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Proton stopping in dense molecular hydrogen: A molecular-confinement model
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A molecular-confinement model is proposed for the calculation of density effects on the electronic stopping
cross section §) in a condensed medium. In this model, the collective intermolecular interactions in the
medium are represented by a mean field in which a particular molecule is embedded including the spatial
constrictions imposed by the surrounding molecules. A molecule is thus viewed as a caged-in system within a
spherical boundary with finite potential barrier height. Changes in the molecular electronic properties and
molecular conformation as a function of medium density are self-consistently treated. As a first example of a
general treatment for more complicated target structures, the model is explicitly applied to the case of proton
stopping in dense molecular hydrogen. The lowest barrier helgdgt=Q) was selected for the stopping
calculations since it provides a more realistic pressure-density relatior 8tK than higher barrier values.

Our results for dense molecular hydrogen predict a very small to moderate reduc8pmeilative to the gas
phase in going from atmospheric press@®e036 mol/cmi, AS,;~0.5%) up to 136 GPa0.380 mol/cri,
AS.~24%) for either the liquid or solid phase as determined by the phase diagram for this medium.
[S1050-294{@9)08609-9

PACS numbd(s): 34.50.Bw, 34.10+x, 62.50+p, 61.80.Az

[. INTRODUCTION its atomic constituents, renormalized within the confinement
volume. However, this perturbation approximation might not
The outcome of more accurate experimental techniques tbe valid for all confinement conditions—i.e., varying density
measure electronic stopping cross sectidhd (n compound  within the same phase—since a redistribution of the elec-
materials has provided evidence on important deviationsronic cloud must be accompanied by nuclear position relax-
from Bragg's additivity rule as well as on target physical ation. Furthermore, according to studies on small confined
phase state effects @ [1-7]. Chemical binding effects due molecules[20-24], the electronic energy levels have a
to the target molecular structure have been considered by thetrong dependence on both the size of the confining box and
theory through various models with reasonable sudcgé8s-  the height of the potential barrier at the wall. Hence, mean
16]. These models, however, are designed on the basis of tlexcitation energies and stopping cross sections should be ac-
free-molecule properties and are more suitable for the treatordingly affected. In view of the above, we may deem that
ment of targets in the gas phase. For a condensed mediumphase and molecular structure are intimately related and
like a molecular liquid or solid—the short intermolecular should influence simultaneously the outcome of an experi-
distances and corresponding interactions may have a signifinental determination o, .
cant effect on the electronic and structural properties of the The aim of this work is to present a model of molecular
constituent molecules as compared to the gas phase, givim@nfinement by a penetrable barrier designed to describe the
rise to the observed changes in the stopping cross section ftarget properties in a given phase under different density
different physical states of the target. Previous ideas t@onditions in order to analyze target-density effectsSan
model this situation have been put forward by other author3he case of proton stopping in dense molecular hydrogen is
[17,18, who considered the state of aggregation of the meexplicitly considered.
dium in terms of the spatial confinement imposed on the In the model proposed here, a given constituent molecule
electronic distribution of each molecule due to its surroundin a condensed medium is viewed as a caged-in system
ing neighbors and using Lindhard’s theory in the local-within a spherical boundary with finite potential barrier
density approximatiof19]. In these models, spatial confine- height Vg (padded spherical confining bpxThe height of
ment is viewed as a boxed-in molecule within hard walls,the potential barrier corresponds physically to the mean field
whereby the redistribution of the total molecular electronicwhere a particular molecule is embedded and represents a
density is evaluated as the sum of the free-atom densities @feasure of the confining capacity of the medium. On the
other hand, the density of the medium establishes the degree
of spatial constriction on the molecular electronic distribu-

* Author to whom correspondence should be addressed. Addre¢ion. Hence, the barrier potential height as well as the con-
correspondence to Programa de SimulacMolecular, Instituto  fining volume may have consequent changes in the total
Mexicano del Petroleo, Apartado Postal 14-805, 07730xitée  electronic energy, internuclear distances, and mean excita-
D.F., Mexico. Electronic address: scruz@www.imp.mx tion energy.
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_ Bpth t_he electronic_ s_tructure and molecular confo_rmation Wor—Ry)= Nge—gk(r—Rk)z (reV.), (3b)
within different confining volumes are self-consistently

treated. To this end we use the floating spherical Gaussiafhere the parametesg b, ,g and the normalizing factors
orbitals(FSGQ representation for the target molecular orbit- NI N2 are related through the boundary and normalization
als[25] and develop a@b initio calculation of the molecular  gnditions.

ground-state energy and structure—hence allowing for elec- Following Frost, for the sef¥;} of nonorthogonal orbit-

tronic and nuclear redistribution—as a function of volumegs given by Eqs(3a) and(3b), if Sis the overlap matrix of
for the padded spherical confining box. The electronic denge set and =S ! its inverse, then the electronic energy for
sity of the confined molecule is then incorporated into theine molecule is

orbital local plasma approximatiofOLPA)/FSGO imple-

mentation of the kinetic theoryl16] in order to account con- i

sistently for both density and chemical bonding effects in the E=22k (J|k)Tjk+k|2 (kl|pQ)[2Tlepq_quTlp]*
stopping process. In Sec. ll, a brief description of the mo- b P @)
lecular confinement model proposed here is discussed first

on a general basis and then applied explicitly to the hydrogewhere (|k) are the one-electron integrals ankl|pq) the
molecule. Some relevant physical aspects of this boxed-itwo-electron Coulomb and exchange terms given by
system are pointed out here including its predictions for the
pressure-density dependence of liquid molecular hydrogen at
T=0K. Section lll deals with the calculation of the proton
electronic stopping cross section for different compression
states of molecular hydrogen. Finally, in Sec. IV, a discus- 1

sion and the conclusions of this work are presented. Atomic  (KI[Pa)= jrwk(l)wl(l)rlz Wp(2)W4(2) dvadvy,

(j|k)=fr«1fjh\pk dv, (58

units are used throughout this work unless otherwise indi- (5b)
cated.
with
Il. MOLECULAR CONFINEMENT MODEL 2
A. General strategy h=—3v2-> r—V +V(r). (5¢0)
v v

According to Frost{25]—in the FSGO approach—each
electron pair in a given core, bond, or lone-pair orbital within The first term in Eq.(5¢) corresponds to the one-electron
a free molecule in its ground state may be represented by kinetic energy operator and the second one to the electron-
localized molecular orbital as a single floating Gaussian: nuclear attraction for a system withnuclei of chargeZ, .
V(r) is the confining potential given by ER) andr ,, is the
Y1 — Ry = (2lma?) e R0 (1)  electron-electron relative distance. Note that the synfibiol
the above expressions indicates in a generic way the domain
where oy is the orbital radius and, the position of its of integration, which is different for the interior and exterior
center and are obtained after total-energy minimization fowave functions.
the molecular Hamiltonian. In general, the total energy will be a function of the
For a boxed-in molecule, l&t. define a confining volume orbital parameters &,by,gy), orbital positions Ry),
for our system limited by a boundaf(rg), whererg is the  nuclear positions r(,), volume of confinement\(;), and
position vector of any point on the boundary relative to thebarrier height V), i.e.,
origin. Let us further assume the barrier height at the bound-
ary has a constant finite valuég, hence the confining po-  W(&k:Pi: 9k, Ric.T, Ve, Ve) = E(ak, b, 9, Ris T, Ve, Vi)
tential has the form 7 7
+3 2

0 (TEVC) pm<v tuv
Vg (reVe), @

(6

V(r)=
where E is given by Eq.(4) and the second term is the
internuclear repulsion. For a given confinement volume and
barrier height, energy minimization relative to all quantities
(ax,bk,9k,Rk,r,) provides the parameters defining the cor-
Iresponding molecular configuration.

wherer denotes the position of any electron relative to the
origin.

Clearly, inclusion of the functio®/(r) in the molecular
Hamiltonian demands different expressions for the interio
(7)) and exterior ¥y) representation of a localized orbital o
such that boundary continuity conditions and normalization B. Application to the hydrogen molecule
are satisfied. With these conditions and in the spirit of the \We now focus our attention on a hydrogen molecule in its
FSGO representation, we propose for a localized orbital of ground state confined by a penetrable spherical cage of ra-
molecule under confinement the following ansatz for the indius R,. Within the FSGO model, this two-electron system

terior and exterior representations: is represented by a single Gaussian orbital centered at the
_ _ ) ) origin [Ry=0 in Eqg. (1)]. According to Egs(3a and (3b),
Vi(r—R)=N[e &RI"— e bre=RI"] (v, putting rg=R;, the interior and exterior ansatz orbitals for

(39 this case are
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Wi(r)=Ni(e 2’ —e bR (r<R,), (78

—
(¥,

) Confined H2
POo(r)=N°% 9" (r=R,). (7b)

—
P

Using boundary and normalization conditions, the follow-
ing relations are obtained for the normalization factors and
orbital parameters:

Total Energy (hartrees)
&
|

0_ Nire(0—-aR:_ o(g—b)R2

N°=N'[e e 1, (8a) 05

g=a/[1-e@ bRE], (8b) 1]
. S *

hence only two orbital parameters are independently opti- 1

mized. St

Using Egs.(7) and (8), and since only one FSGO is re- 0 2 4 6 8 10
quired, the overlap matrix is a scala#®<1) and the evalu- Box Radius (a. u.)

ation of Eqgs.(4)—(6) for this two-nuclei problem may be
easily done analytically. However, the final expressions be- FIG. 1. Total ground-state energy of molecular hydrogen as a
come too long to be shown here. We simply state here thdtinction of confinement radius for two extreme values of the con-
after global minimization of the total energw) [Eq. (6)] for  fining barrier potential. Yg=): (—) this work; (®) “exact”
a given box radiusR,) and barrier height\(g), the corre- ~ calculations from Ref[21]. (Vg=0): (--------) this work. The
sponding optimum values for the orbital paramefers) and ~ dashed curve is drawn to guide the eye.
half internuclear distance®() are obtained. Note from Eq.
(2) that if Vg=cc (hard wal), the wave function must vanish hard-wall model, a less pronounced variation of the elec-
outside the confining volume. This is achieved settinrgb  tronic energies as the box radius decreases is observed, in
(g—) in Eq. (8b). On the other hand, Nz=0 (“transpar-  agreement with other calculations performed for th& hho-
ent” soft wall), the interior and exterior wave functions are lecular ion[22]. Interestingly enough, this model predicts a
the same, hence from E¢Bb), b—» anda=g. For these threshold box radiusR.~1.25,) below which no bound
two extreme cases we only require one orbital parametestate for H is available. This behavior is characteristic of the
The corresponding explicit expressions for the relevant, oneincomplete confinement of the electron cloud and renders a
and two-electron integrals are given in the Appendix. more realistic description of the pressure effects on the mo-
Before proceeding to the stopping power calculations, it idecular properties of KH[27].
worthwhile to briefly analyze and validate the results of the For completeness, in Table | the values of the total en-
confinement model proposed here. To the authors’ knowlergy, internuclear distanc&{=2R,,), and orbital parameter
edge, there are no similar studies in the literature for the H(a) are displayed for selected values of density Yy=0
molecule confined within soft boxes. However, we can com-and Vg=c. The corresponding calculations by LeSar and
pare our results for the hard-wall case with other more soHerschbachVg=~) are given within parentheses. Here we
phisticated treatments in order to gain some confidence ipbserve that our total-energy values are typica#20%
our results. LeSar and Herschbd@1i] studied the hydrogen above those of the latter authgisee Fig. 1. This quantita-
molecule confined within spheroidal hard boxes using &ive difference is a consequence of the use of a single-
variational calculation with a five-term James-CoolidgeGaussian representation for the wave function. According to
wave function[26]. Interestingly enough, the aforemen- Moshinsky[28], this corresponds to the lowest-ordeero-
tioned authors find that the symmetry of the confining boxegjuanta expansion in terms of the harmonic-oscillator basis
for which the total energy is a minimum is practically spheri- set and in this case total energy values are obtain2d%
cal for all box sizes. This allows proper comparison with ourabove the Hartree-Fock limit. The large discrepa§%o
spherically confined molecule. Moreover, recent exact calcuebserved with the “exact” calculation for 0.333 mol/ém
lations for hard-wall spheroidal confinement of by Pang (R.=2a,) may be a consequence of the onsee Fig. 1 of
[24] using a diffusion quantum Monte Carlo method show ana steeper change in the energy induced by the wall on the
agreement within 1% difference with the correspondingmore compact Gaussian wave function. In spite of this, an
variational results by LeSar and Herschbach. Hence it is sufeverall fair agreement is observed with the calculations by
ficient to compare with the results of the latter authors. LeSar and Herschbach for the internuclear distance as a
Figure 1 shows a plot of the total energy against the confunction of box size. The later case reflects an important
fining box radius for the two extreme values of the barrierproperty of the FSGO model for molecular structure calcu-
height: Vg=0 andVg==. For the hard-wall case we ob- lations[25]. In light of the above discussion, the same trend
serve that our energy valuésontinuous curveare system- would be expected for the soft-wall case when compared
atically above those of LeSar and Herschbéslid circles with exact calculations when available. Here also a less pro-
following the same qualitative behavior as a function of boxnounced variation of the internuclear distances as density
radius. For small box radii R.<2a,) both calculations increases are observee?].
merge together to coalesce into the well-known particle-in- On the other hand, we may find the correlation between
a-box result. Note the different energy dependence for theressure and density for liquid molecular hydrogen under
“transparent”’-soft-wall case. Here, in contrast with the compression in order to make our treatment self-contained.
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TABLE |. Density dependence of Hotal energy, internuclear distance, and orbital parameter for zero
and infinite confining potential barrier heights. Quantities in parentheses are corresponding values reported in

Ref.[21].
Total energy Internuclear distance Orbital parameter
_ W (hartree R, (units ofag) a (units ofag ?)
Density
(mol/cnT) Vg=0 Vg=0 Vg=0 Vg=0 Vg=0  Vg=x
0.333 —0.8617 —0.3331(—0.4749 1.251 0.944(0.893 0.44259 0.66504
0.171 —0.9309 —0.7117 (—0.8800 1.367 1.112(1.068 0.37034  0.50807
0.099 —0.9509 —0.8613 (—1.0441 1.438 1.248(1.208 0.33496 0.42151
0.062 —0.9552 —0.9216 (—1.1136 1.466 1.348(1.30) 0.32198 0.37131
0.042  —0.95587) —0.9448(—1.1440 1.473  1.414(1.355 0.31907 0.34271
free —0.95594) —0.95594) (—1.1716 1.474 1.474(1.403 0.31865 0.31865
molecule

We stress at this stage that, since the confinement model ontige solid by Hemleet al.[31]. Clearly, the hard-wall model
considers changes in the electronic ground-state energy amaggerates the compression effect, whereas the soft-wall
ignores rotational and translational motion inside the box, irmodel gives a more realistic description, in agreement with
this work we calculate the purely cold pressure which comesimilar results previously reported for the pressure effect on
from changes in the total ground-state electronic energy relahe H,* molecular iof22,23 and the helium atorf82]. The
tive to confinement volume, i.eR=—JdW/dV,, whereVyis  close correspondence between the real 0-K liquid and solid
the molecular volume associated to the density of the meisotherms suggests a common intrinsic mechanism related to
dium. HenceP is only comparable to pressure-density rela-the electronic properties of the molecule. This observation
tions at absolute zero temperature. In what follows our refmight justify the use of the model proposed in this work for
erence to the pressure will be related exclusively to this coldlense molecular hydrogen either in the liquid or solid phases
pressure. at T=0 K. Perhaps the only difference we could distinguish
Figure 2a) shows the pressure-density curves obtained irin order to refer to one or another phase in our pressure-
this work for the hard-wal(chain curve and soft-wall(con-  density calculations is the use of the Wigner-Seitz cell vol-
tinuous curve models. Full triangles represent the resultsume for the solid case and the effective molecular volume for
from LeSar and Herschbach for their hard-wall model. Alsothe liquid just as we did in computing the curve shown in
shown is the 0-K isotherrfdashed curvecorresponding to a  Fig. 2(@). Hence we will refer to dense hydrogen in a generic
widely accepted equation of stateOS for fluid molecular  way keeping in mind that the physical existence of one or
hydrogen developed by Kerle)29]. Crosses represent the another phase must be defined by the associated pressure-
experimental EOS points for solid molecular hydrogen at 8Gemperature phase diagram. When necessary, thermal pres-
K from Evans and Silverq30] and open diamonds corre- sure may be estimated and added to the cold pressure as
spond to a temperature-reduc@dK) experimental EOS for prescribed elsewhel83-35. However, this is beyond the
scope of the present work.

Ill. ELECTRONIC STOPPING CALCULATION

We now turn our attention to the treatment of the target-
density effects on proton stopping in condensed molecular
hydrogen. In order to apply the results obtained in the pre-
ceding section, we shall consider the projectile as penetrating
a condensed medium where the intermolecular distances are

gm 1 small _enough to create a potential barrier—_due to the sur-
g rounding molecules—for the electrons associated to any par-
g% . f ticular molecule embedded in the medium. Furthermore, we
& a0 e et \Oximm, assume for simplicity that the barrier height is constant and

0ok i - —— S the medium is a liquid under different pressure conditions
Density (mole/cn) with consequent changes in density, which in turn are repre-
sented by different confinement box sizes. Our purpose is
FIG. 2. (a) Pressure-density curves fopHResults of this work @S0 to resort to a stopping model which fully incorporates
(-------—-) and results from Ref[21] (A) for Vg=. (—) this  the molecular electronic density properties. The orbital local
work for Vg=0 (see text () 0 K isotherm for fluid H [29], (X) plasma approximation implementation of the kinetic theory
experimental EOS points for solid ,Hat 80 K [30], (¢)  Of stopping[36] has these properties and has shown its ad-
temperature-reduce@® K) experimental EOS for solid §{31]. (b) equacy in the calculation of proton stopping cross sections in
Mean excitation energy(), for H, as a function of density for the gaseous targets using FSG06]. The advantage in using
two barrier potential heights indicated. this method lies in the possibility of adapting it for the case
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of a condensed medium—as proposed in this work—and taituation for atomics andp orbitals and found Eq12), with
make a consistent comparison with corresponding cross seg; =1, to be the most reasonable choice for calculating stop-
tions for the gas phase. We stress at this stage that the pysing cross sections through the OLPA implementation of the
pose of this work is to show the effect of target densitySan  kinetic theory. It is thus reasonable to follow this recommen-
when the target properties are properly modeled through madation and use Eq12) as the relevant expression to calcu-
lecular confinement. In this connection, any other method ofate I, in contrast with what was done in Refd.6] and
calculation forS, could be chosen as long as it incorporates|36].

the molecular properties of the target as described here. Clearly, from Eqs(11) and(12), the orbital velocity dis-

In the frame of the OLPA/FSGO implementation of the tribution f,(v,v’,8) and charge density,(r) are important
kinetic theory, the orbital contribution t8, may be obtained input quantities which must carry the information on the
making use of the orbital decomposition scheme proposed bghysical conditions of our target system. In the case of a
Oddershede and Sahjia7]. Within this spiritS, becomes condensed medium subject to pressure, it is clear also that

the electronic density will be a function of pressure through
_ the radius of the confining box. The velocity distributitpn
Se(va) =2 Seudva), © oK) in Eq. (11) may then be obtained witk=(m/#)
X(va+v'?2—2v,v’ cosf)t? and with d(k) the Fourier

whereS, i is the contribution from orbital K transform of Eqs(7) and(8), i.e.,
4we'ZiZ, @ (k)= (2/m) YN Q(k,a,b,R;) + N°E (k,g,R
Se’k(vl): mvzl Lk(Vl), (10) ( ) ( Tr) ﬁ: ( 1 & M C) ‘—’( !g! C)]’
1

with m ande the electron mass and charge, respectivgly. With the definitions
is the projectile nuclear charg&, is the total number of

electrons of the molecular target, ahd is the orbital stop- T 2 _k
ping number, which in terms of the orbital mean excitation Q(ka,b.R)= 2a32¢ Re erf| Reati 2\a
energy () and its electron populationd) is given aq 16|

1/2

efaRg ebeg
A ~ 5a Relo(kR)— —— REj(kRy)
Lk(v1)=m/§z;1wkf In dv’ 2a 0 k ot
a k
‘ (13b)
xf f(\VVi+v'2—2v v’ cosh)d(sir? 6). and
0
(11) _ 12 K
/ E(kg.Re)=|7 | 1-Re erf RoVg+i—
Here a,.= (1, /2m)Y? andv’=v;—v,, wherev,; andv, are g Vg
the projectile and target electron velocities relative to the R
laboratory, respectivelyf, (|v;—V'|)=f.(]Vv,|) is the veloc- bk —K2/4g 13
ity distribution of the electrons in orbitalk” relative to the 29 Jo(kRe) Je ’ (139

projectile

Concerning the calculation of orbital mean excitation en-whereN° N', and the orbital parameteta,b,g are defined
ergies (i) within the OLPA, Meltzeret al.[38] have refined by Eqs.(7) and(8). erf(z) is the error function of the complex
the original treatment based on this schef86] making a  argument and,,j, are the spherical Bessel functions of or-
physically more consistent orbital-by-orbital generalizationder 0 and 1, respective[\39].
of the local plasma approximation. From their study, the fol- Incorporating the above results into Eq8)—(12), the
lowing expression for the OLPA treatment bf is recom-  proton electronic stopping cross section may be calculated as

mended: a function of target densitypressurg The mean excitation
5 1o ene_rgy,(l) [Eq_. (12)], was calculated _numerica_lly using the
Ini :ij (Hinl% 4mep(r) d3r (12) optimized orbital parameters for a given confinem@ten-
K™ oy ppk m ’ sity) condition. Figure gb) shows the results of this calcula-

tion for Vg= 0 (continuous curveandVg=~ (chain curve.

wherep,(r) is the local electronic density for orbithlland A continuous increase dfl) as the density of the medium
p(r) the local total electron density obtained after taking theincreases is observed. This is expected since as density in-
angular average of each orbital charge density. As before, creases, the molecular confinement region is reduced with
in Eq. (12) indicates the different domains of integration for the consequent compaction of the electron cloud with in-
the interior and exterior densities. creasing electron kinetic energy and energy-level shift to-

Strictly speaking, the term(r) in Eq.(12) should include  wards higher values. Once again, the exaggeration of this
the multiplying scaling parameterg, , for each orbital sym- effect by the hard-wall case is apparent. This behavior has as
metry, i.e.,p(r) =2 xpx(r), to account for polarization ef- a direct consequence the reduction in the electronic stopping
fects as originally proposed by Lindhard and Schaif]. cross section, as may be verified from Fig. 3, wh8ges
However, the orbital dependence gf is still an open and plotted against proton velocity for different compression
difficult question to answer. Meltzegt al. considered this (density conditions in molecular hydrogen. All these quan-
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hydrogen to corroborate the density effects predicted in this

- ¥ work. In practice, it would be more feasible to perform an
% i & experiment in the low-temperature regime for increasing
2 2 0 pressures for the solid phase.
g ] 2 gas phase
N\ 7
§ 107 4.7GPa IV. DISCUSSION AND CONCLUSIONS
> 4 27 GPa ) )
B g 136 GP The p_resenjt Work.merges two aspects Whlph need particu-
- ] a lar consideration. First, the molecular confinement model
- 1 provides a reasonable description of the pressdemsity
»n°® ¢ effect on the properties of molecules in condensed matter.
| The model with soft walls as applied to the simplest molecu-
lar system, the hydrogen molecule, using a single Gaussian
4] representation, has provided new important physical infor-
] mation on the effect of confinement on the Hlectronic
2 properties. It also provides a cold pressure which correlates
| properly with a realistic situation for the 0-K isotherm of
1 molecular hydrogen under compression. This is a significant
0 T T improvement over the hard-wall model, which overestimates
0 5 Vv/V 10 the pressure-density behavior, and suggests the use of a re-
0 alistic molecular wave function to improve the quantitative
agreement.

FIG. 3. Electronic stopping cross section for protons incident on On the other hand, the molecular confinement model pro-
dense molecular hydrogen under different pressures as a function of '

projectile velocity. The gas-phase calculations are shown for composed in this work is concomitant to the calculation of den-

parison. Also shown are gas-phase experiméaisRef. [40], (0) sity effects on the electronic stopping cross section since it
Ref. [41], (O) Ref.[42]. considers self-consistently the changes in molecular elec-

tronic structure and molecular conformation as the medium

tities were obtained with the soft-wall confinementg( density changes. This is important because '_the |nelas_t|c en-
—0) model proposed in this work. The experimental points€"dY loss is directly corrglate_d to th_e electronic properties of
correspond to gas-phase measurements from various authdh§ target(for a bare projectile, as in our casédence, the
[40-42 and are included here as a reference. The theoreticiise of a confinement model to account for physical state
predictions for the gas phase using the OLPA/FSGO apeffects onS,, whereby the electronic distribution is only
proach[16] correspond to the dashed curve. In what follows,renormalized within the effective molecular volume—as was
we shall refer to the latter theoretical results to compare witlflone in Refs[17] and[18]—may be misleading.
the predictions of this work for the condensed phase. We first The results of this work for proton stopping in dense mo-
note (not shown in the figunean almost negligible change lecular hydrogen predict a very small to moderate reduction
(about 0.5% in S, for the low-density liquid phas€0.036 in S, relative to the gas phase in going from atmospheric
mol/cn® at 1 atm, 0.0001 GPa, and 20 Ks compared to the pressure 4S,~0.5%) up to 136 GPaXS,~24%) for ei-
gas phase. A similar behavior is expected for the solid phasgher the solid or liquid phase with the same density, depend-
in the same temperature and pressure conditions. At highéiig on the temperature defined by the phase diagram. In spite
pressuresP=0.6 GPa(0.062 molicm), 4.7 GPa(0.099  of the small changes i, predicted for this system, it is
mol/cn?), 27 GPa(0.171 mol/icn), and 136 GPa0.380  worthwhile to analyze within the model proposed here the
mol/cn?), the maximum predicted differences are, respecdensity effect on larger molecular systems for which notice-
tively, 1% (not shown, 4%, 11.5%, and 24% below the gas able physical state effects B, have been observed experi-
phase. According to Holzapf@#3], fluid molecular hydro-  mentally[1—4]. Work is currently in progress in this direc-
gen may be observed for pressures from 1GPa (T tion.
=20K) and by increasing temperature and pressure up to In summary, we have shown here that the target density
about 100 GPaT=1000K). Solid molecular hydrogen ex- dependence of the electronic stopping cross section is due to
ists below the transition curve connecting the ab®  the combined effect of spatial confinement as well as an
extreme points. Since thermal effectsSpare negligible for increase in target mean excitation energy. In contrast with
this range of temperaturgd4], the above predicted differ- previous confining models to account for phase effec&in
ences inS, are common for liquid and solid molecular hy- we have made a self-consistent treatment of electronic and
drogen with the same density. Our results for 136 GPauclear redistribution as a function of the degree of confine-
should be viewed as an extrapolation of the density depemment and found that the boxed-in-molecule model within
dence ofS, and would correspond to highly compressed mo-soft walls gives a more realistic description for the pressure-
lecular hydrogen in the solid phas&< 1000 K) or the me- density dependence of the condensed phase than the hard-
tallic fluid (T>1000K). wall model. The proposed model is of a general character
Unfortunately, there is no experimental information avail-and may be applied to molecules of arbitrary size and sym-
able on proton stopping cross sections in dense moleculametry.
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APPENDIX

As stated in the main text, fovg=

function becomesg=Dh)

Vi(r)=N(e 2" —e 2R, (A1)
with N given as
N=[f(a,R;)+g(a,R;)] 2 (A2a)
where
f(a,Re) = (3la+4R¥3) mR.e 28R (A2b)
and

\2) — erf(Ry\/a)e 3R],

(A2c)

g(a,Ry)=(mla)¥{ 27 %erf(R

with erf(2) the error function 39].

The following expressions for the one-electron kinetic en-

PROTON STOPPING IN DENSE MOLECULR. ..

o the exterior wave
function [Eq. (7b)] vanishes §— =) and the interior wave

2213

where Ry is half the internuclear distance amdgiven by
Egs.(A2).
Analogously, the two-electron Coulomb and exchange

" term[Eq. (5b)] becomes

ergy as well as the electron-nuclear attraction terms are ob-

tained:
3/ 7 1/2
<1|—%V2|1>=(77N2/2){§ 55 erf(R.\/2a)
—(3+4aR})R.e 22Re |, (A3)
1 2
<1I|r ||1> (mN“/3a)[ k(a,R;,Rn) —N(a@,R¢,Ry) ],
(Ad)
with
x(a,R.,Ry) = (9+6aR2—2aR%)e"22R:  (A5a)
and

1/2

erf(Ryva)e 2%

6 ([
)\(achvRN):R_N 3

3 T 1/2
+2—RN(5) erf(Ryv2a), (A5b)

(11]11) = (7*N*/60a°?)[ n(a,Re) + 7(a,R;)],  (A6)
with
w(a,Ry)=8a'R (15+60aR2+ 16a°R?)
e R 4807121+ aRd)erf(R,/a)e %R
(A7a)
and
a 1/2 )
n(a,RC)zlo(E) (63+ 12aR?)erf(R.\2a)e™ 22R:
T 1/2 5
—24({5) erf(R.\/3a)e 2R
+1572erf(2R.\a). (A7b)
For Vg=0, the interior and exterior wave functions are

equal, hencdb—~ anda=g in Egs.(7a) and(7b), i.e.,

Wi(r)=we(r)=Nye 2", (A8)

with Ng=(2a/7)** The corresponding one-electron kinetic
energy, electron-nuclear attraction, and two-electron terms
are easily evaluated in this case and are, respectively,

(1]-3V?1)=3a/2, (A9)

1
(Ul g 7|1 =erf(Re2a)/Ry - (8a/m) Y%~ 2R,
(A10)

(1111)=(8aR,/m)e*2Re+ (4al m)Y2erf(2R a)

— (32a/m)Y2erf(R,\2a)e~ 22K, (A11)
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