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Retardation effects on the Efimov states

Yukap Hahn
Physics Department, University of Connecticut, Storrs, Connecticut 06269

~Received 2 March 1999!

The retardation effect causes a small but finite change in the two-body potential, which in turn results in a
large reduction in the scattering lengthA when the strength is near its critical value for forming a zero-energy
bound state. This coupling to the vacuum fluctuation field thus affects the two-body dynamics such that the
Efimov phenomenon is destroyed. Enhanced response of the scattering lengthDA for a small change in the
two-body potential may be employed to gain efficiency and accuracy in experiments; for example, in testing
body bound states in a cold atomic gas. The retardation effect can remove several Efimov bound states,
depending on how large the change in scattering length is. Manipulation of the two-body potential by external
fields is suggested to modify or eliminate some Efimov states. The optimal choice suggested from this analysis
is to manipulateA such thatA/DA!1. Also included is a discussion on the additivity correction to the
two-body polarization potential due to the Casimir effect.@S1050-2947~99!04309-7#

PACS number~s!: 34.20.Cf, 21.45.1v
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I. INTRODUCTION

It was shown nearly 30 years ago by Efimov@1# that,
when a pair of particles interacting via a short-range pot
tial of rangeR0 forms a zero-energy bound state~ZEBS!,
with the corresponding scattering lengthA52`, a third
particle may then interact with the pair via an effective p
tential of the typeU>21/R2, which can support an infinite
number of three-body bound states,N` ln(uAu/R0)˜` as uAu
˜`. This surprising Efimov phenomenon~EP!, of N˜`
with uAu˜`, has since been discussed by a number
people@2–4#. Evidently, the Efimov states are spatially e
tended, and thus it is reasonable to ask whether the reta
tion effect@5–10# associated with the finiteness of the velo
ity of the force-mediating particles would affect the EP.

The study of the Efimov states at large spatial separat
among the constituent particles is of special interest for c
atomic gas of low densities@11#, in which atoms generally
interact at a distance of the order of 104 to 105a0 , for typical
densities attainable at present. With very low relative kine
energies (kBT,1023 K) associated with the heavy atom
cores, complications due to short-range interactions are m
mized, while the long-range behavior of the interactions
magnified. Studies of the retardation effect on collisio
among the cold atoms are difficult. On the other ha
loosely bound three-body Efimov states may be more ad
able for high-precision experimentation.

In Sec. II, we briefly review the Efimov result, and poi
out the crucial simplification needed in Sec. IV. The mo
detailed study of the retardation effect thus far has been
ried out on the van der Waal’s~vdW! and electric-dipole
polarization~EDP! potentials for the two-body systems, in
volving two atoms or an atom and an ion. Therefore, foc
ing our discussion on these cases makes our argument
concrete and transparent, as we can then proceed to
systems of three atoms or two atoms and an ion, provided
binding-energy condition for the Efimov effect is~approxi-
mately! satisfied. We summarize the existing result in S
III, adding several critical comments. The effect of retard
tion on the EP is then discussed in Sec. IV. Some comm
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concerning the additivity versus multiplicative modes of t
retardation correction are given in the Appendix; it is bas
on the coupling to the vacuum fluctuation field.

II. THREE-PARTICLE EFIMOV STATES

For simplicity we consider three identical bosons intera
ing by short-range potentials. By short range, we mean
interaction that falls off at large distance faster than 1/r 2.
There are several different ways by which Efimov pheno
enon has been studied. Thus, a confluence of the two-b
and three-body threshold singularities@2# at Etot>Eb>0 in
terms of the Faddeev interaction kernelK5G0t12 provides
the EP, whereG0 and t12 are the three-body free Green
function and the two-body scattering amplitude, respective
Here, Eb denotes the binding energy of the two-body su
system, whileEtot is the total energy of the full three par
ticles. That is, tr(K)˜` as the total energyE˜0. Alterna-
tively, an exactly soluble model solution in the adiaba
approximation@3# was studied to show that the effectiv
two-body interaction in the presence of the third particle b
haves as21/R2 at largeR ~but R,uAu). However, its lead-
ing nonadiabatic correction@4# was shown to behave spur
ously as 1/R, while the complete nonadiabatic contribution
of shorter range than 1/R2. Finally, the effective potentia
obtained by averaging the interaction between the pair
the third particle@4# gives the correct qualitative result, a
though the numerical coefficient of the resulting potentia
not complete@4#. This is probably the simplest treatment
the EP that retains all the essential features. So we adopt
the following discussion. We take the Jacobi coordina
(rY,RY ) corresponding to the relative coordinatesrY for par-
ticles 1 and 2, andRY for particle 3 relative to the center o
mass of the pair 112. For simplicity and without loss of
generality, we neglect the symmetrization among the th
particles.

The Efimov phonomenon is obtained in two steps: Fir
the pair 112 interacts with a short-range attractive potent
V12 of range ofR0 , and is assumed to form a zero-ener
2139 ©1999 The American Physical Society
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2140 PRA 60YUKAP HAHN
bound state, with very large scattering lengthuAu. Then, in
the region ofr ,uAu, the asymptotic wave function for th
pair c(r ) takes the simple form

lim
k˜0

lim
r˜0

c~r !. lim
k˜0

@sin~kr1d!/~kr !#.~r 2A!/r˜const/r ,

~1!

for R0!r ,uAu. For convenience of discussion, we assu
that the two-body potential contains a strength parameteg.
Eventually, as the coupling parameterg in V12 approaches
the critical valueg0 where a ZEBS is produced, we hav
uAu˜`. Thus,A is especiallysensitiveto the two-body in-
teractionV12; that is, in the vicinity ofg0 , the phase shift is
close top/2 and the binding energyEb.0, such that a smal
change inV12 is reflected in a large change inA. Further-
more, the asymptotic behaviorc˜1/r of Eq. ~1! is crucial to
the EP, but this follows from the general flux conservati
over the asymptotic surface, asdS5r 2dV. It is independent
of the particle interaction.

As the second step, we introduce a third particle to int
act with the above pair. Then, the interaction between
pair with the third particle 3 is obtained in the lowest-ord
approximation by the average

U~R!.Uave~R![~cuV131V23uc!r.2const/R2 ~2!

for largeR, but still R,uAu. The constant in Eq.~2! contains
the polarizability of particle 3. Unlike in Eq.~1!, the behav-
ior of U(R) is insensitiveto the strength ofVi j , so long as it
is attractive and relatively short-ranged, of typical rangeR0 .
The higher-order corrections to the static picture~2! is to
change the constant factor@4# in U, but theR dependence o
Eq. ~2! is unchanged. For the present purpose,Vi j are as-
sumed to decay faster than 1/r 2 at large r, including the
inverse power potentials of the vdW and EDP types as w
as ad(rY/26RY ) function form. The number of bound state
generated by this potentialU may be estimated, for example
by the Bargman formula~or Calogero form!, as

N5trR~G0U !.E
R0

uAu
~RU!dR.1/p ln~ uAu/R0!˜`, ~3!

as uAu˜`. This is the essence of the EP. The average
tential approach presented here is, except for the multipl
tive constant factor, consistent with the argument giv
originally by Efimov @1# and also that followed by Amado
and Noble@2#. It not only avoids unnecessary complicatio
involved in the other approaches, but also brings out cle
the parts that will be potentially affected by the retardat
correction. A slightly more complete treatment of the EP
the adiabatic picture@3,4# gives essentially the same resu
in the limit of the two-body state binding energyEb˜0.

For V attractive (V,0) and weak, the phase shift ne
E50 is positive andA is negative. As the strength ofV
increases in magnitude,A approaches negative infinity. A
slight further increase in the potential strength changeA
abruptly from2` to 1`. Therefore, the sign ofA at 6` has
no dynamical meaning, since this is caused simply by
definition of A in terms of the phase shift, as a limit o
2tand/k as k˜0. With V,0, we haveA.0 for an odd
number of bound states, including the ZEBS, andA,0 for
e
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an even number. In general, the sign ofA does not represen
the sign ofV, except whenV is too weak to support a boun
state. In the Efimov case, however, the presence of on
more two-body bound states tends to make the three-b
Efimov states unstable.

III. RETARDATION EFFECT ON THE TWO-BODY
INTERACTION

The physical effects of the zero-point vacuum field flu
tuation ~VFF! have been studied extensively in recent ye
@5–10#. The Lamb shift, the Casimir effect, spontaneous
diative emission, etc are interpreted in terms of the coupl
to the VFF. We summarize here the main results relevan
our discussion, especially their effects on the van der Wa
and electric dipole polarization potentials. Some clarifyi
comments on the ‘‘additive’’ vs ‘‘multiplicative’’ feature of
the retardation corrections are given in the Appendix. Th
quantities modified by the retardation effect are denoted
tilde in the following.

We consider a pair of neutral atoms with the dynami
electric-dipole polarizabilitiesa1(w) anda2(w), which de-
pend on the frequencyw of perturbing fields. In the VFF
approach, the zero-point field is assumed to induce dip
moments in particles 1 and 2, which in turn interact w
each other in their mutual dipole fields. Thus, the vacu
fieldsEY 0

1,2 at the positions of atoms 1 and 2 induce the dip

momentspY 1,25SkYa1,2(wk)EY 0k
1,2, and their interaction poten

tial is given, after the angular integrationdVk
Y , by @7,8,10#

VVF~rY !52~1/2!(
kYkY

pY 1•GY kY ,kY8~rY !•pY 2

.2~\/pc6!E
0

`

dww6a1~w!a2~w!G~x!, ~4!

where we setuEY 0kYu2.\w, and where

G~x!5sin~2x!/x212 cos~2x!/x325 sin~2x!/x4

26 cos~2x!/x513 sin~2x!/x6[(
i 51

5

Gi~x!, ~5!

with x5wr/c[w/wr . A part of the argument (2x) comes
explicitly from the retardation correctiond(t2r /c).

Equation~4! with Eq. ~5! is used to derive both the vdW
and EDP potentials, with and without the retardation effe
To begin with, it is important to recognize the different fr
quency scales involved in Eq.~4!. In addition towr5c/r , we
also have the typical atomic excitation frequenciesw0 asso-
ciated with atoms 1 and 2, wherewr.w0f 0!w0 and f 0
51/137. Furthermore, the classical polarization of a cha
involves the mass of the chargem, where wm5mc2/\
.w0 / f 0

2.
The vdW interaction without retardation comes from t

lastG5 term in Eq.~5! and the conventional definition of th
polarizabilitiesa1,2. In the single excitation frequency ap
proximation, we havea1,25e2/m/(w0

22w2), and

VvdW.2~3\/4!a1~0!a2~0!w0 /r 6. ~6!
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We emphasize that the integral involved in theVvdW is finite
and well behaved. Next, when the full retardation effect
included, all the terms inG contribute and we have

ṼvdW~r !52~23/4!~\c/p!a1~0!a2~0!/r 75Vtot
vdW~r !,

~7!

and thus

DVret
vdW5Vtot

vdW2VvdW.0 ~8!

for r @a0 / f 0 . That is,ṼvdW replacesVvdW of Eq. ~6! and the
retardation correction is multiplicative at larger, with a fac-
tor 1/r multiplying Eq. ~6!. The full G behaves as 1/w3 or
better atw50, so that all the integrals involved in Eq.~8! are
again finite.

Now we briefly turn to the EDP potential, for complet
ness. Following the procedure given above for the vdW ca
we require that the nonretarded potential should also co
from the G5 term and the classical ‘‘dipole polarizability’
associated with a simple charged particle, atw50. If we take
the limit w050 in a1 , as a1(w)˜e2/m/(2w2)[a f r(w),
then the integral forVEDP with a f r and G5 becomes diver-
gent, due to the strong singularity atw50. Instead ofa f r ,
we introducea f 05e2/m/wf

2, wherewf[wrAw0 /wm. Now,
the integral converges~see the Appendix! and we recover the
usual result

VEDP~r !52@a2~0!e2/2#/r 4. ~9!

Next, for the retarded case, the fullG contributes and, even
with the singulara f r , the integral in Eq.~4! is finite, and we
obtain

ṼEDP~r !51@11\e2a2~0!/~4pmc!#/r 5, ~10!

where the contribution from thew.wf region is not impor-
tant.

Apparently, there are two contributions in the case
EDP, one witha f 0 nearw.wf!wr and the other part with
a f r for w@wf . This suggests that the two contributions a
additive @9,10#, as

Vtot
EDP5VEDP1ṼEDP, ~11!

and therefore for larger

DVret
EDP5ṼEDP.0. ~12!

Important for the discussion to be given in Sec. IV is t
qualitative effect of the retardation in the larger region of
the two-particle sector. The asymptotic forms of the pot
tials Vtot

VF given by Eqs.~7! and~11! show that the change i
positive; i.e., the potentials with the retardation correctio
become less attractive atr @R0 / f 0 . The essential point for
our purpose is that the vacuum fluctuation effect in the pr
ence of external fields is observable, andDVretÞ0.

IV. RETARDATION EFFECT ON THE EFIMOV STATES

In Secs. II and III, the salient properties of the three-bo
Efimov states and the effect of retardation on the two-bo
interaction have been summarized. We now consider the
s
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e
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-

s
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y
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fect of the latter on the former, EP. We show that the EP
N˜` asA˜2` is destroyed when the retardation effect
included. In principle this requires a detailed perturbati
calculation of many connected diagrams that involve m
tiple photon exchanges among the three particles, suc
(1T2,2T3,T3)1(1T2,1I2,1T3)1•••, etc., where at leas
one transverse photon~T! for each particle is required.I is
for an instantaneous Coulomb interaction, and 1T2, for ex-
ample, denotes theT photon exchange between particles
and 2. However, such complications may be avoided if
recall that, as stressed in Sec. II, the EP is sensitive to
two-particle potentialV, but U is insensitive to such interac
tion and depends mainly on the asymptotic behavior of
two-particle wave function as dictated by the particle fl
conservation. Once this picture is adopted, the proof of
EP breakdown becomes almost trivial. The argument
given in two steps.

~i! First, due to Eqs.~8! and ~12!, Ã that includes the
retardation effect will be less thanA in magnitude. Because
while A˜2` by the original assumption of a ZEBS sup
ported byV,Vtot

VF 5V1Ṽ with the retardation correctionṼ
.0, for example, gives

0.Ã.A˜2`. ~13!

As emphasized at the end of Sec. II above, the behaviorA
associated with the phase shifts that are near odd multiple
p/2 is not smooth and should be treated with caution;
change inA can be abrupt and nonmonotonic even thou
both the corresponding phase shifts and the potentials ch
slightly in a continuous and monotonic way. Of course,
the phase shifts that are far from the critical values m
tioned above, the changes inA and V are both smooth and
monotonic@12#.

Although Ṽ is small, the changeDA5Ã2A can be very
large. The enhancement inA due to a small change inV in
the near critical region can be estimated as follows: Den
the phase shifts withV and Ṽ by d0 and d8, respectively,
with d0.p/2 andd8 small. We also letj[tand0 tand8 and
h be the enhancement factor inDA5ah, where a is the
scattering length associated withṼ alone. Then, forj.1, we
have h>tan2 d0 /(12j); for j@1, h.tand0 /tand8; and for
j!1, h.tan2 d0. In all three cases, the enhancement can
very large whend0.p/2. Thus the relative change inA due
to DV may be easily observed in the three-particle states
compared to the small changes in the two-particle sector.
example, withd8 from Ṽret of the order of 1024, the cases
with j:1 can giveDA/A&1 and DN&0.1. On the other
hand, the case withj.1 seems to produce the largest chan
DA/A*100 andDN*1.

With all these complications onA, however, the form of
the wave function at larger is unchanged from that given b
~1b!, whenA is replaced byÃ, and this is the crucial feature
needed. This is discussed next.

~ii ! The 1/R2 behavior of the three-body potential,U(R)
depends on the two-particle wave functionc(r ) at larger, as
seen in Eqs.~1! and ~2!. This form is not expected to be
affected by the retardation effect, because the 1/r depen-
dence comes strictly from the flux conservation over
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2142 PRA 60YUKAP HAHN
large surface element that is proportional tor 2. This is basi-
cally a static property. The retarded Green’s functionGret in
the trK has the same behavior 1/R at largeR. Therefore,

Ũ~R!˜2const/R2 for R,Ã. ~14!

Since Ã is finite, the number of three-body bound states
also finite,

Ñ}~1/p!ln~ uÃu/R0!,`. ~15!

This completes the proof of the breakdown of EP with t
retardation effect. That is, the Efimov phenomenon ofN
˜` is destroyed by the retardation effect, whenV alone
gives the EP. A smallDVretÞ0 changesN such thatÑ,`.
The experimentally convenient quantity to measure the re
dation effect isDN5Ñ2N, which can be greater than 1
presumably only under the conditionj.1. That is, one can
simply count the number of Efimov states, with or witho
the retardation effect. Of course, the valueN must be esti-
mated accurately theoretically. By contrast,DA can vary
wildly, and so is less controllable.

Evidently, the task of presenting a proof was made sim
by the crucial observation that Eqs.~13! and ~14! are dis-
tinctly separated, with theŨ being insensitive to the pai
interactionsV. Although the EP in the strict sense is broke
there may still be a large number of Efimov states in
critical region ofV for experimentation. Furthermore, as
simple corollary, the EP is valid if it is defined in terms
Vtot

VF , rather than withV. That is, we may consider a differen
system with newV8 that is slightly more attractive thanV.
Then, with the newVtot8 , Ã8˜2`, and the Efimov phe-
nomenon is restored. Establishing the EP is delicate, but
ditions for its failure are relatively easy to demonstrate. Fr
the earlier discussion, thej.1 case seems to be the optim
choice. This condition may be achieved experimentally
manipulating theV such that the phase shiftd0 correspond-
ing to V gets as close top/2. With d05p/22D0 , the con-
dition j.1 meansD0.d8, whered8 is from Ṽret. For (D0
2d8)/D0.1022, we expectDN.1.5.

Finally, we examine the consequences of the average
tential approximation adopted in Eq.~2! and in this section.
As noted earlier, Eq.~2! gives the correctR dependence bu
not the constant coefficient. On the other hand, the adiab
potential represents the full strength@4#, with the nonadia-
batic corrections behaving as 1/R3 or better. The retardation
correction makes the two-bodyÃ finite, and, for R.Rb

.1/A2Ẽb, the Uad decays exponentially, whereEb is the
binding energy of the pair (112). Since particle 3 is held
fixed in position atR during the calculation ofUad, the re-
tardation correction toUad would be ‘‘additive,’’ as in the
EDP case, with the 1/R3 or stronger behavior. Therefore, th
retardation effect again spoils the EP at the two-body lev

V. DISCUSSION

We have given a simple and direct argument that the
tardation effect can destroy the Efimov phenomenon. T
proof is semirigorous, only because the full perturbat
treatment involving multiphoton exchanges among the th
s

r-

t

le
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e

n-

y

o-

tic
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-
e
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e

particles is not considered. Instead, our result is based on
crucial but simplifying observation that, insofar as the EP
concerned, the two-body potential in the critical region
ZEBS is sensitive to the retardation correction, as manifes
in the large change inA. On the other hand, the resultin
three-body potentialU is not sensitive to retardation, bu
dictated by the overall flux conservation. Therefore, t
original three-body retardation problem is reduced ess
tially to that of a two-body problem. In the perturbation
theory terms, what we have included in Sec. IV are eff
tively the diagrams (1T2,1I2,1I3)1(1T2,1T2,2I3)1¯ ,
etc. The simplifying assumption we made there implies t
the contributions from diagrams such as (1T2,1T3,2T3)
1(1T2,1I2,1T3)1¯ are of the shorter range and do n
contribute to the EP.

Apparently, the change in the two-body potential due
the retardation correction and the resulting change in the
binding energies are small. But the effect is magnifi
through A and N associated with the three-body Efimo
bound states. The following frequency regions have
be distinguished: wf.wr f 0!wr.w0f 0!w0.wmf 0

2!wm

5mc2/\, where f 051/137. This magnification of the sma
effect may be observed in a dilute cold trapped atomic s
tem at extremely low temperature@11#, provided the experi-
mental conditions are such that the complex short-range
of the interactions may be minimized and the long-ran
behavior enhanced. Also the conditionj.1 in Sec. IV may
be experimentally desirable. Obviously, the optimal size
the Efimov bound states should be at least of the orde
a0 / f 0 or larger, and the higher-lying states near the edge
A may be even of sizea0 / f 0

2 with very small binding ener-
gies. This situation may correspond to gas densities on
order of 1012cm23 or less for trapped cold atoms, which
attainable experimentally. Unlike in collision studies invol
ing two particles withV, where small effects are often dif
ficult to detect, the Efimov bound states involving three p
ticles may be easier to analyze experimentally, with h
accuracy.

There are several points that should be further examin
~i! Insofar as the retardation effect on the three-body s

tems is concerned, our result shows that we can concen
the treatment only in the two-body sector, as the third bo
is interacting with a long-rangeR22 potential that is insen-
sitive to retardation. This is obviously an important simpli
cation, and, as discussed above, a full retardation treatm
involving all three particles must be carried out.

~ii ! Furthermore, while the tr(G0t i j ) proof of Ref. @2# is
consistent with the approach we have taken, in that the t
body off-shell amplitude in the presence of the third parti
t i j is retardation corrected whileG0 is left unchanged, a
more careful analysis in terms of the relativistic trK may be
of interest.

~iii ! Cluster formation in a cold gas of both bosons a
fermions is of special interest, in sharp contrast to conden
tion of a Bose gas. In particular, an exotic case of interact
of two pairs of ZEBS should be examined, in light of
recent study by Ropkeet al. @13#, on the four-particle cluster
formation in nuclear matter.

~iv! Furthermore, the two-body potential critical for th
EP may be manipulated by external field perturbations. T
in turn provides a handle on the diffuse Efimov states, p
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haps through a change ina; a collective contribution toa
from high Rydberg and continuum states may be easily
tered. Because of strong enhancement, the change need
V is small, while many upper Efimov states can be create
destroyed by the change inA.

~v! Recently, a question was raised by Mukhamedzha
@14# concerning an additionalr 25 correction to the EDP po
tential, due to a possible contribution to the dipole polar
ability from the fully continuum three-particle states that a
Coulomb distorted. Possible double counting of t
continuum-state contribution must be addressed, espec
in view of the complex asymptotic behavior of the thre
body wave functions@15#, which depends on the degrees
pair correlations. Although this problem is presently un
solved, it is an important one and warrants attention.

~vi! Finally, explicit calculations of the Efimov state
with and without the retardation effect in the more realis
systems, are needed for detailed quantitative compar
with experiments. Enhanced changes in the three-b
bound system caused by a small changeṼret in the two-body
sector may be useful in making the retardation effect obs
able. Work on this is in progress and the preliminary res
will be reported on elsewhere.
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APPENDIX

We present here a coherent derivation of both the v
and the EDP potentials, with and without the retardation
fects, all from Eq.~4! with Eq. ~5!, and all within the vacuum
fluctuation field approach@7,8,10#. This may provide pos-
sible reasons for the retardation corrections being either m
tiplicative, as in the vdW case, or additive, as in the ED
case. But, more importantly, the newa f 0 introduced below
for the charged particle in the context of the vacuum fi
approach provides insight into the role of a charged part
in a static picture. It is also somewhat troublesome that
complete EDP potential was not derived from Eq.~4!, con-
trary to the vdW case. Of course, the perturbation treatm
of Ref. @10# and a dispersion theoretic treatment in Ref.@9#
provide the rigorous and complete answer. The present
cussion therefore is not meant to be a substitute. Our tr
ment below is simply based on the observation that, for
nonretarded potentials, thea1 in the conventional form and
G5 can give the singular integrand, and thus should resu
an additive correction.

For the vdW potential in the nonretardation limit, we e
amine the dominant termG5 . The integrand is well-behave
for the classical dipole polarizabilitya1,2(w)5e2/m/(w0

2

2w2) in the single-state approximation, and we obtain
known result

VvdW~r !52@3\/~prc6!#E
0

`

dwa1~w!a2~w!sin~2wr/c!

52@3\/~pr 6!#E
0

`

dua1~ iu !a2~ iu !exp~22ur/c!

.2~3\/4!a~0!2w0 /r 6, ~A1!
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where the numerical coefficient is also correct. Note that
dw part in the integral is not scaled in terms ofx5wr/c.
Instead, the integration contour was rotated@8# to the imagi-
nary axisu, and the exponential factor was then set equa
1. The important point to note here is that the integrand
perfectly well-behaved in the regionw50.

The retarded potential is obtained by reevaluating the
tire expression~4! by retaining all the terms inG of Eq. ~5!,
plus a damping factor exp(2bw) in the integrals, and making
the approximationa(w).a(0). Theresult is

ṼvdW~r !52~23/4!~\c/p!aA~0!aB~0!/r 7[Ṽtot
vdW~r !.

~A2!

Evidently, the retardation effect on the vdW potential
‘‘multiplicative,’’ by a factor 1/r at larger r to the static
potentialVvdW.

We now turn to the electrie-dipole polarization potent
between a chargee and a neutral atom, closely following th
steps given above for the vdW case. That is, we hav
chargee, in place of the polarizable particle 1, interactin
with particle 2.

For the nonretarded case, we again focus onG5 , which is
presumably the dominant term at smallx. For atom 1 as a
charged particle, the conventional treatment adopts
simple limit a1(w).(e2/m)(w0

22w2)˜2(e2/m)/w2

5a f r(w) and the integral for the EDP potential diverge
due to the singularity atw50 coming froma f r , as

VEDP~r !52@\e2/~mpc6!#

3E
0

`

dww6~2w22!a2~w!G5~wr/c!

˜`. ~A3!

In order to rectify this problem, we suggest that this singu
behavior of the integrand in Eq.~4! with G5 alone is the
basic difference between the vdW and EDP cases and m
be treated separately as an additive contribution coming f
a1A at w50. @The sin(2x) term does not contribute in th
present case, without retardation, when the integration c
tour is rotated so thatw˜ iu and then the exponential is se
equal to 1.# Thus, we modify the free particle polarizabilit
by reexamining the limitw˜0. Within the context of the
present VFF formulation, we have the frequency scaleswr
5c/r and w0 associated with typical atomic excitation fre
quency, and alsowm5mc2/\. Roughly we havewr!w0 ,
where wr. f 0w0 and where f 051/137. In addition,w0

.wmf 0
2, so thatqw

2 [\w0 /wm. f 0
2 or qw. f 0 . Now we de-

fine a newa f[e2/m/(wf
22w2), wherewf5wrqw . For the

EDP potential without retardation, we seta f.e2/m/wf
2

5a f 0 , while for the retarded part of the potential with th
full G we use the originala f r(w)5e2/m/(2w2). The full
G, with all the oscillating factors retained, behaves only
w23 at smallw, so that possible contributions from the r
gion w.wf are wiped out by thew6 factor.

When a f 0 is substituted in Eq.~4! and G is replaced by
G5 , the integral no longer diverges, and with an addition
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adjustment of the~1/3! factor that reduces the three
dimensionality of atom 1, we obtain the usual EDP poten
in the static limit

VEDP~r !52@a2~0!e2/2#/r 4. ~A4!

The above derivation indicates that the physical conten
the ‘‘polarizability’’ of a charged particle in the static ED
potential is associated with the frequency region that is m
s.

,

l

f

h

smaller thanwr ; that is, the relevant distance involved is tw
orders of magnitude farther than that for the retardation p

The retarded part of the potential is obtained by evalu
ing the contribution from all the terms ofG and usinga f
.e2/m/(2w2) and a convergent factor exp(2bx), as

ṼEDP~r !51@11\e2aB~0!/~4pmc!#/r 5, ~A5!

and thusVtot
EDP(r )5V0

EDP(r )1ṼEDP(r ).
ev.

ev.
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