R
(R, +)dR

R|1

tegrals(3.24—(3.26) the lower limitsR® and R are the n lelJ (R, —)dR’
largest coordinates of the turning points taken for the paths R, !
[1,1p andl,l;, respectively. Ro
The arguments of exponential functions in the overlap +J lio(R"_)d R —kR—KkoRg !,
Ry

integrals(3.24)—(3.26 are defined as follows:
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R , or final helicity frame is conserved during the collision. Be-
JR ki(R",+)dR cause the rotation transformation is unitary it is possible to
! express the overlap integrals in terms of matrix elements of
the dipole moments in the atomic basis set with angular mo-

Ry
J ’ ’
+ le ki(R",—)dR mentum eigenfunctions defined in the helicity frame

AS; i, (Ro,Ry; =)= lim {

R,R0—>DO

+ [ e R ar Q1T py(@1,02)|%)
Ry

o ) 1 . )
o (‘)'(J_Q|d—pz|1191>_A <JlQ1|dp1|loQo>-
o 1

R
+f Okfo(R’,—)dR’—kR—koRo ,
R
' (3.28

(3.27
R The « sign here means that the right side is proportional to
AS) | (Ry,Ry;+)=lim [ J k)(R',+)dR’ the large overlap integral of the radial wave functions in the
ro Ry asymptotic domain and it approaches infinity at resonance.
R, All the matrix elements in this expression are defined in the
+f kfl(R’,Jr)dR’ R-helicity frame with z-quantized axis along-kq. The
Ry asymptotic relationshif3.28 shows that the overlap inte-
Riy , grals reduce to the usual transition amplitude of the two-
) ki,(R,+)dR photon absorption by free atom, which is estimated in the
'o second order of perturbation theory. Dirac’s notation empha-
Ro 5 , , sizes such asymptotic behavior of the overlap integrals.
+ le klo(R ,—)dR' —kR=koRo - Substituting the zero detuning asymptote of matrix ele-
0 ments(3.29 into Eqs.(3.22,(3.21), and then into Eq(3.11),
we can express the total cross section in the following form:

R,Ro—mc

Taken with additional contributioar(J+ 3) these functions
perform the finite increment of the total classical action _
evaluated in the “path” potential along the compiled path a(wl,wz;w;,wgmz (=) Edy=(e) Py_=(8y)
lo.11,1, see Figs. 1-3. X=

It is useful to analyze the formal behavior of the overlap (—)i-lo (1 1 X
integrals(3.24—(3.26) in the limit of small frequency detun- x.—[ . . ]
iNgS A= w1~ w19, Ary=wr— wyy, Wherewq and w,q are @lotD i1 Ja |
the atomic resonant frequencies, in the conditions close to 1 1 X 1
two-photon resonancA;+ A,=0. For small detunings the x[ _ ]|djj |2—,|dj j 2
total angular momentd with large values give the main i da do) T AgAp R

contribution in the total cross section. For laigand at the (3.29
asymptoteR— o we can estimate the overlap integrals in the

straight trajectory approximation. In such a case the transfowhich is in accordance with the general dependence of two-
mations of electronic wave functions caused by CoriolisPhoton resonance photoabsorption on mutual laser polariza-
nonadiabatic coupling are expressed in terms of pure rotatiofion. Hered;; , andd; ; are the reduced matrix elements of
transformations from laboratory to molecular frame. The in-the dipole moment anfl} denotes the psymbols, se¢19].
teratomic interaction is negligible and the projection of the However, we point out here that, in spite of realistic
electronic angular momentum on thexis defined for initial  asymptotic behavior, the relationshif28 and(3.29 are

FIG. 3. () The schematic dia-
gram showing the fractional opti-
cal collision with photon absorp-
tions on “out” part of a classical
trajectory.(b) The reference of de-
flection angles used in overlap in-
tegral (3.26.

Potential Energy

(@ (®)
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not exactly compatible with the case of resonance photoalthe correlation effects are most important if the difference
sorption. Such important effects as spontaneous decay of e, — w;=w,— w, has the same order of magnitude as the
cited states and an interaction with other particles in longscale A7~ %, where A~ is the time of the classical motion
term time scale were completely ignored in our analysisbetween the Condon points. In such a case and in the semi-
Both the effects are responsible for the photoabsorptiolassical conditions of an atomic motion the distinction in
spectrum near the resonance, where it can be correctly decations ofR; andR; or R, andRj is negligible for preex-
scribed by Wigner-Weisskopf approximation. Actually, the ponential factors. However, it can be very important in the
relationship(3.28 shows only the right polarization depen- arguments of exponential functions containing the large ac-
dence of the two-photon absorption in the resonance condiion integrals.

tions but not the spectral profile itself. Therefore in the nu-  For large frequency detunings all the Condon points are
merical calculations of the polarization-dependent spectrunpcated inside the so-called decoupling sphere, i.e., in
based on Eqs(3.21)—(3.26 we should restrict ourselves to Hund's a region, see Appendix A. For simplicity we will
the case when both the detunings andA, are comparable restrict ourselves to the practically important situation when
to or larger but not less than critical valug'~V/p,, where  the slow variations orR amplitudes of the Green function
Vv is average recoil velocity. The critical time can be esti- (3.18 are determined by simple adiabatic dynamics and
mated in order of magnitude by the average time of collisiongiven by

C. Quasistatic picture of fractional optical collision g,"l(Rg,Rl:—):gfzznl(Rz’Rl?_): S0,0, Re<Ry
The qualitative and quantitative analysis of fractional op-
tical collision can be simplified if the overlap integrals are
evaluated in the stationar;p/ phase approximal?ion. 'Ighe typical g'Jl(RZ'Rl;+)295291(R2’R1;+): 0,0, Re>Ry
conditions of the Franck-Condon approximation assume that (3.3)
all the detuning\;, A,, andA=A;+ A, are off resonant
and much larger tham_ . We restrict our analysis to the 97 (Ro.Ry;+ =) =0p 0 (Ro Ry + =)= 30,0,
situation when stationary points exist for both the transitions
Such an assumption is not critical for our approach, but it
U (R)—U, (R)=hw;, U (R)-U, (R)=rho), makes the following discussion more clear. Moreover, in the
! 0 ! 0 quasistatic conditions of the photoexcitation, we can neglect
(3.30 in the product of the overlap integrals those interference
U,(Rz)—Ull(Rz)zhwz, U|(R§)—U,1(R§)=hw§, terms which disappear after the averaging over impact pa-
rameter(angular momentujrbecause of quasiclassical oscil-
and we presume that the location Bf, R; is separated lations. Also the nonadiabatic dynamics of lower and upper
(from the semiclassical point of viewirom the location of states of the fractional collision becomes unimportant. In-
R,, R;. The definitions of Condon points shown by Eq. deed, any nonadiabatic transformation describing the evolu-
(3.30 allow the general form of the electric field correlation tion of the electronic subsystem in the molecular regions is
function and its spectrum, see Eq&.6), (2.14), and(3.4). an example of a unitary transformation, so the square of
We emphasize here that for the light with general correlatiorransition amplitudéa, (Ry;+)|* or [bj(Ry; *)|? reduces to
properties the frequency, differs from w; and w, differs  unity because of the averaging over initial and final elec-
from w5, which leads to the difference in locations of Con- tronic states.
don pointsR; and R; or R, and R;. However, we will Consider the spectral profile of the cross section written in
neglect the distinction between them in the slowly varyingthe form (3.11. Evaluating the semiclassical overlap inte-
preexponential factors. This can be substantiated by the fagtals in the stationary phase approximation, the partial cross
that for our following analysis it is more interesting to con- sectionQ™), which describes both the polarization and spec-
sider the correlation function with narrow spectral profile tral dependencies of the fractional collision, can be expressed
near the average frequencies and w,. As shown in[28] as follows:

3 p. 1
(X) Loy (D Vi (2)
Q (wl,wz,wl,wz) 2 ZWJO pde| (p)W| (P) (2j0+ l)(2X+ 1)

(—)2rn

I Y

L

—
2V

N
N
N3
-
5!
)

E = - . N X
XCly 5 Choy XIS (wr,0p1+ =) ~iS{(0] 01+ =)} dZZ(E Ry Ryi + )
2= "2 1-71 EE

+expliSf(wy,0y;—) —iSf(w; "Uéi—)}9(R1_Rz)dég(ff(Rz,Rli—))

+expliSH (1,02 +) —iS{(@] ,@h; +)}0(Ry— Ry AE(E(Ry Ry +))]. (3.32
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The outer sum in this expression is expanded over all poswith i =1,2. HereAF™W), AF(® are the differences between
sible classical pathlscrossing the Condon poini®; andR,  the slopes of upper and lower potentials at the Condon points
as well as over all the combinations of the Condon points ifR;, R, andv{?(p), v{?)(p) are the radial velocities at these
there is more than one for each detuning. To simplify notapoints,
tion we denote by here and below the sét;l,. The cross
section(3.32 is written as the integral over impact parameter
p=(J+1/2)/k, instead of a sum over total angular momen-
tum J, as seems more reasonable in a classical description % . .
atomic collisions. We note here that because of angular mo- € assume that there is no d|f_ference f_or_all the parameters
mentum conservation the definition of impact parameter dif—de“rlecj by Egs(3.34)—(3.36) with the similar parameters
marked by primes.

fers for the lower, intermediate, and upper states. The inte- U - .
The vector indicesv,,v; and v,,v, of the dipole mo-

gral is bounded by the maximum valyg for the limit )
ments in Eq.(3.32 relate to the molecular frame and as

trajectory touching the inner Condon poink; or R,. . ; )
Wigner d functions are defined as in R¢fL.9] and they de- f_ollows from Eq.(3.31) we have the following selection rule:

pend on the deflection angles referred to the classical trajed-.™ ~ V2 andvi=—vj, permitting V1_=71 and V2=7£ as
tories between the Condon points. In the arguments of thwell as the interference contribution = -7}, and v,=
nonexponential functions in integré8.32 we assume the — 3, if the excitation is initiated through thés ,—'I1,
average location of the Condon points and neglect the differ— '3, channel. Such an interference contribution does not
ence betweeR, andR; or R, andR,. However, we distin- disappear after the averaging over impact parameter. The
guish the difference in the arguments of the exponentialnner sum in the expressidB.32 over the vector indices is
functions because of the large value of the action integralshoninvariant and it should be evaluated in the molecular
The dependence of the action integrals on the light freframe. The result depends strongly on the symmetry of the
quencies comes from two effects: from the variation in theexcited transitions and the polarization-dependent part of the
location of Condon points and from the dependence of th€ross section can change even the sign for different types of
action on recoil energy. Showing all the arguments in thé=ranck-Condon transitions. The presenceddunctions in
classical action we can express the frequency dependence fag. (3.32 can be interpreted as the rotational transformation

1/2

m

TTE R (3.36

_ 2
vi(p)= ZE( =il p)

follows: of the irreducible components of the light density matrix
(either for the first or for the second photordong the clas-

Cey— . . sical trajectory following adiabatic change in orientation of

SHlwy,02:2)= A8 1 (Re(@2),Ry(@1);Bo+ Ry £), the molecular frame. So, if we treat the fractional optical

(3.33 collision in the recoil limit approximation with less influence
S{’(wl,wz;Jr—):ASﬁllo(Rz(wz),Rl(wl);E0+ﬁw1;+—), of rotation effects, we obtain from _Eq3.32) the simple
qualitative estimation of the polarization dependence of the
. o _ . process. We will illustrate this by practical calculations pre-
whereE, is the initial recoil energy and the action integrals ganied in the next section.
in the right side are defined by Eq®.27). In the case of  1hg gpectral dependence of the cross section is presented
stationary photoexcitation the spectrum of the correlatlor]n Eq. (3.32 by two different effects. First, the spectral de-
function is restricted by the conditiom; +w,=w;+w;.  pendence appears from the frequency dependence of the
Thus in spite of the fact that each of the action integralscondon point locations. Secondly, and less obviously, this
contributed in Eq.(3.32 depends on both the frequencies, can appear also because of the correlation between the first
the difference between the actions actually depends only 0gnd the second photoabsorption events. This can be seen

one frequency detuningy; — w; = w,~ ;. ~ when we approximate the difference in action integrals by
The probabilities of photoexcitation at each Condon pointhe first increment of the action with respect to its energy
are given by argument. We obtain that the corresponding action derivative

is just the classical propagation time of the atomic nuclei
(1) 1 _ 5 be_tween the point®; andR,. Then we see that the corre- _
Wi-(p)=72[(dh)a0,n 7 (P)]% lation spectral dependence can take place if the system is
(3.34 probed by the light sources correlated on the time scale com-
' parable with the natural time delay between photoabsorption
events. We plan to discuss the problem of the correlation
control of fractional optical collision in more detail in future
[28].

where the tilde indicates that these parameters become real
probabilities only after multiplying the dipole moment ma-
trix elements 671)9150 and (d;z)gﬂ2 on the electric field

amplitudes. The transition times of the vicinities of the Con-

1
W2 (p)= 72 [(dy) 00,717 (p) 1%,

IV. APPLICATION TO Mg-He
(35%15,—3P 'P;—5S1S,, 4D 'D,)
FRACTIONAL OPTICAL COLLISION

don points are defined as follows: In contrast to the single-photon transition, which can of-
ten be well understood in a quasistatic model, the two-

' 2k 112 photon excitation is more complicated and less obvious for

TI(')(p)z W) , (3.35 numerical calculations. Even in quasistatic conditions it is

ARy (p) common for the stationary phase point to exist only for one
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with slowly oscillating integrands determine mainly the mag-
nitude of the integrals. However, it can be rather important if
we evaluate the integrals for the long-range trajectories with
large angular momenturimpact parametgr where there is

no stationary phase region, to reproduce the orthogonality of
the wave functions with better accuracy.

The calculations have been made for optical collisions
with excitation of magnesium atoms from the?3S, lower
state up to §'S, and 41D, upper states via theB'P,
intermediate state. The corresponding semiclassical expan-
sions of the retarded Green function, correlated with the
3p 1P, state, is given in Appendix A. The semiclassical rep-
resentation of the radial wave functions, correlated with the
4d'D, state, is shown in Appendix B. Letj(A;,A,) and
crj(Al,Az) be the partial cross sections, considered as func-
tions of the frequency detunings, feglle, and fore;Le,,
respectively. Their representations by the transition overlap
integrals can be easily derived from the general expressions
of Sec. lll B. From the experimental point of view, in a cell

experiment the polarization ratio can be defined for the total
FIG. 4. The Mg-He singlet potentials frof29]. cross section only and it is given by
o(A1,Ay) =0 (Ag,Ap)

optical transition. It is also possible that a stationary phase P =P (AL Ay =
R (A, )t o (A4

point exists for two-photon transitions and it does not exist

or makes negligible contribution for any single-photon tran-
sitions. So the population of upper molecular state can takeshere
place without population of intermediate molecular states.
There are also many situations with interference and compe-
tition between single- and two-photon Condon transitions.

Our choice of Mg-He fractional optical collision for nu-
merical calculations is motivated by the following reasons.
First of all, the interatomic interaction of helium with near gl(Al,Az):z Ui(Al,AZ)

Rydberg states of magnesium can be calculated with better d

accuracy than for other heavy rare-gas partners. Second, the i ) .
quasimolecule Mg-He is characterized by shallow potentiaP'® _the tqt_al Cross sections. I_—Iowever, from a theoretical point
wells for excimer states, which makes it possible to ignore?f View, itis very useful to discuss also the angular momen-
the resonance scattering caused by shape resonances and4® behavior of the polarization ratio, because for certain
approximate molecular electronic wave functions by atomic/alues of the total angular momentuhthe numerical results
ones in a broader range of internuclear separations. Thir§an be better underst?od. So for the simplest optical excita-
because of small reduced mass for the Mg-He pair the role dfon channel up to §°S, we have made a partial wave
interference effects as well as the precision of quasistati@nalysis to discuss the angular momentum dependence of the
approximation can be tested here in a most critical situationcross sections and the polarization ratio as well.

The most difficult point of numerical calculations is the ~ The plotin Fig. $a) shows the angular momentum depen-
evaluation of rapidly oscillating overlap integra(8.24—  dence of the partial cross sectionsj(A;,A;) and
(3.26. To define action integrals and deflection angles weo! (A1,A;) calculated at the recoil energy 450 K for the
used Mg-He interaction potentials calculated by CzuchapetuningsA;=30cni* andA,=—100cm ™. There is the
[29], which are shown in Fig. 4. We assumed optical excitawell isolated stationary phase point relating to the transition
tion by coherent noncorrelated laser pulses, which is a con8p 125 —5s'3, , which isR,~11a.u. In spite of the fact
mon experimental situation, s€&3]. In such a case the light that in the first photoexcitation step on the transition
correlation function of the second ordé2.6) can be ex- 3s?!3;—3p!3] there is also the stationary phase point
pressed as a product of the first order correlation functiongpcated atR,~12 a.u., its vicinity does not really determine
and the spectral profile3.11) as well as the transition over- the full magnitude of the overlap integrals because for such
lap integrals, considered as a function of the frequenciesmall detuning the transition probability has the same order
should be taken at coincidence frequencigs= w; and w, in the entire asymptotic regioR—«. Because the second
=w,. In numerical procedure we improve the convergencdransition can be made on either “in” or “out” parts of the
of the overlap integrals near the classical turning points byclassical trajectory, there is a strong interference contribution
substituting the semiclassical representation of the wavbetween two possible paths. The dependence of the cross
functions by Airy function in accordance with general rec- sections onJ shows the oscillating behavior caused by the
ommendation in guantum mechan[@&9]. Such a correction interference and it has the strongest maximud=a#0. This
is negligible if we evaluate the overlap integrals in the con-maximum relates to the special trajectory where there is a
ditions close to the stationary phase case, when the regiom®incidence of the Condon point with the turning point. The

4.9

w(Al,Az):; ol(Ag,A),
(4.2
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FIG. 5. Partial cross sectionsj(A;,A,) (dashed ling and FIG. 6. Same as in Fig. 5 for detunings = +200cnT?, A,
ol (A1,A,) (dotted ling for Mg-He fractional optical collision = _ 150 cntl.

3s?15,—3p P, —5s1S, for detunings A;=+30cm?, A,=
—100cm?, and for recoil energieE=450K () andE=300K  For the dependencies shown here the significant contribution
(b). in the overlap integrals comes from the aRRa, R,~R,,

where R, is the solution ofiw;+Aw,=U(Ry) —Uy(Ry),

quasistatic approximation averaging the interference oscillawhereUy(R) and U(R) are the potentials for ¥ '3 and
tion can fit here for the inner angular momenta less than 40or 5513 states, respectively. Due to long-range repulsive
The polarization ratio in such an approximation can be estiinteractions, caused by exchange forces,¥alerms corre-
mated using the expressions of Sec. Il C, if we assoéite lated with 5 and 4d electronic shells, see Fig. 4, there is a
with decoupling spher®,. For a recoil limit it gives the possibility to absorb the photons in a two-photon Condon
polarization ratio close tg which is in accordance with the transition if the sum of the detunings, andA, is positive.
polarization ratio obtained in full numerical calculations, In addition to the two-photon Condon transition it is also
0.35. The interesting peculiarity in the dependence of theossible to absorb the photons in successive single-photon
partial cross sections as a function of the angular momentur@ondon transitions. The plots in Fig. 6 demonstrate the in-
is that even for largd>40 there is a sequence of small but terference and the comparative contribution coming from
attenuating maxima in the dependenceog{A,,A,) onJ  two-step single-photon and one-step two-photon excitation
caused by long-range exchange interaction in tbe‘%g channels. We consider the example when single-photon tran-
state. In Fig. B) we show the comparative dependences ofsitions take place via the8'Y intermediate state. The
Ui‘](Al,AZ) ando” (A1,A,) onJ for the same detunings as dependencies shown in Fig. 6 are plotted for the detunings
in Fig. 5@ but for the recoil energyE=300K. All the A;=200cm*andA,=—150cm *and for the recoil ener-
physical peculiarities in the behavior of the cross sectiongies 450 K[in Fig. 6@] and 300 K[in Fig. 6(b)]. There are
here are similar to the case of Fig(abwith slight differ-  three stationary phase points: two single-photon Condon
ences in the locations of the maxima. The differences ar@oints located at 9.7 and 10.5 a.u. for the transitions
caused mainly by the dependence of the locations of thds® g —3p 'S, and '35 —5s'S g, respectively, and
turning points on the recoil energy. The polarization ratio inone two-photon Condon point located at 18 a.u. for the tran-
this case is 0.41, which is even closer to the recoil limitsition 3s® '35 —5s '3 . We chose the detuning in such a
estimation than for the enerdy=450 K. way that the two-photon Condon point would be located near
The plots in Fig. 6 show the more complicated situation.the maximum of the barrier in the s3%, poten-



2246 KUPRIYANOV, SOKOLOV, SLAVGORODSKII, AND TRUBILKO PRA 60
T ! 1000.0 ! I‘\.\
1000 - _ _1 |\1'< A,=-30 cm! o,
A=+30 cm o ¥ . | yl \
® E=300 K [l * 0 E=300 K [ | \
= | Z 1000 | \
5 100 J > i .
£ S € /r‘| | N
< I ~ 100 o [ )
3 AN 3 £l e
310 Pl \ 3 doo
T e | \ % 404 A
o« o . - |
| AN J ||
1 |
|| .
' T —— . | . 0.1 ' | ' —— | .
-200 -100 0 100 200 -200 -190 0 100 200
A, ecm” A, cm?
@) (@)
[T [
1.0 - | 1.0 - } |
A,=+30 cm™! | A,=-30 cm |
E=300 K : I E=300 K : ;
= | = Pl
< | <4 ]
< 054 | g 05 | ol
= 0.5 l | N /‘\.,\Q\ I }
|
[ :
I
[ [
] |
0.0 T T — i . T . 0.0 T T T i T T T
-200 -100 0 100 200 -200 -100 0 100 200
A, (em”) A, (em™)
(b) (b)

FIG. 8. Same as in Fig. 7 for detuning, = —30cm .
FIG. 7. The spectra of the total cross secti@n and of the
polarization ratio(b) as a function of detuning\, for Mg-He
3s?15,—3p 1P, —5s 1S, fractional optical collision for detuning
A;=-+30cm ! and for recoil energyfe =300 K.

as well as the polarization ratio for the fractional optical
collision 3s?1S,—3p 'P;—5sS, calculated at recoil en-
ergy 300 K. The calculated spectra are presented for two
_ _ . detuningsA;=+30cm ! (Fig. 7) andA,;=—30cm ! (Fig.
tial. As we see from the dependencies shown in Fig. 6 therg o 5 function of the second detuniag. As follows from
is 2 broad maximum for the partial cross sectiofléA1,42)  the numerical results the polarization ratio is positive and has
and o (A1,A;) near the angular momenga-60—70[Fig.  a large order in all the spectral domains. Near the two-photon
6(a)] and near 50-6QFig. 6(b)], which are determined by resonanced ;+A,—0 it rises to unity.
the two-photon Condon transitions for the long-range trajec- The experimental data exist for Mg-Ne, Ar fractional op-
tories with large impact parameter. The oscillating behaviotijcal collisions[13]. If we presume that the behavior of the
of the partial cross sections for smaller angular momentgotentials for the Mg-Ne pair is approximately like that for
indicate the interference effects as well as the contribution the Mg-He pair, we can obtain that our calculated Spectra
single-photon Condon transitions. The important peculiarityshow behavior similar to Mg-Ne experimental results. For
of the two-photon Condon transition is that the partial poIar-examp|e, for negative detuning;=—30cm* we obtain
ization ratio rises to Unity here. That is clear because in SUChonmonotonic dependence of the po|arizati0n ratio in the
a case the sum over a” the intermediate Zeeman eIeCtronWingS OfAz, which is similar toPL experimenta| Spectra for
states reduces to its invariant form like it does in two-photong_Ne' As follows from the dependence plotted in Fi¢h)8
photoabsorption by a free atom, and the polarization depenere is a two-photon Franck-Condon transition fo5>0
dence turns out to be the same as for the free atom also. \which manifests itself whePR, approaches unity. For nega-
In Figs. 7 and 8 we show the spectral dependencies of th@e A, there is some rise of the polarization ratio in a spec-
polarization-independent total cross section tral domain of the red wing near the zero detuning. Such
behavior of the polarization is in accordance with experi-
mental result$13]. It is most interesting here that the polar-

o(A1,A7)=0y(A1,A2)+20,(A1,4)) 4.3
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FIG. 9. The spectra of the total cross secti@n and of the FIG. 10. Same as in Fig. 9 for detunidg=—30cm .

polarization ratio(b) as a function of detuning\, for Mg-He
3s?15,—3p 'P,—4d 1D, fractional optical collision for detuning is in an asymmetry of its spectral profile. The cross section is
A;=+30cm * and for recoil energf =300 K. typically bigger in the blue wing of the full detuning,

+ A, because the main contribution comes here from direct

ization with photon absorption in a wing is greater than atexcitation via two-photon Franck-Condon transition to the
A,=0, i.e., in direct resonance absorption of polarized at4d 123 state.
oms. Again such peculiarity in spectral behavior can be ex- The spectral dependence of the polarization ratios is
plained by the presence of some contribution coming fronshown in Figs. &) and 1@b). For the two-photon resonance
the two-photon Franck-Condon transition which is not sen41+A,—0 the polarization ratio approachgswhich is in
sitive to rotation depolarization. accordance with the polarization dependence of the two-
The case of 81S,—3p'P;—4d'D, fractional colli- photon absorption by unperturbed atoms. By tuning in the
sion is more complicated because of more channels involveings we partly break the atomic symmetry and select posi-
in the process. The important peculiarity here is that, due téive or negative contributions coming fo This is illustrated
long-range exchange interactions in the 'Z; state, we by the behavior of the polarization ratio shown in Figth)9
should consider two decoupling spheres restricting the influand 1@b). In the blue wing the polarization ratio is almost
ence of the Coriolis forces. The corresponding semiclassicdionstant, which is due to the dominant role of direct two-
expansion of the radial wave functions correlated withPhoton Condon transitions to thel43.; state, leading to the
4d'D, is given in Appendix B. Because the partial wave same value of the polarization ratio as in the resonance case,
analysis is less obvious here, in Figs. 9 and 10 we presem€., 7. At the same time, for the blue wing the successive
only the spectral dependencies of the total cross sectiorgingle-photon Condon transitions to the ¥ via 3p 1,
a(Aq,A,), given by Eq.(4.3), and of the polarization ratio '3, states are also possible and they can give a larger posi-
for the same detunings as in Figs. 7 and 8. A common feative polarization ratio. However, in the case of rather small
ture in the behavior of the total cross section as a function ofirst detuningA;=+30cm * and for a light foreign atom
frequency detuning, which is shown in FiggaPand 1Qa), such as He the role of these transitions is not so important as
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for heavier atoms where they lead to a slight but clear rise o€ordance with its quasistatic estimation. The partial wave
the polarization ratio in the blue wing of the spectrum, seeanalysis shows the validity of the quasistatic approximation
[8]. for such detunings in the general case. However, for the posi-

In contrast to the blue wing, in the red wing the polariza-tive detuningA;+ A, we have obtained the dominant role of
tion ratio decreases and becomes even negative for partitie contribution coming from the two-photon Franck-
cross sections relating to small impact parameters. That incondon transitions. Such a contribution can give a different
dicates that the main contribution comes here from succesnagnitude of the polarization ratio than in the quasistatic
sive photoexcitations up todd'IT; and 4d*A,, which give  model, because the two-photon Franck-Condon transitions
the negative polarization ratio. By tuning the laser frequencycannot be treated as successive single-photon excitations.
in the wing and by measuring the polarization ratio we canSpecifically for the 321S,—3pP;—5sS, photoexcita-
partially select the different Zeeman transitions without anytion channel the polarization ratio for two-photon Franck-
external magnetic or electric field. There is some analogy oCondon transitions approaches unity. In the more compli-
this result with the case of single-photon optical collisions ofcated case of the excitation up to thel ¥, state of
polarized magnesium atoms discussed in R8f. In that magnesium the role of the interference between all the in-
paper(relating to the case af;—0) the similar behavior of volved transitions becomes important and the quasistatic ap-
the polarization ratio was observed in experiment and exproximation is suitable here only qualitatively. The polariza-
plained in the quasistatic model. However, the quasistatition ratio has a stable value close4 a broad range in the
theory gives a larger difference for the polarization ratio inblue wing of the second frequency detuning. There is also a
the resonance and in the wings. Thus we can see in thistrong dependence of the polarization ratio in the red wing of
example that for the light rare-gas partners the description ahe second detuning. This result can be explained by the
the fractional optical collision based on quasistatic approxipartial selection in the wing of the atomic resonance line,
mation while ignoring two-photon Condon transitions andperturbed by the collisions, those Zeeman atomic transitions
interference effects is in an accordance with the real situatiomhose contributions in the polarization ratio have different
only qualitatively. orders and different signs.
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tion is expressed as the overlap integral of its spectral profile
with the spectrum of the second order correlation function of
electromagnetic field. APPENDIX A: SEMICLASSICAL REPRESENTATION

The semiclassical expansion of both the wave functions OF THE RETARDED GREEN FUNCTION
and the retarded Green function lets us express the spectral
profile of the cross section in terms of well understood semi-
classical characteristics of the process. As follows from the The retarded Green functiofkernel of retarded Green
results of Sec. IlI B the transition amplitudes are determinedperator(2.13] is defined as follows:
by the overlap integrals depending on such well known char-

1. General analysis

s ; . . . (+) .
acteristics of classical scattering as classical actions and de- G "(R2,02;R1,q1)
flection angles calculated along the classical trajectories in- a3k TR PH* (R
volved in the process. The atoms can change their =3 . ko (Ra.02) kQ (R1.41)
trajectories of motion because of the general nonadiabatic Q (2m) E—Exo+10
dynamics of the atomic collision. In the semiclassical repre- (A1)

sentation the polarization-dependent part of the cross section
is determined by rotational transformations of the transition
dipole moments and by adiabatic or nonadiabatic transitio@nd it performs one of the possible solutions of the Schro
amplitudes defined along the classical trajectory. In the gendinger equation,
eral case the polarization dependence of the fractional optical
collision can be analyzed only numerically. However, in the
quasistatic limit, determined by large frequency detunings,
the polarization dependence of the two-photon absorption
can be simply estimated as was discussed in Sec. Il C.

In our numerical calculations we have considered the exwhere the HamiltoniarH is applied to the first set of vari-
ample of Mg-He (3?1S,—3pP;—5s1S,,4d'D,) frac-  ables.
tional optical collisions. In the case of the excitation up to Making the expansion of the Green function in the adia-
the 55 1S, state of magnesium we have obtained that forbatic basis set with fixed total angular momentdiand pro-
negative detuning\;+ A, the polarization ratio is in an ac- jection M,

{E-H}G")(R3,d2;R1,01) = 8(R,—Ry) 8(d2—0y),
(A2)
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1 which are known as radial-type and Coriolis rotational-type
G(Rp,02;R1,01) = mﬂ% > (23+1) nonadiabatic interactions, respectively. Here we use the fol-
271 028 M lowing set of irreducible components of electronic angular
X Dlj\/l*(zz(az-ﬂzao)Dﬂml(“luBl-O) momentum:
XG?).Q(RZ:Rl)d’Q(RZaQZ) o ) jexij PRI
2 ? jo=ie jaa=F T ii=it+is (M)

X ¢?21(R11q1)1 (A3)

where we assume the following directions of a Cartesian

we transform the Schdinger equation(A2) to its radial frame: ¢ axis is along theR direction, ¢ axis is along

form Rxk, and 7 axis is alongRx (RxK).
2 g2 ZJ(J+1)_Q§ ] _ The retarded-type solution (_)f the radial scattering equa-
E+ >m d_Rg_ UQZ(RZ) —h W GQZQI(RZ,Rl) tions (A5) can be found by making the appropriate choice of

the boundary conditions taken from the asymptotic behavior
R © | of Eq. (Al). It can be shown that the radial Green function
—% (Vﬂzﬂ’+V920’)GQ’91(R2’R1):5( R,— Rl)ﬁgzﬂl, should satisfy the following boundary condition:
(A4) im
Gglzfll(RZ!Rl)_)hZ(k k )172[S§;—251(k2,k1)
where nonadiabatic coupling is characterized by the follow- 2nt

ing operators: x glkoRotikqRy—imd _ 5Q201eik1<R>*R<)]
- h? a d 42 7 (A7)
R _ , ,
Vnzsz'__ﬁ<92 iRy >d_R2_ﬁ<QZ IR Q >
at R,,R;— > where we denotedR- =maxR,,R;} and R_
. h? (01210 =min{Ry,Ry}. Here S} (kp,ky) is the usualS matrix of
amre 2l ' the multichannel scattering problem akg k, are the wave
(A5) numbers of initial and final states relating to the same total
© _ " 112 energy.
Vnznr—m [J(I+1)~Q5(22-1)] In semiclassical form the radial Green function can be
expressed in a similar way as the radial wave functions, see
1 Egs.(3.19, i.e., in terms of slowly varying amplitudes and
><<Q2 —j+1 Q’> rapidly oscillating exponential functions. For a radial wave
V2 function the procedure was described2d]. Here we briefly

1 show how to apply it to the Green function problem. Let us
—[J(I+ 1)_92(Qz+1)]m< Q, 72]- . Q,> ’ Er;il;e the following substitution in the scattering equations

im

Gglzﬂl(Rz’Rl)zz,[hz[kf(Rz iR, Y (R Rui @R i

_ Im J
W2k (Ry, —)KI(Ry, —) 1729

(RZ’Rl;_)eiSll(Rz,Rl;—)-%—iw/Za(Rl_RZ)

_ Im J
W2[K(Ry, +)KI(Ry, +)1729

(Ry,Ry;+)€! S Re Rt Himi2g(R, —Ry) (A8)

where 1=0Q,,Q,...,Q0"Q,; and the prime sign indicates in the “path” potential obtained from the adiabatic poten-
that the sum is expanded over all intermediate quanturtials for each adiabatic part of atomic motion. They are given
numbers. Plus or minus signs in the arguments oby

the R-dependent wave numbers and in the transition

amplitudes show the location &, or R, points on “out” R, R,

or “in”parts of the classical trajectory, respectively. The <5\|](R2'R1i+—):J k'J(R'+)dR+J k(R,—)dR,

action integrals are evaluated along an actual trajectory R R
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the derivative of rapidly oscillating exponential functions
and only the first order in the derivative of slowly varying
factors overR; in Eq. (A4) one can obtain thé function in
the left side of this equation.

Consider now the situations when there is only one non-
adiabatic region located betwed andR,. If it is sepa-
HereR, is the location of the turning point on the “path” rated from the classically forbidden regions, the “in” and
potential U,(R). Because off functions in Eq.(A8) the  “out” parts of the Green function can be found indepen-
pointsR; andR, are located on the classical trajectory in thedently, because they are associated with two running waves

preferred order in accordance with a classical picture oPropagating via the nonadiabatic region from opposite direc-
atomic motion. tions. In such a case we can introduce the semiclassical form

R
S,](Rz,Rl;—):lek,J(R,—)dR,

. (A9)
Sﬁ(Rz,Rl;ﬂ:fR k}(R,+)dR.

If the radii R; andR, are close to one another and both of scattering equations for slowly varying transition ampli-

are inside of the adiabatic region, theg(R,,R;;*)
=0n,0,(Ro,R1%)= 30,0, and g{(Ry,Ry; +—)=consk, g .

tudesgflzﬂl(Rz,Rl;i), assuming a large magnitude of an-
gular momentumd and keeping only the derivative of these

It is easy to see that taking into account the second order iamplitudes in the first order:

>

d
J .
(Ry,Ry;£)=
ﬁRzgﬂzﬂl 2,R1 <

|

kgpgl(RZ:i)

kflznl( Ry, *)

d
IR,

1/2
e,

¢Q’>

(J+1/2)

x
[kd,0,(Ro, )Kg, 0 (R, )12

X expliSy o (Ro,R1i ) ~iSh 0, (Ro,R1i £)105, 0 (Ro Ryi ).

=% (ba,liddar)

(A10)

These equations should be considered in combination witmtermediate adiabatic domains and their possible variation

the following boundary conditions:gfzzﬂl(Rz,Rl;+)
— 80,0, at R;—R;+0 andgp o (Rp,Ry;—)— 0,0, at
R,—R;—0. It is important that by substituting the “in” and

“out” terms of the Green function into scattering equation
(A4) the & function vanishes if we neglect the terms

J+3 .
K, (R2>k51(Rl>R2<¢QZIJ§I ¢a,)S(Ry—Ry),

where we denote kfzz(Rz)kalzgl(Rz,i), kgll(Rl)
= kf)lnl(Rl,t). Such types of terms lead to the similar cor-
rection in the solution of differential equatid@4) as other

terms that are neglected, which come from higher order deri-

vations of slowly varying amplitudes.

In the general case there are several separated nonadia-

batic regions and we can express “out” and “in” ampli-

tudes as the products of partial factors relating to each region

as follows:

=00/ (Re R’ %) Qg (R'Ryi ),
(A11)

where R,>R’>--->R">R; for the “out” wave and R,
<R’'<---<R"<R; for the"in” wave. In these products the
internal radiiR’ and R” have an arbitrary location inside

does not change the product itself.

The “in”-"out” contribution in the semiclassical expan-
sion of the Green functiofA8) can also be formed as a
product of partial solutions for each nonadiabatic region. In
the asymptotdr; ,R,— o we should recover the semiclassi-
cal expansion of th& matrix in accordance with boundary
condition (A7). The most difficult is to expand the solution
in the vicinities of the classically forbidden regions, but in
the simple situation with only one turning poiRt, we can
express the amplitudqu(Rz,Rl;Jr —) as follows:

gi](R21Rl;+_):gg)291 QIVQI(R21R1;+_)

=9f229r(R2,R’;+)~--gfl,,QO(R”,Ro; +)

X gf)OQ,,,(Ro,R"'; =) 'gﬁqul(R'V,Rl;—),
(A12)

where R,>R'>--->R">R, and Ry<R"<---<RV<R,
and internal radiR’,...,R" are located inside the adiabatic
domains.

2. Application to the P, state

Let us illustrate the general discussion of the preceding
section by the practical example of'&®, atomic state split
into 134 and 11, molecular states in the interaction with a
rare-gas atom. There is only Corioliso radia) coupling as
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R— o asymptote for these terms. We will use an approxima<’(R,,R;;*+), €(R,,R;;+ —). The references of the de-
tion that Coriolis coupling is negligible inside the sphereflection angles used here and throughout are shown in Fig.
with radiusRy=R4(J) (so-called decoupling spherand be- 11. We show here and below the full structure of khedex
comes important outside this sphere. Such a decouplingy the subscript of the functions and omit it in deflection
(locking) radius approximation is well known in the theory angles. This can be done because the deflection angles relate
of atomic collisions and particularly in the theory of optical here to the straight parts of the classical trajectory and do not
collisions, se¢31-33. It means that the change frodtoa  depend orl.

coupling schemes in Hund’s classification takes place in a If p=(J+1/2)/k<py and R,,R;>Ry then “in” and
narrow domain located near the decoupling radys The  “out” parts of the trajectory betweeR; andR, are located
optimal choice ofRy has been a subject of several discus-inside thed Hund case region, but the “in"-“out” part
sions, se¢32,33. From a practical point of view the decou- crosses the region. The Coriolis-type transition amplitudes
pling sphere approximation is useful so long as the longare given by

range dynamical forces disappear at large internuclear

separations more rapidly than long-range inertial Coriolis gfz 0 (RZ,RI;_)ZDb o (—m2,— Ry, Ry —),m2),
forces. To estimate the location of decoupling radius we may ~ > * Z

use the following:

R,<R;
h2(3+1/2) AU(RY) (AL3)
MR (Ro). 0%,0,(Ro.Ryi+)=Dh o (~ 2,~ E(Ry Ry +), wl2),
where we denote aSU(R) the splitting between th& and

I1 terms. R:>Ry  (A1D)

In such an assumption the slowly varying amplitudes can 3 _
be calculated as a solution of simplified E¢810). On one  9g,qrq (Re,Ri;+—)= DJQZQ/(— 7/2,— &(Ry,Ry; +),7/2)
hand, outside of the decoupling sphere, where both atomic ,
potentials approach zero, we can solve these equations in a XDJQ,Ql(—'JT/Z,—g‘](Rd,Rl;_),77/2)-
straight line trajectory approximation with strong Coriolis
coupling between th& and Il states. On the other hand,
inside the decoupling sphere we can use an adiabatic a
proximation with neglect of the Coriolis coupling. The de
coupling sphere defines the sharp border betwe@md a
Hund’s regions where we fit the solutions. Final results de- ] ; )
pend on different relationships between total angular mo- gﬂ’Z“l(Rzle’_):Dlﬂzﬂl(_ﬂ-/z’_ &(Rg,Ry; =), ml2),
mentumJ, decoupling radiu®y, and radiiR;,R,. (Al6)

Consider the optical collision with large impact parameter g, , (R,,R;;+—)=D}, o (= 7/2,— &(Rq,Ry;—),7/2).
p=(J+1/2)/k>p, Wherepy=R4(po) is the upper value of 2 2
impaqt parameter for the _classical trajectory t(_)uching the_ del-]c R,>Ry> R, then the “out” and “in"-“out” parts of the
coupling sph_ere. That |mpl|e_s t_he scattering Conc]“t'onstrajectory can cross the decoupling sphere and the transition
where the trajectory is located inside theoupling scheme . o

; ) T ) amplitudes are the following:
region. There is no dynamical interaction between the atoms
in Hund’s cased region (atoms are freeand the slowly ;
varying amplitudes are defined as rotational transformations gglzﬂl(RZ'Rl;“L): Dio,0,(~ 7/2,= £(Ry, Ry +), ml2),
characterizing the change in the orientation of the molecular (A17)
frame for the motion along the trajectory from poRR{ to gfzznl(RzleiJf —)= DjQZQl(_ m12,— E(Ry, Ry +),7/2).
point R,:

If R{>Ry>R, then the “in” and “in”-"out” parts of the
Ki’r'ajectory can cross the decoupling sphere and the ampli-
" tudes are given by

J i J . If Rg>R;,R, then all the parts of the trajectory are inside
R,,R1;—)=D} o (—7/2,— &(R,,Ry;—),7/2), d= R, R p | y

9”2“1( 2Rai—) “2“1( i ¢€(Ro.Ry; =), ml2) Hund’s casea region and all the amplitudes are purely adia-

R,<R; batic,

(A14) )

; J. ; gglzszl(R21R11_):502()1’ R,<Ry

gQZQl(R21R1;+)=DQ291(_ 7T/21_§ (R21R1;+)!7T/2)1

Ry>Ry 99,0,(Re.Rii+)=080,0,, Re>Ry  (AL8)
gijlzﬂl(RzyRﬂ*'_)

. 9n,0,(Re,R1;+—)=80,0,.
=Di,0,(— m2,~ E(Ry,Ry; + =), m/2).
The last relation betweeR;, R,, andRy is typical for op-
The WignerD functions describe the rotational transforma- tical transitions in quasistatic conditions when, in accordance
tion of the atomic wave functions with internal angular mo-with the Frank-Condon principle, the optical excitation is

mentumj (j=1) and they depend on deflection anglesinitiated inside the molecular interaction region.
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APPENDIX B: SEMICLASSICAL REPRESENTATION
OF RADIAL WAVE FUNCTION V& (R)
FOR THE 4d'D, STATE

. . . . ‘Ct:(RBvRAv*-_)
The semiclassical representation of the radial wave func-
tion vi )(R) is defined by Eq(3.15 as follows:

-3 e

o

(R’_)e—isf(R,—)—iwm

1 J
| R
— J;bﬂ(R&)eiSI](R*”“”/“ ) FIG. 11. The reference of the deflection angles used in the ar-
[ki(R,+ )]1/2 guments oD functions in Eqs(A14)—(A17). Here the radiR, and
(B1) Rg are any ofR;, R,, orRy.

. . . . . Here and below we use the same reference of deflection
General analysis of such kinds of semiclassical expansion Bhgles as in Fig. 11

well as the details of the technique developed for calculation” = i1 intermediate trajectories with impact parameter
of slowly varying amplitude®;(R, =) can be found if24]. 02< < po1, Wherepo,=Ry(poy) is its upper value for the
Here we present and briefly discuss only the results relatingt rajectory touching the inner decoupling sphere, the am-
to the 4d D state of magnesium in collision with a rare-gas plitudes have different representations in dependence on the

atom. o o __relation betweerR andRy; :
We restrict ourselves by considering the Coriolis nonadia- (1) “Out” trajectory with R> Ry,

batic coupling and ignore the radial nonadiabatic interaction.
As follows from the numerical results for Mg-He singlet po- bR 4+)=b> (R +)=DL (= #/2.6) (% R +). w2
tentials, see Fig. 4, there is no significant radial nonadiabatic ((RH)=bgg(R+)=D gy (= 2,80, Ri+), m/2).

coupling betweer®, terms correlated with $and 4d elec- (B3)
tronic_ configurations .of.magne.sium. Th_e most important pe- (2) “Out” trajectory with R<Ry; ,

culiarity of the Coriolis interaction, coming from the behav-

ior of potentials depicted in Fig. 4, is in the e,><|sten_ce of two bl(R, +)=b3e(R, +) =Dl (— /2,Ey  7/2),
decoupling spheres splitting different Hund’s regions. The

outer sphere, characterized by decoupling radiRg J —nd _ J .
~38a.u., bounds the interaction region from the outer region bI(R,+)=D21210(R ) =COSE (Ryr R +)

of the free motion, which is specified as Hund’s cake XD o(— 72,8, 712),

There is an extended region located between outer sphere

Rg1 and inner spherRgy,~9 a.u., which cannot be specified bY(R,+)=b . ,o(R,+)=—isin&(Ryy,R;+)

in a regular Hund’s classification, where only the electronic o

shell with 4do configuration has a significant repulsive in- XD, (— 72, ,7l2), (B4)
teraction. The repulsive interaction comes from strong ex-

change interaction of do electron with the rare-gas atom. bY(R,+)=b2,. (R, +)=c0sé’(Ry;,R; +)

The 4d7r and 46 configurations are still degenerate at such . 3

intermediate separations because of no exchange overlapping XD oo (= m2,&y ,ml2),

with the wave functions of the valence electrons of the rare-

gas atom and the corresponding terms are determined by  b(R,+)=b2,.1o(R,+)=—isin&(Ry,R;+)

zero potentials. Therefore in the rotating molecular frame
there is a strong Coriolis coupling betweéH and *A elec-
tronic states in this intermediate region. In the inner region SRR _
with internuclear separations less thag, the interaction is ~ WN€"€&a = £7(*,Ra1; +).
characterized by Hund's case (3) “In” trajectory with R<Ry;,
For the long-range trajectories with impact parameter
=(J+1/2)Ik>pg1, Wherepg;=Ry1(po1) is its upper value
for the limit trajectory touching the outer decoupling sphere, ; ; ;
all the amplitudes are given by bi(R,—)=b1.10(R,—)=C0S&"(Ry1,R; + —)

XD o (— 2,85 ,712),

XD (= w2, ,712),

bY(R,—) =03 (R, —)=Dho(— w2,y 7/2), (B5)

bY(R,+)=b, (R, +) =Dk (— m/2,&(,R; +),7/2),
(B2) bi(R,—)=bl,.,0(R,—)=—isin&"(Ry,Ri+ —)

bY(R,—)=b,(R—)=Dh (— m/2,£ (R + —),ml2). XDl o (— w2, 7l2),
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b)(R,—)=b2 ;. 0(R,—)=cos&(Ry; ,R; + —)
XD o (—m/2,6} ,ml2),
bﬁ(Ra_)zbizilg(R,_)z —i Sin§J(Rd1,R;+ —)
XD o(— w2,E, ,72).

(4) “In” trajectory with R>Ry,

J

b)(R,—)=b%,(R,—)=DL (- #/2,£(Ra1,R; ), 7/2)

X by (Ryz, =), (B6)

where b,/ (Rq41,—) is any of the amplitudes from cag8)
taken atR=Ry; and byl’ in path index =Ql’ we denoted
['=Q",...,Q0. We do not mark the deflection angles in Eqgs.
(B3)—(B6) by path index because all of them relate here to
the straight trajectory approximation.

For the inner trajectories with impact parametex pg,
the amplitudes have different representations in their depen-
dence on the relation betwe®) Ry;, andRy,.

(1) “Out” trajectory with R>Ry;. All the amplitudes
b(R,+) are given by expressiofB3).

(2) *Out” trajectory with Ry;>R>Ry,. All the ampli-
tudesb;(R, +) are given by expressiofB4).

(3) “Out” and “in” trajectories with R<Rys,

bY(R,—)=Db}(R,+)=Db}(Rgz,+). (B7)

This region relates to the region of adiabatic evolution and
b{(Rgz,+) with all possiblel given by Eq.(B4) at R
—)Rdz.

(4) “In” trajectory with Ry;>R>Ry»,

b)(R,—)=b3oe,(R, =) =Dho(— 7/2,& , 7/2), (BS)
b)(R,—)=b2.1.10(R,—)=C0s&(Ry,R; )
X c0s&’(Ry1Ryz; +)

XD 1o (— 2,85 ,712),
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(R, —)=b% 1 1.50(R,—)=—icos&(Rg2,R; ~)

XSing(Ry1Rap; +)D L po(— 12,85, ,m12),

bﬁ(R!_):biliZiZQ(R=_)
=—isin&'(Ryy,R; —)cosé’(Ry1Ryp; +)
XD oo (— m2,E) ,712),

b(R,—)=b2 5. 5. 0(R,~)
=00s&”(Ryz,R; —)cosé’(RyRyp; +)
XDy (= w28y 7l2),

bi(R,=)=b2;.1.20(R~)
= —sin&’(Ry,R; —)sin&’(Ry1Rqz; +)
XD oo(— w2,y 72),

bﬁ(R’_):biZiZilQ(Rv_)
=—icosé’(Ryy,R;—)siné)(Ry;Ryz: +)
XD, 1o(— w/2,6}, , 7l2),

bIJ(R' -)= biz:l:lQ(R’ =)
=—ising(Ry,,R; —)cosé’(Ry1 Ry +)
XD, o(— 72, 7]2).

(5) “In” trajectory with R>Ry,

b)(R,—)=b3,,(R,—)

=DL_ (~ 26 (Ray,R; =), 7/2)by (Ray, - ),
(89)

where b, (Ry1,—) is any of the amplitudes from cagé)

blj(Ra -)= bJ:ertlﬂ(R’ =)
=—sing’(Ryz,R; —)sin&(Ry;Ryz; +)

taken atR=Ry; and byl’ in path indexi=Ql’ we denoted
I"'=Q',...,.Q. All the deflection angles appearing in these
expressions can be calculated in zero potential, i.e., in a

X Djtl().( - 77/2,531 v712), straight trajectory approximation.
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