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Higher-order methods for simulations on quantum computers
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To implement many-qubit gates for use in quantum simulations on quantum computers efficiently,
we develop and present methods reexpressing[-exd;+H,+---)At] as a product of factors
exd —iH,At], exd —iH,At], . . ., which is accurate to third or fourth order it. The methods we derive are
an extended form of the symplectic method, and can also be used for an integration of classical Hamiltonians
on classical computers. We derive both integral and irrational methods, and find the most efficient methods in
both casesS1050-294{@9)07209-1

PACS numbegs): 03.67.Lx, 05.10-a, 45.10-b, 46.15-x

I. INTRODUCTION (i.e., much fasterthan classical computef$].
This paper focuses on a problem which concerns simula-

Quantum computers have generated much interest rdional issues in quantum computation. Essentially, we have
cently, largely due to the result by Shft] that they can developed methods for reexpressing [exifHi+H,
factor integers in polynomial time. In a quantum computert---)At] as a product of factors ekpiH;At],
the analog of a logical bit is the qubit. The canonical ex-exd—iH2At], ..., which is accurate to third or fourth order
ample of a qubit is a quantum spin. A quantum spin consisté At.
of two states, so a set ofspins gives the quantum computer A simulation on a quantum computer consists of applying
a 2"-dimensional Hilbert space. an operator expfiHt) on a set of qubits, wherél, the

To perform a calculation, one initializes the qubits, andHamiltonian of the system of interest, is suitably encoded
then applies unitary logical gates to the qubits. Unitary logi-(@nd discretizepto act on the set of qubits. For many-body
cal gates are realized in different fashions depending on theystems,H is a sum of terms. For instance, in a one-
quantum computer hardware, but they are all representedimensional Ising spin model, the Hamiltonian is
mathematically by a Hamiltonian acting on the quantum \
state of the qubits. In a typical quantum computer, technol-
ogy restricts the Hamiltonian to act on a small number of H:n§=:l On On+1, @)
qubits at a time, maybe two or three. A calculation is then

built up of two- or three-qubit Hamiltonians, or gates, acting,yhere N is the number of spins. Another example is the

sequentially on the qubits. Hubbard model Hamiltonian, used in the study of hih-

An importa_nt a}nd di.fficult to realize requirement is_ that superconductivity, which can be writté] as the sum
the qubits maintain their coherence throughout an entire cal-

culation. Maintaining coherence in quantum computers is a m

problem which has led to the development of error correcting H=> Von; N+ > t6C},Cior s 2)
codes(see Ref[2] and included referencesThese codes are i=1 (e

possible due to the fact that one does not need to know the

state of a qubit in order to tell whether an error has occurredwhereVy is the strength of the potential, amg, is the op-
With some ingenuity, it is possible to determine what kindserator for the number of fermions of spinat sitei. In the
of errors have occurred during the course of a calculationsecond (kinetic-energy term, the sum(i,j) indicates all
and to correct the errors as the calculation proceeds. SimpReighboring pairs of sited, is the strength of the “hop-
error correction codes have already been shown to work oping,” and c;, andc{_ are annihilation and creation opera-
small numbers of qubitg3]. tors, respectively, of a fermion at siteand spino.

Effort has also been put into developing algorithms which  These models give examples in which a large simulation
make use of the quantum computer's power. Shor's algoen a classical computer is impossible due to the exponential
rithm showed that quantum computers are more powerfuincrease in the size of the Hilbert space of the quantum sys-
than classical computers, since integers cannot be factored iam with the number of lattice sites. A many-particle system
polynomial time on a classical computer, whereas they cagan sometimes be simulated with fewer qubits in first-
on a quantum computer. Grover also devised a method faquantized forn{7], but in either case the Hamiltoniaihis a
searching a database in time proportional to the square rosum of terms, so our methods are equally applicable to both
of the number of items involved in the searet]. cases.

In addition to research into effective algorithms for use on  If the quantum computer cannot act on all spins at once,
guantum computers, simulations of quantum systems havas is the case for quantum gate arrf8k it becomes neces-
also been shown to be possible in polynomial tif¢ In-  sary to find ways of approximating the application of the
deed, this was the first area for which it was proposed thaabove Hamiltonians with few-qubit gates. To second order,
guantum computers could fundamentally be more powerfufor instance, we find that
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(e—iHlAte—inAt N _e—iHNAt)(e—iHNAt ... THaAtgiH ALy o
(e?hg2 | e@M)a= exp > aaPBR, (6)
— @ i2(HyHHa - HYAL+O[(AD%] 3 p=1
_ o which defines théf in terms of theA,,. Herep is an expo-
whereH,, are two-qubit gate¢e.g.,on- 0 11). nent ona, and a label on the matric&f,. We takea=+1.
Below, we analyze the problem of deriving higher order  Now combine a successiadn=1, ... of fundamental

methods of this type, and find a set of equations which, oncgpits with parametera; and ;. Again iterating Campbell-
solved, give third- and fourth-order methods analogous to thgaker-Hausdorff gives

above second-order method. We solve and present the for-

mulas for third- and fourth-order methods as well as devel- *
oping methods for approximating expressions involving exp( 2 a,afBR
commutators, expf,B]). Since there is a large set of solu- p=1
tions to our equations, we spend some effort trying to isolate
and present only the most efficient methods. After presenting = ex;{ E o,XB),j). @
our methods, we then provide results from a simple applica- X

tion to give the reader confidence that our methods are co

e exp( > alaFB,ﬂ)
p=1

rBﬁ are generated from th} by commutationX represents

rect.
This kind of method has been investigated elsewhere, fof labelpq. . .rs where
different reasons, in the context of Hamiltonian systems un- BPA---'S=[BP [BY, ...[BL,BS] .. .11 @)

der the name “symplectic” method. In the section on sym-
plectic methods, we comment on what we have done differgpa--s is of orderp+q-+---+r+s. Up to fifth order we
ently from other investigations of symplectic methods, and.an take
why our methods are applicable to more general problems.
We then present a summary of our results in Sec. X. We also Xe{l;2;3,12;4,13,112;5,14,23,113,221,1}12 (9)
provide appendixes with useful expressions used in the deri-
vation of our results, and some proofs of statements in th@heseBY’s span the space of commutators of #Bf's to
text. fifth order, and folN=2 they are independent. Formulas for
the B§ in terms ofA; andA, are given in Appendix A2. The
o,x are defined in terms aof; anda; by Eq. (7). Here again,
the X’s are labels.

We want to express exEKLlAn) as a product of indi- After some calculation, the Campbell-Baker-Hausdorff
vidual exp@,))'s. In order to do this, we use the Campbell- formula[Eq. (4)] then gives
Baker-Hausdorff formula. The Campbell-Baker-Hausdorff

formula to fifth order is
of=2 aal (10)

IIl. MATHEMATICAL ANALYSIS AND EQUATIONS

explaA)expah,)
L . for p=1,...,5,
= exga(A;+Ay) +38%A+ a3 (Agipt Ay

|
pa— _ 1 p. d, 1 q-p pPy2 _ p 2
T s070,+3 a; T o 11
338" A121— 7308°(A11117~ 2A21115~ 6A 11221 ! 2 2izl AR U B

—6A2115~ 2A100011 Agoo) +0(a%)], @ for pg=12, 13, 14, and 23,

h |
e o=~ SoPof - oD of 13, A (0P (o7 1)
Akl ...mnE[Akv[Al v e -[AmyAn] B ]] (5) (12)

To find combinations of operators eApwhich approxi-  [of PPA=112, 113, and 221 and
mate expE,ﬁ‘zlAn) to some order it is first necessary to 01112:_;010112_;(01)2012_A(U1)302
choose a strategy for searching among the large number of 2UITL s T et
possible combinations. First of all, we cannot search brute :
force since there are too many possible combinations, and, in + %42 al (o)) *— (a4 (13
any case, this would not give us a formula valid for ill =1

Therefore, we pick a fundamental ordering of the product ofFOr approximations to exﬁﬁzlAn), we require a||0'|X=O

exponentials with parameters allowing for transposes of the S v
enFt)ire product as \E)vell as raising all tge exponeﬂtials in theexgept fom'l which is the coefficient OB’{‘:E”:lA“’ and
fundamental unit to the same power. which should be greater than zero.
By iterating the Campbell-Baker-Hausdorff formula, we
can obtain an expression for the fundamental unit in terms of
a single exponential IFor the purposes of calculating®, note thato?'= — o2,
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An interesting feature of third-order methods is that theypresent. We need to select solutions to present and we also
require inverses, i.e., they require backward time evolutiorwant to present solutions which are in some sense optimal.
during part of the methot.This can be proved using Eq. To do this, we consider the form of the operator resulting
(10) with p=3. It has no nontrivial solutions when the prod- from a given method
uct «;a; is positive for alli. Therefore for third-order meth-
ods, a;a; must be negative for at least oneFrom the left-

|
hand side of Eq(6), we see that this means that there must [ (e aitdtemiajhaht | griajAndtyq;
be at least one inverse. Similarly, from Eq40) with p =1
=3 andp=4 it can be proved that fourth-order methods N
must have at least two inverses. = ex;{ —iolY, ApAt+r(—iAt)°*t] (14
In Appendix A1, we also prove the fact that for integral n=1

solutions o must be a multiple of 2 for a second-order

method, a multiple of 6 for a third- or fourth-order method,
and a multiple of 30 for a fifth-order method. Our searches

suggest that the constraints mﬂl may actually be stronger; r=z oleX, (15
all fourth-order methods that we have found haxfea mul- X

tiple of 12, and we have not been able to find any fifth-ordernere Xe{4,13,112 for a third-order method andX
methods. In Sec. VII, we will consider an approximation to {5,14,23,113,221,11}For a fourth-order method.
ex{A1A;], for which we require albr=0 except fora . r is an error which takes values in the vector space of the
IIL. NUMERICAL METHOD FOR SOLUTION commutators for which we do npt hav_e a_metr_ic. Therefc_)re,
' OF THE EQUATIONS we make thexd hocchoice of basis that is given in Appendix
A 3. This allows us to replaceby a single real scald as is
We solve our equations for both integer and irrationalalso described in Appendix A3. The error from the method

solutions, using different methods for each search. Oufan then be taken to be

method to solve Eqs{;O)—(lZ) fqr integers is tp pick values _ E—nRAtO+L, 16
of a; anda;, and see if they satisfy the equations. To do this
we restrict the number of fundamental units by fixingVe
also restrict the range of the’s.

We start with Eq(10), since, in this equation, order with
respect td does not matter. So, for a given set of values, we
need to consider only one permutation, not all permutations T,=nDAt, (17)
of the values. This greatly reduces the size of the search.

Furthermore, we start by consideripg=1 and 3, since it whereD=o7 is given by the method. The computer time it
is only the sign ofe;a; that matters in these equations. This takes for a given simulation can be written
means we can consider only the sign of the combination
a;a;, and not the signs of; and a; individually. This re- Te=nINt;+nLNt, (18
duces the search further. These equations are particularly re- ) o
strictive for the case of few inverses. After solving the Wherel is the number of fundamental units in the method
—1 and 3 equations, we introduce separate signs folse andN is the number of terms in a unty is the time it takes
anda;’s and solve the equation with=2, andp=4 for the (@ Make a gate change,
fourth-order case. Finally, into the restricted set of solutions |
to Eqg. (10) we introduce permutations of the’'s and a;’s LEZ lai, (19)
with respect to the indekand solve Eqs(10)—(12). =1

We solved Eqgs(10) and (11) analytically to find the
unique shortest irrational third-order method. To find fourth-SO thatLN is the total time the gates are applied for in the
order irrational methods, we made a symmetric ansatz an@ethod, ands is the time each individual gate is applied for.
solved Egs(10)—(12) analytically to find the shortest sym- The time an individual gate is applied for will dg=bAt,
metric irrational fourth-order methods. We checked numeriWhereb is a proportionality constant dictated by the actual
cally, using the globally convergent technique prescribed irfouplings in the quantum computer hardware.

Ref.[10], that these are all the shortest irrational fourth-order Using Egs.(16) and (17), the computer time can be re-

whereAt<1 is a time stepo is the order of the method, and

wheren is the number of times we apply the approximate
method.
If the physical time we want to simulate T,, then

methods. The methods are presented in Sec. V. written
IV. CRITERIA FOR SELECTING AMONG TOFL\ Mo/ )[R\ o LbNT,
T.=|— —|l= + P (20)
THE SOLUTIONS c E o/lD g D -

With our strategy for finding solutions to Eq4.0)—(12),

. : . There are two possible limits to this equationAlf can be
we find a larger number of solutions than we can easnym

ade very smallfrom the hardware point of viel then
making the error small forces the computer time to be domi-
nated by gate switching. In this case, we want the factor

2After this work was completed, we became aware that this point
was also noted in Ref9]. Z=(1/D)(R/D)P (21
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to be small. A. Integer solutions

If there is a lower limit toAt=¢, and it is reached before e thirg-order integer methods that we have selected us-
the computer time is gate switching dominated, then thqng the criteria of Sec. IV are given below.

computer time may be dominated by gate application. In this

second limit, we want/D small, and to minimize the error Third-Order methods

E, we want R/D)(At)° small. In this limit, each gate can

only be applied for an integral number of the minimum 23 (D7) (1) (1)) (—2)"(1)(1)(1)
timestepe. Thus, to use an irrational method, one must ap-gg (D)T(4)(2)(-5)T(2)T(3)(2)(2)"(1)
proximate the method by an integral method containing Iarg%g (1)T(2)(2)(-3)T(1)T(2)(1)"
integers, and so with a large. BecauseAt= € is fixed, the Zg (3)(—4)(1)(3)(2)(1)

error E goes likeR/D=D®, and thus is large for irrational _:z T T
methods. We thus do not consider irrational methods in thisZ3 (5)(1)(12)(=13)'(1)

limit. To summarize, in this second limit, we want methods D L | L/D R/D b
with smallL/D andR/D.

Z3 6 10 9 1.67 0.2 0.9
z2 12 22 9 1.83 0.6 0.6
V. THIRD- AND FOURTH-ORDER FORMULAS z3 6 12 7 2.00 0.4 0.9
FOR exp(=N_,Ay) z4 6 14 6 2.33 1.7 1.2
5
From this analysis, we want to choose methods for which? 3 12 38 > 3.17 98.8 19
Z,orL/D andR/D are small. Below we list the methods and .
their properties. We use the notation The fourth-order integer methods are
(ea) (22) Fourth-order methods
Z;  (OTOO)(=2W)" (D)LL)W ()
to represent 4
P X(1)(1)(-2)"(1)(1)'(1)
(ePigahz | gahn)a 23 Zi  ()'@)@)(-3)"(2)(2)(1)(2)(2)"(—-3)(2)"(1)
X(1)(1)'
if =1, and Z% (1)T(2)BF)D)(—4)(3)'E)(-HT(1)(3)(2)(1)
Z3 (8 (=7)(1)T(1)(5)T(5) (L) (1)(=7)(6)
(a)" (24)
D L | L/D R/D A
to represent zl 12 20 18 167 06 1.3
2
(Mg | e (05 Zi 12 24 14 200 08 11
Zi 12 28 12 2.33 4.6 15

if «=—1. So, for example, the second-order method Z3 12 40 10 333 502 2.2

B. Irrational solutions
(ef1ef2 . efN)(efN | efeeh)

The equations that we have derived can be solved for

=(efefz. . e (eTMe M2, eTAN)E irrational solutions. We have been able to find the shortest
(26) third-order method analytically. It can be proven to be
unique. It is
is represented b
P Y (a1)(—az)T(—a5) (ay), (29
(LT (27)  where
Note that the transpose of any method gives another equiva- a=1,
lent method, as does permuting the entries in the fundamen- 1
tal unit. _ T 15 15
For odd order methods, the residue has an odd number of 8= 6(5 V13+215+2y13),
brackets in the commutators. So, because the transpose of an (30)
individual bracket is minus that bracket, az=1(1+ay),
(odd order method same odd order method transppse as,=—ap(1+ay)/(3+2a,).
(28)

Renormalizing to giver; =1, we have metho® 3:

gives a method of one order higher. For example, we can a;=0.451525513208585723409578820,
make a fourth-order method from a third-order method, or a

sixth-order method from a fifth-order method. a,=—0.630880954030002500791663663, (31)
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as;=—1.136710925213995714728206549,

a,=—1.219117392452583938929449032,

accurate to 27 decimal places. This method hasl.7.

From this third-order method, we can generate the fourth-

order method

(a)(—ay) (—as) " (as)(ay) (—az)(—ay(ay)'. (32
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giving methodR 2:
a;=—1.075035037431900314780251056,
a,=—1.024607977441460486144230714, (40)

az=—0.550427059990439828636020342.

This method hasz=2.53, and is slightly better than the

We have also found short fourth-order methods. We assumghove method of Yoshida.

a solution of symmetric form, using the ansatz_;, 4

=—qa; anda,_; . 1= —q;. Forl =6, this leaves us with the

equations
3
2}1 aa =1, (33
3
;1 a;a’=0, (34)
3
2, [at+2aai(o3-01)]=0 (39
to solve.

Combining equations and settiag =1, we find solutions
of the form

1
al:2(a2X+ a3y+ 1) '

a2: Xal, (36)
az=yas,
where
y=—az(a3+1)"? (37)

andx has four possible values depending on th&s. From
our ansatz,a,=— a3, asg=—ay, ag=—ay, 4= —as,
as=—ayp, andag= —a;.

For a,= —az=—1,x=—1 giving methodR }:

1
=z (2+/2)=0.675603595979828817023843904,

1
a,=— —(2+2)=—0.675603595979828817023843904,

4
(39

1
azg=— §(1+ V2)=—0.851207191959657634047687809.

This method was found previously by Yoshifihl] in the

For a,=—a3=1, X is the solution of

2x°+3x3+3x2+3=0, (41)

giving methodR 3:
a,=0.938925888779098070854126976,
a,=—1.002122279211397565598116357, (42)

az=—0.563196390432299494743989381.

This method haZ = 3.56.
Finally, for a,=a3=1, x is the solution of

X9+ 3x7 4+ x84+ 3x5+ 3x*+ 3x2+1=0, (43

giving methodR §:
a,=1.087752928204421689142747144,
a,=—1.131212302433601022822197399, (44)

a3=0.543459374229179333679450255.

This method haZ=4.39. We also searched numerically for
other irrational solutions and found no short asymmetric so-
lutions (i.e., shorter than the symmetric solutions found ana-
lytically).

VI. AN EFFICIENT TECHNIQUE FOR DERIVING
SUBOPTIMAL HIGHER ORDER METHODS

The technique for finding higher-order methods described
above used a first-order method as a fundamental unit. We
can also use higher-order methods as fundamental units. This
makes it easier to derive very high-order methods, but the
methods will be suboptimal in the sense that we only gener-
ate a restricted set of solutions, which is unlikely to contain
the method that is optimal with respect to any given criteria.

The technique of using higher-order fundamental units
works as follows: The method of order from which we
form the fundamental unit is

two-operator case; we see here that it is also a method for an

arbitrary sum of noncommuting operators. This method has

Z=2.67.

For a,=a3=—1, x is the solution of

X2+ 3x*+3x3-3x—3=0, (39

|
il:[l (edih1,  gdifn)ei, (45)

and the fundamental unit is
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B
{H (ed ibAL abAN)
N
= exp( Bbat 21 AN+,Bb°+1r) . (46)

Combining a successign=1, . . .
with parameterd; and g; gives

Bj

J of fundamental units

J

|
H |:H (eaibjAl . _eaibjAN)ai
j=1|i=1

J N J
= GX% 1‘2]_ 'BJblo-Ilngl AN+J'21 ijjo+1r) . (47)

Therefore, to obtain a method of orde# 1, we require

J
,Zl Bjb;=0 (49)
and
J

2 b0+1

(49
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K
k; YiCi>0 (55)
and
K
2 Ne=0 (56)

which have the simple solutiorP2 1°x 32. Again, choosing
the ordering so that the method is its own transpose, gives
the sixth-order method

OO L(=2)(=2)TL(L) D) (-2)(-2)"]*
X[ T(=2)(=2)TTH(L)(D) T [(-2)(—2)"]
X[(1)(1)T]4S, (57)

wherel =594.

VII. FOURTH- AND FIFTH-ORDER FORMULAS
FOR exp([A1,Az])

As a by-product of our analysis, we can also use Egs.
(10—(12) to search for approximations to gates involving

This technique can be iterated to obtain arbitrarily high-ordefommutators. To do this, we set?>0 and oj'=0 for X

methods.
As an example, we start with the first-order method
(1); (50)
by transposing, we obtain the second-order method
(LT, (51)
now we solve the equations
J
121 Bib;>0 (52)
and
J
]Zl Bib}= (53

A simple solution to Eqs(52) and (53) is 2°=13x8.

#2. An approximation for a gate involving a commutator
may be useful if only a subset of the generators of a particu-
lar group is available in hardware, but a given algorithm
needs another generator of the group. For instance, if
exp(—ia,At) and exp(ioyAt) are available in hardware, but
exp(—ig,At) is not, then we need a way to generate
exp(—%[UX,Uy]At).

After some searching, we have been able to find one
method for expA,B] to fourth order. It is

(=2)TT (DO (D(-DT4 (58
with residuals
P12 P11112  P21112 P11221 P22112  P12221 P22221
120 1.0 2.0 0.0 0.0 -20 -1.0

This method can be combined with its transpose to give a

Ordering is not dictated by the solution, so we choose théhcth order method.
method which is its own transpose and hence fourth order

accurate VIIl. A SIMPLE APPLICATION

To illustrate our methods, we have applied first, second,
third and fourth order methods to the exactly soluble opera-
tor

[(DDT(=2)(=2)TI(D)(D) T

Again, we solve the equations

(59

1
—sin(\/3At)

1
cog \3At)—i —sin(\/3At)
5

V3

—(i+1)

e iAt(oyt+ oyt 0;) —

(59

1 1
1)—sin(\3At)  cog v/3At)+i —sin(\3At)

BN B
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ar— v v T v T T T T T function of the logarithmbase 10 of the time that the sys-
[ ] tem was evolved for. The first-order method results are up-
permost, and higher-order results lie underneath each other
with fourth-order results being the lowermost plottefit
=0.01 for all methods. Notice that the first-order error oscil-
lates once it reaches order 1. The rest of the errors remain
small throughout the simulation, with the fourth-order error
remaining below 10° for the entire evolution.

The error for all methods goes afR(At)°"!, wheren is
the number of times the method has been applied. Therefore,
log,oE =l0g,d R(At)°*1]+log,on. ForAt=0.01, this makes
the y intercept decrease by order2 as the order of the
method increases. Since the time evolved is proportional to
n, the slope of the errors is 1 for all methods.

log(error)

IX. SYMPLECTIC METHODS

In the study of classical Hamiltonian systems, we can cast
. the evolution of the coordinates and momentap; of fields
gl—— L or particles in the same language as we have done above for
quantum systems. Write=(q;,p;). Then the Hamilton
equations for the system are

log(t)

FIG. 1. Here, we plot log(erron vs logo(time). Error is calcu-

lated according to Eq(64). The lines from top to bottom corre- iz{Z,H}, (65)
spond to the first-, second-, third-, and fourth-order methods of Egs.
(60), (61), (62) and(63). where{a,b} is a Poisson bracket. Now defifbg,z={z,H}.

The Hamilton equations become
We used the first-order method

Zi: (1) — (e—iAtoxe—iAtoye—iAtUZ), (60) z= DHZ' (66)
the second-order method The formal solution to these equations is then
Z%:(l)(l)T Z(t):eDHtZO. (67)
= (e |AtoxgTiAtoygTiAtoy) (g iAlrzgiAloyg —iAloy) Often, Dy can be separated into kinetic and potential parts
61) Dy=Dk+Dy. In this case, we have the formal solution
the third-order method 2(t) =ePxPViz,, (68)
Zéz(l)T(l)(l)(l)(l)T(—2)T(1)(1)(1) Typically, symplectic methods approximate the above case
) ) ) ) _ ) (68), in which there are only two operators in the exponen-
= (e 'AtozgTIAtoygTIAloy) (g IAtTg T IAlTygTIALey) tial. Symplectic methods for two operators exist up to eighth

order in the expansiofiL1].

—iAtoy 7iAta'y —iAto, —iAtoy 7iAta'y —iAto, .
x(e € € )(e € € ) In our work, we have developed methods to approximate

X (@7 1AtozgmiAtoyg—iltoy) (@2iAtog2iAtay g2iAtay) the case where there are an arbitrary number of operators in
Al At At A A " the exponential. This is important for simulations on both
X(e™ M xeT 2 lyeTI80z) (712X 2ty 1210) quantum and classical computers, since there can often be

more than two terms which do not commute in the Hamil-

—iAtoya—iAtoya—iAto
x(e € e 2 (62 tonian. For example, any Hamiltonian of the form

and similarly for the fourth-order method

Y H=g;j(q)pip;+V(d), (69)

Z3=(D)T DTN T(D)T(L)(D)T(1)(1)(1) , :
whereg;; andV are functions of they;’s, can have an arbi-

X(D)(=2)T(1)(1)T(1). (63)  trary number of terms which do not commute with each

other.

ox, oy, ando, components of the exact solution and ourin the sum are necessary is an Ising spin system with next-
methodsAoy, Aoy, andAo,. We then calculate the error nearest neighbor interactions. Here the Hamiltonian becomes

E=V(Ac)?+(Ady)?+(Ac,)% (64)

N
H= 1T O Oisg). 70
In Fig. 1, we plot the logarithnibase 10 of the error as a ;l (001t 07 0iv2) (70
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In this Hamiltonian, none of the terms,_,- oy, oi_1- o}, APPENDIX
- 0i,1 OF oj-0j., commute. Therefore, for this system,
we can arrange the Hamiltonian to have, at best, four terms
which do not commute with each other.

1. Proof of lower bounds on integral method sizes

|
(o.l>p=§1 [(oh)P—(at_1)P]

X. CONCLUSIONS |
=2 [(of 1+ @a)P— (o7 1)P]

The object of this paper has been to provide higher- i=1
order approximation methods for operators of the form | rp-1
expEl ;. in terms of operators of the form B> p! (a;a)9( oL )P+ aPaP|,
exp @), exp @), ..., expfy). We have focused on ap- =1 ¢=1al(p—q)! ' t
proximation methods of this kind since they are particularly (A1)

useful in quantum many-particle simulations for which the
discretized Hamiltonian on a quantum computer takes th@uherea;= + 1. Therefore, ifp is odd, then
form of an exponential of a sum of noncommuting terms.
To find higher-order methods, we have derived and : !
solved equations for methods up to fourth order. We find that ;1 aipaip:iz:l a;al=of, (A2)
the equations give a large number of methods, so we have
selected a small number of them based on what seem to Us §,q if p is even, then
be reasonable criteria and presented them above.
As a by-product of our search, we have also been able to ! : : !
find higher-order approximation methods for operators of the E aipaip=z a?=_z (1_ai)aip+z a;af
form exp[A,B] in terms of operators of the form exp)and =t =t -t =t
exp B). These may be useful for quantum gates, where :
exp (A) and expB) are available in hardware, but the gate = (1-a)al+of. (A3)
exp[A,B] is desired for some particular algorithm. =t
Our analysis has also shown that there is a quick tech- Taking p=2, the factorp!/q!(p—q)!

nique for deriving approximation methods to arbitrarily high 5 54 the factor (% ;) is 0 or 2. A second-order method
order involving the solution of relatively simple equations atrequires<r|2=0; therefore, (Tll)z must be even, and sa|1
each order. We have also presented these results, but it WrRs,st also be even. Taking=3, the factorg!/q!(p—q)!,
out that they lead to approximations that are far from optimal, _ 1 anq 2 are equal to 3. A third-order method requires
in the sense that there are many more gates in these metho(glszo, therefore ¢1)3 must be a multiple of 3, and se!
than should be necessary. That is, they are accurate to high,st also be a multiple of 3. Taking=4, the factor
order, but relatively costly to implement. pl/gl(p—0q)!, g=1, 2, and 3, is even, and the factor (1
As an example of how useful our approximations can be,_ a;) is 0 or 2. A fourth-order method require¢ =0 there-
let us consider a case in which we want to apply an approxifOre (@)* must be even, and so! must also be even.
mation method for tim@ =1 with total errorE=10"*. For Taki,ng 6:5 the factora:)!/q!(p—q)ll q=1, 2, 3,and 4
a first-order method, this means that we require about 5009, muItipIe,s of 5 A fifth-order method ’req,uire,z§5=0; '

applications of the method. For second order, we reqmr?herefore (T|l)5 must be a multiple of 5, and sql must also

abogtt30 appll_lca:.lons. Eort(r)]urfthlrtcri]—orc:jer metthéﬁ, we be a multiple of 5. Combining thesﬂ1 must be a multiple of
need two applications. For he fourth order me ON€ * 5 in a second-order method, a multiple of 6 in a third- or

application of the method is more than sufficient. This reSUIt%urth-order method, and a multiple of 30 in a fifth-order
in a reduction of orders of magnitude in the computationalmethod ’

cost of a given simulation or gate application.

Using our equations, it is possible to search for fifth-order
methods(and from these, via transposition, to obtain sixth- .
order methods We made a number of attempts at the search, 2 Formulas for B3’s in terms of the commutators
but were unable to find any fifth-order methods due to the of Ay and A,
large size of the search space. Thus, the only methods of BY's are defined by
fifth-order and higher that we found were those methods
mentioned above which tend to involve unnecessarily large

numbers of gates. e?gdho= exppzl aPBj. (A4)

,q=1, is equal to

[

The Campbell-Baker-Hausdorff formul&q. (4)], then gives
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TABLE |. Tables of residual errors.

(a) Third-order integer methods

P1 P1112 P1221 P2221
z: 6.0 -1.0 0.5 0.0
z3 12.0 -4.0 -3.0 5.0
z3 6.0 -2.0 1.5 1.0
z35 6.0 0.0 45 9.0
z3 12.0 —864.0 792.0 180.0
P11112 P21112 P11221 P22112 P12221 P22221
z: 22 3.1 -3.2 5.3 0.1 -13
Z§ 13.4 104.2 105.6 26.1 84.2 28.9
z3 0.7 5.1 3.3 1.8 3.1 1.2
z3 2.7 8.1 -2.7 10.8 -6.9 -13.8
Zg —3801.6 —1900.8 2505.6 —1166.4 499.2 206.4
(b) Third-order irrational method
P1 P1112 P1221 P2221
R% 1.0 0.012008 —0.052816 —0.058414
P11112 pP21112 P11221 P22112 P12221 P22221

R3 0.001754 0.003500 —0.009304 0.017412 —-0.014311 —0.026310

(c) Fourth-order integer methods

P1 P11112 P21112 P11221 P22112 P12221 P22221
R}l 12.0 —-1.6 0.2 —-3.4 5.6 -1.8 —-2.6
R2 12.0 3.4 6.2 3.6 3.6 22 -4.6
Ri 12.0 26.4 40.2 —-5.4 21.6 16.2 5.4
Rj 12.0 —369.6 —220.8 309.6 —-86.4 259.2 86.4
(d) Fourth-order irrational methods
P1 P11112 P21112 P11221 P22112 P12221 P22221
R}l 1.0 —0.000414 —0.008682 —0.007027 —0.026045 —0.026732 —0.004684
Ri 1.0 —0.022171 —0.013256 0.014902 —0.009176 0.002796 0.001717
Ri 1.0 —0.001297 0.038072 0.035227 —0.080082 —0.079215 0.001270
Rj 1.0 0.002074 0.196582 0.194095 —0.052861 —0.050727 —0.002155
B§= 15 (A112+Agy), (A7) B%BE[B%,B?]: 15 (Aq1115+ Ao1115F Aroort Aonod),
(A15)
B3’=[B3,B3]=3(A115- Az, (A8)
B¥'=—[B3.B5’]=i(—[A12,A112l + [A12,Az1])
4_ 1
B2= 2aA1221, (A9) =7 (Az1115F Ar1o1F Agorast Aran29), (A16)
13_rpl p37_
BZ =[BZYBZ]_%(A1112+A222])1 (Alo) B%ll%[B%,B%lz]:%(A11117+A91117_ 2A11971+ 2A77119

B3'=[B3,B3%|= 3(A1115~ Aspo1— 2A1551), (A1)

Bg: - %(Aﬂ 1112 2A?1 112 6'A“l 1221 6A?71 12— 2A‘l??71

+A22229),

(A12)

B3*=[B3.B3]= 52 (A1120— As119, (A13)

B2=[B3,B3]= 21 ([A12,A115] +[ A1z, Azil)
= 21_4(A?1’I1?+ A119?1_ A??’H?_ A'I7?71)! (A14)

- A12221_ A2222]) .

3. A simple measure of the error

(AL7)

The error for a given method is given by H4d5),

r=2 0'|XB>N(,
X

(A18)

where Xe{4,13,112 for a third-order method andX
€{5,14,23,113,221,11}Xor a fourth-order method: is a

vector in the vector space of the commutators for which we
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do not know the metric. We would like to have a scalar pzzall, (A25)
measure of the error, and thus must pick some basis for the
vector space. We choose the basis to be the commutators of 1
A, andA,. This basis is simple and spans the vector space of P12= 201, (A26)
the B),ﬁ’s without redundancy. Since this basis spans the
space of theB’hﬁ’s, we do not need to go thl larger than 2. P11= ﬁgfur %0,12, (A27)
For N=2, we can reexpressas
p2i= 1005071, (A28)
r=2 pyAy, (A19)
P11~ 1507+ 307, (A29)
where
pro2i= 3101 — 0%, (A30)
Y e{1112,1221,2221 (A20)
for a third-order method and pr22= 1501 — 307, (A31)
Y e{11112,21112,11221,22112,12221,22P2A21) P — T+ 5 ol L 112 (A32)
for a fourth-order method. The formulas for the's in terms
of the ¢’s are given in Appendix A4. In this basis, our Por117= 35507 — 2 0+ Hol B+ 2o+ S o2,
measure of the error then becomes (A33)
1 5 1. 14 1 221 1112
P22 500, + 201 = ga o o+ for— o,
=2 (e (A22) ! ! (A34)
P22117= 13501 — 201+ 3300+ o+ o,
4. Formulas for py’s in terms of o’s (A35)
ForN=2,
P12221= 36001 + 2301+ ot ok for o= ot
(A36)
=2 oB5=2 pyAy. (A29)
X Y P22~ 7500, T 01— 30, (A37)
Therefore, using the formulas in Appendix A2, we obtain
5. Tables of residual errors
p1=o7, (A24) Table | shows the breakdowns for the residual errors.
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