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Validity of the n~3 scaling law in dielectronic recombination processes
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In the frame of quantum defect theory, a simplified relativistic configuration-interaction method is developed
to study the dielectronic recombinati¢dBR) processes. In this method, the infinite resonant doubly excited
states involving high Rydberg states can be treated conveniently in a unified manner by interpolation. This
provides an efficient method to check the validity of extrapolation based on thescaling law, which is
widely used to treat the DR processes involving high Rydberg states. As an example, we studied the DR
processes for Li-like argon, and the results are compared with the scaling laws and the experimental measure-
ments, respectively|S1050-29479)00809-4

PACS numbe(s): 34.80.Kw, 34.80.Lx

I. INTRODUCTION [7,19-21. Recently, in the frame of QDT, we have devel-
oped a simplified relativistic configuration-interaction

Dielectronic recombinatiofDR) can be regarded as a (SRCI) method to study the dielectronic recombination pro-
resonant radiative recombination process. As a free electrotesse§22—24. In this method, all the resonant doubly ex-
with a specific kinetic energy collides with an i@d*, one cited high Rydberg states are classified into different chan-
of the bound electrons of the ioh%" is excited from the nels with same angular momentum quantum number and
initial n;l; orbital into then¢l; orbital, the free electron is Same angular momentum coupling type. In each channel, the
then captured into an unoccupied orbitéland forms a reso- defined energy-normalized matrix elements vary smoothly
nant doubly excited state; subsequently, the resonant doubith the energy of high Rydberg states. Only a few points
excited state decays into a nonautoionizing state through raincluding a continuum pointare calculated, the many reso-
diative transition processes. Its importance in influencing théant high Rydberg states can be treated in a unified manner
ionic balance in high-temperature plasmas, such as the solly interpolation(rather than extrapolationand then the DR
corona, has been known for many yedts. Its radiative Cross sections and rate coefficients can be obtained conve-
emission is a significant contributor for plasma cooling in hotniently. This method gives an overall description of all high
plasmas in fusion experiments. The dielectronic satellites oRydberg states in a channel, and avoids the inaccuracies of
hydrogenlike ion have also been used to measure plasmextrapolation through one point. By analyzing the energy-
densities in high density plasm#2] and the electron tem- normalized matrix elements in a small energy domain, we
peratures in solar flard8]. can check the validity of the™2 scaling law.

Many theoretical methods have been developed to calcu- In this paper, as an example, we studied the DR processes
late the DR process, such as the distorted-wave mgthéf]  of the AN=0 transition for Li-like argon. The DR processes
close coupling methods,7], nonrelativistic single configu- have the form
ration [8,9], and relativistic multiconfiguration methods

[10,11]. In these calculations, it is tedious work to obtain the e +ArlS (18225) > Arl4* (1822pnl)**

accurate DR rate coefficients since they involve many reso-

nant doubly excited high Rydberg states. Due to the diffi- Art*t(1s?2snl)* + hv,

culty of numerical calculation on the wave function and the - Ari# (1s22pn’1")* + ho. @

too enormous number of high Rydberg states, most calcula-

tions either neglect high-lying doubly excited states or sim- _ _
ply use then~3 scaling law to treat thef®,12—14. Neglect- Due to energy conservation, the possible resonant doubly

ing high-lying doubly excited states will induce inaccuraciesxcited states appear at high Rydberg states10). It pro-
in the DR calculations, especially for the lo#vatom. The Vides a good example to check the validity of the’ scaling
evaluation by ther~2 scaling law can give an improvement, law for high Rydb.erg states. The results on the SRCI r_‘nethod
but it should be checked for high Rydberg states. In order t&f€ compared with the scaling laws and the experimental
check the validity of then—3 scaling law, Karim and Bhalla Measurements, respectively.
have performed explicit DR calculations for Rydberg states
(n=8) on heliumlike ions using the.Hartree.-Fock atomic Il. THEORETICAL METHOD
model[15], and found that the h# scaling law is appropri-
ate whenn=8. However, this conclusion is not always cor-  The cross section of resonant capture processes, in which
rect for lowerZ ions, we will discuss it in Sec. Ill. the Ar*>* jon in initial statei (1s22s) captures a free electron

In fact, quantum defect theofDT) has been developed with a specific energy; and forms the A¥*" ion in the
to treat the atomic processes involving high Rydberg stategesonant doubly excited staéls?2pnl), can be treated in
[16-18, which was also used to study the DR cross sectionthe isolated resonance approximati@tomic units are used
and rate coefficients for high Rydberg states by extrapolatiothroughout unless specifigd
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e 9j Auger decay matrix elements of infinite discrete states of that
Gicj:ﬁ EA?' o(e—€), (2 channel can be obtained by interpolation. From the expres-
et T sions(7) and(5), the Auger rates and capture ratey de-
whereg; andg; are the statistical weight of the statandj, tailed balancgof the infinit_e resonant doubly excited states
respectively A is Auger decay rat¢inverse resonant cap- ©an be calculated conveniently. o _
ture), which can be calculated by Fermi’s golden rule, The resonant doubly excited state may autoionize with a
rateAﬁ by reemitting Auger electron or decay radiately into
2w 1 2 a lower energy stat& with a radiative rateA!, , which is
a_—" ) T . jk
Aji_ % <qu Sgt Mot \P'Ei> ’ 3 defined as
where¥; andW¥;. are antisymmetrized many-electron wave ; 46w 1) 2
functions for thej state andi state plus a free electron, 3fic3g;

respectively, and the continuum wave function of the free

electron is energy normalized. wherew is photon energy and@®) is electronic dipole op-
We construct the configuration wave functiog$l’JM) erator[22]. The atomic wave functioW, for final statek

(I' denotes the configurationsd2pnl and parity as anti- can be constructed in a way similar to the expres$in

symmetrized product-type wave functions from central-field

Dirac orbitals with appropriate angular momentum coupling

[25]. All relativistic single-electron wave functiondound (I’ M")= 2 Cinr @' (I I'M"). 9

and continuum are calculated based on the atomic self- M=l

consistent potential obtained from the ground-state configuthen we have

ration for A" [26,27. An atomic state function for the

m’

statej(1s?2pnl) with total angular momentundiM is then 42 | ™M

expressed as a linear expansion of the configuration wave A== > ijCkwM;,wjk , (10)
functions with the same principal quantum numbers)2, 3hC g a =1

and the same orbital angular momentum quantum numbers . . . . .

() where the radiative transition matrix element is defined as

m M= (TIM) TR ¢ (T7I' M) (1)
(IM)= C; I'\JIM). 4

Yi(IM) z’l A (HIM) @ For the radiative process with certain final ste(és®2snl)

. _ _ ~ork(1s?2pn’l’), the resonant doubly excited states with the

Herem is the number of the configuration wave functionsfixed (1) and different orbital energy form a channel. In the

and the mixing coefficient€;, for statej are obtained by channel, the energy-normalized radiative transition matrix el-
diagonalizing the relevant Hamiltonian matricé%]. The  ement is defined as

free state is chosen as the single configuration wave function.

Then we have o mm’ /
r
N ) k= 2 CpCiaM] ./ (va0). (12
21T AN =1
=7 2 CaMiy| ® _ _ | _
h =1 This energy-normalized matrix element varies slowly with

) ) ] the electron orbital energy22,29-31. By interpolation, all
where the Auger decay matrix elemevj, is defined as  the energy-normalized matrix elements of infinite discrete
states in a channel can be obtained. From the expression
2 i ‘I’ie.>- (6) (10), we can obtain all the radiative rates in the channel.

s<t I'sit ' The resonance energy can be calculated under the fro-
zen core approximatiofi32]. Then, we can obtain the DR

Based on QDT, whehare fixed andh varies from bound to  ¢ross sections for any resonant doubly excited states conve-
continuum state, all the resonant doubly excited states witRjently

the same] will form a channel. In the channel, the energy-

Mﬁxz< H(I'\IM)

normalized matrix element can be defined as w*h3 g
Oijk="—— 5 ~Pijxd(e—€) (13
m T Meg 29,
Mﬁzgl CiM3, (v¥q). D and
3742y i ; _ ; A A"
Here (v;,/q°) is the density of statey,=n—u,, u, is the P . — ji Nk (14)
corresponding quantum defect, agdequals the ionization ik ; a
degree of doubly excited states plus one. This energy- kE Ajk'+i2 Ajiv

normalized matrix elemenls/lf} varies smoothly with the

electron orbital energy in the channg?2,24. When the Here the summation’ is over all possible states of Af"
energy-normalized matrix elements of a few stdtesluding  ion, and the summatiok’ is over all possible states of A
one continuum stajen a channel have been calculated, thewhose energy are below state
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The summation of cross sections over all possibles 0.004
expressed as 0.002 |3 M
0 F4
O'ij:Ek Tijk - (15 0002
The DR strengtlt; , which is the integral of the DR cross ::'0‘004 3
section over the natural width of the resonance, can be writ- |°°§ -0.006
ten as 0008 |1
-0.01 |
A2 Al
w?h g "Ek: Ik 0012 |
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Using the velocity distribution of the free electron, we can Orbital Energy (a.u)
obtain the dielectronic recombination rate coefficients.
FIG. 1. Energy-normalized Auger matrix elements in four chan-

IIl. RESULT AND DISCUSSION nels as a function of orbital energyl) 1s?2pns(*Py)— 1s?2s
+epyp, (2) 122pnd(3Py)—1522s+epyp, (3) 1s22png(3F,)
There are enormous intermediate resonance states iAs1s?2s+esps,, (4) 1s22pnj(3ly) —1s°2s+¢egg,. Circles are
volved in the DR process, which makes the explicit calcula-benchmark points, which are calculated explicitlye circles in the
tions not practicabld15]. Hence, then 2 scaling law is following figures are the same
widely used in the literature to extrapolate the satellite inten-
sity factors(proportional to DR cross sectipffor higher (n In the calculation of Auger rates for high Rydberg doubly
=4) resonancef9,12—14. Based on QDT, we have devel- excited states, there are two ways to extrapolate the Auger
oped the SRCI method, in which all the high-lying resonantrate based on the™* scaling law. One is extrapolation from
doubly excited states are treated conveniently through intethe Auger rate of one Rydberg state with certain principal
polation. This method provides an overall description on theduantum numben, to these Rydberg states with higher prin-
behaviors of high Rydberg states, and can be regarded as &ipal quantum numben by A% (n)=A%(ne) xny/n® [33-
efficient method to check the validity of tme ® scaling law. ~ 35]. If we assume that our energy-normalized matrix ele-
As an example, we studied the DR processes fdfAions, ~ments are constant and the quantum defects can be
and calculated the Auger rates, radiative rates, integratedeglected, namelyM?(n)=Mf(no) and x,=0 whenn
cross sections, and rate coefficients. In our calculation, we=n,, then we can obtain this scaling law from E¢8) and
have included the doubly excited states?’Zpnl with 10  (5). Another way is extrapolation from the threshold value of
=n=<15)<11 (and corresponding continuum stateas the according partial electron-impact excitation cross sec-
benchmark points. tions [36—38. Our energy-normalized matrix elements
above the threshold value are just the partial electron-impact
A. Auger rates excitation matrix elements with exchange. If we assume that
our energy-normalized matrix elements below threshold
value are constant and equal to the threshold value in a chan-

normalized Auger transition matrix e]ements. As an .ex'nel, and the quantum defects can be neglected, then from
ample, we plotted the energy-normalized Auger tran5|t|or‘EqS.(7) and(5), we can obtain tha 3 scaling law in Refs.

matrix elementﬂﬁ for four Auger channels in Fig. 1, which 36_3g

include JSZans(3PO)—>152223+gp31,2, 13222pnd(3P0) From the above analysis, we can conclude that ifrth&
—>215 25_+33p1,2, , 1s°2png(°F2)—1s°2s+ePsp,  scaling law is well preserved, it is necessary that the energy-
1s72pnj(°l11) —1s°2s+eggp, andn changes from=10  normalized matrix elements below threshold value are al-
to n=c and continuum states. In each chanril; vary  most constant in the small energy domain where high Ryd-
smoothly with the orbital energy of capture electron. Thereberg states are located. So we can check the validity of the
are infinitely many doubly excited high Rydberg states in an~ 3 scaling law in these two extrapolations by analyzing
small energy domain below the threshold value. When thevhether the energy-normalized matrix elements in the small
energy-normalized matrix elements of a few stdtesluding  energy domain below the threshold value are constant in a
one continuum stajen a channel have been calculated, all channel. In our example, the energy-normalized matrix ele-
the Auger matrix elements of infinitely many doubly excited ments near the threshold value are almost constant in most of
states of that channel can be obtained by interpolation. Frorthe channels, as shown in Fig. 1. This means thatnth&

the expression§7) and (5), the Auger rates of the infinitely scaling law should be well preserved for these channels.
many resonant doubly excited states can be calculated coitowever, it can be seen that as the orbital quantum number
veniently. This method provides an overall description forl increases, the changing of the energy-normalized matrix
high Rydberg states located in the small energy domainglements in the small domain becomes large, so it can be
which is not same as the method of widely used extrapolaexpected that the deviation from tme 3 scaling law also

tion by one points based on time 3 scaling law. becomes large with increasithgThis can be confirmed from

Using formulas(6) and (7), we can obtain the energy-



PRA 60 VALIDITY OF THE n~3 SCALING LAW IN . .. 2107

350 2.5
. (a) i
340 4
F .|
330 T - = - — - — - — - i
2N 30 Feeeenee T 15 |
[/} r L
o 310 [
N o,
g w0l 50 1)
300 | I
<7 1300 [ (b) 12 om0
< : 05 | —=
“q  1260% :
1220 | - — — — — — — — — 4 of
MO ..o T 1
1140:_ _0.57\ | - | IR BT SIS S AR AT | | L
E 15 -1 05 0 05 1 15 2 25 3
1100
10 20 50 100 Orbital Energy (a.u.)

n
FIG. 4. Energy-normalized radiative transition ma-

FIG. 2. Auger rates multiplied by® in two channels as a func- trix elements in four channels as a function of orbital
tion of n. Solid line: interpolation on SRCI method; dashed line: energy. (1) 1s?2pns(3Py)—1s22p?(*P,;), (2) 1s?2pnd(3Py)
extrapolation fromny,=13; dotted line: extrapolation from thresh- —1s?2p?(°P;), (3) 1s?2png(°F,)—1s?2p4f(3D,), (4
old value. (a) 1s22pns(3Py)—1s22s+epy, (b) 1s?2pnd(Py) 1522pnjCls)—1s22p7i((H,).

—15225+py)p.

+eiq11» channel, the difference approaches 100% as shown
the Auger rates in Figs. 2 and 3, which are corresponding t¢h Fig. 3(b), this is because the relative variation P is
the four cgannelg in Fig. % X 5 large with increasing, as shown in Fig. 1. The fundamental

For 1s 2pny(*Pg)—1s°2s+epy, and 1s°2pnd(*Po)  reason is as following: for a smaller values of radial distance
—15°2s+8py, channels, because the curve of energy the energy-normalized wave functions vary slowly with
normalized matri_x el_ements is almost constant as thg CUIV&Sybital energy[ 18,28, which implies the scaling law for the
1 and 2 shown in Fig. 1, the results from interpolation onayger or radiative rat¢28]. But this cannot be extended to
SRCI method and two extrapolation on® scaling law are  piggerr. So the states with a relatively big amplitude of
In agreement W'th'g' a few percent as shown in Fig. 2. FORyayve function in smaller have good scaling law. Asin-
1s"2png(°F2)—1s"2s+epy, channel, the difference of creases, the effect of the centrifugal term becomes strong,
SRCI method and two extrapolation methods is within 15%yhich cause a relatively big amplitude of the wave function
as shown in Fig. @. For the ®°2pnj(®ls)—1s°2s  in piggerr. So the accuracy of the 3 scaling law becomes

low with increasingl, as shown in Figs. 2 and 3. As
40 @) increases, the difference increases between interpolation on
the SRCI method and the first type of extrapolation and de-
creases between interpolation and the second type of ex-

36

Art#t (1s22pnl)** > Art#t (1s?22snl)* +hy  (rate is de-
noted asA;,), the radiative rates are almost unchanged with
n in a channel. We calculated explicitly the rates of
states withn=n,. For the states withn>n,, we ap-
proximate Al (n)=A7;(ng). For Ar**(1s*2pnl)**
—Art**(1s*2pn’l’)* + hv (the rate is denoted &, ), we
can calculate the energy-normalized radiative transition ma-
trix elements using Eqs(13) and (14). This energy-
n normalized matrix element varies smoothly with the orbital

FIG. 3. Auger rates multiplied by® in two channels as a func- €nergy of captured electr¢@2,29-31. By interpolation, all
tion of n. Solid line, interpolation on SRCI method; dashed line, the energy-normalized matrix elements of infinitely many
extrapolation frormy= 13; dotted line, extrapolation from threshold doubly excited states in a channel can be obtained. From
value. (@) 1s%2png(°F,)—1s%2s+epsy,; (b) 1s?2pnj®ly)  expressiong12) and (10), we can obtain all the radiative
—15%2s+£Qg,. rates in the channel. In Fig. 4, the energy-normalized radia-

32 trapolation, as shown in Fig. 3. This comes from the different
initial points for the extrapolation.
a 28
.w .
gc 1 7 B. Radiative rates
N 20 ; Here, we only consider two main types of dipole transi-
217 10 (®) tion processes, as shown in formulal). For
o
S|

10 20 50 100
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21 7 @ Rydberg states, namely}|, (n) = Mj;(no) and u,=0 when
29 | n=ny,, we can derive then™® scaling law A (n)
D a7 3 Azjk(no)x(nowo)/(n w) [33-35; herew is the energy of
g T emitting photon. By analyzmg whether the radiative energy-
Ez 225 —/m —————— normalized matrix eIemenlM below the threshold value
" o3 [ are constant, we can check the validity of the® scaling
e Tor law in a channel.
S 21 | For 1s?2pns(®Py)—1s%2p?(3P,) and 1s?2pnd(3Py)
T 1577 F ®) —1s%2p?(®P;) channelsM}, are almost unchanged in the
< 1573 M_ — small energy domain below the threshold value as the curves
3 =¥ 1 and 2 shown in Fig. 4, sa~ 2 scaling law can be well
B 1569 - preserved within 1% as shown in Fig. 5. However, as angular
r momentum quantunh increases, the variation d¥l;, be-
1565 : comes large in the small energy domain, as shown in Fig. 4,
156.1 L and the differences between SRCI method and extrapolating
10 20 50 100 method also become large. For s?2png(®F,)

n —1s%2p4f(3D,) channel, the difference is about 10% as

FIG. 5. Radiative transition rates multiplied b§ in two chan-  Shown in Fig. €a), and for 1522pnj(®ls)—15°2p7i (°Hy),
nels as a function ofi. Solid line, interpolation on SRCI method; the difference approaches 80%.
dashed line, extrapolation fromy=13. (@ 1s?2pns(®P) It should be noted that for a certain initial state, the
—1522p?(3P,); (b) 1522pnd(3Pgy)—1522p?(3P,). energy-normalized transition matrix element may have
nodes, at which the matrix element is equal to Z&9. In
this case, the interpolation should be carried out for the
tive matrix elements in four channels are plotted, which in-energy-normalized transition elements but not for the radia-
clude  15°2pns(®Po)—1s°2p*(®Py),  1s”2pnd(®*Py) tive rates(i.e., proportional to the square of the transition
—15°2p?(°Py), 1s°2png(®F,)—1s°2p4f(°D1),  elements of course, then 2 scaling law cannot be used in
1s22pnj(ls)—1s?2p7i(®H,), andn changes from=10  this case.
to n=9 and continuum states. Each curve varies smoothly
with the orbital energy, and all the transition processes in- C. Integrated cross sections

volving infinitely many high Rydberg states are located in a _ _
small energy domain below the threshold value, which can In some workg40,35, the DR integrated cross sections

be treated conveniently by interpolation. The radiative rate®r rate coefficients have been extrapolated to high Rydberg
according to these channels are plotted in Figs. 5 and 6. If wetates directly by the 2 scaling law. Because the DR inte-
assume that our radiative energy-normalized matrix elemenfgrated cross sections or rate coefficients are proportional to
are constant and quantum defects can be neglected for high;  in Eq. (13), this extrapolation is equivalent to extrapo-
lating the P;; , and is also equivalent to extrapolating the

45 @ dielectronic satellite factori9,12—-14.

41 3 This extrapolation can only be applied to two cases. One
_~ g is Al <3, Aj; then we haveAf S Aj/ (2 Al +2pA7)
§ 37 ¢ =AS and then™* scaling Iaw can be used, which often
‘g 33 _\O*»Q ————— appears in the DR processes for middle or high Z ions. An-
= I other is A"°‘>EkAJk and 2 A} <Z Ay then we have
o 29 ¢ A%S kAJk/(Ek,A]k,+E A“,) S A and then™? scaling
S 25 Iaw can be used. For lowZ ions, A‘”‘>EkAJrk and Arle
. 0254 () >3 Ab, then we have ASZ AL (Z0A), + 20 AT )
< 021 F =3, Al =const, so ther” scallng law cannot be used in
3 g DR processes for low ions[22,41], and Karim and Bhalla’s
@ WP NN - - = = = = = = — conclusion[15] cannot be extended to lower Z iong (

0.13 | <10). For our example, the comparisonsAff, = A,

0.09 | A and AT+ 2 Ay in four channels are shown in

0.05 - Figs. 7 and 8. As1 increasesAf; and EkArzjk (the second

10 20 50 100 type of radiative proce$$iecrease but kAljk (the first type

n of radiative procegsis almost unchanged. For lower Aj-ai

= r . r . r . r . i i
FIG. 6. Radiative transition rates multiplied by in two chan- >ZiALjct 2z andEKAZJk>EkArle' as srhown in Figs.
nels as a function on. Solid line, interpolation on SRCI method; 7 and 8. However for higher, EkAljk>EkA2jkv and even

dashed line, extrapolation fromn,=13. (a) 1s22png(®F,)  for higherl, 2 Af; + 3 A%, >A% , as shown in Fig. 8, the
—15%2p4f(°D;,); (b) 15?2pnj(3l5)—1522p7i(PH,). conditions to extrapolate directly;;., cannot be satisfied.
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FIG. 7. Auger and radiative rates in two channels as a function
of n. Solid line, Auger rates; dashed line, radiative transition

rates for AM*(1s’2pnl)** —Ar'4*(1s’2snl)* +hv; dotted FIG. 9. Integrated cross sections for different doubly excited
line, radiative transition rates for At (1s?2pnl)** states as a function af. Solid line, interpolation on SRCI method;
—Art**(1s°2pn’l’)* +hv; dash-dotted line, sum of above radia- gashed line, extrapolation oA%(n=13) and A’(n=13); dash-
tive transition ratesta) 1s°2pns(*Po) channeli(b) 1s°2pnd(®Po)  dotted line, extrapolation oA? (threshold valupand A" (n=13):
channel. dash-dotted line, extrapolation Bf;.,. (a) 1s?2pns; (b) 1s?2pnj,

(c) sum of 1s?2pnl(1=1,2,...,11).

n

The integrated cross sectiof§ in Eq. (16) for doubly  the threshold value andlj; is extrapolated fronmy= 13, (3)
excited states $2pnd, 1s?2pnj, and the sum of Pij. is extrapolated fronmy=13. For 1s?2pnd resonances,
1s?2pnl(1=1,2,...,11) areshown in Fig. 9. We compare the results from the first and second extrapolations are in
our results from the SRCI method with that from three ex-good agreement with those from our SRCI method, as shown
trapolations on the ™23 scaling law, including1) Aﬁ andAJfk in Fig. 9a), but the third extrapolation cannot give an agree-
are extrapolated fronmy=13, (2) Af‘i is extrapolated from ment, because the condition for the third extrapolation has

not been satisfied, as we have discussed. With the increasing

10° ¢ | of 1s?2pnl resonances, the differences among the first and
f (@) second extrapolations and SRCI method become relatively
107 & . . ;i .
g large, as shown in Fig.(B). However, the main contribu-
102 ¢

10° |
10*
10° ¢

10® L

10° b,

Rate (10" s?)

10* F
105 F

10° |

107 L

10

20 50
n

100

tions to integrated cross sections come from the resonances
with relatively smalll, so the differences for total integrated
cross sections are small among the first and second extrapo-
lations and SRCI method, as shown in Figc)9 The above
results show that the errors and variations in the calculations
of the individual transition probabilities may be large, such
as in Figs. 3 and 5, but because the DR integrated cross
sections are proportional to tHe; ,, the errors and varia-
tions tend to cancel in the evaluation of the integrated cross
sections[40,42, and we can still obtain good agreements
among the SRCI method and the first and second extrapola-
tion. But if we extrapolate th®;; , the errors inP;; , will
affect the cross sections and rate coefficients directly, so we
must check the condition before extrapolatifg . .

The contributions of §22pnl resonances with differemt
and differentl are shown in Fig. 10. A% increases, the

[{elative contributions of the resonances with highcrease.

FIG. 8. Auger and radiative rates in two channels as a functio . . .
There are two main reasons. First, for highresonances,

of n. Solid line, Auger rates; dashed line, radiative transi- 1At 5 Tas > ;
tion rates for AM*(1s2pnl)** —Ar#*(1s22snl* +hy: dotted A (1S 2pnh)** - Ar-*"(1s°2snl)* + hv dominates the

line, radiative transition rates for A (1s?2pnl)** radiative processes, which is almost nondependerit, @s
—Art*(1s22pn’l’)* + hv; dash-dotted line, sum of above radia- Shown in Figs. 7 and 8. Second, the statistical wegjhin
tive transition rates(a) 1s?22png(®F,) channel;(b) 1s?2pnj(ls) Eq. (13) increases with, which partly cancels the decreas-
channel. ing of Af‘i . These make5; decrease slowly with. Gener-
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FIG. 10. Integrated cross sections with differentfor reso- 10! 10° 10 102 10°
nances $°2pnl as a function of. T (eV)

IV the | d & in Ea. (13) | f . FIG. 12. Maxwellian average rate coefficients as a function of
ally, the integrated cross secti) in Eq. (13) is a function o heratyre. Solid line: interpolation on SRCI method: dashed line:

of A, Aj, andg; , which have a different dependenceron  extrapolation ofA%(n=13) andA"(n=13); dash-dotted line: ex-
andl, so when we analyze the integrated cross sec)n8  trapolation ofA? (threshold valupandA'(n=13); dotted line: ex-
Fig. 10, we must consider their synthetical effects. trapolation ofP;; .

D. Rate coefficients

We calculated the rate coefficients for the DR processewell. In the spectra one can identify Rydberg states up to
of the AN=0 transition for Li-like argon. Figure 1) =18 for the 1?2p,, core excitation anch=25 for the
shows the theoretical rate coefficients, which are obtaineds®2pg, core excitation, as shown in Fig. 11, where we only
from integrated cross sections folded with the electron beargive labels for a few resonances for simplicity. In general,
temperatures (20 me¥y transverse temperature and 0.13the theoretical rate coefficients are a little smaller than ex-
meV/kg longitudinal temperatuygd43]. Figure 11b) shows perimental measurements for high Rydberg states. The pos-
the Zonget al. experimental measuremerits4,45, where a  sible reasons include: the background is not fully sub-
background of %10 °cm®s ! has been subtracted. The stracted, the contribution of high(I=12) resonances is
theoretical and experimental line positions compare ratheignored, and an external field may also have a visible influ-

ence on it[46]. We will discuss these effects further in a

Tz @) future work.
6 F|” The total Maxwellian average rate coefficients for the
s H oz : . AN=0 transition are shown in Fig. 12. The respective ex-
Y n TS TS trapolations of Auger and radiative ratesmon® scaling laws
Ta g gEd T AHRRA can give a good agreement with the SRCI calculation, within
g = o 2%, which cannot be distinguished from SRCI results in Fig.
T 2 (2T xs ,ﬂ,ééé 3l 12. The extrapolating oP;;., gives a difference of between
?a.’ 1f l M 0 i 10 and 20 % wheff =20 eV, as show in Fig. 12. Because
S 0 s \ the contribution of high-resonances is a small part and the
;:: 6 | (b) errors of the individual transition probabilities tend to cancel
S i [40,42, the large differences in highresonancetas shown
2 in Figs. 3 and B are not very important in the total rate
2 4f coefficients.
3 -
2 -
1 IV. CONCLUSION
0 5 10 15 20 25 30 35 In this paper, a simplified relativistic configuration inter-
action method is used to study the dielectronic recombina-
Energy (eV)

tion processes. In this method, the infinite resonant doubly
FIG. 11. DR rate coefficients as a function of relative energy. ~ €Xcited states involving a high Rydberg state can be treated
1s22p,, core excitation;+: 1s22pg, core excitation(a) Theoret- ~ conveniently in a unified manner by interpolation. This

ical results on SRCI methotfolded with 20 meVkg transverse ~Method gives an overall description of all high Rydberg
temperature and 0.13 mekg longitudinal temperatupe (b) Ex-  States in a channel, and avoids the inaccuracies of extrapola-

perimental measuremeniid4] (a background of 10 °cm®s™*  tion through one point. By analyzing the energy-normalized
has been subtracted matrix elements in a small energy domain, we can check the
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validity of the extrapolating method based on the widelystudy the DR processes for a@yelements with any elec-
usedn 3 scaling laws. In the DR calculation from Li-like to trons. We will continue to check the validity of scaling laws
Be-like argon, we found that the respective extrapolations ofor other systems in the future.

Auger and radiative rates on ° scaling laws can give good

result.s for DR cross sections and rate coefficients, although ACKNOWLEDGMENTS
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