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Consistent definitions for, and relationships among, cross sections
for elastic scattering of hydrogen ions, atoms, and molecules

Predrag S. Krstic´ and David R. Schultz
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6372

~Received 8 March 1999!

Owing to the crucial role played by elastic scattering in various gas/plasma environments and to its funda-
mental nature, we consider in the present work low-energy collisions among isotopic variants of H11H, H
1H, and H11H2. In particular, we present consistent definitions of the elastic-scattering cross section and its
common transport relevant moments regarding the quantum indistinguishability or classical distinguishability
of particles, correcting some inappropriate definitions found in the literature. Further, we utilize a large col-
lection of fully quantal calculated results for these systems to display the scaling relationships that exist among
them.@S1050-2947~99!01309-8#

PACS number~s!: 34.50.2s, 34.10.1x
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I. INTRODUCTION

The transport of particles and, in particular, the excha
of momentum, in cool hydrogen plasma/gas can be do
nantly determined by elastic scattering among hydro
ions, atoms, and molecules. For example, recent emphas
the engineering design of fusion reactors has focused a
tion on these issues regarding the so-called divertor regio
which high-density, low-temperature hydrogen plasma
produced to bring about the neutralization and heat exh
from the burning plasma in the core region@1–7#. Further-
more, elastic scattering has been shown to be an impo
process in numerous astrophysical environments, for
ample, in planetary ionospheres@8#, the heliospheric shock a
the interface of our solar system and the local interste
medium@9,10#, comet bow shocks~see, e.g.,@11#!, and non-
radiative shocks in supernovae ejecta~see, e.g.,@12#!. Inter-
est generated by the recent experimental observation
Bose-Einstein condensates has also spurred the need fo
curate description of very-low-temperature elastic scatte
~e.g., for H1H scattering, see@13,14#!.

Noting these needs for a comprehensive understandin
elastic and related transport cross sections, and due to
considerable inconsistency in the literature regarding
definitions of these quantities in some cases, and their ap
cations, we present here an exposition of consistent de
tions and an analysis of the cross-section scaling relat
ships among various hydrogen species collision systems

In particular, there has been considerable inconsistenc
the definition of the elastic~el! cross section as well as it
higher moments, the momentum transfer~mt! and viscosity
~vi! cross sections, with respect to the quantum indistingu
ability of colliding particles ~QIP! in symmetric systems
such as H11H or H1H @15–21,13#. This indistinguishabil-
ity is manifested by an overlap of the wave functions at l
collision energies and thus by significant interference
tween the elastic and charge transfer channels in the ca
ion-atom scattering, or by the direct elastic and recoil ch
nels for the atom-atom case. With increasing collision
ergy, the overlap decreases and pronounced peaks for
ward and backward scattering are displayed by
PRA 601050-2947/99/60~3!/2118~13!/$15.00
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differential cross sections. These peaks correspond in
limit to elastic scattering~forward! and either charge transfe
~backward! for the ion-atom case or target recoil~backward!
for the atom-atom case, and thus enabling classical dis
guishability of the particles~CDP!, i.e., labeling of the pro-
jectile and the target. An experiment in the low collisio
energy limit would not have the means of distinguishing t
two overlapping channels by scattering angles or the pro
tile energy; the only means left for labeling the projectile a
target are spins of the colliding nuclei.

Since, in practice, most experiments, as well as plas
modeling, assume unpolarized beams of projectiles and
polarized targets, the relevant theory of elastic scatter
should take into account the spin statistics of the nuc
@18,15,21#. This results in an elastic cross section which,
high collision energies, tends to the ‘‘total’’ cross section f
scattering of projectiles, rather than to the elastic one, t
representing an experiment in which direct and recoil ch
nels are not separated even for energies where CDP
effect. Particularly sensitive to this definition is the mome
tum transfer cross section, derived by integration of the e
tic differential cross section weighted by 12cosu, whereu
is the scattering angle. Since the weighting factor emphas
the backward scattering angles, the momentum transfer c
section could be considerably larger if recoil scattering
present in the elastic cross section in the case when the ta
particles are included.

Thus the definition of the elastic cross section as well
of its higher moments for the symmetric~nuclei! systems do
not have the classical limit, defined by CDP, even when
latter can be reached in an experiment. Alternately, the
ability to distinguish projectiles ions from ions coming fro
the target by charge transfer~ct! leads one to define the
‘‘spin-exchange’’~se! cross section, assuming the scatteri
of a polarized beam of projectiles on an unpolarized tar
@15,21#. If the scattered particle is detected with chang
nuclear spin, and spin coupling is not present, this part
has certainly come from the target. The spin exchange c
section does have the correct classical limit, which wo
smoothly become equivalent to the charge transfer cross
tion in the CDP limit. One may analogously define the sp
2118 ©1999 The American Physical Society
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exchange cross section for identical atom-atom scatte
@18,13,22#.

Two significantly different sets of elastic and transp
cross sections could be produced for the symmetric collis
systems even at higher energies, depending on the ass
tion of QIP or CDP. Although each of the sets is interna
consistent, they could potentially introduce a confusion
plasma modeling applications, resulting in double counti
For example, if QIP is used in modeling of the ion~neutral!
transport, the resulting momentum transfer cross section
tains both contributions from elastic and symmetric cha
transfer~recoil! processes, and thus the charge transfer c
tribution must be removed from the transport code. Sin
most of the transport applications rely on the CDP, it is i
portant to define the meaning of ‘‘low’’~where QIP is as-
sumed! and ‘‘high’’ energies ~where CDP is adequate!.
Without removing the QIP in calculations for symmetric sy
tems, we define in Sec. II quantities that have correct C
limits for elastic, momentum transfer, and viscosity cro
sections and estimate the errors of using the CDP assum
over the center-of-the-mass~CM! collision energy range
considered. Also significant is the result that quantities
fined in this way enable a unique scaling and meaning of
elastic and transport cross sections within each type of
lision system, irrespective of isotopic constitution.

Four types of systems, ion-atom (A11B), atom-atom
(A1B), ion-molecule (A11BC), and atom-molecule (A
1BC), have been studied, whereA, B, andC are any of the
hydrogen atom isotopes~H, D, or T!. The hydrogen mol-
ecules are assumed to be initially in their ground vibratio
state. These constitute 51 distinct collision systems. We b
our conclusions on recent@23,24# fully quantal calculations
of more than 2800 differential and more than 200 integ
cross sections spanning the CM collision energy range
0.1–100 eV. Besides utilizing the best available poten
energy surfaces and carefully checking numerical conv
gences to achieve high accuracy in the calculations, the g
quality of the data was also verified by extensive compari
with the theoretical and experimantal data available in
literature. These comparisons have been presented elsew
@23,24#. Scaling relations among the integral elastic a
transport cross sections are described in Sec. III. Ato
units ~a.u.! are used throughout the text unless stated oth
wise.

II. CALCULATION OF THE ELASTIC AND TRANSPORT
CROSS SECTIONS

Calculation of these differential and integral cross s
tions has been described in detail recently@23,24# and only
the essential features of the numerical methods are sum
rized briefly here. For example, common to the calculatio
techniques for all systems considered is the solution of
relevant Schro¨dinger radial equation or system of equatio
~in cases that involve molecular targets!. These have been
solved using the method described by Johnson@25# based on
the use of the logarithmic derivative. The step size used
the numerical mesh was between 0.001 and 0.0001 while
convergence of a solution for the elastic amplitudeal in the
number of partial waves,l , was established for each energ
by requiring that 12Re$al %<1025, Im2$al %<1025 for at
g
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least ten successive partial waves. The number of pa
waves needed for convergence of the elastic amplitudes
usually significantly larger than the amount needed for
corresponding convergence of inelastic amplitudes, refl
ing the importance of the region of large internuclear d
tanceR in elastic scattering. The converged amplitudes w
matched to the standard plane-wave boundary condition
order to define theK matrix and subsequently the unitarize
S matrix @25#. This was then used to define the elastic pha
shifts d l , whereSl 5exp(i2dl ). The differential cross sec
tions were calculated for 768 CM scattering angles in int
val (0,p), starting from angles as small as 631026 rad to
facility Gauss-Legendre quadrature.

We used QIP where appropriate~i.e., for the symmetric
collision pairs! in the definition of the elastic differentia
cross sectionsds/dV, while for ion-atom and atom-atom
systems which involved different isotopic constituents, t
projectile and target nuclei were, of course, considered
distinguishable at all energies, thus satisfying CDP. The
tegral elastic cross section,sel , and its higher moments@26#,
momentum transfersmt and viscositysvi , were found by
numerical and~where possible! analytic integration over
scattering angles,

sel52pE
0

p

du sinu
ds

dV
, ~1!

smt52pE
0

p

du sinu~12cosu!
ds

dV
, ~2!

svi52pE
0

p

du sin3u
ds

dV
. ~3!

Comparisons of the two methods of the integrati
yielded agreement better than four significant digits. The c
culated differential and integral cross sections, as well
those for charge transfer and spin exchange, can be revie
in both graphical and tabular forms@42#. In the following we
briefly explain the details of the calculations of the cro
sections, specific for each of the four system types.

A. Hydrogen ion-atom collision systems:A11B

Adiabatic potential energy surfaces for H2
1 can be found

with arbitrary accuracy, using separation of variables in p
late elliptic coordinates@27# for this two-center, one-electron
system. We calculated the ground gerade and ungerade
tential curves (1ss and 2ps) and their first derivatives for
all R<1 with steps of 0.0001 and forR<50 with steps of
0.001 to obtain smooth linear fits for values ofR needed by
the radial Schro¨dinger equation solver. For even largerR, the
analytic asymptotic expansion of the potentials@28# up to
eleventh order in 1/R was used.

If the masses of the projectile and target are different,
is the case with isotopically different nuclei, the asympto
energies of the 1ss and 2ps split for the difference in bind-
ing energies ofA andB, induced by a small difference in th
electron reduced mass for the two atoms. This small diff
ence in masses can be transformed into a difference
charges of the two nuclei@29#, thus destroying exact gerade
ungerade symmetry. Still, the splitting in the levels is
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TABLE I. Parameters in Eq.~11! for spin-averaged integral elastic cross sections in symmetric ion-a
systems.

H11H,T11T D11D
Type g h1 h2 v1

1 v2
1 v1

2 v2
2 v1

1 v2
1 v1

2 v2
2

Total 2l 11 d l
g d l

u 1
4

3
4

3
4

1
4

2
3

1
3

1
3

2
3

Momentum transfer l 11 d l
g 2d l 11

u d l
u 2d l 11

u 1
4

3
4

3
4

1
4

2
3

1
3

1
3

2
3

Viscosity
(l 11)(l 12)

2l 13
d l 12

g 2d l
g d l 12

u 2d l
u 1

4
3
4

3
4

1
4

2
3

1
3

1
3

2
3
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small ~0.0037 eV for the HD1 system! that it results in a
negligible effect for collision energies of 0.1 eV and great
resulting in approximate identity~four digits! of the cross
sections forA11B andB11A scattering. Thus we assum
that an approximate gerade-ungerade symmetry of theAB1

wave functions is preserved, while the nuclei are distingui
able. We include the small effect of the mass difference
the adiabatic potentials@30#. These assumptions yield for th
integral cross sections@15#

sel5
p

k2 (
l 50

`

~2l 11!@sin2d l
g 1sin2d l

u

12sind l
g sind l

u cos~d l
g 2d l

u !#, ~4!

sct5
p

k2 (
l 50

`

~2l 11!sin2~d l
g 2d l

u !, ~5!

smt5
p

k2 (
l 50

`

~ l 11!~sin2 D l
g 1sin2 D l

u

1sind l 11
g sind l

u cosD l
gu1sind l 11

u sind l
g cosD l

ug!,

~6!

svi5
p

k2 (
l 50

`
~ l 11!~ l 12!

2l 13
~sin2 G l

g 1sin2 G l
u

1sind l 12
g sind l

u cosG l
gu1sind l 12

u sind l
g cosG l

ug!,

~7!

where k is the CM momentum,D l
a 5d l 11

a 2d l
a , D l

ab

5d l 11
a 2d l

b , G l
a 5d l 12

a 2d l
b , G l

ab5d l 12
a 2d l

b , for each
partial wavel , and a and b stand for eitheru or g. The
charge transfer cross section,sct , is well defined under CDP
even at low energies.

As discussed in the Introduction, if the nuclei are identi
and the collision energy is low enough, there is no way
distinguish which ion is elastically scattered and which i
results from charge transfer from the target nuclei, unless
label the particles by their spin. But in a typical situation
an unpolarized projectile beam and target, we must acco
for the appropriate spin statistics, which yields ‘‘elastic
cross sections that contain contributions from both chan
coherently. With the increase of collision energy, the
evolve into the ‘‘total’’ scattering cross sections for the pr
jectiles.

This may be formalized by first defining the relative C

motion of the nuclei by the vectorRW 5RW 12RW 2. The inter-
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change of particles results in the change of the signRW ˜

2RW , or, equivalently, the change of scattering angleu into

p2u while RW is unchanged. The detector at angleu counts
both particles scattered atu andp2u. When nuclei have the
same charge but are distinguishable by other means, the
tering amplitudes for the direct elastic,f d(u), and charge
transfer,f ct(u), channels are commonly defined in terms
scattering amplitudes on uncoupled gerade and unge
ground states@15,20#, i.e.,

f d~u!5
f g~u!1 f u~u!

2
~8!

and

f ct~u!5
f g~u!2 f u~u!

2
. ~9!

These amplitudes are used to define the differential cr
sections for scattering when the two nuclei are different i
topes of hydrogen. In a fully symmetric case, taking in
account spin statistics of an unpolarized beam on an un
larized target, one obtains@15,20,21#

ds tot

dV
5s1u f d~u!2 f ct~p2u!u21s2u f d~u!1 f ct~p2u!u,2

~10!

where s15 3
4 and s25 1

4 in the case of protons and triton
~fermions!, and s15 1

3 and s25 2
3 in the case of deuteron

~bosons!. We use subscript ‘‘tot’’ for the cross section in E
~10!, rather than the usual ‘‘el,’’ thus stressing the true me
ing of the equation in the CDP limit: incoherent combinati
of ‘‘el’’ and charge transfer. On the other hand, assumin
polarized incident beam, one defines the amplitude for s
exchange@20,21# as f se(u)5 f ct(u), Eq. ~9!. The spin ex-
change obviously acquires the meaning of the charge tran
amplitude when CDP is applicable, therefore from here f
ward we will use the subscript ‘‘ct’’ for either charge transf
or spin exchange.

For the symmetric~sym! ion-atom systems, performing
integration over scattering angles analytically, the formu
obtained for the integral elastic cross section and its hig
moments take the same form

s tot,sym5
4p

k2 (
l 56

g~ l !~v1
6sin2h11v2

6sin2h2!, ~11!

where the coefficients are summarized in Table I, for con
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nience, while

sct,sym5
4p

k2 (
l 50

`

~2l 11!sin2~d l
g 2d l

u !. ~12!

The cross sections, defined by Eq.~11! and Table I, do not
tend to those of Eqs.~4!, ~6!, and~7! even when the energ
is high enough that the amplitudes in Eq.~10! add incoher-
ently ~CDP limit!. For example,s tot,sym

(el) for H2
1 is approxi-

mately a factor ofA2 larger thansel calculated for H2
1

using Eq.~4!, over almost the entire range of energies co
sidered, although both are referred to as ‘‘elastic’’ cross s
tions in the literature. Still, it is possible to construct
elastic cross section even for symmetric systems, which
the correct CDP limit and, as we show in Sec. III, has
reasonable interpretation even at energies as low as 0.1
In the rest of the text we will call this the ‘‘elastic’’ cros
section for symmetric ion-atom scattering, i.e.,

sel,sym5s tot,sym
el 2sct,sym. ~13!

To define the momentum transfer and viscosity cross s
tions with the correct CDP limit, it is convenient to defin
the ‘‘elastic’’ differential cross section by subtractin
dsct,sym/dV from ds tot,sym/dV and applying the weighted
integration in Eqs.~2! and ~3! to the resultingdsel /dV to
obtain the form

dsel

dV
5s1u f d~u!2 f ct~p2u!u21s2u f d~u!1 f ct~p2u!u2

2u f ct~p2u!u2

5u f d~u!u222~s12s2! f d~u! f ct~p2u!. ~14!

The integral elastic cross section of Eq.~13! is compatible
with the definition in Eq.~14!.

Obviously, the elastic differential cross section so defin
for a symmetric system differs from the CDP cross sect
by the interference term, which vanishes in the CDP lim
Although dsel /dV can be negative for some angles and e
ergies, at least in principle, it results in integral cross secti
with the correct CDP limit, as we illustrate in Sec. III.

B. Hydrogen atom-atom collision systems:A1B

The H(1s)1H(1s) collision system evolves along th
ground singletX1(g

1 and tripletb3(u
1 potentials, which be-

come degenerate whenR˜`. If various H isotopes consti
tute the system, then the singlet and triplet states split in
asymptotic limit for the same reasons as in theA11B case.
We find that the mass asymmetry affects only the fifth d
and beyond in the integral elastic cross section, which is
all practical purposes insignificant. The required H2 poten-
tials were obtained from Jamieson@31#, who compiled, fit-
ted, and extrapolated the data of Kolos and Wolniewicz@32#.
Although these potentials are not as accurate as those
H2

1 , they represent the best data currently available. M
detail regarding the calculation of elastic cross sections
the neutral, atom-atom scattering will be given elsewh
@24#.
-
c-
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The symmetric systems~like H 1 H, D 1 D, and T1 T!
also require in this case special attention. In the absenc
other means, we again use the spin to label the ident
nuclei at lower energies, where the overlap of the direct a
recoil channels is significant. Two kinds of spin statistics a
involved in the problem here, one with respect to the elect
spins and another with respect to nuclear spins. Thus, ass
ing scattering of an unpolarized beam of atoms by an un
larized target, and applying the proper nuclear spin statis
and symmetrization of the amplitudes, we obtain the ‘‘ela
tic’’ differential cross sections for the electronic singlet (s)
and triplet~t! states separately in the form@18,13#

dss,t

dV
5jH2

@as,tu f s,t~u!1 f s,t~p2u!u2

1bs,tu f s,t~u!2 f s,t~p2u!u2#, ~15!

whereas51/4, bt53/4, at51/4, andbt53/4 for hydrogen
and tritium atoms, andas52/3, bs51/3, at51/3, andbt
52/3 for deuterium atoms. Taking into account the statist
of the electron singlet and triplet spin states, the ‘‘elasti
differential cross section finally takes the form

dsel

dV
5

1

4

dss

dV
1

3

4

ds t

dV
. ~16!

This contains contributions from both scattered and
coiled atoms, and due to the full symmetry between the p
jectile and the target, the differential cross section is sy
metrical about the scattering anglep/2, i.e., forward and
backward peaks are identical. Therefore, the integral ela
cross section for a symmetric system is a factor of 2 lar
than the one obtained assuming CDP, described by scatte
of, for example, isotopically different particles. Thus w
adopt the factorjH2

51/2, which guarantees the correct CD
limit of the integral elastic cross section, still keeping inte
ference of the forward and backward peaks in the differen
cross section. The factorjH2

also affects the momentum
transfer and viscosity cross sections, but does not bring th
to the correct CDP limit. The solution to this problem
discussed in Sec. III.

The integral cross sections can be written in the form@13#

s5jH2

4p

k2 (
l 56

g~ l !~v1
6sin2h11v2

6sin2h2!, ~17!

where the coefficientsg(l ), v1,2
6 , and h1,2 are given in

Table II. We note that elastic and momentum transfer cr
sections here are identical. This follows directly from co
sistent use of the defining relation, Eq.~2! with Eq. ~15!, and
is a consequence of the specific nature of the sums in pa
waves ~either even or odd sums! and of the orthogonality
properties of Legendre polynomials. This definition of t
momentum transfer cross section describes diffusion of b
elastically scattered and recoiled H atoms, compatible w
the QIP nature of the process. The coefficients for the ela
and viscosity cross sections are identical to those obtaine
Jamiesonet al. @13#. However, their momentum transfe
cross section is calculated with the use of the Boltzmann s
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TABLE II. Parameters in Eq.~17! for spin-averaged integral elastic cross sections in symmetric at
atom systems.

H1H,T1T D1D
Type g h1 h2 v1

1 v2
1 v1

2 v2
2 v1

1 v2
1 v1

2 v2
2

Elastic 2l 11 d l
s d l

t 1
4

9
4

3
4

3
4

2
3 1 1

3 2
Momentum transfer 2l 11 d l

s d l
t 1

4
9
4

3
4

3
4

2
3 1 1

3 2

Viscosity
(l 11)(l 12)

2l 13
d l 12

s 2d l
s d l 12

t 2d l
t 1

4
9
4

3
4

3
4

2
3 1 1

3 2
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statistics@31# and is therefore incompatible with Eq.~15!.
This inconsistency has been recently corrected@14#.

When the nuclei are of different masses we consider th
as CDP, so that the cross sections can be calculated by
sidering scattering without regard to the nuclear spins. T
yields the differential cross section

dsel

dV
5

1

4
u f s~u!u21

3

4
u f t~u!u2, ~18!

wheref s,t(u) are the amplitudes for scattering on the sing
and triplet potentials. For the integral cross sections we
tain

sel5
4p

k2 (
l 50

`

~2l 11!S 1

4
sin2d l

s 1
3

4
sin2d l

t D , ~19!

smt5
4p

k2 (
l 50

`

~ l 11!S 1

4
sin2D l

s 1
3

4
sin2D l

t D , ~20!

and

svi5
4p

k2 (
l 50

`
~ l 11!~ l 12!

2l 13 S 1

4
sin2 G l

s 1
3

4
sin2 G l

t D ,

~21!

whereD l
a 5d l 11

a 2d l
a , G l

a 5d l 12
a 2d l

a , anda and b stand
for eithers or t.

C. Hydrogen ion-, atom-molecule collision systems:
A1,A1BC

When the collision time is much shorter than the char
teristic rotation time of the diatomic molecular target, o
may consider the molecular orientation fixed during the c
lision @infinite order sudden approximation~IOSA! @33–35##.
This condition is approximately fulfilled for the hydroge
molecule in the CM collision energy range presently cons
ered, i.e., for 0.1–100 eV. As a consequence the diato
vibrational coordinater and reactive coordinateR ~between
the projectile and the diatomic center of the mass! suffice to
describe the collision dynamics@35#. The ensemble averag
is performed on the cross sections over diatomic orienta

g ~angle betweenrW andRW ), treated as a parameter during
collision.

In the atom-molecule cases (H3), only the ground singlet
potential surface was needed in this calculation. Theab initio
calculation of the ground potential surface of H3 presents
serious difficulties because of the high degree of symm
m
on-
is

t
b-

-

l-

-
ic

n

ry

in the system. We calculated the ground potential adiab
surface using a 54-state Gaussian basis in unrestri
Hartree-Fock, full configuration interaction calculations u
ing GAMESS @36#, over a range ofR,r<1, on a numerical
mesh with a step of 0.1, and for anglesg in interval of 0° –
180° with steps of 10°. This was then smoothly connec
with the excellent analytical surface fit of Boothroyd@37#,
for R<10, and continued for largeR with the asymptotic,
analytic potential of the van der Waals type. The same b
was used for calculation of the H3

1 potentials, though both
ground H11H2 and first excited~the ground of H1H2

1)
adiabatic surfaces were needed in this case. This is due
strong avoided crossing between the two potential surfa
of H3

1 at r.2.6, for allR.4.5. Thus if the neutral molecu
lar target H2 is in a high vibrational state (n>4), the H3

1

makes an almost diabatic transition to the excited surf
upon collision, resulting in charge transfer, H1H2

1 .
To account for this effect of ‘‘crossing’’ of the H3

1 sur-
faces, we transformed the two electronic adiabatic surfa
to diabatic surfaces with correct boundary conditions, f
lowing the procedure developed by Baer@34#, using the
diatom-in-molecule method~DIM ! nonadiabatic matrix ele-
ments, needed in transformation. The DIM method is su
ciently accurate for largerR’s ~where the nonadiabatic sea
occurs!. The calculation of the potential was done on a n
merical mesh with a step of 0.1 in range ofr between 0.1
and 6 and ofR between 0 and 15, for the sameg ’s as in the
H3 case. At even largerR we approximated the potential wit
dipole and polarization corrections@38,39#.

Finally, only the ground diabatic surface, correspond
to the H11H2 at R˜` ~elastic channel!, was then used in
the scattering calculations. The same H3 and H3

1 ground
surfaces were used in calculations for all isotopic variatio
of the target (H2, HD , D2, HT, DT, and T2) and the projec-
tile (H1,D1, and T1). The mass effect was included in th
calculation of the vibrational wave functions by solving th
radial Schro¨dinger equation on the relevant diatomic pote
tials. These functions were needed for excited vibration
vibrational matrix elements on the ground electronic s
faces. TheR-dependent matrix elements were fitted by cub
splines for eachg, and in that form these were used in sol
ing the resulting truncated Schro¨dinger equation, for various
partial waves of the projectile. This constitutes a system
coupled second-order differential equations for the par
wave amplitudes, which we solve by the Johnson algorit
of logarithmic derivatives@25#. Excited vibrational states up
to n<9 were included in the calculation of the elastic cro
section for both atom-molecule and ion-molecule elas
scattering on the ground vibrational (n50) state. Even at an
energy of 100 eV, the nine vibrational states were suffici
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to achieve convergence of the elastic cross section an
transport moments. The number of partial waves for e
collision energy was increased until convergence w
achieved for the elastic amplitude in five significant digi
We note that the maximum numberl max of the partial waves
needed for the elastic amplitudes exceeds by almost a fa
of 2 the number needed for convergence of the inelastic~vi-
brational excitation! amplitudes with the same accuracy. T
l max showed a weak dependence upon diatomic orienta
g. Detailed description of the results of the calculation
given elsewhere@23,24#.

Given the vibrational amplitudesan(`,g,l ), the differ-
ential cross section for elastic scattering on the ground vib
tional state is@35#

dsel~E!

dV
5

1

8k2 (
l

(
l 8

~2l 11!~2l 811!

3Pl ~cosu!Pl 8~cosu!

3E
0

p

dg sing@12a0~`,g,l !#

3@12a0* ~`,g,l 8!#, ~22!

wherekW is the initial CM momentum andE the correspond-
ing kinetic energy,E5k2/2, d is the Kronecker symbol, and
the limit R˜` is assumed. Finally, the integral elastic cro
section was obtained by integration over the full scatter
solid angleV, which yields

sel~E!5
p

2k2 (
l

~2l 11!E
0

p

dg sin~g!u12a0~`,g,l !u2.

~23!

The momentum transfer and viscosity cross sections w
calculated by numerical integration of Eq.~22!, with the ap-
propriateu-dependent weights@Eqs. ~2! and ~3!#. Both dif-
ferential and integral cross sections show good agreem
with those available from other authors@35,39–41#.

III. SCALING RELATIONS

For the ion-atom and atom-atom systems we perform
semiclassical calculations@6# in addition to the fully quantal
treatments. The agreement of the two sets of the results
ready at the level of phase shifts, showed that the ene
range considered is well within the region of semiclassi
validity. Thus, a reasonable primitive quantity characteriz
the elastic cross sections is the semiclassical phase shift,d l .
For small-angle scattering on short-range potentials it
been shown that these scale directly with the square of
relative collision velocity@16#. As shown below, the sam
type of scaling is present for the integral elastic cross s
tions for all collision systems considered, even when m
lecular targets are involved. However, we have found
appropriate scaling for the differential cross sections ap
cable for the whole range of the scattering angles.
its
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A. Hydrogen ion-atom collision systems:A11B

We recall that the cross sections for symmetric syste
(A11A,A5H, D, T) were calculated taking into accoun
the indistinguishability of the nuclei, which we call here ca
(a). At high energies the ‘‘elastic’’ cross section in this pr
scription tends to the total scattering cross sections tot,sym,
while the spin exchange cross sections becomes the com
symmetric charge transfer cross section,sct,sym. On the other
hand, for the cases where the projectile and target nucle
distinguishable, case (b), for example when these differ iso
topically, both elastic and charge transfer cross sections h
their original meaning for all collision energies. In order
remediate this apparent inconsistency in possible appl
tions, we defined in Sec. II also a ‘‘pure’’ elastic cross se
tions for case (a), as the difference ofs tot,sym and sct,sym,
that is,sel,sym5s tot,sym2sct,sym. This has two features:~i! It
smoothly tends to the elastic cross section of the case (b);
~ii ! the variation ofsel,sym from the one in case (b) is an
appropriate measure of the distinguishability of like nucl
in the energy range considered. We present next the sca
relations for all of the definitions.

In case (a) both the total and spin-exchange~which we
call ‘‘charge transfer’’ to emphasize its ‘‘semiclassica
limit ! cross sections scale as

s tot,sym
A11A~E!5s tot,sym

H11HS m0

mAA
ED , ~24!

sct,sym
A11A~E!5sct,sym

H11HS m0

mAA
ED , ~25!

wheremAA is the reduced mass ofA11A (m0 is the reduced
mass of H11H). When isotopically different nuclei are in
volved, case (b), both charge transfer and elastic cross s
tions scale as in the symmetric case, Eqs.~24! and ~25!.
Concerning the relation between these two groups of cr
sections, the scaled elastic cross sections of the typeb)
match approximately the H11H one when multiplied by
A2, i.e.,

A2sel
A11B~E!5s tot,sym

H11HS m0

mAB
ED ~26!

while for charge transfer we have

sct
A11B~E!5sct

H11HS m0

mAB
ED . ~27!

Assuming s tot,sym5sel,sym1sct,sym, as in Eq.~13!, one
obtains from Eqs.~24!–~27!,

sct
A11A~E!5

A221

A2
s tot,sym

A11A~E!, ~28!

i.e., sct
A11B(E)5(A221)sel

A11B(E), for any A and B. Fi-
nally, considering all elastic cross sections~including
sel,sym), the scaling with the reduced mass is obtained, i.

sel
A11B~E!5sel

H11HS m0

mAB
ED ~29!
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FIG. 1. Scaling of the cross sections for the isotopic variants of hydrogen ion-atom collision systems:~a! elastic, symmetric (s tot,sym, see
the text!, asymmetric (sel), and charge transfer (sct); ~b! momentum transfer, symmetric (smt,sym), and asymmetric (smt); and~c! viscosity,
symmetric (svi,sym), and asymmetric (svi). The H11H case is indicated by a solid line. For concreteness, we note that the atomic u
length squared~i.e., for the cross section! is the Bohr radius squared,ao

25 8.79543 10217 cm2 5 1 a.u.
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for all A andB. The above results are demonstrated grap
cally in Fig. 1~a!. The scaled charge transfer cross sectio
for all of the systems lie within 1% of one another for C
collision energies above 0.5 eV. At lower energies, wh
interference effects of the elastic and charge transfer ch
nels are significant, the scaling deteriorates. Still, the cr
sections oscillate with approximately the same mean va
The elastic cross sections (sel) reach a 1% scaling accurac
if the collision energy is above 1 eV, with a maximum d
viation of 5% at 0.5 eV, and about 25% at 0.1 eV.

As for the elastic cross sections, the momentum tran
cross sections for the symmetric cases, even in the C
limit, can be defined for two possible types of situations
type (a), in which one does not distinguish between t
scattered projectiles and ions produced in the target an
type (b), where only scattered projectiles are counted. Th
eitherds tot,sym/dV @as in Eq.~10!, type (a)] or dsel,sym/dV
@as in Eq.~13!, type (b)# is used in defining the momentum
transfer cross section, Eq.~2!. Momentum transfer cross sec
tions obtained usingdsel,sym/dV for symmetric systems al
i-
s

e
n-
ss
e.

er
P
f

of
s,

most coincide with those obtained for asymmetric cases
shown in Fig. 1~b!. In this event no scaling is needed, i.e.

smt
A11B~E!5smt

H11H~E!. ~30!

For energies above 1 eV the agreement is within 1%
below that energy the deviations are of the order of the
terference oscillation amplitudes~15%!. On the other hand
momentum transfer cross sections defined byds tot,sym/dV
scale with the reduced mass, similarly to the elastic a
charge transfer cross sections, i.e.,

smt,sym
A11A~E!5smt,sym

H11HS m0

mAA
ED . ~31!

The scaled cross sections do not deviate more than 5% in
whole energy range considered.

Finally, in Fig. 1~b! we also show the level of complianc
of these results with the known relation



le
ie

(
li

e
r

he

r b

in-
,
o

ss
re

-
ca
.

b
n

r i
f
re
se
s

ab
e
n

e

s to

las-
ec.
Eq.

nt
s-
opi-
th

.

rgy

m-
d no

ing

re
we

sys-
sses
ris-
he
ced
ile

the
ed,
ure

PRA 60 2125CONSISTENT DEFINITIONS FOR, AND . . .
smt,sym
A11A~E!'2sct

A11A~E! ~32!

valid for systems with indistinguishable nuclei, for the who
energy range. The agreement is within 0.1% for energ
above 1 eV. Although Fig. 1~b! shows only the H11H case,
it is obvious that the relation stays valid for the D11D and
T11T systems. Taking into account Eqs.~26!–~28!, we aug-
ment this relation with another useful relation

smt,sym
A11A~E!'~22A2!s tot,sym

A11A~E!. ~33!

The viscosity cross sections calculated for both casesa)
and (b) are independent of the reduced mass, and no sca
is needed@Fig. 1~c!#. It is interesting to note that a simpl
relation between the (a) and (b) cross sections is valid ove
the whole energy range, i.e.,

svi,sym~E!'2svi~E!, ~34!

reflecting the factor of 2 between the two definitions of t
differential cross sections at a scattering angle ofp/2. Thus

svi,sym
A11A~E!5svi,sym

H11H~E!, ~35!

svi
A11B~E!5svi

H11H~E!. ~36!

Below 0.5 eV, the cross sections deviate from each othe
at most 7%. We note that the lower curves in Fig. 1~c! also
include the symmetric cases, calculated from Eq.~13!.

B. Hydrogen atom-atom collision systems:A1B

The cross sections for symmetric systems (A1A,A
5H,D,T) were calculated taking into account the indist
guishability of the nuclei@case (a)#. As discussed in Sec. II
the integral elastic cross sections that comply with the c
rect CDP limit are obtained from case (a) by simple division
by 2, to account for the symmetry of the differential cro
section in the center of the mass with respect to the di
~forward! and backward~recoil! scattering. This is reflected
by the curves in Fig. 2~a!, where, upon scaling of the colli
sion energy with mass, all elastic cross sections, either
culated from Eq.~16! or Eq. ~19!, approximately coincide
Their agreement is better than 1% at energies above 1 eV
does not become worse than 12% at 0.1 eV. The interfere
oscillations in the cross sections are significantly smalle
comparison to the ion-atom cases due to the absence o
charge transfer channel and due to the short-range natu
the interaction potential. The total spin exchange cross
tions, after scaling of collision energy with the reduced ma
group along two separate curves, one for the distinguish
and one for the indistinguishable nuclei cases. These ar
most parallel and can be reduced to one curve by divisio
the QIP cross sections by approximatelyd511A3, as
shown in Fig. 2~a!. All these relations are summarized by th
following formulas:
s
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sel
A1B~E!5sel

H1HS m0

mAA
ED , ~37!

sse
A1B~E!5

1

dsse,sym
H1H S m0

mAA
ED , ~38!

wherem0 is the reduced mass of H1 H, d511A3 for the
symmetric systems, andd51 otherwise.

Scaling of the momentum transfer cross sections need
be considered separately for the cases (a) and (b), which is
a consequence of a pronounced backward peak in the ‘‘e
tic’’ cross section for symmetric cases. As discussed in S
II, the momentum transfer cross section calculated from
~16! is equal to the elastic cross section, Fig. 2~b!. This
scales, as the elastic one, with the reduced mass, i.e.,

smt,sym
A1A ~E!5smt,sym

H1H S m0

mAA
ED . ~39!

On the other hand, for the case of isotopically differe
nuclei one can use Eq.~20! to evaluate the momentum tran
fer cross sections. The resulting cross sections are isot
cally invariant. Thus, the assumption of the CDP for bo
symmetric and asymmetric cases yields

smt
A1B~E!5smt

C1D~E!, ~40!

whereA, B, C, andD are any combination of H, D, and T
This is also illustrated in Fig. 2~b!. The maximum dispersion
of the curves for the different systems over the whole ene
range~even for 0.1 eV! is less than 5%.

The viscosity cross section for both symmetric and asy
metric systems is independent of the reduced mass, an
additional scaling is needed. Thus

svi
A1B~E!5svi

H1H~E! ~41!

as illustrated in Fig. 2~c!. Again the deviations around H1
H curves stay below 5% for energies below 1 eV, becom
negligible at higher energies.

Unlike the H11H case, wheresmt,sym52sct,sym, here we
find for the H1H case

smt'5.2sse. ~42!

C. Hydrogen ion-molecule collision systems:A11BC

Collisions of hydrogen ions with hydrogen molecules a
treated as collisions of distinguishable particles, and thus
do not expect any conceptual difference between the
tems, except to account for differences in the reduced ma
as well as in the vibrational couplings and energies. Surp
ingly, after averaging over the diatomic orientations, t
elastic cross sections scale well with the system’s redu
mass if only the projectile is varied. For a fixed project
mass the cross section does not depend significantly on
details of the molecular target, and no scaling is need
especially if the collision energies are above 0.3 eV. Fig
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FIG. 2. Scaling of the cross sections for the isotopic variants of hydrogen atom-atom collision systems:~a! elastic (sel) and spin
exchange (sse); ~b! momentum transfer, symmetric (smt,sym), and asymmetric (smt); and~c! viscosity (svi). The H1H case is indicated by
a solid line.
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3~a! illustrates these behaviors, combining various project
with all six isotopic combinations of H2. Thus, for variation
of the projectile isotope and for variation of the target iso
pomers, respectively, we have

sel
A11BC~E!5sel

H11H2S m0

mACD
ED , AÞH,

~43!

sel
A11BC~E!5sel

A11H2~E!,

where m0 is the reduced mass of H11H2. The deviations
from the H11H2 curve do not exceed 20% over the who
energy range. These drop to less than 5% for energies c
to 100 eV, when the collision time becomes short in co
parison to the characteristic vibration time of the target.

All the momentum transfer cross sections almost coinc
at energies lower than 2 eV@see Fig. 3~b!#. The curves de-
viate up to a factor of 3 in the range of 10 eV, where t
vibrational transitions are most active. This deviation d
s

-

se
-

e

-

creases toward higher energies, as with the elastic cross
tions, when the momentum transfer cross section beco
very small and population of the vibrational excited sta
high. The dispersion in that range may also be attributed
possible convergence errors caused by the implemented
cation of the sum over vibrational states, which produces
most pronounced uncertainty for large scattering angles
most affect the momentum transfer cross section. Thus

smt
A11BC~E!5smt

H11H2~E! ~44!

for all A, B, andC.
Figure 3~c! shows the viscosity cross sections for all

the isotopic variants. Similar to the momentum transfer ca
the curves start to deviate above 2 eV, where the detail
vibrational excitations are reflected to the midrange a
backward part of the differential cross sections. The dev
tion decreases toward higher energies. Thus we have
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FIG. 3. Scaling of the cross sections for the isotopic variants of hydrogen ion-molecule collision systems:~a! elastic (sel), ~b! momentum
transfer (smt), and~c! viscosity (svi). The H11H2 case is indicated by a dashed line.
es
ys

in
je

c

an
the

ss
are

ec-

P
For

the
svi
A11BC~E!5svi

H11H2~E! ~45!

for all A, B, andC.

D. Hydrogen atom-molecule collision systems:A1BC

The collisions of neutral atoms with neutral molecul
retain the properties similar to cases of ion-molecule s
tems. Unlike the ion-molecule case, the best scaling
reached for the elastic cross sections if it is performed us
the reduced masses for all cases, irrespective of the pro
tile. This is illustrated in Fig. 4~a!. In this case

sel
A1BC~E!5sel

H1H2S m0

mABC
ED ~46!

for all A, B, andC.
The momentum transfer and viscosity cross sections

incide, and no scaling is needed, as shown in Figs. 4~b! and
4~c!. Thus
-
is
g
c-

o-

smt
A1BC~E!5smt

H1H2~E!, svi
A1BC~E!5svi

H1H2~E!.
~47!

We note that the dispersion of the results is smaller th
in the ion-molecule case, and does not exceed 30% in
vibrationally active region of collision energies~except at
100 eV! for both momentum transfer and viscosity cro
sections. For the elastic cross section, the deviations
quantitatively similar to the ion-molecule cases.

E. Comparisons among various systems

Figure 5~a! shows a comparison of the elastic cross s
tions for the four types of systems considered~excluding the
isotopic variants of H!. The cross sections with correct CD
limits, as defined in the previous sections, are shown.
reference, we also show the QIP cross section (s tot,sym) for
H11H.

Very surprising is the high level of similarity of H1H and
H1H2 cross sections. They stay approximately equal in
whole energy range. Similar also are the cases H11H and
H11H2, though to a less extent. The H11H elastic
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FIG. 4. Scaling of the cross sections for the isotopic variants of hydrogen atom-molecule collision systems:~a! elastic (sel); ~b!
momentum transfer (smt), and~c! viscosity (svi). The H1H2 case is indicated by a dashed line.
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cross section is about 2.5 times bigger than that of H1 H,
for energies of a fraction of eV. With an increase of collisi
energy, this factor slightly decreases, staying above 2.
QIP cross section for H11H stays more than a factor of
bigger than the CDP result for the H1H system. Note that
the latter does not contain the recoil scattering contributi
The full QIP elastic cross section for H1H can be simply
obtained by multiplication of the elastic cross section by

The comparison of the momentum transfer and visco
cross sections for the four types of systems is shown in F
5~b! and 5~c!. Excluding the cases where QIP is assum
most of the momentum transfer cross sections for vari
system types do not deviate from each other by more tha
factor of 2. If the QIP momentum transfer cross section fo
1 H is multiplied by 2~thus accounting for both direct an
recoil channels!, this becomes quite close to the QIP mome
tum transfer cross section for H11H.

All CDP viscosity cross sections are very similar for e
ergies lower than 1 eV. At higher energies, when the vib
tional excitation channels open, the cases with molecular
gets deviate from the ion-atom and atom-atom syste
Finally, at higher energies, close to 100 eV, when the vib
tional structure of the molecule plays a lesser role in
e

.

y
s.
,
s
a

-

-
r-
s.
-
e

collision dynamics, the viscosity cross sections with like p
jectiles become similar.

IV. CONCLUSIONS

Utilizing comprehensive, very accurate fully quantal ca
culations of the elastic cross sections for scattering of iso
pomers of hydrogen ions, atoms, and molecules over
range of center-of-mass collision energies 0.1–100 eV,
have considered the scaling relations among various gro
of collision partners. In addition, we have elucidated cons
tent definitions of the elastic and common transport rela
cross sections regarding preservation of the classical dis
guishability of particles at high collision energies, while a
lowing for the quantum indistinguishability of particles
clearing up a number of inconsistent definitions found in
literature.

In particular, we have considered four groups of collisi
systems: ion-atom, atom-atom, ion-molecule, and ato
molecule. In each group separately we find that, over
whole energy range, the elastic cross sections scale wi
simple reduced mass ratio multiplying the CM collision e
ergy, and thus with the square of the CM velocity. The m
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FIG. 5. Comparison of the cross sections for the various classes of collision systems which involve hydrogen ions, atoms, and m
~a! elastic (sel), ~b! momentum transfer (smt); and ~c! viscosity (svi).
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mentum transfer and viscosity cross sections, on the o
hand, are similar within each group, showing independe
on both reduced mass and on the vibrational structure~in the
case of molecular targets!. We also particularly find that the
assumption of the classical distinguishability for the isoto
cally like nuclei in ion-atom and atom-atom cases of hyd
gen is an acceptable alternative to the inconsistent definit
of the elastic cross sections for the symmetric and asymm
ric systems, in the whole range of energies conside
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