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Higher-order methods for simulations on quantum computers

A. T. Sornborger and E. D. Stewart
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~Received 23 March 1999!

To implement many-qubit gates for use in quantum simulations on quantum computers efficiently,
we develop and present methods reexpressing exp@2i(H11H21•••)Dt# as a product of factors
exp@2iH1Dt#, exp@2iH2Dt#, . . . , which is accurate to third or fourth order inDt. The methods we derive are
an extended form of the symplectic method, and can also be used for an integration of classical Hamiltonians
on classical computers. We derive both integral and irrational methods, and find the most efficient methods in
both cases.@S1050-2947~99!07209-1#

PACS number~s!: 03.67.Lx, 05.10.2a, 45.10.2b, 46.15.2x
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I. INTRODUCTION

Quantum computers have generated much interest
cently, largely due to the result by Shor@1# that they can
factor integers in polynomial time. In a quantum compu
the analog of a logical bit is the qubit. The canonical e
ample of a qubit is a quantum spin. A quantum spin cons
of two states, so a set ofn spins gives the quantum comput
a 2n-dimensional Hilbert space.

To perform a calculation, one initializes the qubits, a
then applies unitary logical gates to the qubits. Unitary lo
cal gates are realized in different fashions depending on
quantum computer hardware, but they are all represe
mathematically by a Hamiltonian acting on the quantu
state of the qubits. In a typical quantum computer, techn
ogy restricts the Hamiltonian to act on a small number
qubits at a time, maybe two or three. A calculation is th
built up of two- or three-qubit Hamiltonians, or gates, acti
sequentially on the qubits.

An important and difficult to realize requirement is th
the qubits maintain their coherence throughout an entire
culation. Maintaining coherence in quantum computers
problem which has led to the development of error correct
codes~see Ref.@2# and included references!. These codes are
possible due to the fact that one does not need to know
state of a qubit in order to tell whether an error has occurr
With some ingenuity, it is possible to determine what kin
of errors have occurred during the course of a calculat
and to correct the errors as the calculation proceeds. Sim
error correction codes have already been shown to work
small numbers of qubits@3#.

Effort has also been put into developing algorithms wh
make use of the quantum computer’s power. Shor’s al
rithm showed that quantum computers are more powe
than classical computers, since integers cannot be factore
polynomial time on a classical computer, whereas they
on a quantum computer. Grover also devised a method
searching a database in time proportional to the square
of the number of items involved in the search@4#.

In addition to research into effective algorithms for use
quantum computers, simulations of quantum systems h
also been shown to be possible in polynomial time@5#. In-
deed, this was the first area for which it was proposed
quantum computers could fundamentally be more powe
PRA 601050-2947/99/60~3!/1956~10!/$15.00
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~i.e., much faster! than classical computers@6#.
This paper focuses on a problem which concerns sim

tional issues in quantum computation. Essentially, we h
developed methods for reexpressing exp@2i(H11H2
1•••)Dt# as a product of factors exp@2iH1Dt#,
exp@2iH2Dt#, . . . , which is accurate to third or fourth orde
in Dt.

A simulation on a quantum computer consists of apply
an operator exp(2iHt) on a set of qubits, whereH, the
Hamiltonian of the system of interest, is suitably encod
~and discretized! to act on the set of qubits. For many-bod
systems,H is a sum of terms. For instance, in a on
dimensional Ising spin model, the Hamiltonian is

H5 (
n51

N

sn•sn11 , ~1!

where N is the number of spins. Another example is t
Hubbard model Hamiltonian, used in the study of high-Tc
superconductivity, which can be written@7# as the sum

H5(
i 51

m

V0ni↑ni↓1 (
^ i , j &s

t0cis* cj s , ~2!

whereV0 is the strength of the potential, andnis is the op-
erator for the number of fermions of spins at site i. In the
second ~kinetic-energy! term, the sum^ i , j & indicates all
neighboring pairs of sites,t0 is the strength of the ‘‘hop-
ping,’’ and cis and cis* are annihilation and creation opera
tors, respectively, of a fermion at sitei and spins.

These models give examples in which a large simulat
on a classical computer is impossible due to the exponen
increase in the size of the Hilbert space of the quantum s
tem with the number of lattice sites. A many-particle syste
can sometimes be simulated with fewer qubits in fir
quantized form@7#, but in either case the HamiltonianH is a
sum of terms, so our methods are equally applicable to b
cases.

If the quantum computer cannot act on all spins at on
as is the case for quantum gate arrays@8#, it becomes neces
sary to find ways of approximating the application of t
above Hamiltonians with few-qubit gates. To second ord
for instance, we find that
1956 ©1999 The American Physical Society
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~e2 iH 1Dte2 iH 2Dt . . . e2 iH NDt!~e2 iH NDt . . . e2 iH 2Dte2 iH 1Dt!

5e2 i2(H11H21•••HN)Dt1O[(Dt)3] , ~3!

whereHn are two-qubit gates~e.g.,sW n•sW n11).
Below, we analyze the problem of deriving higher ord

methods of this type, and find a set of equations which, o
solved, give third- and fourth-order methods analogous to
above second-order method. We solve and present the
mulas for third- and fourth-order methods as well as dev
oping methods for approximating expressions involvi
commutators, exp(@A,B#). Since there is a large set of solu
tions to our equations, we spend some effort trying to iso
and present only the most efficient methods. After presen
our methods, we then provide results from a simple appl
tion to give the reader confidence that our methods are
rect.

This kind of method has been investigated elsewhere,
different reasons, in the context of Hamiltonian systems
der the name ‘‘symplectic’’ method. In the section on sy
plectic methods, we comment on what we have done dif
ently from other investigations of symplectic methods, a
why our methods are applicable to more general proble
We then present a summary of our results in Sec. X. We
provide appendixes with useful expressions used in the d
vation of our results, and some proofs of statements in
text.

II. MATHEMATICAL ANALYSIS AND EQUATIONS

We want to express exp((n51
N An) as a product of indi-

vidual exp(An)’s. In order to do this, we use the Campbe
Baker-Hausdorff formula. The Campbell-Baker-Hausdo
formula to fifth order is

exp~aA1!exp~aA2!

5 exp@a~A11A2!1 1
2 a2A121

1
12 a3~A1121A221!

1 1
24 a4A12212

1
720a5~A1111222A2111226A11221

26A2211222A122211A22221!1O~a6!], ~4!

where

Akl . . . mn[†Ak ,@Al , . . . @Am ,An# . . . #‡. ~5!

To find combinations of operators expAi which approxi-
mate exp((n51

N An) to some order it is first necessary
choose a strategy for searching among the large numbe
possible combinations. First of all, we cannot search br
force since there are too many possible combinations, an
any case, this would not give us a formula valid for allN.
Therefore, we pick a fundamental ordering of the produc
exponentials with parameters allowing for transposes of
entire product as well as raising all the exponentials in
fundamental unit to the same power.

By iterating the Campbell-Baker-Hausdorff formula, w
can obtain an expression for the fundamental unit in term
a single exponential
r
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~eaA1eaA2 . . . eaAN!a5 exp(
p51

`

aapBN
p , ~6!

which defines theBN
p in terms of theAn . Herep is an expo-

nent ona, and a label on the matricesBN
p . We takea561.

Now combine a successioni 51, . . . ,I of fundamental
units with parametersai anda i . Again iterating Campbell-
Baker-Hausdorff gives

expS (
p51

`

a1a1
pBN

p D ••• expS (
p51

`

a IaI
pBN

p D
5 expS (

X
s I

XBN
XD . ~7!

BN
X are generated from theBN

p by commutation.X represents
a labelpq . . . rs where

BN
pq . . . rs[†BN

p ,@BN
q , . . . @BN

r ,BN
s # . . . #‡. ~8!

BN
pq•••rs is of orderp1q1•••1r 1s. Up to fifth order we

can take

XP$1;2;3,12;4,13,112;5,14,23,113,221,1112%. ~9!

TheseBN
X’s span the space of commutators of theBN

p ’s to
fifth order, and forN>2 they are independent. Formulas f
theB2

X in terms ofA1 andA2 are given in Appendix A 2. The
s I

X are defined in terms ofa i andai by Eq. ~7!. Here again,
the X’s are labels.

After some calculation, the Campbell-Baker-Hausdo
formula @Eq. ~4!# then gives

s I
p5(

i 51

I

a iai
p ~10!

for p51, . . . ,5,

s I
pq52 1

2 s I
ps I

q1 1
2 (

i 51

I

ai
q2p@~s i

p!22~s i 21
p !2# ~11!

for pq512, 13, 14, and 23,

s I
ppq52 1

2 s I
ps I

pq2 1
6 ~s I

p!2s I
q1 1

6 (
i 51

I

ai
q2p@~s i

p!32~s i 21
p !3#

~12!

for ppq5112, 113, and 221,1 and

s I
111252 1

2 s I
1s I

1122 1
3 ~s I

1!2s I
122 1

24 ~s I
1!3s I

2

1 1
24 (

i 51

I

ai@~s i
1!42~s i 21

1 !4#. ~13!

For approximations to exp((n51
N An), we require alls I

X50
except fors I

1 which is the coefficient ofBN
1 5(n51

N An , and
which should be greater than zero.

1For the purposes of calculatings I
221, note thats I

21[2s I
12.
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An interesting feature of third-order methods is that th
require inverses, i.e., they require backward time evolut
during part of the method.2 This can be proved using Eq
~10! with p53. It has no nontrivial solutions when the pro
uct a iai is positive for alli. Therefore for third-order meth
ods,a iai must be negative for at least onei. From the left-
hand side of Eq.~6!, we see that this means that there m
be at least one inverse. Similarly, from Eqs.~10! with p
53 and p54 it can be proved that fourth-order metho
must have at least two inverses.

In Appendix A 1, we also prove the fact that for integr
solutions s I

1 must be a multiple of 2 for a second-ord
method, a multiple of 6 for a third- or fourth-order metho
and a multiple of 30 for a fifth-order method. Our search
suggest that the constraints ons I

1 may actually be stronger
all fourth-order methods that we have found haves I

1 a mul-
tiple of 12, and we have not been able to find any fifth-ord
methods. In Sec. VII, we will consider an approximation
exp@A1,A2#, for which we require alls I

X50 except fors I
2 .

III. NUMERICAL METHOD FOR SOLUTION
OF THE EQUATIONS

We solve our equations for both integer and irration
solutions, using different methods for each search. O
method to solve Eqs.~10!–~12! for integers is to pick values
of a i andai , and see if they satisfy the equations. To do t
we restrict the number of fundamental units by fixingI. We
also restrict the range of theai ’s.

We start with Eq.~10!, since, in this equation, order wit
respect toi does not matter. So, for a given set of values,
need to consider only one permutation, not all permutati
of the values. This greatly reduces the size of the search

Furthermore, we start by consideringp51 and 3, since it
is only the sign ofa iai that matters in these equations. Th
means we can consider only the sign of the combina
a iai , and not the signs ofa i and ai individually. This re-
duces the search further. These equations are particularl
strictive for the case of few inverses. After solving thep
51 and 3 equations, we introduce separate signs for thea i ’s
andai ’s and solve the equation withp52, andp54 for the
fourth-order case. Finally, into the restricted set of solutio
to Eq. ~10! we introduce permutations of thea i ’s and ai ’s
with respect to the indexi and solve Eqs.~10!–~12!.

We solved Eqs~10! and ~11! analytically to find the
unique shortest irrational third-order method. To find four
order irrational methods, we made a symmetric ansatz
solved Eqs.~10!–~12! analytically to find the shortest sym
metric irrational fourth-order methods. We checked nume
cally, using the globally convergent technique prescribed
Ref. @10#, that these are all the shortest irrational fourth-ord
methods. The methods are presented in Sec. V.

IV. CRITERIA FOR SELECTING AMONG
THE SOLUTIONS

With our strategy for finding solutions to Eqs.~10!–~12!,
we find a larger number of solutions than we can ea

2After this work was completed, we became aware that this p
was also noted in Ref.@9#.
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present. We need to select solutions to present and we
want to present solutions which are in some sense optim
To do this, we consider the form of the operator resulti
from a given method

)
j 51

I

~e2 ia jA1Dte2 ia jA2Dt . . . e2 ia jANDt!a j

5 expF2 is I
1(

n51

N

AnDt1r ~2 iDt !o11G , ~14!

whereDt!1 is a time step,o is the order of the method, an

r 5(
X

s I
XBN

X , ~15!

where XP$4,13,112% for a third-order method andX
P$5,14,23,113,221,1112% for a fourth-order method.

r is an error which takes values in the vector space of
commutators for which we do not have a metric. Therefo
we make thead hocchoice of basis that is given in Appendi
A 3. This allows us to replacer by a single real scalarR as is
also described in Appendix A 3. The error from the meth
can then be taken to be

E5nRDto11, ~16!

wheren is the number of times we apply the approxima
method.

If the physical time we want to simulate isTp , then

Tp5nDDt, ~17!

whereD[s I
1 is given by the method. The computer time

takes for a given simulation can be written

Tc5nINtg1nLNts , ~18!

where I is the number of fundamental units in the meth
andN is the number of terms in a unit,tg is the time it takes
to make a gate change,

L[(
i 51

I

uai u, ~19!

so thatLN is the total time the gates are applied for in t
method, andts is the time each individual gate is applied fo
The time an individual gate is applied for will bets5bDt,
whereb is a proportionality constant dictated by the actu
couplings in the quantum computer hardware.

Using Eqs.~16! and ~17!, the computer time can be re
written

Tc5S Tp
o11

E D 1/oS I

D D S R

D D 1/o

Ntg1
LbNTp

D
. ~20!

There are two possible limits to this equation. IfDt can be
made very small~from the hardware point of view!, then
making the error small forces the computer time to be do
nated by gate switching. In this case, we want the factor

Z5~ I /D !~R/D !1/o ~21!
t
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to be small.
If there is a lower limit toDt5e, and it is reached before

the computer time is gate switching dominated, then
computer time may be dominated by gate application. In
second limit, we wantL/D small, and to minimize the erro
E, we want (R/D)(Dt)o small. In this limit, each gate ca
only be applied for an integral number of the minimu
timestepe. Thus, to use an irrational method, one must a
proximate the method by an integral method containing la
integers, and so with a largeD. BecauseDt5e is fixed, the
error E goes likeR/D}Do, and thus is large for irrationa
methods. We thus do not consider irrational methods in
limit. To summarize, in this second limit, we want metho
with small L/D andR/D.

V. THIRD- AND FOURTH-ORDER FORMULAS
FOR exp„(n51

N AN…

From this analysis, we want to choose methods for wh
Z, or L/D andR/D are small. Below we list the methods an
their properties. We use the notation

~aa! ~22!

to represent

~eaA1eaA2 . . . eaAN!a ~23!

if a51, and

~aa!T ~24!

to represent

~eaA1eaA2 . . . eaAN!a ~25!

if a521. So, for example, the second-order method

~eA1eA2 . . . eAN!~eAN . . . eA2eA1!

5~eA1eA2 . . . eAN!~e2A1e2A2 . . . e2AN!21

~26!

is represented by

~1!~1!T. ~27!

Note that the transpose of any method gives another equ
lent method, as does permuting the entries in the fundam
tal unit.

For odd order methods, the residue has an odd numbe
brackets in the commutators. So, because the transpose
individual bracket is minus that bracket,

~odd order method!~same odd order method transpose!
~28!

gives a method of one order higher. For example, we
make a fourth-order method from a third-order method, o
sixth-order method from a fifth-order method.
e
is

-
e

is

h

a-
n-

of
an

n
a

A. Integer solutions

The third-order integer methods that we have selected
ing the criteria of Sec. IV are given below.

Third-Order methods

Z 3
1 (1)T(1)(1)(1)(1)T(22)T(1)(1)(1)
Z 3

2 (1)T(4)(2)(25)T(2)T(3)(2)(2)T(1)
Z 3

3 (1)T(2)(2)(23)T(1)T(2)(1)T

Z 3
4 (3)(24)T(1)(3)(2)T(1)
Z 3

5 (5)T(7)(12)(213)T(1)

D L I L/D R/D Z

Z 3
1 6 10 9 1.67 0.2 0.9
Z 3

2 12 22 9 1.83 0.6 0.6
Z 3

3 6 12 7 2.00 0.4 0.9
Z 3

4 6 14 6 2.33 1.7 1.2
Z 3

5 12 38 5 3.17 98.8 1.9

The fourth-order integer methods are

Fourth-order methods

Z 4
1 (1)T(1)(1)T(22)(1)T(1)T(1)T(1)T(1)(1)T(1)(1)

3(1)(1)(22)T(1)(1)T(1)
Z 4

2 (1)T(2)(1)T(23)T(2)(2)(1)(2)T(2)T(23)(2)T(1)
3(1)(1)T

Z 4
3 (1)T(2)(3)T(1)T(24)(3)T(3)(24)T(1)(3)(2)T(1)
Z 4

4 (6)T(27)(1)T(1)(5)T(5)(1)T(1)(27)T(6)

D L I L/D R/D Z

Z 4
1 12 20 18 1.67 0.6 1.3
Z 4

2 12 24 14 2.00 0.8 1.1
Z 4

3 12 28 12 2.33 4.6 1.5
Z 4

4 12 40 10 3.33 50.2 2.2

B. Irrational solutions

The equations that we have derived can be solved
irrational solutions. We have been able to find the shor
third-order method analytically. It can be proven to
unique. It is

~a1!~2a2!T~2a3!T~a4!, ~29!

where

a151,

a252
1

6
~52A1312A512A13!,

~30!
a351/~11a2!,

a452a2~11a2!/~312a2!.

Renormalizing to gives I
151, we have methodR 3

1 :

a150.451525513208585723409578820,

a2520.630880954030002500791663663, ~31!
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a3521.136710925213995714728206549,

a4521.219117392452583938929449032,

accurate to 27 decimal places. This method hasZ51.7.
From this third-order method, we can generate the fou

order method

~a1!~2a2!T~2a3!T~a4!~a4!T~2a3!~2a2!~a1!T. ~32!

We have also found short fourth-order methods. We ass
a solution of symmetric form, using the ansatza I 2 i 11
52a i andaI 2 i 1152ai . For I 56, this leaves us with the
equations

(
i 51

3

a iai5
1
2 , ~33!

(
i 51

3

a iai
350, ~34!

(
i 51

3

@ai
312a iai

2~s3
12s i

1!#50 ~35!

to solve.
Combining equations and settinga151, we find solutions

of the form

a15
1

2~a2x1a3y11!
,

a25xa1 , ~36!

a35ya1 ,

where

y52a3~a2x311!1/3, ~37!

andx has four possible values depending on thea i ’s. From
our ansatz,a452a3 , a552a2 , a652a1 , a452a3 ,
a552a2, anda652a1.

For a252a3521,x521 giving methodR 4
1:

a15
1

4
~21A2!.0.675603595979828817023843904,

a252
1

4
~21A2!.20.675603595979828817023843904

~38!

a352
1

2
~11A2!.20.851207191959657634047687809

This method was found previously by Yoshida@11# in the
two-operator case; we see here that it is also a method fo
arbitrary sum of noncommuting operators. This method
Z52.67.

For a25a3521, x is the solution of

x513x413x323x2350, ~39!
-

e

an
s

giving methodR 4
2:

a1521.075035037431900314780251056,

a2521.024607977441460486144230714, ~40!

a3520.550427059990439828636020342.

This method hasZ52.53, and is slightly better than th
above method of Yoshida.

For a252a351, x is the solution of

2x513x313x21350, ~41!

giving methodR 4
3:

a150.938925888779098070854126976,

a2521.002122279211397565598116357, ~42!

a3520.563196390432299494743989381.

This method hasZ53.56.
Finally, for a25a351, x is the solution of

x913x71x613x513x413x21150, ~43!

giving methodR 4
4:

a151.087752928204421689142747144,

a2521.131212302433601022822197399, ~44!

a350.543459374229179333679450255.

This method hasZ54.39. We also searched numerically f
other irrational solutions and found no short asymmetric
lutions ~i.e., shorter than the symmetric solutions found an
lytically!.

VI. AN EFFICIENT TECHNIQUE FOR DERIVING
SUBOPTIMAL HIGHER ORDER METHODS

The technique for finding higher-order methods describ
above used a first-order method as a fundamental unit.
can also use higher-order methods as fundamental units.
makes it easier to derive very high-order methods, but
methods will be suboptimal in the sense that we only gen
ate a restricted set of solutions, which is unlikely to conta
the method that is optimal with respect to any given criter

The technique of using higher-order fundamental un
works as follows: The method of ordero from which we
form the fundamental unit is

)
i 51

I

~eaiA1 . . . eaiAN!a i, ~45!

and the fundamental unit is
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F)
i 51

I

~eaibA1 . . . eaibAN!a iGb

5 expS bbs I
1(

n51

N

AN1bbo11r D . ~46!

Combining a successionj 51, . . . ,J of fundamental units
with parametersbj andb j gives

)
j 51

J F)
i 51

I

~eaibjA1 . . . eaibjAN!a iGb j

5 expS (
j 51

J

b jbjs I
1(

n51

N

AN1(
j 51

J

b jbj
o11r D . ~47!

Therefore, to obtain a method of ordero11, we require

(
j 51

J

b jbj.0 ~48!

and

(
j 51

J

b jbj
o1150 . ~49!

This technique can be iterated to obtain arbitrarily high-or
methods.

As an example, we start with the first-order method

~1!; ~50!

by transposing, we obtain the second-order method

~1!~1!T, ~51!

now we solve the equations

(
j 51

J

b jbj.0 ~52!

and

(
j 51

J

b jbj
350. ~53!

A simple solution to Eqs.~52! and ~53! is 2351338.
Ordering is not dictated by the solution, so we choose
method which is its own transpose and hence fourth or
accurate

@~1!~1!T#4@~22!~22!T#@~1!~1!T#4. ~54!

Again, we solve the equations
r

e
er

(
k51

K

gkck.0 ~55!

and

(
k51

K

gkck
550, ~56!

which have the simple solution 25515332. Again, choosing
the ordering so that the method is its own transpose, g
the sixth-order method

$@~1!~1!T#4@~22!~22!T#@~1!~1!T#4%16@~22!~22!T#4

3@~4!~4!T#@~22!~22!T#4$@~1!~1!T#4@~22!~22!T#

3@~1!~1!T#4%16, ~57!

whereI 5594.

VII. FOURTH- AND FIFTH-ORDER FORMULAS
FOR exp„†A1,A2‡…

As a by-product of our analysis, we can also use E
~10!–~12! to search for approximations to gates involvin
commutators. To do this, we sets I

2.0 and s I
X50 for X

Þ2. An approximation for a gate involving a commutat
may be useful if only a subset of the generators of a part
lar group is available in hardware, but a given algorith
needs another generator of the group. For instance
exp(2isxDt) and exp(2isyDt) are available in hardware, bu
exp(2iszDt) is not, then we need a way to genera
exp(21

2@sx ,sy#Dt).
After some searching, we have been able to find o

method for exp@A,B# to fourth order. It is

~22!T~2!T@~21!~1!#12@~1!~21!#4, ~58!

with residuals

r12 r11112 r21112 r11221 r22112 r12221 r22221

12.0 1.0 2.0 0.0 0.0 22.0 21.0

This method can be combined with its transpose to giv
fifth order method.

VIII. A SIMPLE APPLICATION

To illustrate our methods, we have applied first, seco
third and fourth order methods to the exactly soluble ope
tor
e2 iDt(sx1sy1sz)5S cos~A3Dt !2 i
1

A3
sin~A3Dt ! 2~ i 11!

1

A3
sin~A3Dt !

2~ i 21!
1

A3
sin~A3Dt ! cos~A3Dt !1 i

1

A3
sin~A3Dt !

D . ~59!
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We used the first-order method

Z 1
15~1!5~e2 iDtsxe2 iDtsye2 iDtsz!, ~60!

the second-order method

Z 2
15~1!~1!T

5~e2 iDtsxe2 iDtsye2 iDtsz!~e2 iDtsze2 iDtsye2 iDtsx!,

~61!

the third-order method

Z 3
15~1!T~1!~1!~1!~1!T~22!T~1!~1!~1!

5~e2 iDtsze2 iDtsye2 iDtsx!~e2 iDtsxe2 iDtsye2 iDtsz!

3~e2 iDtsxe2 iDtsye2 iDtsz!~e2 iDtsxe2 iDtsye2 iDtsz!

3~e2 iDtsze2 iDtsye2 iDtsx!~e2iDtsze2iDtsye2iDtsx!

3~e2 iDtsxe2 iDtsye2 iDtsz!~e2 iDtsxe2 iDtsye2 iDtsz!

3~e2 iDtsxe2 iDtsye2 iDtsz! , ~62!

and similarly for the fourth-order method

Z 4
15~1!T~1!~1!T~22!~1!T~1!T~1!T~1!T~1!~1!T~1!~1!~1!

3~1!~22!T~1!~1!T~1!. ~63!

As a measure of the error, we take the difference between
sx , sy , and sz components of the exact solution and o
methods,Dsx , Dsy , andDsz . We then calculate the erro

E5A~Dsx!
21~Dsy!21~Dsz!

2. ~64!

In Fig. 1, we plot the logarithm~base 10! of the error as a

FIG. 1. Here, we plot log10~error! vs log10~time!. Error is calcu-
lated according to Eq.~64!. The lines from top to bottom corre
spond to the first-, second-, third-, and fourth-order methods of E
~60!, ~61!, ~62! and ~63!.
he

function of the logarithm~base 10! of the time that the sys-
tem was evolved for. The first-order method results are
permost, and higher-order results lie underneath each o
with fourth-order results being the lowermost plotted.Dt
50.01 for all methods. Notice that the first-order error osc
lates once it reaches order 1. The rest of the errors rem
small throughout the simulation, with the fourth-order err
remaining below 1023 for the entire evolution.

The error for all methods goes asnR(Dt)o11, wheren is
the number of times the method has been applied. There
log10E5 log10@R(Dt)o11#1 log10n. ForDt50.01, this makes
the y intercept decrease by order22 as the order of the
method increases. Since the time evolved is proportiona
n, the slope of the errors is 1 for all methods.

IX. SYMPLECTIC METHODS

In the study of classical Hamiltonian systems, we can c
the evolution of the coordinatesqi and momentapi of fields
or particles in the same language as we have done abov
quantum systems. Writez5(qi ,pi). Then the Hamilton
equations for the system are

ż5$z,H%, ~65!

where$a,b% is a Poisson bracket. Now defineDHz[$z,H%.
The Hamilton equations become

ż5DHz. ~66!

The formal solution to these equations is then

z~ t !5eDHtz0 . ~67!

Often, DH can be separated into kinetic and potential pa
DH5DK1DV . In this case, we have the formal solution

z~ t !5e(DK1DV)tz0 . ~68!

Typically, symplectic methods approximate the above c
~68!, in which there are only two operators in the expone
tial. Symplectic methods for two operators exist up to eigh
order in the expansion@11#.

In our work, we have developed methods to approxim
the case where there are an arbitrary number of operato
the exponential. This is important for simulations on bo
quantum and classical computers, since there can ofte
more than two terms which do not commute in the Ham
tonian. For example, any Hamiltonian of the form

H5gi j ~q!pipj1V~q!, ~69!

wheregi j andV are functions of theqi ’s, can have an arbi-
trary number of terms which do not commute with ea
other.

A simple example of a quantum system where extra te
in the sum are necessary is an Ising spin system with n
nearest neighbor interactions. Here the Hamiltonian beco

H5(
i 51

N

~s i•s i 111s i•s i 12!. ~70!

s.
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In this Hamiltonian, none of the termss i 22•s i , s i 21•s i ,
s i•s i 11 or s i•s i 12 commute. Therefore, for this system
we can arrange the Hamiltonian to have, at best, four te
which do not commute with each other.

X. CONCLUSIONS

The object of this paper has been to provide high
order approximation methods for operators of the fo
exp(i51

N AN in terms of operators of the form
exp (A1), exp (A2), . . . , exp (AN). We have focused on ap
proximation methods of this kind since they are particula
useful in quantum many-particle simulations for which t
discretized Hamiltonian on a quantum computer takes
form of an exponential of a sum of noncommuting terms

To find higher-order methods, we have derived a
solved equations for methods up to fourth order. We find t
the equations give a large number of methods, so we h
selected a small number of them based on what seem to
be reasonable criteria and presented them above.

As a by-product of our search, we have also been abl
find higher-order approximation methods for operators of
form exp@A,B# in terms of operators of the form exp (A) and
exp (B). These may be useful for quantum gates, wh
exp (A) and exp (B) are available in hardware, but the ga
exp@A,B# is desired for some particular algorithm.

Our analysis has also shown that there is a quick te
nique for deriving approximation methods to arbitrarily hig
order involving the solution of relatively simple equations
each order. We have also presented these results, but it
out that they lead to approximations that are far from optim
in the sense that there are many more gates in these me
than should be necessary. That is, they are accurate to
order, but relatively costly to implement.

As an example of how useful our approximations can
let us consider a case in which we want to apply an appr
mation method for timeT51 with total errorE51024. For
a first-order method, this means that we require about 5
applications of the method. For second order, we req
about 30 applications. For our third-order methodZ 3

1, we
need two applications. For the fourth order methodZ 4

1, one
application of the method is more than sufficient. This resu
in a reduction of orders of magnitude in the computatio
cost of a given simulation or gate application.

Using our equations, it is possible to search for fifth-ord
methods~and from these, via transposition, to obtain six
order methods!. We made a number of attempts at the sear
but were unable to find any fifth-order methods due to
large size of the search space. Thus, the only method
fifth-order and higher that we found were those metho
mentioned above which tend to involve unnecessarily la
numbers of gates.
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APPENDIX

1. Proof of lower bounds on integral method sizes

~s I
1!p5(

i 51

I

@~s i
1!p2~s i 21

1 !p#

5(
i 51

I

@~s i 21
1 1a iai !

p2~s i 21
1 !p#

5(
i 51

I F (
q51

p21
p!

q! ~p2q!!
~a iai !

q~s i 21
1 !p2q1a i

pai
pG ,

~A1!

wherea i561. Therefore, ifp is odd, then

(
i 51

I

a i
pai

p5(
i 51

I

a iai
p5s I

p , ~A2!

and if p is even, then

(
i 51

I

a i
pai

p5(
i 51

I

ai
p5(

i 51

I

~12a i !ai
p1(

i 51

I

a iai
p

5(
i 51

I

~12a i !ai
p1s I

p . ~A3!

Taking p52, the factorp!/q!( p2q)!,q51, is equal to
2, and the factor (12a i) is 0 or 2. A second-order metho
requiress I

250; therefore, (s I
1)2 must be even, and sos I

1

must also be even. Takingp53, the factorsp!/q!( p2q)!,
q51 and 2, are equal to 3. A third-order method requi
s I

350, therefore (s I
1)3 must be a multiple of 3, and sos I

1

must also be a multiple of 3. Takingp54, the factor
p!/q!( p2q)!, q51, 2, and 3, is even, and the factor (
2a i) is 0 or 2. A fourth-order method requiress I

450; there-
fore, (s I

1)4 must be even, and sos I
1 must also be even

Taking p55, the factorsp!/q!( p2q)!, q51, 2, 3, and 4,
are multiples of 5. A fifth-order method requiress I

550;
therefore, (s I

1)5 must be a multiple of 5, and sos I
1 must also

be a multiple of 5. Combining theses I
1 must be a multiple of

2 in a second-order method, a multiple of 6 in a third-
fourth-order method, and a multiple of 30 in a fifth-ord
method.

2. Formulas for B2
X’s in terms of the commutators
of A1 and A2

B2
p’s are defined by

eaA1eaA25 exp(
p51

`

apB2
p . ~A4!

The Campbell-Baker-Hausdorff formula@Eq. ~4!#, then gives

B2
15A11A2 , ~A5!

B2
25 1

2 A12, ~A6!
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TABLE I. Tables of residual errors.

~a! Third-order integer methods
r1 r1112 r1221 r2221

Z 3
1 6.0 21.0 0.5 0.0
Z 3

2 12.0 24.0 23.0 5.0
Z 3

3 6.0 22.0 1.5 1.0
Z 3

4 6.0 0.0 4.5 9.0
Z 3

5 12.0 2864.0 792.0 180.0

r11112 r21112 r11221 r22112 r12221 r22221

Z 3
1 2.2 3.1 23.2 5.3 0.1 21.3
Z 3

2 13.4 104.2 105.6 26.1 84.2 28.9
Z 3

3 0.7 5.1 3.3 1.8 3.1 1.2
Z 3

4 2.7 8.1 22.7 10.8 26.9 213.8
Z 3

5 23801.6 21900.8 2505.6 21166.4 499.2 206.4

~b! Third-order irrational method
r1 r1112 r1221 r2221

R 3
1 1.0 0.012008 20.052816 20.058414

r11112 r21112 r11221 r22112 r12221 r22221

R 3
1 0.001754 0.003500 20.009304 0.017412 20.014311 20.026310

~c! Fourth-order integer methods

r1 r11112 r21112 r11221 r22112 r12221 r22221

R 4
1 12.0 21.6 0.2 23.4 5.6 21.8 22.6

R 4
2 12.0 3.4 6.2 3.6 3.6 2.2 24.6

R 4
3 12.0 26.4 40.2 25.4 21.6 16.2 5.4

R 4
4 12.0 2369.6 2220.8 309.6 286.4 259.2 86.4

~d! Fourth-order irrational methods
r1 r11112 r21112 r11221 r22112 r12221 r22221

R 4
1 1.0 20.000414 20.008682 20.007027 20.026045 20.026732 20.004684

R 4
2 1.0 20.022171 20.013256 0.014902 20.009176 0.002796 0.001717

R 4
3 1.0 20.001297 0.038072 0.035227 20.080082 20.079215 0.001270

R 4
4 1.0 0.002074 0.196582 0.194095 20.052861 20.050727 20.002155
we
B2
35 1

12 ~A1121A221!, ~A7!

B2
12[@B2

1 ,B2
2#5 1

2 ~A1122A221!, ~A8!

B2
45 1

24 A1221, ~A9!

B2
13[@B2

1 ,B2
3#5 1

12 ~A11121A2221!, ~A10!

B2
112[@B2

1 ,B2
12#5 1

2 ~A11122A222122A1221!, ~A11!

B2
552 1

720~A1111222A2111226A1122126A2211222A12221

1A22221!, ~A12!

B2
14[@B2

1 ,B2
4#5 1

24 ~A112212A22112!, ~A13!

B2
23[@B2

2 ,B2
3#5 1

24 ~@A12,A112#1@A12,A221# !

52 1
24 ~A211121A112212A221122A12221!, ~A14!
B2
113[@B2

1 ,B2
13#5 1

12 ~A111121A211121A122211A22221!,
~A15!

B2
221[2@B2

2 ,B2
12#5 1

4 ~2@A12,A112#1@A12,A221# !

5 1
4 ~A211121A112211A221121A12221!, ~A16!

B2
1112[@B2

1 ,B2
112#5 1

2 ~A111121A2111222A1122112A22112

2A122212A22221!. ~A17!

3. A simple measure of the error

The error for a given method is given by Eq.~15!,

r 5(
X

s I
XBN

X , ~A18!

where XP$4,13,112% for a third-order method andX
P$5,14,23,113,221,1112% for a fourth-order method.r is a
vector in the vector space of the commutators for which
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do not know the metric. We would like to have a sca
measure of the error, and thus must pick some basis for
vector space. We choose the basis to be the commutato
A1 andA2. This basis is simple and spans the vector spac
the BN

X’s without redundancy. Since this basis spans
space of theBN

X’s, we do not need to go toN larger than 2.
For N52, we can reexpressr as

r 5(
Y

rYAY , ~A19!

where

YP$1112,1221,2221% ~A20!

for a third-order method and

YP$11112,21112,11221,22112,12221,22221% ~A21!

for a fourth-order method. The formulas for therY’s in terms
of the s I

X’s are given in Appendix A 4. In this basis, ou
measure of the error then becomes

R[A(
Y

~rY!2. ~A22!

4. Formulas for rY’s in terms of s I
X’s

For N52,

r 5(
X

s I
XB2

X5(
Y

rYAY . ~A23!

Therefore, using the formulas in Appendix A 2, we obtain

r15s I
1 , ~A24!
on

s

.

t,
ev
A

r
he
of

of
e

r25s I
1 , ~A25!

r125
1
2 s I

2 , ~A26!

r1125
1

12 s I
31 1

2 s I
12, ~A27!

r2215
1

12 s I
32 1

2 s I
12, ~A28!

r11125
1

12 s I
131 1

2 s I
112, ~A29!

r12215
1

24 s I
42s I

112, ~A30!

r22215
1

12 s I
132 1

2 s I
112, ~A31!

r1111252 1
720s I

51 1
12 s I

1131 1
2 s I

1112, ~A32!

r211125
1

360s I
52 1

24 s I
231 1

12 s I
1131 1

4 s I
2211 1

2 s I
1112,

~A33!

r112215
1

120s I
51 1

24 s I
142 1

24 s I
231 1

4 s I
2212s I

1112,
~A34!

r221125
1

120s I
52 1

24 s I
141 1

24 s I
231 1

4 s I
2211s I

1112,
~A35!

r122215
1

360s I
51 1

24 s I
231 1

12 s I
1131 1

4 s I
2212 1

2 s I
1112,

~A36!

r2222152 1
720s I

51 1
12 s I

1132 1
2 s I

1112. ~A37!

5. Tables of residual errors

Table I shows the breakdowns for the residual errors.
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