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Retardation effects on the Efimov states
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The retardation effect causes a small but finite change in the two-body potential, which in turn results in a
large reduction in the scattering lengthwhen the strength is near its critical value for forming a zero-energy
bound state. This coupling to the vacuum fluctuation field thus affects the two-body dynamics such that the
Efimov phenomenon is destroyed. Enhanced response of the scatteringAghadtin a small change in the
two-body potential may be employed to gain efficiency and accuracy in experiments; for example, in testing
body bound states in a cold atomic gas. The retardation effect can remove several Efimov bound states,
depending on how large the change in scattering length is. Manipulation of the two-body potential by external
fields is suggested to modify or eliminate some Efimov states. The optimal choice suggested from this analysis
is to manipulateA such thatA/AA<1. Also included is a discussion on the additivity correction to the
two-body polarization potential due to the Casimir eff¢&1050-29479)04309-7

PACS numbsd(s): 34.20.Cf, 21.45tv

[. INTRODUCTION concerning the additivity versus multiplicative modes of the
retardation correction are given in the Appendix; it is based
It was shown nearly 30 years ago by Efimpd] that, on the coupling to the vacuum fluctuation field.
when a pair of particles interacting via a short-range poten-
tial of rangeR, forms a zero-energy bound statéEBS),
with the corresponding scattering lengft= —c0, a third Il. THREE-PARTICLE EFIMOV STATES
particle may then interact with the pair via an effective po-
tential of the typeU=—1/R?, which can support an infinite
number of three-body bound statéérIn(|A//Ry)—x> as|A|
—o0. This surprising Efimov phenomendiP), of N—o
with |A|—, has since been discussed by a number o
people[2—4]. Evidently, the Efimov states are spatially ex-
tended, and thus it is reasonable to ask whether the retard
o efec> 10 associld ith e eneesof NS VeIOC g £, whre, and s, ar the ree-bdy e Grees
. . " .. _function and the two-body scattering amplitude, respectively.
The study of the Efimov states at large spatial separation ere, E, denotes the binding energy of the two-body sub-
among the constituent particles is of special interest for col systémbwhiIeEt is the total energy of the full three par-
. " . . , o
atomic gas of low densitiefl1], in which atoms generally ticles. That is, trK)—2 as the total energf—0. Alterna-

interact at a distance of the order 010 1G°ao, for typical tively, an exactly soluble model solution in the adiabatic
densities attainable at present. With very low relative kinetica z)’ximation[S]y was studied to show that the effective
energies kgT<10 3K) associated with the heavy atomic PP

o . . ._two-body interaction in the presence of the third particle be-
cores, complications due to short-range interactions are min

A 5 ) )
mized, while the long-range behavior of the interactions ishaves as-1/R” at largeR (but R<|A). However, its lead

magnified. Studies of the retardation effect on collisions "9 nonadiabatic correctiop] was shown to behave spuri-

among the cold atoms are difficult. On the other hand,OUS|y as 1R, while the complete nonadiabatic contribution is

loosely bound three-body Efimov states may be more adap{)_Ltshortderbrange th‘?‘” Rﬁ{f} I_:lr:ally, t_the t;eﬁ;ectlve tpr)]otent_lal q
able for high-precision experimentation. obtained by averaging the interaction between the pair an

In Sec. I, we briefly review the Efimov result, and point the third particle[4j gives the_ correct qualitat?ve result,.al-_
out the crucial simplification needed in Sec. IV. The mostthough thle nu4me_|r_|rc];'al 'coefflgleglt oLthe' reslultlng potential :cs
detailed study of the retardation effect thus far has been ca hOt comﬁ ete ]'. 'S" 'Sh probably tl fe simplest treatm;:nt or.
ried out on the van der Waal'es/dW) and electric-dipole eEPt a_t reta_ms a t e essential features. SO. wea (_)pt itin
polarization(EDP) potentials for the two-body systems, in- thAeAfollowmg dlsc.:ussmn. we take the ‘Ja.CObJ coordinates
volving two atoms or an atom and an ion. Therefore, focus{"R) corresponding to the relative coordinatesor par-
ing our discussion on these cases makes our argument mateles 1 and 2, andR for particle 3 relative to the center of
concrete and transparent, as we can then proceed to trealss of the pair +2. For simplicity and without loss of
systems of three atoms or two atoms and an ion, provided thgenerality, we neglect the symmetrization among the three
binding-energy condition for the Efimov effect approxi-  particles.
mately) satisfied. We summarize the existing result in Sec. The Efimov phonomenon is obtained in two steps: First,
[ll, adding several critical comments. The effect of retarda-the pair 1+2 interacts with a short-range attractive potential
tion on the EP is then discussed in Sec. IV. Some commentg,, of range ofR,, and is assumed to form a zero-energy

For simplicity we consider three identical bosons interact-
ing by short-range potentials. By short range, we mean any
interaction that falls off at large distance faster thar?.1/

here are several different ways by which Efimov phenom-

non has been studied. Thus, a confluence of the two-body
and three-body threshold singularitig| at E,,=E,=0 in
f&rms of the Faddeev interaction kernet Got4, provides
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bound state, with very large scattering leng#h Then, in  an even number. In general, the signfofloes not represent
the region ofr <|A|, the asymptotic wave function for the the sign ofV, except whenV is too weak to support a bound
pair (r) takes the simple form state. In the Efimov case, however, the presence of one or

more two-body bound states tends to make the three-body

lim lim ¢(r)=lim[sin(kr+ &)/(kr)]=(r —A)/r—constft,
k—0r—0 k—0
()

for Ry<r <|A|. For convenience of discussion, we assume

that the two-body potential contains a strength parameter
Eventually, as the coupling parametgiin V,, approaches
the critical valuey, where a ZEBS is produced, we have
|A|—c. Thus,A is especiallysensitiveto the two-body in-
teractionV,; that is, in the vicinity ofy,, the phase shift is
close to7/2 and the binding enerdi,=0, such that a small
change inV,, is reflected in a large change & Further-
more, the asymptotic behavigr— 1/r of Eq. (1) is crucial to
the EP, but this follows from the general flux conservation
over the asymptotic surface, d$=r2dQ. It is independent
of the particle interaction.

As the second step, we introduce a third particle to inter

act with the above pair. Then, the interaction between th%I

pair with the third particle 3 is obtained in the lowest-order

Efimov states unstable.

IIl. RETARDATION EFFECT ON THE TWO-BODY
INTERACTION

The physical effects of the zero-point vacuum field fluc-
tuation (VFF) have been studied extensively in recent years
[5—10\. The Lamb shift, the Casimir effect, spontaneous ra-
diative emission, etc are interpreted in terms of the coupling
to the VFF. We summarize here the main results relevant to
our discussion, especially their effects on the van der Waal's
and electric dipole polarization potentials. Some clarifying
comments on the “additive” vs “multiplicative” feature of
the retardation corrections are given in the Appendix. Those
quantities modified by the retardation effect are denoted by
tilde in the following.

We consider a pair of neutral atoms with the dynamical
ectric-dipole polarizabilitiege;(w) and a,(w), which de-

pend on the frequencw of perturbing fields. In the VFF
approach, the zero-point field is assumed to induce dipole
moments in particles 1 and 2, which in turn interact with
each other in their mutual dipole fields. Thus, the vacuum
fields E3 at the positions of atoms 1 and 2 induce the dipole
momentsﬁl,fEgalyz(wk)licl)*kz, and their interaction poten-
tial is given, after the angular integratialt}, , by [7,8,10

approximation by the average

U(R)=Uad R)=(4|V13t+Vod ), = —constR®  (2)
for largeR, but still R<|A|. The constant in Eq2) contains
the polarizability of particle 3. Unlike in Eq1), the behav-
ior of U(R) is insensitiveto the strength o¥/;; , so long as it
is attractive and relatively short-ranged, of typical rafge
The higher-order corrections to the static pict(2 is to
change the constant factgf] in U, but theR dependence of
Eqg. (2) is unchanged. For the present purpogg, are as-
sumed to decay faster thanrd/at larger, including the
inverse power potentials of the vdW and EDP types as well

as ads(ri2+ Ii) function form. The number of bound states
generated by this potential may be estimated, for example,
by the Bargman formulgor Calogero formy as

VVF(F)=—(1/2)2] P1-Giio(F)- P2
kk
2—(ﬁ/ﬂ'CG)fdeV\IGal(W)aZ(W)G(X), (4)
0

where we setEqg|2=%w, and where

A G(x)=sin(2x)/x?+ 2 cog2x)/x>—5 sin 2x)/x*
N=trp(GoU)= | (RU)dR=L/m In(|Al/Ro) =, (3 A
0
— 6 cog2X)/x%+ 3 sin2x)/x=D, G;(x), (5)

as|A|—«. This is the essence of the EP. The average po- i=1
tential approach presented here is, except for the multiplica-
tive constant factor, consistent with the argument giverWwith x=wr/c=w/w,. A part of the argument (& comes
originally by Efimov[1] and also that followed by Amado €xplicitly from the retardation correctioéi(t—r/c).
and Noble[2]. It not only avoids unnecessary complications ~ Equation(4) with Eg. (5) is used to derive both the vdw
involved in the other approaches, but also brings out clearlgnd EDP potentials, with and without the retardation effect.
the parts that will be potentially affected by the retardationT0 begin with, it is important to recognize the different fre-
correction. A slightly more complete treatment of the EP inquency scales involved in E(d). In addition tow, =c/r, we
the adiabatic pictur§3,4] gives essentially the same result, also have the typical atomic excitation frequenaigsasso-
in the limit of the two-body state binding ener— 0. ciated with atoms 1 and 2, whem,=w,fo<w, and f,

For V attractive ¥<0) and weak, the phase shift near =1/137. Furthermore, the classical polarization of a charge

E=0 is positive andA is negative. As the strength of
increases in magnitudé) approaches negative infinity. A
slight further increase in the potential strength changes
abruptly from—oc to +oo. Therefore, the sign oA at £« has

involves the mass of the charg®, where w,=mc/%
=w,/f3.

The vdW interaction without retardation comes from the
lastGs term in Eq.(5) and the conventional definition of the

no dynamical meaning, since this is caused simply by theolarizabilities«; ,. In the single excitation frequency ap-

definition of A in terms of the phase shift, as a limit of
—tandk as k—0. With V<0, we haveA>0 for an odd
number of bound states, including the ZEBS, a@dO0 for

proximation, we haver, ,=e?/m/(wj—w?), and

VYW — (371/4) a1 (0) arp(0)Wg /1 6. (6)
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We emphasize that the integral involved in M&" is finite  fect of the latter on the former, EP. We show that the EP of
and well behaved. Next, when the full retardation effect isN— o« asA— —x is destroyed when the retardation effect is

included, all the terms i1 contribute and we have included. In principle this requires a detailed perturbation
_ calculation of many connected diagrams that involve mul-
VYIW(r) = —(23/4)(ficl ) a1(0) ap(0)/r 7 =VYW(r), tiple photon exchanges among the three particles, such as

(7 (1T2,2T13,T3)+(1T2,12,1T3)+- - -, etc., where at least
one transverse photai) for each particle is required.is
for an instantaneous Coulomb interaction, a2 1for ex-
AVVIW VAW vaw ®) ample, denotes th& photon e_xch.ange between pgrticlt_as 1
et Ttot and 2. However, such complications may be avoided if we
for r>ay/f,. That is,VY™ replaces/*™ of Eq. (6) and the recall th_at, as stressed in Se_:c.. I, thg _EP is sensi.tive to the
two-particle potentiaV, butU is insensitive to such interac-
tion and depends mainly on the asymptotic behavior of the
two-particle wave function as dictated by the particle flux
conservation. Once this picture is adopted, the proof of the

Now we briefly turn to the EDP potential, for complete- EP breakdown becomes almost trivial. The argument is

ness. Following the procedure given above for the vdwW caseg,'vpfn "? two steps. - )

we require that the nonretarded potential should also come (i) First, due to Eqs(8) and (12), A that includes the
from the G5 term and the classical “dipole polarizability” retardation effect will be less thakin magnitude. Because,
associated with a simple charged particlewat0. If we take ~ While A——o Dy the original assumption of a ZEBS sup-
the limit wo=0 in ay, asay(W)—e?/m/(—w?)=ay(w), ported byV,V/F =V+V with the retardation correctiol’
then the integral foVEPP with ay, and G5 becomes diver- >0, for example, gives

gent, due to the strong singularity &t=0. Instead ofay, ,

we introduceafozez/m/w?, wherew;=w, Wy /W, Now, 0>A>A— — oo, (13)
the integral convergesee the Appendjxand we recover the

usual result

and thus

retardation correction is multiplicative at largewith a fac-
tor 1k multiplying Eq. (6). The full G behaves as &/ or
better atw= 0, so that all the integrals involved in E@) are
again finite.

As emphasized at the end of Sec. Il above, the behaviér of
VEPR(1) = —[ ay(0)e2/2] /1%, (9)  associated with the phase shifts that are near odd multiples of
72 is not smooth and should be treated with caution; the
Next, for the retarded case, the f@l contributes and, even change inA can be abrupt and nonmonotonic even though
with the singularey, , the integral in Eq(4) is finite, and we  both the corresponding phase shifts and the potentials change
obtain slightly in a continuous and monotonic way. Of course, for
_ the phase shifts that are far from the critical values men-
VEPR(r)= +[11ie”a,(0)/(4mc)]/r®, (10)  tioned above, the changes AandV are both smooth and

monotonic[12].

){/E\;?]?re the contribution from the=w; region is not impor- AlthoughV is small, the changd A=A— A can be very

Apparently, there are two contributions in the case oflarge. The _e_nhance_mentmdue to_a small change M n
EDP, one witha;, nearw=w;<w, and the other part with the near critical region can~be estimated as follows: Denote
a;, for w>w; . This suggests that the two contributions areth® pPhase shifts W,'W andV by &, and &', respectively,
additive[9,10], as with §p=/2 and$’ small. We also let=tanytand’ and

n be the enhancement factor WA=a»n, wherea is the

VEDP—\/EDP {/EDP (11)  scattering length associated wihalone. Then, fog=1, we
have p=tarf &/(1—¢); for &1, p=tand,/tand’; and for
and therefore for large £<1, p=tar? &. In all three cases, the enhancement can be
EDP. </EDP very large whernsy=m/2. Thus the relative change Akdue
AVig =V=>0. (120 to AV may be easily observed in the three-particle states, as
compared to the small changes in the two-particle sector. For
example, withd' from V,, of the order of 10*, the cases
with ¢é=1 can giveAA/A<1 andAN=<O0.1. On the other
hand, the case with=1 seems to produce the largest change
éA/Az 100 andAN=1.

Important for the discussion to be given in Sec. IV is the
qualitative effect of the retardation in the largeegion of
the two-particle sector. The asymptotic forms of the poten
tials V)i given by Eqs(7) and(11) show that the change is

ositive; i.e., the potentials with the retardation correction . —
P P With all these complications oA, however, the form of

become less attractive a&>R,/fy,. The essential point for h functi tl . h qf that i b
our purpose is that the vacuum fluctuation effect in the pres- € wave function at fargeis unchanged irom that given by

ence of external fields is observable, ald, .+ 0. (1b), whenA is replaced byA, and this is the crucial feature
needed. This is discussed next.

(i) The 1R? behavior of the three-body potential(R)
depends on the two-particle wave functig(r) at larger, as

In Secs. Il and I, the salient properties of the three-bodyseen in Eqs(1) and (2). This form is not expected to be
Efimov states and the effect of retardation on the two-bodyaffected by the retardation effect, because the dépen-
interaction have been summarized. We now consider the eflence comes strictly from the flux conservation over the

IV. RETARDATION EFFECT ON THE EFIMOV STATES
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large surface element that is proportionatfo This is basi-  particles is not considered. Instead, our result is based on the
cally a static property. The retarded Green’s funcii&g, in crucial but simplifying observation that, insofar as the EP is

the trK has the same behaviorRLat largeR. Therefore, concerned, the two-body potential in the critical region of
~ _ ZEBS is sensitive to the retardation correction, as manifested
U(R)——constR? for R<A. (14 in the large change i. On the other hand, the resulting

_ three-body potentialJ is not sensitive to retardation, but
SinceA is finite, the number of three-body bound states isdictated by the overall flux conservation. Therefore, the
also finite, original three-body retardation problem is reduced essen-

_ _ tially to that of a two-body problem. In the perturbation-
Noc(1/a)In(|A|/Rg) <ce. (15  theory terms, what we have included in Sec. IV are effec-

. ) tively the diagrams (T2,12,13)+(1T2,1T2,23)+---,
This completes the proof of the breakdown of EP with thegc The simplifying assumption we made there implies that
retardatlon effect. That is, the Eflmov phenomenonNof  +he contributions from diagrams such asT@l1T3,2T3)
—oo is destroyed by the retardation effect, Wh\e!Dalone +(1T2,22,1T3)+--- are of the shorter range and do not
gives the EP. A smal\V +# 0 changedN such thatN <. contribute to the EP.
The experimentally convenient quantity to measure the retar- Apparently, the change in the two-body potential due to
dation effect sAN=N—N, which can be greater than 1, the retardation correction and the resulting change in the pair
presumably only under the conditigia=1. That is, one can binding energies are small. But the effect is magnified
simply count the number of Efimov states, with or without through A and N associated with the three-body Efimov
the retardation effect. Of course, the valNemust be esti- bound states. The following frequency regions have to
mated accurately theoretically. By contradtA can vary be distinguished:wfzwrf0<wrzwof0<wozwmf§<wm
wildly, and so is less controllable. =mdc?/#, wheref,=1/137. This magnification of the small

Evidently, the task of presenting a proof was made simpleeffect may be observed in a dilute cold trapped atomic sys-
by the crucial observation that Eq&l3) and (14) are dis- tem at extremely low temperatuf&l], provided the experi-
tinctly separated, with th& being insensitive to the pair Mental conditions are such that the complex short-range part
interactionsv. Although the EP in the strict sense is broken, Of the interactions may be minimized and the long-range
there may still be a large number of Efimov states in theP€havior enhanced. Also the conditigr-1 in Sec. IV may
critical region ofV for experimentation. Furthermore, as a P& experimentally desirable. Obviously, the optimal size of
simple corollary, the EP is valid if it is defined in terms of the Efimov bound states should be at least of the order of
VYE | rather than with/. That is, we may consider a different @o/fo Or larger, and the higher-lying states near the edge of

system with new’ that is slightly more attractive thayi, A may be even of size, /5 with very small binding ener-
Then, with the new,, , A’'——o0, and the Efimov phe- gies. This szltuaygn may correspond to gas densmeg on'the
nomenon is restored. Establishing the EP is delicate, but coﬁ)—rder of 16%cm _or less for t_rap_ped cpl_d atoms, Wh'Ch IS
ditions for its failure are relatively easy to demonstrate. Fromattamable e>_<per|me.ntally. Unlike in collision studies qulv-
the earlier discussion, the=1 case seems to be the optimal Ing two particles W'thy’ where small effgcts are often dif-
choice. This condition may be achieved experimentally b icult to detect, the Efimov bound states involving three par-

manipulating theV such that the phase shis, correspond- ticles may be easier to analyze experimentally, with high

: ; e _ accuracy.
|ng toV gets as close tr?r/2. with fso__ /2 NAO’ the con There are several points that should be further examined.
d|t|c3n £=1 mf’,f‘”SAOZ‘S » whered” is from Ve.. For (Ao (i) Insofar as the retardation effect on the three-body sys-
—0')/A¢=10"", we expectAN=1.5. tems is concerned, our result shows that we can concentrate

Finally, we examine the consequences of the average pene treatment only in the two-body sector, as the third body
tential approx_lmatlon adgpted in EE) and in this section. g interacting with a long-rangB 2 potential that is insen-
As noted earlier, Eq(2) gives the correcR dependence but  sjtive 1o retardation. This is obviously an important simplifi-
not the constant coefficient. On the other hand, the adiabatigation, and, as discussed above, a full retardation treatment
potential represents the full strendt], with the nonadia- involving all three particles must be carried out.
batic corrections behaving asRE/ or better. The retardation (i) Furthermore, while the t@t;;) proof of Ref.[2] is

correction makes the two-bodg finite, and, forR>R,  consistent with the approach we have taken, in that the two-

=1/ _Eb, the U,4 decays exponentially, whetg, is the  body off-shell amplitude in the presence of the third particle
binding energy of the pair (£2). Since particle 3 is held tj; is retardation corrected whil&, is left unchanged, a
fixed in position atR during the calculation and, the re- more careful analysis in terms of the relativistid!(tmay be
tardation correction tdJ 4 would be “additive,” as in the Of interest.

EDP case, with the R® or stronger behavior. Therefore, the (i) Cluster formation in a cold gas of both bosons and

retardation effect again spoils the EP at the two-body levelfermions is of special interest, in sharp contrast to condensa-
tion of a Bose gas. In particular, an exotic case of interaction

of two pairs of ZEBS should be examined, in light of a

recent study by Ropket al.[13], on the four-particle cluster
We have given a simple and direct argument that the reformation in nuclear matter.

tardation effect can destroy the Efimov phenomenon. The (iv) Furthermore, the two-body potential critical for the

proof is semirigorous, only because the full perturbationEP may be manipulated by external field perturbations. This

treatment involving multiphoton exchanges among the threén turn provides a handle on the diffuse Efimov states, per-

V. DISCUSSION
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haps through a change i a collective contribution tax ~ where the numerical coefficient is also correct. Note that the
from high Rydberg and continuum states may be easily aldw part in the integral is not scaled in terms xfwr/c.
tered. Because of strong enhancement, the change neededigtead, the integration contour was rotaf8#to the imagi-
V is small, while many upper Efimov states can be created ofiary axisu, and the exponential factor was then set equal to

destroyed by the change & _ 1. The important point to note here is that the integrand is
(v) Recently, a question Wag raised by Mukhamedzhanoyerfectly well-behaved in the regiom=0.
[14] concerning an additional” > correction to the EDP po- * The retarded potential is obtained by reevaluating the en-

tential, due to a possible contribution to the dipole polariz-j e expressiorn4) by retaining all the terms i of Eq. (5),

ability from the fully continuum three-particle states that are ; ; ; ;
. . ; plus a damping factor exp(Bw) in the integrals, and making
Coulomb distorted. Possible double counting of thefhe approximation(w) = a(0). Theresult is

continuum-state contribution must be addressed, especially
in view of the complex asymptotic behavior of the three-
body wave function$15], which depends on the degrees of  \vdW(r)= — (23/4)(fic/ 7) aa(0) ag(0)/r '=VYW(r).
pair correlations. Although this problem is presently unre- (A2)
solved, it is an important one and warrants attention.

(vi) Finally, explicit calculations of the Efimov states, ) o
with and without the retardation effect in the more realisticEvidently, the retardation effect on the vdW potential is
systems, are needed for detailed quantitative comparisormultiplicative,” by a factor 1t at largerr to the static

with experiments. Enhanced changes in the three-bodpotentialVVW,

bound system caused by a small chaﬁg@in the two-body We now turn to the electrie-dipole polarization potential
sector may be useful in making the retardation effect obsenpetween a chargeand a neutral atom, closely following the
able. Work on this is in progress and the preliminary resulsteps given above for the vdW case. That is, we have a

will be reported on elsewhere. chargee, in place of the polarizable particle 1, interacting
with particle 2.
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APPENDIX due to the singularity av=0 coming frome;,, as
We present here a coherent derivation of both the vdwW
and the EDP potentials, with and without the retardation ef- VEPR(r)= —[%e?/(mmc®)]
fects, all from Eq(4) with Eq. (5), and all within the vacuum .
fluctuation field approach7,8,10. This may provide pos- Xf dwwB(—w2) (W) Gg(wr/c)
sible reasons for the retardation corrections being either mul- 0 °

tiplicative, as in the vdW case, or additive, as in the EDP
case. But, more importantly, the new, introduced below —e. (A3)
for the charged particle in the context of the vacuum field

approach provides insight into the role of a charged particlgn order to rectify this problem, we suggest that this singular
in a static picture. It is also somewhat troublesome that thgahavior of the integrand in Ed4) with Gy alone is the
complete EDP potential was not derived from E4), con-  pagic difference between the vdw and EDP cases and must
trary to the vdW case. Of course, the perturbation treatmerie treated separately as an additive contribution coming from
of Ref. [10] and a dispersion theoretic treatment in Reéi. a1, atw=0. [The sin(X) term does not contribute in the
provide the rigorous and complete answer. The present digsresent case, without retardation, when the integration con-
cussion therefore is not meant to be a substitute. Our trealy r is rotated so that—iu and then the exponential is set
ment below is S|mp_ly based on the observ_atlon that, for th%qual to 1] Thus, we modify the free particle polarizability
nonretard_ed poteptlals, thel in the conventional form and _by reexamining the limitv— 0. Within the context of the
Gs can give the smgular integrand, and thus should result IMresent VFF formulation, we have the frequency scales
an additive correction. o =c/r andw, associated with typical atomic excitation fre-

For the vdW potential in the nonretardation limit, we ex- quency, and alsev,,=mc/%. Roughly we havew,<w,
amine the dominant teri®s. The integrand is well-behaved | pare w =fow, aﬂd where fo=1/137. In additiron w(;
for the classical dipole polarizabilityr; Aw)=e?/m/(w3 ~w.f2 rso thatq2=#wg /W, =2 or q,~fo. Now we de-
—w?) in the single-state approximation, and we obtain thefinemaor;eWaﬁezvlvm/(wf—V\TZ) Svherev\vlvfzw 0. For the

- ’ riw -

known result EDP potential without retardation, we set;=e?/m/w?
o ) = a4q, While for the retarded part of the potential with the
VYW(r)=—[3h/(mrc®)] f dwary (W) ap(w)sin(2wr/c) full G we use the originak;, (w)=e%m/(—w?). The full
0 G, with all the oscillating factors retained, behaves only as
o w2 at smallw, so that possible contributions from the re-
= _[3ﬁ/(7”6)]f0 dua,(iu)as(iu)exp(—2ur/c)  gjon w=w; are wiped out by thev® factor.
When a4, is substituted in Eq(4) and G is replaced by
= —(3%i/4) a(0)?wq /r°, (A1)  Gs, the integral no longer diverges, and with an additional
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adjustment of the(1/3) factor that reduces the three- smaller tharw, ; thatis, the relevant distance involved is two
dimensionality of atom 1, we obtain the usual EDP potentialorders of magnitude farther than that for the retardation part.

in the static limit The retarded part of the potential is obtained by evaluat-
ing the contribution from all the terms & and usinga;
VEPR(r) = —[a,(0)e?/2]/r. (A4)  =e?/m/(—w?) and a convergent factor expfX), as
The above derivation indicates that the physical content of VEPP(r)= +[11h€2ag(0)/(4mmc)]/r>, (A5)

the “polarizability” of a charged particle in the static EDP 5
potential is associated with the frequency region that is mucland thusVEP™(r) = VEPT(r) + VEPH(r).
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