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Proton stopping in dense molecular hydrogen: A molecular-confinement model
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A molecular-confinement model is proposed for the calculation of density effects on the electronic stopping
cross section (Se) in a condensed medium. In this model, the collective intermolecular interactions in the
medium are represented by a mean field in which a particular molecule is embedded including the spatial
constrictions imposed by the surrounding molecules. A molecule is thus viewed as a caged-in system within a
spherical boundary with finite potential barrier heightVB . Changes in the molecular electronic properties and
molecular conformation as a function of medium density are self-consistently treated. As a first example of a
general treatment for more complicated target structures, the model is explicitly applied to the case of proton
stopping in dense molecular hydrogen. The lowest barrier height (VB50) was selected for the stopping
calculations since it provides a more realistic pressure-density relation atT50 K than higher barrier values.
Our results for dense molecular hydrogen predict a very small to moderate reduction inSe relative to the gas
phase in going from atmospheric pressure~0.036 mol/cm3, DSe'0.5%! up to 136 GPa~0.380 mol/cm3,
DSe'24%! for either the liquid or solid phase as determined by the phase diagram for this medium.
@S1050-2947~99!08609-6#

PACS number~s!: 34.50.Bw, 34.10.1x, 62.50.1p, 61.80.Az
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I. INTRODUCTION

The outcome of more accurate experimental technique
measure electronic stopping cross sections (Se) in compound
materials has provided evidence on important deviati
from Bragg’s additivity rule as well as on target physic
phase state effects onSe @1–7#. Chemical binding effects due
to the target molecular structure have been considered by
theory through various models with reasonable success@7,8–
16#. These models, however, are designed on the basis o
free-molecule properties and are more suitable for the tr
ment of targets in the gas phase. For a condensed mediu
like a molecular liquid or solid—the short intermolecul
distances and corresponding interactions may have a sig
cant effect on the electronic and structural properties of
constituent molecules as compared to the gas phase, g
rise to the observed changes in the stopping cross sectio
different physical states of the target. Previous ideas
model this situation have been put forward by other auth
@17,18#, who considered the state of aggregation of the m
dium in terms of the spatial confinement imposed on
electronic distribution of each molecule due to its surrou
ing neighbors and using Lindhard’s theory in the loc
density approximation@19#. In these models, spatial confine
ment is viewed as a boxed-in molecule within hard wa
whereby the redistribution of the total molecular electro
density is evaluated as the sum of the free-atom densitie

*Author to whom correspondence should be addressed. Add
correspondence to Programa de Simulacio´n Molecular, Instituto
Mexicano del Petroleo, Apartado Postal 14-805, 07730, Me´xico,
D.F., Mexico. Electronic address: scruz@www.imp.mx
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its atomic constituents, renormalized within the confinem
volume. However, this perturbation approximation might n
be valid for all confinement conditions—i.e., varying dens
within the same phase—since a redistribution of the el
tronic cloud must be accompanied by nuclear position rel
ation. Furthermore, according to studies on small confin
molecules @20–24#, the electronic energy levels have
strong dependence on both the size of the confining box
the height of the potential barrier at the wall. Hence, me
excitation energies and stopping cross sections should be
cordingly affected. In view of the above, we may deem th
phase and molecular structure are intimately related
should influence simultaneously the outcome of an exp
mental determination ofSe .

The aim of this work is to present a model of molecu
confinement by a penetrable barrier designed to describe
target properties in a given phase under different den
conditions in order to analyze target-density effects onSe .
The case of proton stopping in dense molecular hydroge
explicitly considered.

In the model proposed here, a given constituent molec
in a condensed medium is viewed as a caged-in sys
within a spherical boundary with finite potential barri
height VB ~padded spherical confining box!. The height of
the potential barrier corresponds physically to the mean fi
where a particular molecule is embedded and represen
measure of the confining capacity of the medium. On
other hand, the density of the medium establishes the de
of spatial constriction on the molecular electronic distrib
tion. Hence, the barrier potential height as well as the c
fining volume may have consequent changes in the t
electronic energy, internuclear distances, and mean ex
tion energy.

ss
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Both the electronic structure and molecular conformat
within different confining volumes are self-consisten
treated. To this end we use the floating spherical Gaus
orbitals~FSGO! representation for the target molecular orb
als @25# and develop anab initio calculation of the molecula
ground-state energy and structure—hence allowing for e
tronic and nuclear redistribution—as a function of volum
for the padded spherical confining box. The electronic d
sity of the confined molecule is then incorporated into
orbital local plasma approximation~OLPA!/FSGO imple-
mentation of the kinetic theory@16# in order to account con
sistently for both density and chemical bonding effects in
stopping process. In Sec. II, a brief description of the m
lecular confinement model proposed here is discussed
on a general basis and then applied explicitly to the hydro
molecule. Some relevant physical aspects of this boxe
system are pointed out here including its predictions for
pressure-density dependence of liquid molecular hydroge
T50 K. Section III deals with the calculation of the proto
electronic stopping cross section for different compress
states of molecular hydrogen. Finally, in Sec. IV, a disc
sion and the conclusions of this work are presented. Ato
units are used throughout this work unless otherwise in
cated.

II. MOLECULAR CONFINEMENT MODEL

A. General strategy

According to Frost@25#—in the FSGO approach—eac
electron pair in a given core, bond, or lone-pair orbital with
a free molecule in its ground state may be represented
localized molecular orbital as a single floating Gaussian:

ck~r2Rk!5~2/psk
2!3/4e2~r2Rk!2/sk

2
, ~1!

where sk is the orbital radius andRk the position of its
center and are obtained after total-energy minimization
the molecular Hamiltonian.

For a boxed-in molecule, letVc define a confining volume
for our system limited by a boundaryS(rB), whererB is the
position vector of any point on the boundary relative to t
origin. Let us further assume the barrier height at the bou
ary has a constant finite value,VB , hence the confining po
tential has the form

V~r !5 H0
VB

~rPVc!

~r¹Vc!,
~2!

wherer denotes the position of any electron relative to t
origin.

Clearly, inclusion of the functionV(r ) in the molecular
Hamiltonian demands different expressions for the inte
(Ck

i ) and exterior (Ck
o) representation of a localized orbita

such that boundary continuity conditions and normalizat
are satisfied. With these conditions and in the spirit of
FSGO representation, we propose for a localized orbital
molecule under confinement the following ansatz for the
terior and exterior representations:

Ck
i ~r2Rk!5Nk

i @e2ak~r2Rk!2
2e2bk~rB2Rk!2

# ~rPVc!,
~3a!
n
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Ck
o~r2Rk!5Nk

oe2gk~r2Rk!2
~r¹Vc!, ~3b!

where the parametersak ,bk ,gk and the normalizing factors
Nk

i ,Nk
o are related through the boundary and normalizat

conditions.
Following Frost, for the set$C i% of nonorthogonal orbit-

als given by Eqs.~3a! and~3b!, if S is the overlap matrix of
the set andT5S21 its inverse, then the electronic energy f
the molecule is

E52(
j ,k

~ j uk!Tjk1 (
k,l ,p,q

~klupq!@2TklTpq2TkqTlp#,

~4!

where (j uk) are the one-electron integrals and (klupq) the
two-electron Coulomb and exchange terms given by

~ j uk!5E
G
C jhCk dv, ~5a!

~klupq!5E
G
Ck~1!C l~1!r 12

21Cp~2!Cq~2! dv1dv2 ,

~5b!

with

h52 1
2“

22(
n

Zn

r n
1V~r !. ~5c!

The first term in Eq.~5c! corresponds to the one-electro
kinetic energy operator and the second one to the elect
nuclear attraction for a system withn nuclei of chargeZn .
V(r ) is the confining potential given by Eq.~2! andr 12 is the
electron-electron relative distance. Note that the symbolG in
the above expressions indicates in a generic way the dom
of integration, which is different for the interior and exterio
wave functions.

In general, the total energyW will be a function of the
orbital parameters (ak ,bk ,gk), orbital positions (Rk),
nuclear positions (r n), volume of confinement (Vc), and
barrier height (VB), i.e.,

W~ak ,bk ,gk ,Rk ,r n ,Vc ,VB!5E~ak ,bk ,gk ,Rk ,r n ,Vc ,VB!

1 (
m,n

ZmZn

r mn
, ~6!

where E is given by Eq.~4! and the second term is th
internuclear repulsion. For a given confinement volume a
barrier height, energy minimization relative to all quantiti
(ak ,bk ,gk ,Rk ,r n) provides the parameters defining the co
responding molecular configuration.

B. Application to the hydrogen molecule

We now focus our attention on a hydrogen molecule in
ground state confined by a penetrable spherical cage o
dius Rc . Within the FSGO model, this two-electron syste
is represented by a single Gaussian orbital centered at
origin @Rk50 in Eq. ~1!#. According to Eqs.~3a! and ~3b!,
putting r B5Rc , the interior and exterior ansatz orbitals fo
this case are
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C i~r !5Ni~e2ar2
2e2bRc

2
! ~r ,Rc!, ~7a!

Co~r !5Noe2gr2
~r>Rc!. ~7b!

Using boundary and normalization conditions, the follo
ing relations are obtained for the normalization factors a
orbital parameters:

No5Ni@e~g2a!Rc
2
2e~g2b!Rc

2
#, ~8a!

g5a/@12e~a2b!Rc
2
#, ~8b!

hence only two orbital parameters are independently o
mized.

Using Eqs.~7! and ~8!, and since only one FSGO is re
quired, the overlap matrix is a scalar (S51) and the evalu-
ation of Eqs.~4!–~6! for this two-nuclei problem may be
easily done analytically. However, the final expressions
come too long to be shown here. We simply state here
after global minimization of the total energy~W! @Eq. ~6!# for
a given box radius (Rc) and barrier height (VB), the corre-
sponding optimum values for the orbital parameters~a,b! and
half internuclear distances (Rn) are obtained. Note from Eq
~2! that if VB5` ~hard wall!, the wave function must vanis
outside the confining volume. This is achieved settinga5b
(g˜`) in Eq. ~8b!. On the other hand, ifVB50 ~‘‘transpar-
ent’’ soft wall!, the interior and exterior wave functions a
the same, hence from Eq.~8b!, b˜` and a5g. For these
two extreme cases we only require one orbital parame
The corresponding explicit expressions for the relevant, o
and two-electron integrals are given in the Appendix.

Before proceeding to the stopping power calculations,
worthwhile to briefly analyze and validate the results of t
confinement model proposed here. To the authors’ kno
edge, there are no similar studies in the literature for the2
molecule confined within soft boxes. However, we can co
pare our results for the hard-wall case with other more
phisticated treatments in order to gain some confidenc
our results. LeSar and Herschbach@21# studied the hydrogen
molecule confined within spheroidal hard boxes using
variational calculation with a five-term James-Coolid
wave function @26#. Interestingly enough, the aforeme
tioned authors find that the symmetry of the confining bo
for which the total energy is a minimum is practically sphe
cal for all box sizes. This allows proper comparison with o
spherically confined molecule. Moreover, recent exact ca
lations for hard-wall spheroidal confinement of H2 by Pang
@24# using a diffusion quantum Monte Carlo method show
agreement within 1% difference with the correspond
variational results by LeSar and Herschbach. Hence it is
ficient to compare with the results of the latter authors.

Figure 1 shows a plot of the total energy against the c
fining box radius for the two extreme values of the barr
height: VB50 and VB5`. For the hard-wall case we ob
serve that our energy values~continuous curve! are system-
atically above those of LeSar and Herschbach~solid circles!
following the same qualitative behavior as a function of b
radius. For small box radii (Rc,2a0) both calculations
merge together to coalesce into the well-known particle
a-box result. Note the different energy dependence for
‘‘transparent’’-soft-wall case. Here, in contrast with th
-
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hard-wall model, a less pronounced variation of the el
tronic energies as the box radius decreases is observe
agreement with other calculations performed for the H2

1 mo-
lecular ion@22#. Interestingly enough, this model predicts
threshold box radius (Rc'1.25a0) below which no bound
state for H2 is available. This behavior is characteristic of th
incomplete confinement of the electron cloud and rende
more realistic description of the pressure effects on the m
lecular properties of H2 @27#.

For completeness, in Table I the values of the total
ergy, internuclear distance (Re52Rn), and orbital paramete
~a! are displayed for selected values of density forVB50
and VB5`. The corresponding calculations by LeSar a
Herschbach (VB5`) are given within parentheses. Here w
observe that our total-energy values are typically'20%
above those of the latter authors~see Fig. 1!. This quantita-
tive difference is a consequence of the use of a sing
Gaussian representation for the wave function. According
Moshinsky@28#, this corresponds to the lowest-order~zero-
quanta! expansion in terms of the harmonic-oscillator ba
set and in this case total energy values are obtained'20%
above the Hartree-Fock limit. The large discrepancy~40%!
observed with the ‘‘exact’’ calculation for 0.333 mol/cm3

(Rc52a0) may be a consequence of the onset~see Fig. 1! of
a steeper change in the energy induced by the wall on
more compact Gaussian wave function. In spite of this,
overall fair agreement is observed with the calculations
LeSar and Herschbach for the internuclear distance a
function of box size. The later case reflects an import
property of the FSGO model for molecular structure calc
lations@25#. In light of the above discussion, the same tre
would be expected for the soft-wall case when compa
with exact calculations when available. Here also a less p
nounced variation of the internuclear distances as den
increases are observed@22#.

On the other hand, we may find the correlation betwe
pressure and density for liquid molecular hydrogen un
compression in order to make our treatment self-contain

FIG. 1. Total ground-state energy of molecular hydrogen a
function of confinement radius for two extreme values of the c
fining barrier potential. (VB5`): ~ ! this work; ~d! ‘‘exact’’
calculations from Ref.@21#. (VB50): ~---•••---! this work. The
dashed curve is drawn to guide the eye.
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TABLE I. Density dependence of H2 total energy, internuclear distance, and orbital parameter for z
and infinite confining potential barrier heights. Quantities in parentheses are corresponding values rep
Ref. @21#.

Density
~mol/cm3!

Total energy
W ~hartrees!

Internuclear distance
Re ~units of a0!

Orbital parameter
a ~units of a0

22!

VB50 VB5` VB50 VB5` VB50 VB5`

0.333 20.8617 20.3331 ~20.4749! 1.251 0.944~0.893! 0.44259 0.66504
0.171 20.9309 20.7117 ~20.8800! 1.367 1.112~1.068! 0.37034 0.50807
0.099 20.9509 20.8613 ~21.0441! 1.438 1.248~1.208! 0.33496 0.42151
0.062 20.9552 20.9216 ~21.1136! 1.466 1.348~1.301! 0.32198 0.37131
0.042 20.9558~7! 20.9448 ~21.1440! 1.473 1.414~1.355! 0.31907 0.34271
free

molecule
20.9559~4! 20.9559~4! ~21.1716! 1.474 1.474~1.403! 0.31865 0.31865
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We stress at this stage that, since the confinement model
considers changes in the electronic ground-state energy
ignores rotational and translational motion inside the box
this work we calculate the purely cold pressure which com
from changes in the total ground-state electronic energy r
tive to confinement volume, i.e.,P52]W/]V0 , whereV0 is
the molecular volume associated to the density of the
dium. HenceP is only comparable to pressure-density re
tions at absolute zero temperature. In what follows our r
erence to the pressure will be related exclusively to this c
pressure.

Figure 2~a! shows the pressure-density curves obtained
this work for the hard-wall~chain curve! and soft-wall~con-
tinuous curve! models. Full triangles represent the resu
from LeSar and Herschbach for their hard-wall model. A
shown is the 0-K isotherm~dashed curve! corresponding to a
widely accepted equation of state~EOS! for fluid molecular
hydrogen developed by Kerley@29#. Crosses represent th
experimental EOS points for solid molecular hydrogen at
K from Evans and Silvera@30# and open diamonds corre
spond to a temperature-reduced~0 K! experimental EOS for

FIG. 2. ~a! Pressure-density curves for H2. Results of this work
~---•••---! and results from Ref.@21# ~m! for VB5`. ~ ! this
work for VB50 ~see text!. ~---! 0 K isotherm for fluid H2 @29#, ~3!
experimental EOS points for solid H2 at 80 K @30#, ~L!
temperature-reduced~0 K! experimental EOS for solid H2 @31#. ~b!
Mean excitation energy,̂I&, for H2 as a function of density for the
two barrier potential heights indicated.
nly
nd
n
s
a-

e-
-
f-
ld

n

0

the solid by Hemleyet al. @31#. Clearly, the hard-wall mode
exaggerates the compression effect, whereas the soft-
model gives a more realistic description, in agreement w
similar results previously reported for the pressure effect
the H2

1 molecular ion@22,23# and the helium atom@32#. The
close correspondence between the real 0-K liquid and s
isotherms suggests a common intrinsic mechanism relate
the electronic properties of the molecule. This observat
might justify the use of the model proposed in this work f
dense molecular hydrogen either in the liquid or solid pha
at T50 K. Perhaps the only difference we could distingui
in order to refer to one or another phase in our pressu
density calculations is the use of the Wigner-Seitz cell v
ume for the solid case and the effective molecular volume
the liquid just as we did in computing the curve shown
Fig. 2~a!. Hence we will refer to dense hydrogen in a gene
way keeping in mind that the physical existence of one
another phase must be defined by the associated pres
temperature phase diagram. When necessary, thermal
sure may be estimated and added to the cold pressur
prescribed elsewhere@33–35#. However, this is beyond the
scope of the present work.

III. ELECTRONIC STOPPING CALCULATION

We now turn our attention to the treatment of the targ
density effects on proton stopping in condensed molec
hydrogen. In order to apply the results obtained in the p
ceding section, we shall consider the projectile as penetra
a condensed medium where the intermolecular distances
small enough to create a potential barrier—due to the s
rounding molecules—for the electrons associated to any
ticular molecule embedded in the medium. Furthermore,
assume for simplicity that the barrier height is constant a
the medium is a liquid under different pressure conditio
with consequent changes in density, which in turn are rep
sented by different confinement box sizes. Our purpose
also to resort to a stopping model which fully incorporat
the molecular electronic density properties. The orbital lo
plasma approximation implementation of the kinetic theo
of stopping@36# has these properties and has shown its
equacy in the calculation of proton stopping cross section
gaseous targets using FSGO@16#. The advantage in using
this method lies in the possibility of adapting it for the ca
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of a condensed medium—as proposed in this work—and
make a consistent comparison with corresponding cross
tions for the gas phase. We stress at this stage that the
pose of this work is to show the effect of target density onSe
when the target properties are properly modeled through
lecular confinement. In this connection, any other method
calculation forSe could be chosen as long as it incorpora
the molecular properties of the target as described here.

In the frame of the OLPA/FSGO implementation of th
kinetic theory, the orbital contribution toSe may be obtained
making use of the orbital decomposition scheme propose
Oddershede and Sabin@37#. Within this spiritSe becomes

Se~v1!5(
k

Se,k~v1!, ~9!

whereSe,k is the contribution from orbital ‘‘k’’:

Se,k~v1!5
4pe4Z1

2Z2

mv1
2 Lk~v1!, ~10!

with m ande the electron mass and charge, respectively.Z1
is the projectile nuclear charge,Z2 is the total number of
electrons of the molecular target, andLk is the orbital stop-
ping number, which in terms of the orbital mean excitati
energy (I k) and its electron population (vk) is given as@16#

Lk~v1!5pv1
2Z2

21vkE
ak

`

lnF2mv82

I k
Gdv8

3E
0

p

f k~Av1
21v8222v1v8 cosu!d~sin2 u!.

~11!

Hereak5(I k/2m)1/2 andv85v12v2 , wherev1 andv2 are
the projectile and target electron velocities relative to
laboratory, respectively.f k(uv12v8u)5 f k(uv2u) is the veloc-
ity distribution of the electrons in orbital ‘‘k’’ relative to the
projectile.

Concerning the calculation of orbital mean excitation e
ergies (I k) within the OLPA, Meltzeret al. @38# have refined
the original treatment based on this scheme@36# making a
physically more consistent orbital-by-orbital generalizati
of the local plasma approximation. From their study, the f
lowing expression for the OLPA treatment ofI k is recom-
mended:

ln I k5
1

vk
E

G
rk~r !lnF\S 4pe2r~r !

m D 1/2Gd3r , ~12!

whererk(r ) is the local electronic density for orbitalk and
r(r ) the local total electron density obtained after taking
angular average of each orbital charge density. As beforG
in Eq. ~12! indicates the different domains of integration f
the interior and exterior densities.

Strictly speaking, the termr(r ) in Eq. ~12! should include
the multiplying scaling parameters,xk , for each orbital sym-
metry, i.e.,r(r )5(kxkrk(r ), to account for polarization ef
fects as originally proposed by Lindhard and Scharff@19#.
However, the orbital dependence ofxk is still an open and
difficult question to answer. Meltzeret al. considered this
to
c-

ur-

o-
f

s

by

e

-

-

e

situation for atomics andp orbitals and found Eq.~12!, with
xk51, to be the most reasonable choice for calculating st
ping cross sections through the OLPA implementation of
kinetic theory. It is thus reasonable to follow this recomme
dation and use Eq.~12! as the relevant expression to calc
late I k , in contrast with what was done in Refs.@16# and
@36#.

Clearly, from Eqs.~11! and ~12!, the orbital velocity dis-
tribution f k(n,n8,u) and charge densityrk(r ) are important
input quantities which must carry the information on t
physical conditions of our target system. In the case o
condensed medium subject to pressure, it is clear also
the electronic density will be a function of pressure throu
the radius of the confining box. The velocity distributionf k
5uF(k)u2 in Eq. ~11! may then be obtained withk5(m/\)
3(v1

21v8222v1v8 cosu)1/2 and with F(k) the Fourier
transform of Eqs.~7! and ~8!, i.e.,

F~k!5~2/p!1/2@NiV~k,a,b,Rc!1NoJ~k,g,Rc!#,
~13a!

with the definitions

V~k,a,b,Rc!5
p1/2

4a3/2e2k2/4a ReFerfS RcAa1 i
k

2Aa
D G

2
e2aRc

2

2a
Rcj 0~kRc!2

e2bRc
2

k
Rc

2 j 1~kRc!

~13b!

and

J~k,g,Rc!5X p1/2

4g3/2 H 12ReFerfS RcAg1 i
k

Ag
D G J

1
Rc

2g
j 0~kRc!Ce2k2/4g, ~13c!

whereNo,Ni , and the orbital parameters~a,b,g! are defined
by Eqs.~7! and~8!. erf(z) is the error function of the complex
argument andj 0 , j 1 are the spherical Bessel functions of o
der 0 and 1, respectively@39#.

Incorporating the above results into Eqs.~9!–~12!, the
proton electronic stopping cross section may be calculate
a function of target density~pressure!. The mean excitation
energy,^I& @Eq. ~12!#, was calculated numerically using th
optimized orbital parameters for a given confinement~den-
sity! condition. Figure 2~b! shows the results of this calcula
tion for VB50 ~continuous curve! andVB5` ~chain curve!.
A continuous increase of̂I& as the density of the medium
increases is observed. This is expected since as densit
creases, the molecular confinement region is reduced
the consequent compaction of the electron cloud with
creasing electron kinetic energy and energy-level shift
wards higher values. Once again, the exaggeration of
effect by the hard-wall case is apparent. This behavior ha
a direct consequence the reduction in the electronic stop
cross section, as may be verified from Fig. 3, whereSe is
plotted against proton velocity for different compressi
~density! conditions in molecular hydrogen. All these qua
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tities were obtained with the soft-wall confinement (VB
50) model proposed in this work. The experimental poi
correspond to gas-phase measurements from various au
@40–42# and are included here as a reference. The theore
predictions for the gas phase using the OLPA/FSGO
proach@16# correspond to the dashed curve. In what follow
we shall refer to the latter theoretical results to compare w
the predictions of this work for the condensed phase. We
note ~not shown in the figure! an almost negligible chang
~about 0.5%! in Se for the low-density liquid phase~0.036
mol/cm3 at 1 atm, 0.0001 GPa, and 20 K! as compared to the
gas phase. A similar behavior is expected for the solid ph
in the same temperature and pressure conditions. At hig
pressures,P50.6 GPa ~0.062 mol/cm3!, 4.7 GPa ~0.099
mol/cm3!, 27 GPa~0.171 mol/cm3!, and 136 GPa~0.380
mol/cm3!, the maximum predicted differences are, resp
tively, 1% ~not shown!, 4%, 11.5%, and 24% below the ga
phase. According to Holzapfel@43#, fluid molecular hydro-
gen may be observed for pressures from 1024 GPa (T
>20 K) and by increasing temperature and pressure u
about 100 GPa (T>1000 K). Solid molecular hydrogen ex
ists below the transition curve connecting the aboveP-T
extreme points. Since thermal effects inSe are negligible for
this range of temperatures@44#, the above predicted differ
ences inSe are common for liquid and solid molecular hy
drogen with the same density. Our results for 136 G
should be viewed as an extrapolation of the density dep
dence ofSe and would correspond to highly compressed m
lecular hydrogen in the solid phase (T,1000 K) or the me-
tallic fluid (T.1000 K).

Unfortunately, there is no experimental information ava
able on proton stopping cross sections in dense molec

FIG. 3. Electronic stopping cross section for protons incident
dense molecular hydrogen under different pressures as a functi
projectile velocity. The gas-phase calculations are shown for c
parison. Also shown are gas-phase experiments~s! Ref. @40#, ~h!
Ref. @41#, ~L! Ref. @42#.
s
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st
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to
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-
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hydrogen to corroborate the density effects predicted in
work. In practice, it would be more feasible to perform
experiment in the low-temperature regime for increas
pressures for the solid phase.

IV. DISCUSSION AND CONCLUSIONS

The present work merges two aspects which need part
lar consideration. First, the molecular confinement mo
provides a reasonable description of the pressure~density!
effect on the properties of molecules in condensed ma
The model with soft walls as applied to the simplest mole
lar system, the hydrogen molecule, using a single Gaus
representation, has provided new important physical inf
mation on the effect of confinement on the H2 electronic
properties. It also provides a cold pressure which correla
properly with a realistic situation for the 0-K isotherm o
molecular hydrogen under compression. This is a signific
improvement over the hard-wall model, which overestima
the pressure-density behavior, and suggests the use of
alistic molecular wave function to improve the quantitati
agreement.

On the other hand, the molecular confinement model p
posed in this work is concomitant to the calculation of de
sity effects on the electronic stopping cross section sinc
considers self-consistently the changes in molecular e
tronic structure and molecular conformation as the medi
density changes. This is important because the inelastic
ergy loss is directly correlated to the electronic properties
the target~for a bare projectile, as in our case!. Hence, the
use of a confinement model to account for physical st
effects onSe , whereby the electronic distribution is onl
renormalized within the effective molecular volume—as w
done in Refs.@17# and @18#—may be misleading.

The results of this work for proton stopping in dense m
lecular hydrogen predict a very small to moderate reduct
in Se relative to the gas phase in going from atmosphe
pressure (DSe'0.5%) up to 136 GPa (DSe'24%) for ei-
ther the solid or liquid phase with the same density, depe
ing on the temperature defined by the phase diagram. In s
of the small changes inSe predicted for this system, it is
worthwhile to analyze within the model proposed here
density effect on larger molecular systems for which noti
able physical state effects inSe have been observed exper
mentally @1–4#. Work is currently in progress in this direc
tion.

In summary, we have shown here that the target den
dependence of the electronic stopping cross section is du
the combined effect of spatial confinement as well as
increase in target mean excitation energy. In contrast w
previous confining models to account for phase effects inSe ,
we have made a self-consistent treatment of electronic
nuclear redistribution as a function of the degree of confi
ment and found that the boxed-in-molecule model with
soft walls gives a more realistic description for the pressu
density dependence of the condensed phase than the
wall model. The proposed model is of a general charac
and may be applied to molecules of arbitrary size and sy
metry.
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APPENDIX

As stated in the main text, forVB5` the exterior wave
function @Eq. ~7b!# vanishes (g˜`) and the interior wave
function becomes (a5b)

C i~r !5N~e2ar2
2e2aRc

2
!, ~A1!

with N given as

N5@ f ~a,Rc!1g~a,Rc!#
21/2, ~A2a!

where

f ~a,Rc!5~3/a14Rc
2/3!pRce

22aRc
2

~A2b!

and

g~a,Rc!5~p/a!3/2@223/2erf~RcA2a!2erf~RcAa!e2aRc
2
#,

~A2c!

with erf(z) the error function@39#.
The following expressions for the one-electron kinetic e

ergy as well as the electron-nuclear attraction terms are
tained:

^1u2 1
2“

2u1&5~pN2/2!F3

2 S p

2aD 1/2

erf~RcA2a!

2~314aRc
2!Rce

22aRc
2G , ~A3!

^1u
1

ur2RNu
u1&5~pN2/3a!@k~a,Rc ,RN!2l~a,Rc ,RN!#,

~A4!

with

k~a,Rc ,RN!5~916aRc
222aRN

2 !e22aRc
2

~A5a!

and

l~a,Rc ,RN!5
6

RN
S p

a D 1/2

erf~RNAa!e2aRc
2

1
3

2RN
S p

2aD 1/2

erf~RNA2a!, ~A5b!
-

-
b-

whereRN is half the internuclear distance andN given by
Eqs.~A2!.

Analogously, the two-electron Coulomb and exchan
term @Eq. ~5b!# becomes

~11u11!5~p2N4/60a5/2!@m~a,Rc!1h~a,Rc!#, ~A6!

with

m~a,Rc!58a1/2Rc~15160aRc
2116a2Rc

4!

3e24aRc
2
2480p1/2~11aRc

2!erf~RcAa!e23aRc
2

~A7a!

and

h~a,Rc!510S p

2 D 1/2

~63112aRc
2!erf~RcA2a!e22aRc

2

2240S p

3 D 1/2

erf~RcA3a!e2aRc
2

115p1/2erf~2RcAa!. ~A7b!

For VB50, the interior and exterior wave functions a
equal, henceb˜` anda5g in Eqs.~7a! and ~7b!, i.e.,

C i~r !5Ce~r !5N0e2ar2
, ~A8!

with N05(2a/p)3/4. The corresponding one-electron kinet
energy, electron-nuclear attraction, and two-electron te
are easily evaluated in this case and are, respectively,

^1u2 1
2“

2u1&53a/2, ~A9!

^1u
1

ur2RNu
u1&5erf~RcA2a!/RN2~8a/p!1/2e22aRc

2
,

~A10!

~11u11!5~8aRc /p!e24aRc
2
1~4a/p!1/2erf~2RcAa!

2~32a/p!1/2erf~RcA2a!e22aRc
2
. ~A11!
ds
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