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Validity of the n23 scaling law in dielectronic recombination processes

Jian-Guo Wang, Takako Kato, and Izumi Murakami
National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-5292, Japan

~Received 1 March 1999!

In the frame of quantum defect theory, a simplified relativistic configuration-interaction method is developed
to study the dielectronic recombination~DR! processes. In this method, the infinite resonant doubly excited
states involving high Rydberg states can be treated conveniently in a unified manner by interpolation. This
provides an efficient method to check the validity of extrapolation based on then23 scaling law, which is
widely used to treat the DR processes involving high Rydberg states. As an example, we studied the DR
processes for Li-like argon, and the results are compared with the scaling laws and the experimental measure-
ments, respectively.@S1050-2947~99!00809-4#

PACS number~s!: 34.80.Kw, 34.80.Lx
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I. INTRODUCTION

Dielectronic recombination~DR! can be regarded as
resonant radiative recombination process. As a free elec
with a specific kinetic energy collides with an ionAq1, one
of the bound electrons of the ionAq1 is excited from the
initial ni l i orbital into thenf l f orbital, the free electron is
then captured into an unoccupied orbitalnl and forms a reso-
nant doubly excited state; subsequently, the resonant do
excited state decays into a nonautoionizing state through
diative transition processes. Its importance in influencing
ionic balance in high-temperature plasmas, such as the s
corona, has been known for many years@1#. Its radiative
emission is a significant contributor for plasma cooling in h
plasmas in fusion experiments. The dielectronic satellites
hydrogenlike ion have also been used to measure pla
densities in high density plasmas@2# and the electron tem
peratures in solar flares@3#.

Many theoretical methods have been developed to ca
late the DR process, such as the distorted-wave method@4,5#,
close coupling methods@6,7#, nonrelativistic single configu-
ration @8,9#, and relativistic multiconfiguration method
@10,11#. In these calculations, it is tedious work to obtain t
accurate DR rate coefficients since they involve many re
nant doubly excited high Rydberg states. Due to the d
culty of numerical calculation on the wave function and t
too enormous number of high Rydberg states, most calc
tions either neglect high-lying doubly excited states or s
ply use then23 scaling law to treat them@9,12–14#. Neglect-
ing high-lying doubly excited states will induce inaccurac
in the DR calculations, especially for the lowZ atom. The
evaluation by then23 scaling law can give an improvemen
but it should be checked for high Rydberg states. In orde
check the validity of then23 scaling law, Karim and Bhalla
have performed explicit DR calculations for Rydberg sta
(n<8) on heliumlike ions using the Hartree-Fock atom
model @15#, and found that the 1/n3 scaling law is appropri-
ate whenn>8. However, this conclusion is not always co
rect for lowerZ ions, we will discuss it in Sec. III.

In fact, quantum defect theory~QDT! has been develope
to treat the atomic processes involving high Rydberg sta
@16–18#, which was also used to study the DR cross secti
and rate coefficients for high Rydberg states by extrapola
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@7,19–21#. Recently, in the frame of QDT, we have deve
oped a simplified relativistic configuration-interactio
~SRCI! method to study the dielectronic recombination pr
cesses@22–24#. In this method, all the resonant doubly e
cited high Rydberg states are classified into different ch
nels with same angular momentum quantum number
same angular momentum coupling type. In each channel
defined energy-normalized matrix elements vary smoot
with the energy of high Rydberg states. Only a few poin
~including a continuum point! are calculated, the many reso
nant high Rydberg states can be treated in a unified ma
by interpolation~rather than extrapolation!, and then the DR
cross sections and rate coefficients can be obtained co
niently. This method gives an overall description of all hig
Rydberg states in a channel, and avoids the inaccuracie
extrapolation through one point. By analyzing the energ
normalized matrix elements in a small energy domain,
can check the validity of then23 scaling law.

In this paper, as an example, we studied the DR proce
of theDN50 transition for Li-like argon. The DR processe
have the form

e21Ar151~1s22s!˜Ar141~1s22pnl!**

˜H Ar141~1s22snl!* 1hn,

Ar141~1s22pn8l 8!* 1hn.
~1!

Due to energy conservation, the possible resonant dou
excited states appear at high Rydberg states (n>10). It pro-
vides a good example to check the validity of then23 scaling
law for high Rydberg states. The results on the SRCI met
are compared with the scaling laws and the experime
measurements, respectively.

II. THEORETICAL METHOD

The cross section of resonant capture processes, in w
the Ar151 ion in initial statei (1s22s) captures a free electro
with a specific energye i and forms the Ar141 ion in the
resonant doubly excited statej (1s22pnl), can be treated in
the isolated resonance approximation~atomic units are used
throughout unless specified!,
2104 ©1999 The American Physical Society
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s i j
c 5

p2\3

mee i

gj

2gi
Aji

a d~e2e i !, ~2!

wheregi andgj are the statistical weight of the statei and j ,
respectively.Aji

a is Auger decay rate~inverse resonant cap
ture!, which can be calculated by Fermi’s golden rule,

Aji
a 5

2p

\
ZK C jU(

s,t

1

r s,t
UC i e iL Z2, ~3!

whereC j andC i e i
are antisymmetrized many-electron wa

functions for the j state andi state plus a free electron
respectively, and the continuum wave function of the fr
electron is energy normalized.

We construct the configuration wave functionsf(GJM)
(G denotes the configuration 1s22pnl and parity! as anti-
symmetrized product-type wave functions from central-fi
Dirac orbitals with appropriate angular momentum coupl
@25#. All relativistic single-electron wave functions~bound
and continuum! are calculated based on the atomic se
consistent potential obtained from the ground-state confi
ration for Ar141 @26,27#. An atomic state function for the
state j (1s22pnl) with total angular momentumJM is then
expressed as a linear expansion of the configuration w
functions with the same principal quantum numbers (2,n),
and the same orbital angular momentum quantum num
(p,l )

c j~JM!5 (
l51

m

Cj lf~GlJM!. ~4!

Here m is the number of the configuration wave functio
and the mixing coefficientsCj l for state j are obtained by
diagonalizing the relevant Hamiltonian matrices@25#. The
free state is chosen as the single configuration wave func
Then we have

Aji
a 5

2p

\ U(
l51

m

Cj lMi j l
a U2

, ~5!

where the Auger decay matrix elementMi j l
a is defined as

Mi j l
a 5K f~GlJM!U(

s,t

1

r s,t
UC i e iL . ~6!

Based on QDT, whenl are fixed andn varies from bound to
continuum state, all the resonant doubly excited states w
the sameJ will form a channel. In the channel, the energ
normalized matrix element can be defined as

M̄ i j
a 5 (

l51

m

Cj lMi j l
a ~nn

3/2/q!. ~7!

Here (nn
3/q2) is the density of state,nn5n2mn , mn is the

corresponding quantum defect, andq equals the ionization
degree of doubly excited states plus one. This ener
normalized matrix elementM̄ i j

a varies smoothly with the
electron orbital energy in the channel@22,24#. When the
energy-normalized matrix elements of a few states~including
one continuum state! in a channel have been calculated, t
e
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Auger decay matrix elements of infinite discrete states of t
channel can be obtained by interpolation. From the exp
sions~7! and ~5!, the Auger rates and capture rates~by de-
tailed balance! of the infinite resonant doubly excited stat
can be calculated conveniently.

The resonant doubly excited state may autoionize wit
rateAji

a by reemitting Auger electron or decay radiately in
a lower energy statek with a radiative rateAjk

r , which is
defined as

Ajk
r 5

4e2v

3\c3gj

z^C j uT(1)uCk& z2, ~8!

wherev is photon energy andT(1) is electronic dipole op-
erator @22#. The atomic wave functionCk for final statek
can be constructed in a way similar to the expression~4!

ck~J8M 8!5 (
l851

m8

Ckl8f8~Gl8J8M 8!. ~9!

Then we have

Ajk
r 5

4e2v

3\c3gj
U (

l,l851

m,m8

Cj lCkl8Ml,l8 jk
r U2

, ~10!

where the radiative transition matrix element is defined a

Ml,l8 jk
r

5^f~GlJM!uT(1)uf8~Gl8J8M 8!&. ~11!

For the radiative process with certain final statek(1s22snl)
or k(1s22pn8l 8), the resonant doubly excited states with t
fixed (l ) and different orbital energy form a channel. In th
channel, the energy-normalized radiative transition matrix
ement is defined as

M̄ jk
r 5 (

l,l851

m,m8

Cj lCkl8Ml,l8 jk
r

~nn
3/2/q!. ~12!

This energy-normalized matrix element varies slowly w
the electron orbital energy@22,29–31#. By interpolation, all
the energy-normalized matrix elements of infinite discr
states in a channel can be obtained. From the expres
~10!, we can obtain all the radiative rates in the channel.

The resonance energye i can be calculated under the fro
zen core approximation@32#. Then, we can obtain the DR
cross sections for any resonant doubly excited states co
niently

s i j ;k5
p2\3

mee i

gj

2gi
Pi j ;kd~e2e i ! ~13!

and

Pi j ;k5
Aji

a Ajk
r

(
k8

Ajk8
r

1(
i 8

Aji 8
a

. ~14!

Here the summationi 8 is over all possible states of Ar151

ion, and the summationk8 is over all possible states of Ar141

whose energy are below statej .
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The summation of cross sections over all possiblek is
expressed as

s i j 5(
k

s i j ;k . ~15!

The DR strengthSi j , which is the integral of the DR cros
section over the natural width of the resonance, can be w
ten as

Si j 5
p2\3

mee j

gj

2gi

Aji
a (

k
Ajk

r

(
k8

Ajk8
r

1(
i 8

Aji 8
a

. ~16!

Using the velocity distribution of the free electron, we c
obtain the dielectronic recombination rate coefficients.

III. RESULT AND DISCUSSION

There are enormous intermediate resonance states
volved in the DR process, which makes the explicit calcu
tions not practicable@15#. Hence, then23 scaling law is
widely used in the literature to extrapolate the satellite int
sity factors~proportional to DR cross section! for higher (n
>4) resonances@9,12–14#. Based on QDT, we have deve
oped the SRCI method, in which all the high-lying resona
doubly excited states are treated conveniently through in
polation. This method provides an overall description on
behaviors of high Rydberg states, and can be regarded a
efficient method to check the validity of then23 scaling law.
As an example, we studied the DR processes for Ar151 ions,
and calculated the Auger rates, radiative rates, integr
cross sections, and rate coefficients. In our calculation,
have included the doubly excited states 1s22pnl with 10
<n<15,l<11 ~and corresponding continuum states! as
benchmark points.

A. Auger rates

Using formulas~6! and ~7!, we can obtain the energy
normalized Auger transition matrix elements. As an e
ample, we plotted the energy-normalized Auger transit
matrix elementsM̄ ji

a for four Auger channels in Fig. 1, which
include 1s22pns(3P0)˜1s22s1«p1/2, 1s22pnd(3P0)
˜1s22s1«p1/2, 1s22png(3F2)˜1s22s1«p3/2,
1s22pn j(3I 11)˜1s22s1«g9/2, andn changes fromn510
to n5` and continuum states. In each channel,M̄ ji

a vary
smoothly with the orbital energy of capture electron. The
are infinitely many doubly excited high Rydberg states in
small energy domain below the threshold value. When
energy-normalized matrix elements of a few states~including
one continuum state! in a channel have been calculated,
the Auger matrix elements of infinitely many doubly excit
states of that channel can be obtained by interpolation. F
the expressions~7! and ~5!, the Auger rates of the infinitely
many resonant doubly excited states can be calculated
veniently. This method provides an overall description
high Rydberg states located in the small energy dom
which is not same as the method of widely used extrap
tion by one points based on then23 scaling law.
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In the calculation of Auger rates for high Rydberg doub
excited states, there are two ways to extrapolate the Au
rate based on then23 scaling law. One is extrapolation from
the Auger rate of one Rydberg state with certain princi
quantum numbern0 to these Rydberg states with higher pri
cipal quantum numbern by Aji

a (n)5Aji
a (n0)3n0

3/n3 @33–
35#. If we assume that our energy-normalized matrix e
ments are constant and the quantum defects can
neglected, namely,M̄ ji

a (n)5M̄ ji
a (n0) and mn50 when n

>n0 , then we can obtain this scaling law from Eqs.~7! and
~5!. Another way is extrapolation from the threshold value
the according partial electron-impact excitation cross s
tions @36–38#. Our energy-normalized matrix elemen
above the threshold value are just the partial electron-imp
excitation matrix elements with exchange. If we assume t
our energy-normalized matrix elements below thresh
value are constant and equal to the threshold value in a c
nel, and the quantum defects can be neglected, then f
Eqs.~7! and~5!, we can obtain then23 scaling law in Refs.
@36–38#.

From the above analysis, we can conclude that if then23

scaling law is well preserved, it is necessary that the ene
normalized matrix elements below threshold value are
most constant in the small energy domain where high R
berg states are located. So we can check the validity of
n23 scaling law in these two extrapolations by analyzi
whether the energy-normalized matrix elements in the sm
energy domain below the threshold value are constant
channel. In our example, the energy-normalized matrix e
ments near the threshold value are almost constant in mo
the channels, as shown in Fig. 1. This means that then23

scaling law should be well preserved for these chann
However, it can be seen that as the orbital quantum num
l increases, the changing of the energy-normalized ma
elements in the small domain becomes large, so it can
expected that the deviation from then23 scaling law also
becomes large with increasingl . This can be confirmed from

FIG. 1. Energy-normalized Auger matrix elements in four cha
nels as a function of orbital energy.~1! 1s22pns(3P0)˜1s22s
1«p1/2, ~2! 1s22pnd(3P0)˜1s22s1«p1/2, ~3! 1s22png(3F2)
˜1s22s1«p3/2, ~4! 1s22pn j(3I 11)˜1s22s1«g9/2. Circles are
benchmark points, which are calculated explicitly~the circles in the
following figures are the same!.
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the Auger rates in Figs. 2 and 3, which are correspondin
the four channels in Fig. 1.

For 1s22pns(3P0)˜1s22s1«p1/2 and 1s22pnd(3P0)
˜1s22s1«p1/2 channels, because the curve of energ
normalized matrix elements is almost constant as the cu
1 and 2 shown in Fig. 1, the results from interpolation
SRCI method and two extrapolation onn23 scaling law are
in agreement within a few percent as shown in Fig. 2. F
1s22png(3F2)˜1s22s1«p3/2 channel, the difference o
SRCI method and two extrapolation methods is within 15
as shown in Fig. 3~a!. For the 1s22pn j(3I 5)˜1s22s

FIG. 2. Auger rates multiplied byn3 in two channels as a func
tion of n. Solid line: interpolation on SRCI method; dashed lin
extrapolation fromn0513; dotted line: extrapolation from thresh
old value. ~a! 1s22pns(3P0)˜1s22s1«p1/2, ~b! 1s22pnd(3P0)
˜1s22s1«p1/2.

FIG. 3. Auger rates multiplied byn3 in two channels as a func
tion of n. Solid line, interpolation on SRCI method; dashed lin
extrapolation fromn0513; dotted line, extrapolation from thresho
value. ~a! 1s22png(3F2)˜1s22s1«p3/2; ~b! 1s22pn j(3I 11)
˜1s22s1«g9/2.
to

-
es

r

1«i11/2 channel, the difference approaches 100% as sho
in Fig. 3~b!, this is because the relative variation ofMā is
large with increasingl , as shown in Fig. 1. The fundament
reason is as following: for a smaller values of radial distan
r , the energy-normalized wave functions vary slowly wi
orbital energy@18,28#, which implies the scaling law for the
Auger or radiative rate@28#. But this cannot be extended t
bigger r . So the states with a relatively big amplitude
wave function in smallerr have good scaling law. Asl in-
creases, the effect of the centrifugal term becomes stro
which cause a relatively big amplitude of the wave functi
in biggerr . So the accuracy of then23 scaling law becomes
low with increasingl , as shown in Figs. 2 and 3. Asn
increases, the difference increases between interpolatio
the SRCI method and the first type of extrapolation and
creases between interpolation and the second type of
trapolation, as shown in Fig. 3. This comes from the differe
initial points for the extrapolation.

B. Radiative rates

Here, we only consider two main types of dipole tran
tion processes, as shown in formula~1!. For
Ar141(1s22pnl)** ˜Ar141(1s22snl)* 1hn ~rate is de-
noted asA1 jk

r ), the radiative rates are almost unchanged w
n in a channel. We calculated explicitly the rates
states with n<n0 . For the states withn.n0 , we ap-
proximate A1 jk

r (n)5A1 jk
r (n0). For Ar141(1s22pnl)**

˜Ar141(1s22pn8l 8)* 1hn ~the rate is denoted asA2 jk
r ), we

can calculate the energy-normalized radiative transition m
trix elements using Eqs.~13! and ~14!. This energy-
normalized matrix element varies smoothly with the orbi
energy of captured electron@22,29–31#. By interpolation, all
the energy-normalized matrix elements of infinitely ma
doubly excited states in a channel can be obtained. F
expressions~12! and ~10!, we can obtain all the radiative
rates in the channel. In Fig. 4, the energy-normalized rad

,

FIG. 4. Energy-normalized radiative transition m
trix elements in four channels as a function of orbit
energy. ~1! 1s22pns(3P0)˜1s22p2(3P1), ~2! 1s22pnd(3P0)
˜1s22p2(3P1), ~3! 1s22png(3F2)˜1s22p4 f (3D1), ~4!
1s22pn j(3I 5)˜1s22p7i (3H4).
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tive matrix elements in four channels are plotted, which
clude 1s22pns(3P0)˜1s22p2(3P1), 1s22pnd(3P0)
˜1s22p2(3P1), 1s22png(3F2)˜1s22p4 f (3D1),
1s22pn j(3I 5)˜1s22p7i (3H4), andn changes fromn510
to n5` and continuum states. Each curve varies smoo
with the orbital energy, and all the transition processes
volving infinitely many high Rydberg states are located in
small energy domain below the threshold value, which c
be treated conveniently by interpolation. The radiative ra
according to these channels are plotted in Figs. 5 and 6. I
assume that our radiative energy-normalized matrix elem
are constant and quantum defects can be neglected for

FIG. 5. Radiative transition rates multiplied byn3 in two chan-
nels as a function ofn. Solid line, interpolation on SRCI method
dashed line, extrapolation fromn0513. ~a! 1s22pns(3P0)
˜1s22p2(3P1); ~b! 1s22pnd(3P0)˜1s22p2(3P1).

FIG. 6. Radiative transition rates multiplied byn3 in two chan-
nels as a function onn. Solid line, interpolation on SRCI method
dashed line, extrapolation fromn0513. ~a! 1s22png(3F2)
˜1s22p4 f (3D1); ~b! 1s22pn j(3I 5)˜1s22p7i (3H4).
-

ly
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n
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e
ts
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Rydberg states, namely,M̄ jk
r (n)5M̄ ji

r (n0) andmn50 when
n>n0 , we can derive then23 scaling law A2 jk

r (n)
5A2 jk

r (n0)3(n0
3v0)/(n3v) @33–35#; herev is the energy of

emitting photon. By analyzing whether the radiative energ

normalized matrix elementsM̄ jk
r below the threshold value

are constant, we can check the validity of then23 scaling
law in a channel.

For 1s22pns(3P0)˜1s22p2(3P1) and 1s22pnd(3P0)

˜1s22p2(3P1) channels,M̄ jk
r are almost unchanged in th

small energy domain below the threshold value as the cu
1 and 2 shown in Fig. 4, son23 scaling law can be well
preserved within 1% as shown in Fig. 5. However, as angu

momentum quantuml increases, the variation ofM̄ jk
r be-

comes large in the small energy domain, as shown in Fig
and the differences between SRCI method and extrapola
method also become large. For 1s22png(3F2)
˜1s22p4 f (3D1) channel, the difference is about 10%
shown in Fig. 6~a!, and for 1s22pn j(3I 5)˜1s22p7i (3H4),
the difference approaches 80%.

It should be noted that for a certain initial state, t
energy-normalized transition matrix element may ha
nodes, at which the matrix element is equal to zero@39#. In
this case, the interpolation should be carried out for
energy-normalized transition elements but not for the rad
tive rates~i.e., proportional to the square of the transitio
elements!; of course, then23 scaling law cannot be used i
this case.

C. Integrated cross sections

In some works@40,35#, the DR integrated cross section
or rate coefficients have been extrapolated to high Rydb
states directly by then23 scaling law. Because the DR inte
grated cross sections or rate coefficients are proportiona
Pi j ,k in Eq. ~13!, this extrapolation is equivalent to extrapo
lating the Pi j ,k and is also equivalent to extrapolating th
dielectronic satellite factors@9,12–14#.

This extrapolation can only be applied to two cases. O
is Aji

a !(kAjk
r ; then we haveAji

a (kAjk
r /((k8Ajk8

r
1( i 8Aji 8

a )
.Aji

a and then23 scaling law can be used, which ofte
appears in the DR processes for middle or high Z ions. A
other is Aji

a @(kAjk
r and (kA1 jk

r !(kA2 jk
r ; then we have

Aji
a (kAjk

r /((k8Ajk8
r

1( i 8Aji 8
a ).(kA2 jk

r and then23 scaling
law can be used. For lowZ ions, Aji

a @(kAjk
r and A1 jk

r

@(kA2 jk
r , then we have Aji

a (kAjk
r /((k8Ajk8

r
1( i 8Aji 8

a )
.(kA1 jk

r .const, so then23 scaling law cannot be used i
DR processes for lowZ ions@22,41#, and Karim and Bhalla’s
conclusion @15# cannot be extended to lower Z ions (Z
,10). For our example, the comparisons ofAji

a , (kA1 jk
r ,

(kA2 jk
r and (kA1 jk

r 1(kA2 jk
r in four channels are shown in

Figs. 7 and 8. Asn increases,Aji
a and (kA2 jk

r ~the second
type of radiative process! decrease, but(kA1 jk

r ~the first type
of radiative process! is almost unchanged. For lowern, Aji

a

@(kA1 jk
r 1(kA2 jk

r and (kA2 jk
r @(kA1 jk

r , as shown in Figs.
7 and 8. However, for highern, (kA1 jk

r @(kA2 jk
r , and even

for higher l , (kA1 jk
r 1(kA2 jk

r @Aji
a , as shown in Fig. 8, the

conditions to extrapolate directlyPi j ;k cannot be satisfied.
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The integrated cross sectionsSi j in Eq. ~16! for doubly
excited states 1s22pnd, 1s22pn j, and the sum of
1s22pnl( l 51,2,. . . ,11) areshown in Fig. 9. We compare
our results from the SRCI method with that from three e
trapolations on then23 scaling law, including~1! Aji

a andAjk
r

are extrapolated fromn0513, ~2! Aji
a is extrapolated from

FIG. 7. Auger and radiative rates in two channels as a func
of n. Solid line, Auger rates; dashed line, radiative transiti
rates for Ar141(1s22pnl)** ˜Ar141(1s22snl)* 1hn; dotted
line, radiative transition rates for Ar141(1s22pnl)**
˜Ar141(1s22pn8l 8)* 1hn; dash-dotted line, sum of above radi
tive transition rates.~a! 1s22pns(3P0) channel;~b! 1s22pnd(3P0)
channel.

FIG. 8. Auger and radiative rates in two channels as a func
of n. Solid line, Auger rates; dashed line, radiative tran
tion rates for Ar141(1s22pnl)** ˜Ar141(1s22snl)* 1hn; dotted
line, radiative transition rates for Ar141(1s22pnl)**
˜Ar141(1s22pn8l 8)* 1hn; dash-dotted line, sum of above radi
tive transition rates.~a! 1s22png(3F2) channel;~b! 1s22pn j(3I 5)
channel.
-

the threshold value andAji
r is extrapolated fromn0513, ~3!

Pi j ;k is extrapolated fromn0513. For 1s22pnd resonances,
the results from the first and second extrapolations are
good agreement with those from our SRCI method, as sho
in Fig. 9~a!, but the third extrapolation cannot give an agre
ment, because the condition for the third extrapolation
not been satisfied, as we have discussed. With the increa
l of 1s22pnl resonances, the differences among the first a
second extrapolations and SRCI method become relati
large, as shown in Fig. 9~b!. However, the main contribu
tions to integrated cross sections come from the resona
with relatively smalll , so the differences for total integrate
cross sections are small among the first and second extr
lations and SRCI method, as shown in Fig. 9~c!. The above
results show that the errors and variations in the calculati
of the individual transition probabilities may be large, su
as in Figs. 3 and 5, but because the DR integrated c
sections are proportional to thePi j ,k , the errors and varia-
tions tend to cancel in the evaluation of the integrated cr
sections@40,42#, and we can still obtain good agreemen
among the SRCI method and the first and second extrap
tion. But if we extrapolate thePi j ,k , the errors inPi j ,k will
affect the cross sections and rate coefficients directly, so
must check the condition before extrapolatingPi j ,k .

The contributions of 1s22pnl resonances with differentn
and different l are shown in Fig. 10. Asn increases, the
relative contributions of the resonances with highl increase.
There are two main reasons. First, for high-n resonances,
Ar141(1s22pnl)** ˜Ar141(1s22snl)* 1hn dominates the
radiative processes, which is almost nondependent onl , as
shown in Figs. 7 and 8. Second, the statistical weightgj in
Eq. ~13! increases withl , which partly cancels the decrea
ing of Aji

a . These makeSi j decrease slowly withl . Gener-

n

n
-

FIG. 9. Integrated cross sections for different doubly exci
states as a function ofn. Solid line, interpolation on SRCI method
dashed line, extrapolation ofAa(n513) and Ar(n513); dash-
dotted line, extrapolation ofAa ~threshold value! and Ar(n513);
dash-dotted line, extrapolation ofPi j ;k . ~a! 1s22pns; ~b! 1s22pn j,
~c! sum of 1s22pnl( l 51,2,. . . ,11).
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ally, the integrated cross sectionSi j in Eq. ~13! is a function
of Aji

a , Ajk
r , andgj , which have a different dependence onn

andl , so when we analyze the integrated cross sectionsSi j in
Fig. 10, we must consider their synthetical effects.

D. Rate coefficients

We calculated the rate coefficients for the DR proces
of the DN50 transition for Li-like argon. Figure 11~a!
shows the theoretical rate coefficients, which are obtai
from integrated cross sections folded with the electron be
temperatures (20 meV/kB transverse temperature and 0.
meV/kB longitudinal temperature! @43#. Figure 11~b! shows
the Zonget al. experimental measurements@44,45#, where a
background of 531029 cm3 s21 has been subtracted. Th
theoretical and experimental line positions compare ra

FIG. 10. Integrated cross sections with differentn for reso-
nances 1s22pnl as a function ofl .

FIG. 11. DR rate coefficients as a function of relative energy.2:
1s22p1/2 core excitation;1: 1s22p3/2 core excitation.~a! Theoret-
ical results on SRCI method~folded with 20 meV/kB transverse
temperature and 0.13 meV/kB longitudinal temperature!, ~b! Ex-
perimental measurements@44# ~a background of 531029 cm3 s21

has been subtracted!.
s

d
m

er

well. In the spectra one can identify Rydberg states up tn
518 for the 1s22p1/2 core excitation andn525 for the
1s22p3/2 core excitation, as shown in Fig. 11, where we on
give labels for a few resonances for simplicity. In gener
the theoretical rate coefficients are a little smaller than
perimental measurements for high Rydberg states. The
sible reasons include: the background is not fully su
stracted, the contribution of highl ( l>12) resonances is
ignored, and an external field may also have a visible in
ence on it@46#. We will discuss these effects further in
future work.

The total Maxwellian average rate coefficients for t
DN50 transition are shown in Fig. 12. The respective e
trapolations of Auger and radiative rates onn23 scaling laws
can give a good agreement with the SRCI calculation, wit
2%, which cannot be distinguished from SRCI results in F
12. The extrapolating ofPi j ;k gives a difference of betwee
10 and 20 % whenTe>20 eV, as show in Fig. 12. Becaus
the contribution of high-l resonances is a small part and t
errors of the individual transition probabilities tend to canc
@40,42#, the large differences in high-l resonances~as shown
in Figs. 3 and 6! are not very important in the total rat
coefficients.

IV. CONCLUSION

In this paper, a simplified relativistic configuration inte
action method is used to study the dielectronic recombi
tion processes. In this method, the infinite resonant dou
excited states involving a high Rydberg state can be trea
conveniently in a unified manner by interpolation. Th
method gives an overall description of all high Rydbe
states in a channel, and avoids the inaccuracies of extrap
tion through one point. By analyzing the energy-normaliz
matrix elements in a small energy domain, we can check

FIG. 12. Maxwellian average rate coefficients as a function
temperature. Solid line: interpolation on SRCI method; dashed l
extrapolation ofAa(n513) andAr(n513); dash-dotted line: ex-
trapolation ofAa ~threshold value! andAr(n513); dotted line: ex-
trapolation ofPi j ;k .
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validity of the extrapolating method based on the wide
usedn23 scaling laws. In the DR calculation from Li-like to
Be-like argon, we found that the respective extrapolations
Auger and radiative rates onn23 scaling laws can give good
results for DR cross sections and rate coefficients, altho
the difference between the extrapolation and SRCI met
increases with increasingl in 1s22pnl resonances. Howeve
when we extrapolatePi j ;k , we must consider the valid con
dition; otherwise, the errors may be very large. Due to
fully relativistic treatments, our SRCI method can be used
.

rk
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study the DR processes for anyZ elements with any elec
trons. We will continue to check the validity of scaling law
for other systems in the future.
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