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Owing to the crucial role played by elastic scattering in various gas/plasma environments and to its funda-
mental nature, we consider in the present work low-energy collisions among isotopic variants-¢f,HH
+H, and H +H,. In particular, we present consistent definitions of the elastic-scattering cross section and its
common transport relevant moments regarding the quantum indistinguishability or classical distinguishability
of particles, correcting some inappropriate definitions found in the literature. Further, we utilize a large col-
lection of fully quantal calculated results for these systems to display the scaling relationships that exist among
them.[S1050-294{®9)01309-9

PACS numbe(s): 34.50-s, 34.10+x

[. INTRODUCTION differential cross sections. These peaks correspond in this
limit to elastic scatteringforward) and either charge transfer

The transport of particles and, in particular, the exchangébackward for the ion-atom case or target rec@ackward
of momentum, in cool hydrogen plasma/gas can be domifor the atom-atom case, and thus enabling classical distin-
nantly determined by elastic scattering among hydrogemuishability of the particlesCDP), i.e., labeling of the pro-
ions, atoms, and molecules. For example, recent emphasis gectile and the target. An experiment in the low collision
the engineering design of fusion reactors has focused atteenergy limit would not have the means of distinguishing the
tion on these issues regarding the so-called divertor region itwo overlapping channels by scattering angles or the projec-
which high-density, low-temperature hydrogen plasma idile energy; the only means left for labeling the projectile and
produced to bring about the neutralization and heat exhausarget are spins of the colliding nuclei.
from the burning plasma in the core regifh-7]. Further- Since, in practice, most experiments, as well as plasma
more, elastic scattering has been shown to be an importantodeling, assume unpolarized beams of projectiles and un-
process in numerous astrophysical environments, for expolarized targets, the relevant theory of elastic scattering
ample, in planetary ionosphergs, the heliospheric shock at should take into account the spin statistics of the nuclei
the interface of our solar system and the local interstellaf18,15,2]. This results in an elastic cross section which, for
medium[9,10|, comet bow shockésee, e.g.[11]), and non-  high collision energies, tends to the “total” cross section for
radiative shocks in supernovae ejetsae, e.9.[12]). Inter-  scattering of projectiles, rather than to the elastic one, thus
est generated by the recent experimental observations oépresenting an experiment in which direct and recoil chan-
Bose-Einstein condensates has also spurred the need for a®ls are not separated even for energies where CDP is in
curate description of very-low-temperature elastic scatteringffect. Particularly sensitive to this definition is the momen-
(e.g., for H+H scattering, segl3,14). tum transfer cross section, derived by integration of the elas-

Noting these needs for a comprehensive understanding oic differential cross section weighted by-Xos6, where
elastic and related transport cross sections, and due to th&the scattering angle. Since the weighting factor emphasizes
considerable inconsistency in the literature regarding théhe backward scattering angles, the momentum transfer cross
definitions of these quantities in some cases, and their applsection could be considerably larger if recoil scattering is
cations, we present here an exposition of consistent definpresent in the elastic cross section in the case when the target
tions and an analysis of the cross-section scaling relatiorparticles are included.
ships among various hydrogen species collision systems. Thus the definition of the elastic cross section as well as

In particular, there has been considerable inconsistency iaf its higher moments for the symmetiicucle) systems do
the definition of the elasti¢el) cross section as well as its not have the classical limit, defined by CDP, even when the
higher moments, the momentum transfert) and viscosity latter can be reached in an experiment. Alternately, the in-
(vi) cross sections, with respect to the quantum indistinguishability to distinguish projectiles ions from ions coming from
ability of colliding particles (QIP) in symmetric systems the target by charge transféct) leads one to define the
such as H+H or H+H [15-21,13. This indistinguishabil- ~ “spin-exchange”(se cross section, assuming the scattering
ity is manifested by an overlap of the wave functions at lowof a polarized beam of projectiles on an unpolarized target
collision energies and thus by significant interference bef15,21]. If the scattered particle is detected with changed
tween the elastic and charge transfer channels in the case wificlear spin, and spin coupling is not present, this particle
ion-atom scattering, or by the direct elastic and recoil chanhas certainly come from the target. The spin exchange cross
nels for the atom-atom case. With increasing collision ensection does have the correct classical limit, which would
ergy, the overlap decreases and pronounced peaks for fasmoothly become equivalent to the charge transfer cross sec-
ward and backward scattering are displayed by theion in the CDP limit. One may analogously define the spin
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exchange cross section for identical atom-atom scatterintpast ten successive partial waves. The number of partial
[18,13,22. waves needed for convergence of the elastic amplitudes was

Two significantly different sets of elastic and transportusually significantly larger than the amount needed for the
cross sections could be produced for the symmetric collisiorworresponding convergence of inelastic amplitudes, reflect-
systems even at higher energies, depending on the assunipg the importance of the region of large internuclear dis-
tion of QIP or CDP. Although each of the sets is internallytanceR in elastic scattering. The converged amplitudes were
consistent, they could potentially introduce a confusion inmatched to the standard plane-wave boundary conditions in
plasma modeling applications, resulting in double countingorder to define th& matrix and subsequently the unitarized
For example, if QIP is used in modeling of the igreutra) S matrix [25]. This was then used to define the elastic phase
transport, the resulting momentum transfer cross section cormshifts §,, whereS,=exp(245,). The differential cross sec-
tains both contributions from elastic and symmetric chargeions were calculated for 768 CM scattering angles in inter-
transfer(recoil) processes, and thus the charge transfer conval (0,7), starting from angles as small as<@0 ° rad to
tribution must be removed from the transport code. Sincdacility Gauss-Legendre quadrature.
most of the transport applications rely on the CDP, itis im- We used QIP where appropriatiee., for the symmetric
portant to define the meaning of “low{where QIP is as- collision pairs in the definition of the elastic differential
sumed and “high” energies (where CDP is adequate cross sectionslo/d(), while for ion-atom and atom-atom
Without removing the QIP in calculations for symmetric sys-systems which involved different isotopic constituents, the
tems, we define in Sec. Il quantities that have correct CDRrojectile and target nuclei were, of course, considered as
limits for elastic, momentum transfer, and viscosity crossdistinguishable at all energies, thus satisfying CDP. The in-
sections and estimate the errors of using the CDP assumptiaagral elastic cross sectioa,,, and its higher momen{26],
over the center-of-the-mas&cCM) collision energy range momentum transfer, and viscosityo,;, were found by
considered. Also significant is the result that quantities denumerical and(where possible analytic integration over
fined in this way enable a unique scaling and meaning of alscattering angles,
elastic and transport cross sections within each type of col-
lision system, irrespective of isotopic constitution.

Four types of systems, ion-atomnA{+B), atom-atom
(A+B), ion-molecule A*+BC), and atom-molecule X
+BC), have been studied, whefe B, andC are any of the w do
hydrogen atom isotope@H, D, or T). The hydrogen mol- UthZWf dfsinf(1-cosf) g 2
ecules are assumed to be initially in their ground vibrational 0
state. These constitute 51 distinct collision systems. We base d

- . m . [
our conclusions on receif23,24] fully quantal calculations Uvi=27Tf dosintg—. ©)
of more than 2800 differential and more than 200 integral 0 dQ
cross sections spanning the CM collision energy range of ) ) )
0.1-100 eV. Besides utilizing the best available potential . Comparisons of the two methods of the integration
energy surfaces and carefully checking numerical converYielded agreeme_nt better_than four S|gn|f|cant digits. The cal-
gences to achieve high accuracy in the calculations, the goo%plated differential and mtegrall cross sections, as we.II as
quality of the data was also verified by extensive compariso10S€ for charge transfer and spin exchange, can be reviewed
with the theoretical and experimantal data available in theé" both graphical and tabular forn42]. In the following we
literature. These comparisons have been presented elsewh&Efly explain the details of the calculations of the cross
[23,24. Scaling relations among the integral elastic andS€ctions, specific for each of the four system types.

. d
aelzzwfo desineﬁ, 1)

transport cross sections are described in Sec. Ill. Atomic _ N
units (a.u) are used throughout the text unless stated other- A. Hydrogen ion-atom collision systemsA* +B
wise. Adiabatic potential energy surfaces fopHcan be found

with arbitrary accuracy, using separation of variables in pro-
late elliptic coordinatef27] for this two-center, one-electron
system. We calculated the ground gerade and ungerade po-
tential curves (%0 and 200) and their first derivatives for
Calculation of these differential and integral cross secall R<1 with steps of 0.0001 and fdR<50 with steps of
tions has been described in detail recefi$,24 and only  0.001 to obtain smooth linear fits for values®heeded by
the essential features of the numerical methods are summthe radial Schrdinger equation solver. For even larg&rthe
rized briefly here. For example, common to the calculationabnalytic asymptotic expansion of the potentig®8] up to
techniques for all systems considered is the solution of theleventh order in B was used.
relevant Schrdinger radial equation or system of equations If the masses of the projectile and target are different, as
(in cases that involve molecular target$hese have been is the case with isotopically different nuclei, the asymptotic
solved using the method described by Johr®%) based on energies of the 40 and 2o split for the difference in bind-
the use of the logarithmic derivative. The step size used iting energies ofA andB, induced by a small difference in the
the numerical mesh was between 0.001 and 0.0001 while thedectron reduced mass for the two atoms. This small differ-
convergence of a solution for the elastic amplitadein the  ence in masses can be transformed into a difference in
number of partial waves;, was established for each energy charges of the two nuclg¢R9], thus destroying exact gerade-
by requiring that + Re{a,}<10"°, Im?{a,}<107° for at ungerade symmetry. Still, the splitting in the levels is so

Il. CALCULATION OF THE ELASTIC AND TRANSPORT
CROSS SECTIONS
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TABLE I. Parameters in Eq11) for spin-averaged integral elastic cross sections in symmetric ion-atom

systems.

HY+H,T +T D" +D
Type g 7 72 0] 03 0] 0, ©] 0, ©] ©,
Totl »+1 & & 3 3 % 3 & b 3
Momentum transfer /+1 9—-8%,, su-o4,, ¥+ 2 ¢ L 2z 1 1 2
) . (Z+1)(/+2) 1 3 3 . 5 L . )
Viscosity %53 270 8478 7 7 1 1 3 3 3 3

small (0.0037 eV for the HD system that it results in a change of particles results in the change of the 5{@.9
negligible effect for collision energies of 0.1 eV and greater, 75 - - .

resulting in approximate identityfour digits) of the cross R, or, faqulv_alently, the change of scattering anglénto
sections forA* +B andB™* + A scattering. Thus we assume 7 — ¢ While R is unchanged. The detector at angleounts

that an approximate gerade-ungerade symmetry oAeé  both particles scattered dtand7— 6. When nuclei have the
wave functions is preserved, while the nuclei are distinguishS@me charge but are distinguishable by other means, the scat-
able. We include the small effect of the mass difference if€fing amplitudes for the direct elastiéy(¢), and charge

the adiabatic potentia[80]. These assumptions yield for the transfer.f¢(6), channels are commonly defined in terms of
integral cross sectiorfd5] scattering amplitudes on uncoupled gerade and ungerade

ground state$15,20Q, i.e.,

7T o]
=— 2/ +1)[sir? 8%+ sirt 8" fq(0)+f,(0
T~ 2 Zo( )[sin* 57 / F4(0)= o )2 u(0) ®
+2sinsY sinsY 89—, 4
siné? sind, cog 6, —6,)] (4) and
LTS o g2 8 f4(0)—Fu(0)
o= Z}o (2/+1)sirP(89—8Y), (5) fo6) =S 9
T oo _ _ These amplitudes are used to define the differential cross
Umtzﬁ /2 (/+1)(sir? AS+sin? A} sections for scattering when the two nuclei are different iso-
/=0 topes of hydrogen. In a fully symmetric case, taking into
+sin&%, ,siné% cosA%+sins, ; sind? cosAY), account spin statistics of an unpolarized beam on an unpo-
o * ’ ’ larized target, one obtaif45,20,2]
(6)
dC’tot_ 2 2
T o (D +2) I E_Sﬂfd(e)_fct(ﬂ_a” +5,|fa(0)+fe(m—0)],
O'ViIP ZO 2/—_’_3(SII"I2 F/+Sln2 F/ (10)
+siné? ,sindY cosl'%"+sinsY | , sin 8%cosl'Y9), wheres; =32 ands,=3 in the case of protons and tritons

(fermiony, ands;=% ands,=% in the case of deuterons
() (boson$. We use subscript “tot” for the cross section in Eq.
where k is the CM momentum,A2=62,,—56%, A3’  (10), rather than the usual “el,” thus stressing the true mean-
=62, ,— 5b , I2=62, ,— 5?/, ng: 8% - 5'3 , for each ing of the equation in the CDP limit: incoherent combination
partial wave/, anda and b stand for eitheru or g. The  ©Of “el” and charge transfer. On the other hand, assuming a
charge transfer cross Sectim‘h, is well defined under CDP pOlariZEd incident beam, one defines the amplitude for Spin
even at low energies. exchange[20,2] as fs{ 0) =f(6), Eq. (9). The spin ex-

As discussed in the Introduction, if the nuclei are identicalchange obviously acquires the meaning of the charge transfer
and the collision energy is low enough, there is no way te@mplitude when CDP is applicable, therefore from here for-
distinguish which ion is elastically scattered and which jonward we will use the subscript “ct” for either charge transfer
results from charge transfer from the target nuclei, unless wer spin exchange.
label the particles by their spin. But in a typical situation of ~For the symmetriadsym) ion-atom systems, performing
an unpolarized projectile beam and target, we must accouritegration over scattering angles analytically, the formulas
for the appropriate spin statistics, which yields “elastic” obtained for the integral elastic cross section and its higher
cross sections that contain contributions from both channelg1oments take the same form
coherently. With the increase of collision energy, these
evolve into the “total” scattering cross sections for the pro-
jectiles.

This may be formalized by first defining the relative CM

motion of the nuclei by the vectoR= Iil— R,. The inter- where the coefficients are summarized in Table I, for conve-

47T + . + .
O'tot,sym:F /Z+ g(/)(wf SII’127]1+ w2_5m2772)1 (11
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nience, while The symmetric systemé@ke H + H, D + D,and T+ T)
also require in this case special attention. In the absence of
A7 = other means, we again use the spin to label the identical
Tetsym— "7 /ZO (2/+1)sirP(8%—8Y). (120 nuclei at lower energies, where the overlap of the direct and

recoil channels is significant. Two kinds of spin statistics are
involved in the problem here, one with respect to the electron
spins and another with respect to nuclear spins. Thus, assum-
Fenq to those of Eag4), (6), apd(?) even when the energy inpg scattering of an unpolaprized beam of a?oms by an unpo-
is high enough that the amplltU((ig)s in E40) f(,jd incoher- |4rized target, and applying the proper nuclear spin statistics
ently (CDP limit). For exampleigm for Ha™ is approxi- - gnq symmetrization of the amplitudes, we obtain the “elas-
mately a factor of\2 larger thanog calculated for H* i differential cross sections for the electronic single) (

u_sing Eq.(4), over almost the entire range of e_nergies CON-and triplet(t) states separately in the forf8,13
sidered, although both are referred to as “elastic” cross sec-

The cross sections, defined by Efyl) and Table I, do not

tions in the literature. Still, it is possible to construct an dog )

elastic cross section even for symmetric systems, which has szHz[as,t“s,t( 0)+fsi(m—0)|

the correct CDP limit and, as we show in Sec. lll, has a

reasonable interpretation even at energies as low as 0.1 eV. +Dg it fsi(0)—fs(m—60)[2], (15

In the rest of the text we will call this the “elastic” cross

section for symmetric ion-atom scattering, i.e., whereag=1/4, b;=3/4, a;=1/4, andb,= 3/4 for hydrogen
and tritium atoms, ands=2/3, bg=1/3, a,=1/3, andb;

Tl sym= afgtvsym— Ot sym- (13 =2/3 for deuterium atoms. Taking into account the statistics

of the electron singlet and triplet spin states, the “elastic”
To define the momentum transfer and viscosity cross sedifferential cross section finally takes the form
tions with the correct CDP limit, it is convenient to define

the “elastic” differential cross section by subtracting dog 1ldos 3doy

docisym/dQ from doygym/dQ and applying the weighted dQ 4 dO +Z da- (16)
integration in Eqs(2) and (3) to the resultingdo/dQ) to

obtain the form This contains contributions from both scattered and re-

coiled atoms, and due to the full symmetry between the pro-
jectile and the target, the differential cross section is sym-
metrical about the scattering angte/2, i.e., forward and
) backward peaks are identical. Therefore, the integral elastic
—[felm=0)| cross section for a symmetric system is a factor of 2 larger
_ 2_ _ _ than the one obtained assuming CDP, described by scattering
[fa(O)]"=2(s1=52)fa(O) fel( 7= 6). (149 of, for example, isotopically different particles. Thus we
The integral elastic cross section of H43) is compatible adopt the factogy,, = 1/2, which guarantees the correct CDP
with the definition in Eq.(14). limit of the integral elastic cross section, still keeping inter-
Obviously, the elastic differential cross section so definederence of the forward and backward peaks in the differential
for a symmetric system differs from the CDP cross sectiorfross section. The factofy,, also affects the momentum
by the interference term, which vanishes in the CDP limit.transfer and viscosity cross sections, but does not bring them
Althoughdog/d() can be negative for some angles and en-to the correct CDP limit. The solution to this problem is
ergies, at least in principle, it results in integral cross sectionsliscussed in Sec. ll.
with the correct CDP limit, as we illustrate in Sec. Ill. The integral cross sections can be written in the fpi3]

d0'e| 2 2
d—Q=51|fd( 0) — fo(m— 0)|*+ 85| T4(0) + (7= 6)]

B. Hydrogen atom-atom collision systemsA+B 47 .. L.
iy o=éy,— 2 9(/)(eisifyto;sity,), (17)
The H(1s)+H(1s) collision system evolves along the ke /==

ground singleX'S  and tripletb®s | potentials, which be-

come degenerate whdét—oo. If various H isotopes consti- where the coefficientg(/), wfz, and 7, are given in
tute the system, then the singlet and triplet states split in th&able II. We note that elastic and momentum transfer cross
asymptotic limit for the same reasons as in &ie+B case.  sections here are identical. This follows directly from con-
We find that the mass asymmetry affects only the fifth digitsistent use of the defining relation, Eg) with Eq. (15), and

and beyond in the integral elastic cross section, which is fois a consequence of the specific nature of the sums in partial
all practical purposes insignificant. The requireg pbten-  waves (either even or odd surhsand of the orthogonality
tials were obtained from Jamies§81], who compiled, fit- properties of Legendre polynomials. This definition of the
ted, and extrapolated the data of Kolos and WolnieW82. momentum transfer cross section describes diffusion of both
Although these potentials are not as accurate as those fetastically scattered and recoiled H atoms, compatible with
H,*, they represent the best data currently available. Moréhe QIP nature of the process. The coefficients for the elastic
detail regarding the calculation of elastic cross sections foand viscosity cross sections are identical to those obtained by
the neutral, atom-atom scattering will be given elsewhereJlamiesonet al. [13]. However, their momentum transfer
[24]. cross section is calculated with the use of the Boltzmann spin
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TABLE Il. Parameters in Eq(17) for spin-averaged integral elastic cross sections in symmetric atom-
atom systems.

H+H,T+T D+D

Type 9 7 7 0] 0; 0] 0, 0] 0, 0 o

Elastic Z+1 Y 8 3 2 032 3 2z 1 3 2

Momentum transfer Z+1 55 8 : 2 2 3 2z 1 L1 2

I+ (/+2

Viscosity U2 e 8md 1 3 8 8 5 1 4 o
statistics[31] and is therefore incompatible with E@L5). in the system. We calculated the ground potential adiabatic
This inconsistency has been recently corredtiet]. surface using a b54-state Gaussian basis in unrestricted

When the nuclei are of different masses we consider therilartree-Fock, full configuration interaction calculations us-
as CDP, so that the cross sections can be calculated by coimg cAMESS [36], over a range oR,p<1, on a numerical
sidering scattering without regard to the nuclear spins. Thignesh with a step of 0.1, and for anglgsn interval of 0°—
yields the differential cross section 180° with steps of 10°. This was then smoothly connected
with the excellent analytical surface fit of Boothroyd7],
for R<10, and continued for largR with the asymptotic,
analytic potential of the van der Waals type. The same basis
was used for calculation of thegH potentials, though both
wheref(6) are the amplitudes for scattering on the singletground H +H, and first excited(the ground of H-H,")
and triplet potentials. For the integral cross sections we obadiabatic surfaces were needed in this case. This is due to a
tain strong avoided crossing between the two potential surfaces
of Hy™ atp=2.6, for allR>4.5. Thus if the neutral molecu-
lar target H is in a high vibrational statey=4), the H*
makes an almost diabatic transition to the excited surface
upon collision, resulting in charge transfer;-#, " .

1 3 To account for this effect of “crossing” of the i sur-
—sirPAS + —sinzAt/), (200  faces, we transformed the two electronic adiabatic surfaces
4 © 4 ' to diabatic surfaces with correct boundary conditions, fol-
lowing the procedure developed by Baed4], using the
and diatom-in-molecule metho(DIM) nonadiabatic matrix ele-
ments, needed in transformation. The DIM method is suffi-
s 3. ¢ ciently accurate for largeR’s (where the nonadiabatic seam
i I+ Zs'n2 F/)’ occurg. The calculation of the potential was done on a nu-
(21)  merical mesh with a step of 0.1 in range pfbetween 0.1
and 6 and oR between 0 and 15, for the sanyés as in the
whereA3=6%,,—6%, I'3=6%,,— 6%, andaandb stand Hzcase. Ateven largd® we approximated the potential with
for eithers or t. dipole and polarization correction88,39.
Finally, only the ground diabatic surface, corresponding
C. Hydrogen ion-, atom-molecule collision systems: to the HF+.H2 at R—»oo.(elastic channg] was then used in
A* A+BC the scattering calculations. The sameg &hd H* ground
surfaces were used in calculations for all isotopic variations

When the collision time is much shorter than the characys the target (H, HD , D,, HT, DT, and ) and the projec-
teristic rotation time of the diatomic molecular target, onegjje (H",D*, and T'). The mass effect was included in the

may consider the molecular orientation fixed during the col-caicyiation of the vibrational wave functions by solving the
lision [infinite order sudden approximati¢tOSA) [33-39].  radjal Schrdinger equation on the relevant diatomic poten-
This condition is approximately fulfilled for the hydrogen ias. These functions were needed for excited vibrational-
molecule in the CM collision energy range presently considy;iprational matrix elements on the ground electronic sur-
ered, i.e., for 0.1-100 eV. As a consequence the diatomig,ces TheR-dependent matrix elements were fitted by cubic
V|brat|o.nal _coordlnatep gnd rgactlve coordinate (bet'ween splines for eachy, and in that form these were used in solv-
the projectile and the diatomic center of the massffice to  jng the resulting truncated Schtiager equation, for various
describe the collision dynami¢85]. The ensemble average hartial waves of the projectile. This constitutes a system of
is performed on the cro§s sections over diatomic orlentatlogoumed second-order differential equations for the partial
v (angle betweem; andR), treated as a parameter during a wave amplitudes, which we solve by the Johnson algorithm
collision. of logarithmic derivative$25]. Excited vibrational states up
In the atom-molecule cases £{H only the ground singlet to »<9 were included in the calculation of the elastic cross
potential surface was needed in this calculation. dhénitio  section for both atom-molecule and ion-molecule elastic
calculation of the ground potential surface of Hresents scattering on the ground vibrationat£€0) state. Even at an
serious difficulties because of the high degree of symmetrgnergy of 100 eV, the nine vibrational states were sufficient

dog 1 3
0 =2l fLOP+ZIfo (19

4o : 1. 3
o=z ZO (2/+ 1)(Zsm26‘}+ Zsmzé}) . (19

4o o ‘
omi=—y 2 (/+1)
k2 =o

4w i (/+1)(/+2)(1 ,
N2 AT 2743 |4
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to achieve convergence of the elastic cross section and its A. Hydrogen ion-atom collision systemsA* +B

transport moments. The number of partial waves for €ach \ye recall that the cross sections for symmetric systems
collision energy was increased until convergence waga+ia A—H D T) were calculated taking into account

achieved for the elastic amplitude in five significant digits. i jngistinguishability of the nuclei, which we call here case
We note that the maximum numbef,, of the partial waves () At high energies the “elastic” cross section in this pre-
needed for the elastic amplitudes exceeds by almost a fact Eription tends to the total scattering cross sectign

lsyms

8‘; azti;Zzlnggit:z{ic?;aerie(ljitfjogecso\?v\i/tﬁr?r?enggrﬁgtggclggfgh'?'heWh“e the spin exchange cross sections becomes the common
/ max Showed a weak ge endence upon diatomic oritz./ﬁtatiosymmetrIC charge transfer cross sectiogqm- On the other
~ max = ax aep P Mallofang, for the cases where the projectile and target nuclei are
v. Detailed description of the results of the calculation IS gistinguishable, cases), for example when these differ iso-

given elsewherg23,24. _ y _ topically, both elastic and charge transfer cross sections have
Given the vibrational amplitudes,(«,y,/), the differ- e original meaning for all collision energies. In order to

gntial cross .section for elastic scattering on the ground Vvibraz, meadiate this apparent inconsistency in possible applica-
tional state ig35] tions, we defined in Sec. Il also a “pure” elastic cross sec-

dog(E) 1 tions for case ¢), as the difference o0& sym and ot sym,
Tel=_ =SS 2/+1)(2/+1) that is, Ty syn= Trorsym— Tesyme THiS has two featuresi) It
dQ 8k2 7 7 smoothly tends to the elastic cross section of the cghe (
(i) the variation ofog g from the one in cased) is an
appropriate measure of the distinguishability of like nuclei,

X P ,(cos#)P . (cosh)

- in the energy range considered. We present next the scaling
xf dy siny[1—ag(e,y,/)] relations for all of the definitions.
0 In case @) both the total and spin-exchan@ehich we
X[1—ak(,y,/")], (22) c;al! “charge tra}nsfer” to emphasize its “semiclassical”
limit) cross sections scale as
wherek is the initial CM momentum ané the correspond- ggzgyﬁ](E):Ug:S;#ﬂE), (24)
ing kinetic energyE=k?/2, & is the Kronecker symbol, and ' ' A

the limit R— o0 is assumed. Finally, the integral elastic cross
section was obtained by integration over the full scattering UA++A(E)=O'H++H< Mo E) (25)
solid angleQ), which yields ctsym Y™ wan

whereuaa is the reduced mass &f" + A (u, is the reduced
o - mass of H +H). When isotopically different nuclei are in-
oeo(BE)=— > (2/+ 1)f dy sin(y)|1—ag(»,y,7)|% volved, case B), both charge transfer and elastic cross sec-
2k® 7 0 tions scale as in the symmetric case, E{) and (25).
(23 Concerning the relation between these two groups of cross
sections, the scaled elastic cross sections of the t@e (

The momentum transfer and viscosity cross sections werlatch approximately the H+H one when multiplied by

calculated by numerical integration of EQ2), with the ap- 2, e,

propriate #-dependent weightiEgs. (2) and (3)]. Both dif-

ferential and integral cross sections show good agreement 20A++B(E):UH++H(ﬂE) (26)
with those available from other authdi35,39-41. el tot,sym

while for charge transfer we have
I1l. SCALING RELATIONS
AT+B =y _ HT+H[ MO

For the ion-atom and atom-atom systems we performed ou (E)=0g (@E)' (27
semiclassical calculatioj$] in addition to the fully quantal
treatments. The agreement of the two sets of the results, al- Assuming ot syni= Oel.synit Tctsym: @S in EQ.(13), one
ready at the level of phase shifts, showed that the energygbtains from Eqs(24)—(27),
range considered is well within the region of semiclassical
validity. Thus, a reasonable primitive quantity characterizing At A J2-1 A4
the elastic cross sections is the semiclassical phase 8hift, o (BE)= TU tot,sym( )\
For small-angle scattering on short-range potentials it has
been shown that these scale directly with the square of the .+ g At 4B ,
relative collision velocity[16]. As shown below, the same '-€: ct (E) :_(\/E_l)gm . (E), for anyA and B. F"
type of scaling is present for the integral elastic cross sec?@lly, considering all elastic cross section&cluding
tions for all collision systems considered, even when moZelsym the scaling with the reduced mass is obtained, i.e.,
lecular targets are involved. However, we have found no
appropriate scaling for the differential cross sections appli- ag+*B(E)=a;++H<ﬂE
cable for the whole range of the scattering angles.

(28)

(29
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FIG. 1. Scaling of the cross sections for the isotopic variants of hydrogen ion-atom collision sy@jesfstic, Symmetric ¢ o sym: S€€
the tex}, asymmetric ¢, and charge transfepty); (b) momentum transfer, symmetriof, ¢, , and asymmetricd,,) ; and(c) viscosity,
symmetric @; sym), and asymmetricd,;). The H"'+H case is indicated by a solid line. For concreteness, we note that the atomic unit of
length squaredi.e., for the cross sectioris the Bohr radius squared?= 8.7954x 10~ cn? = 1 a.u.

for all A andB. The above results are demonstrated graphimost coincide with those obtained for asymmetric cases, as
cally in Fig. 1(a). The scaled charge transfer cross sectionshown in Fig. 1b). In this event no scaling is needed, i.e.,
for all of the systems lie within 1% of one another for CM

collision energies above 0.5 eV. At lower energies, where O_A++B(E):O_H++H(E). (30)
interference effects of the elastic and charge transfer chan- mt mt

nels are significant, the scaling deteriorates. Still, the cros
sections oscillate with approximately the same mean valu
The elastic cross sections () reach a 1% scaling accuracy

if the collision energy is above 1 eV, with a maximum de- momentum transfer cross sections defineddays, eym/d€

viation of 5% at 0.5 eV, and about 25% at 0.1 eV. ) . .
. ! scale with the reduced mass, similarly to the elastic and
As for the elastic cross sections, the momentum transfer

cross sections for the symmetric cases, even in the CDEharge transfer cross sections, i.e.,
limit, can be defined for two possible types of situations of

type («), in which one does not distinguish between the UA++A(E)_UH++H(/’“CJE
scattered projectiles and ions produced in the target and of sy MY wan
type (B), where only scattered projectiles are counted. Thus,

eitherdo s,m/d() [as in EQ.(10), type (a)] or dog) sym/d) The scaled cross sections do not deviate more than 5% in the
[as in Eq.(13), type (B)] is used in defining the momentum whole energy range considered.

transfer cross section, E(®). Momentum transfer cross sec-  Finally, in Fig. Ab) we also show the level of compliance
tions obtained using o s,/d() for symmetric systems al- of these results with the known relation

For energies above 1 eV the agreement is within 1% and
Selow that energy the deviations are of the order of the in-
terference oscillation amplitud€45%). On the other hand,

. (31
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+ +
Tham(E)~205 TA(E) (32 oA B(E) = U;w(ﬂ E) | @7
MAA
valid for systems with indistinguishable nuclei, for the whole
energy range. The agreement is within 0.1% for energies
above 1 eV. Although Fig.(b) shows only the Hl +H case, oAHB(E) = 1 (ﬂE) (39)
it is obvious that the relation stays valid for the’ B D and se dottH L uan /)’
T" + T systems. Taking into account E486)—(28), we aug-
ment this relation with another useful relation where uq is the reduced mass of # H, d=1+ /3 for the
symmetric systems, amdl=1 otherwise.
. . Scaling of the momentum transfer cross sections needs to
Tmiaym(E)~(2— J2) Trotaym(E)- (33)  be considered separately for the cases &nd (), which is
a consequence of a pronounced backward peak in the “elas-
The viscosity cross sections calculated for both casgs ( tic” cross section for symmetric cases. As discussed in Sec.
and (8) are independent of the reduced mass, and no scaling, the momentum transfer cross section calculated from Eq.
is neededFig. 1(c)]. It is interesting to note that a simple (16) is equal to the elastic cross section, Figb)2 This
relation between thea) and (8) cross sections is valid over Scales, as the elastic one, with the reduced mass, i.e.,
the whole energy range, i.e.,

se,sym

Mo
o E)= aggg”( — E) : (39
O'Vi,sym(E)mza'vi(E)- (34 Han
. I On the other hand, for the case of isotopically different
reflecting the factor of 2 between the two definitions of the ,cjei one can use ERO) to evaluate the momentum trans-
differential cross sections at a scattering angler(. Thus  fer cross sections. The resulting cross sections are isotopi-

cally invariant. Thus, the assumption of the CDP for both
symmetric and asymmetric cases yields

+ +
Tl m(E)= 0 o H(E), (35
omt (E)=07{ °(E), (40)
AT+B/=y_ HT+H
o (B)=ay "(E). (36) whereA, B, C, andD are any combination of H, D, and T.

_ _ This is also illustrated in Fig.(®). The maximum dispersion
Below 0.5 eV, the cross sections deviate from each other byt the curves for the different systems over the whole energy
at most 7%. We note that the lower curves in Fige)Blso  range(even for 0.1 eV is less than 5%.

include the symmetric cases, calculated from @g). The viscosity cross section for both symmetric and asym-
metric systems is independent of the reduced mass, and no
B. Hydrogen atom-atom collision systemsA+ B additional scaling is needed. Thus

The cross sections for symmetric system&-+A,A Ais n
=H,D,T) were calculated taking into account the indistin- oy S(E)=ay "(E) (41)
guishability of the nucleicase ¢)]. As discussed in Sec. I, ) o ) o
the integral elastic cross sections that comply with the cor@S illustrated in Fig. @). Again the deviations around H
rect CDP limit are obtained from case) by simple division ~H curves stay below 5% for energies below 1 eV, becoming
by 2, to account for the symmetry of the differential cross"€dligible at higher energies.
section in the center of the mass with respect to the direct Unlike the H"+H case, wherery syn= 20t sym, here we
(forward) and backwardrecoil) scattering. This is reflected find for the H+H case
by the curves in Fig. @), where, upon scaling of the colli-
sion energy with mass, all elastic cross sections, either cal- Om~5.20ce. (42)
culated from Eq.(16) or Eq. (19), approximately coincide.
Their agreement is better than 1% at energies above 1 eV but
does not become worse than 12% at 0.1 eV. The interference
oscillations in the cross sections are significantly smaller in  Collisions of hydrogen ions with hydrogen molecules are
comparison to the ion-atom cases due to the absence of tieated as collisions of distinguishable particles, and thus we
charge transfer channel and due to the short-range nature db not expect any conceptual difference between the sys-
the interaction potential. The total spin exchange cross setems, except to account for differences in the reduced masses
tions, after scaling of collision energy with the reduced massas well as in the vibrational couplings and energies. Surpris-
group along two separate curves, one for the distinguishabliagly, after averaging over the diatomic orientations, the
and one for the indistinguishable nuclei cases. These are atlastic cross sections scale well with the system’s reduced
most parallel and can be reduced to one curve by division ofnass if only the projectile is varied. For a fixed projectile
the QIP cross sections by approximately=1++3, as mass the cross section does not depend significantly on the
shown in Fig. 2a). All these relations are summarized by the details of the molecular target, and no scaling is needed,
following formulas: especially if the collision energies are above 0.3 eV. Figure

C. Hydrogen ion-molecule collision systemsA*+BC
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FIG. 2. Scaling of the cross sections for the isotopic variants of hydrogen atom-atom collision sysesiastic () and spin
exchange ¢g; (b) momentum transfer, symmetrie f, sym), and asymmetricd,,); and(c) viscosity (o;). The H+H case is indicated by
a solid line.

3(a) illustrates these behaviors, combining various projectilesreases toward higher energies, as with the elastic cross sec-
with all six isotopic combinations of 5 Thus, for variation tions, when the momentum transfer cross section becomes
of the projectile isotope and for variation of the target isoto-very small and population of the vibrational excited states
pomers, respectively, we have high. The dispersion in that range may also be attributed to
possible convergence errors caused by the implemented trun-
cation of the sum over vibrational states, which produces the
UA +BC(E)_ H +H2(ﬂ5>, A+#H, most pronounced uncertainty for large scattering angles that
MAcD 3 most affect the momentum transfer cross section. Thus

O_A +BC(E)_ AT +H2(E) . .
om PUE) =0y, T(E) (44)

where u is the reduced mass of 'H-H,. The deviations
from the H" +H, curve do not exceed 20% over the whole
energy range. These drop to less than 5% for energies cloger all A, B, andC.
to 100 eV, when the collision time becomes short in com- Figure 3c¢) shows the viscosity cross sections for all of
parison to the characteristic vibration time of the target.  the isotopic variants. Similar to the momentum transfer case,

All the momentum transfer cross sections almost coincidehe curves start to deviate above 2 eV, where the details of
at energies lower than 2 eféee Fig. &)]. The curves de- vibrational excitations are reflected to the midrange and
viate up to a factor of 3 in the range of 10 eV, where thebackward part of the differential cross sections. The devia-
vibrational transitions are most active. This deviation de-tion decreases toward higher energies. Thus we have
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oh FB%(E) = () 45) ohiBSE) =0T "HE), o TBOE)=0l Y(E).

Vi mt
(47)

for all A, B, andC. We note that the dispersion of the results is smaller than
in the ion-molecule case, and does not exceed 30% in the
vibrationally active region of collision energidexcept at

o . 100 e\) for both momentum transfer and viscosity cross
The collisions of neutral atoms with neutral moleculeSgections. For the elastic cross section, the deviations are

retain the_properne_s similar to cases of |0n-molecule SySguantitatively similar to the ion-molecule cases.
tems. Unlike the ion-molecule case, the best scaling is

reached for the elastic cross sections if it is performed using

D. Hydrogen atom-molecule collision systemsA+BC

the reduced masses for all cases, irrespective of the projec- E. Comparisons among various systems
tile. This is illustrated in Fig. @). In this case Figure 5a) shows a comparison of the elastic cross sec-
tions for the four types of systems considefegcluding the
v Ao isotopic variants of ) The cross sections with correct CDP
oo PUE) =0y 2(—E) (46)  limits, as defined in the previous sections, are shown. For
Hasc reference, we also show the QIP cross sectiop, () for
H" +H.
for all A, B, andC. Very surprising is the high level of similarity of HH and

The momentum transfer and viscosity cross sections coH+H, cross sections. They stay approximately equal in the
incide, and no scaling is needed, as shown in Figs. d&nd  whole energy range. Similar also are the casésrH and
4(c). Thus H*+H,, though to a less extent. The "HH elastic
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cross section is about 2.5 times bigger than that of HH, collision dynamics, the viscosity cross sections with like pro-
for energies of a fraction of eV. With an increase of collision jectiles become similar.

energy, this factor slightly decreases, staying above 2. The

QIP cross section for H+H stays more than a factor of 3 IV. CONCLUSIONS

bigger than the CDP result for thetHH system. Note that

the latter does not contain the recoil scattering contribution. Utilizing comprehensive, very accurate fully quantal cal-
The full QIP elastic cross section for+H can be simply culations of the elastic cross sections for scattering of isoto-
obtained by multiplication of the elastic cross section by 2. pomers of hydrogen ions, atoms, and molecules over the

The comparison of the momentum transfer and viscosityange of center-of-mass collision energies 0.1-100 eV, we
cross sections for the four types of systems is shown in Figdhave considered the scaling relations among various groups
5(b) and Fc). Excluding the cases where QIP is assumedpf collision partners. In addition, we have elucidated consis-
most of the momentum transfer cross sections for variougent definitions of the elastic and common transport related
system types do not deviate from each other by more than eross sections regarding preservation of the classical distin-
factor of 2. If the QIP momentum transfer cross section for Hguishability of particles at high collision energies, while al-
+ H is multiplied by 2(thus accounting for both direct and lowing for the quantum indistinguishability of particles,
recoil channelg this becomes quite close to the QIP momen-clearing up a number of inconsistent definitions found in the
tum transfer cross section for'H-H. literature.

All CDP viscosity cross sections are very similar for en-  In particular, we have considered four groups of collision
ergies lower than 1 eV. At higher energies, when the vibrasystems: ion-atom, atom-atom, ion-molecule, and atom-
tional excitation channels open, the cases with molecular tamolecule. In each group separately we find that, over the
gets deviate from the ion-atom and atom-atom systemsvhole energy range, the elastic cross sections scale with a
Finally, at higher energies, close to 100 eV, when the vibrasimple reduced mass ratio multiplying the CM collision en-
tional structure of the molecule plays a lesser role in theergy, and thus with the square of the CM velocity. The mo-
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