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Robustness of decoherence-free subspaces for quantum computation
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It was shown recentlfD. A. Lidar et al., Phys. Rev. Lett81, 2594(1998 ] that within the framework of the

semigroup Markovian master equation, decoherencef@Egsubspaces exist which are stable to first order in

time to a perturbation. Here this result is extended to the non-Markovian regime and generalized. In particular,
it is shown that within both the semigroup and the non-Markovian operator sum representation, DF subspaces
are stable to all orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal for quantum
memory applications. For quantum computation, however, the stability result does not extend beyond the first
order. Thus, to perform robust quantum computation in DF subspaces, they must be supplemented with
guantum error correcting codg$1050-294719)03309-7

PACS numbd(s): 03.67.Lx, 03.65.Bz

[. INTRODUCTION blad semigroup master equati¢8ME) from the OSR in a
way which highlights the differences and similarities be-

The power promised by quantum computgtfhas initi-  tween the two. Derivations of master equations are numer-
ated an intense scrutiny of the physical viability of theseous, starting with the work of Zwanzig and others in the late
computers[2—4]. The central obstacle in the experimental 1950s[15]: our current derivation is novel in that it starts
realization of such computers has proven to be maintaininfrom a fixed-basis form of the OSR, which is constructed to
the quantum coherence of states which form the cornerstorfermally resemble the SME, yet it is still exact. This fixed-
of the speedup promised by quantum computers. The maibasis representation allows one to clearly identify the manner
cause of this degradation of the quantum coherence is thie which the temporal coarse-graining assumption is invoked
coupling of the computer to the environment, and the subsan the process of making the transition from non-Markovian
guent decoherence induced by this coupling. To overcom& Markovian dynamics, as well as the consequences of this.
this difficulty, quantum error correcting codé@ECQO in-  The fixed-basis OSR equation leads to several important re-
spired by classical coding theory have been develdpéd sults concerning the decay of quantum coherence. First, we
These codes are “active” in the sense that decoherence show that any finite total Hamiltonian will have a zero first-
fought by continuous application of error correction proce-order decoherence rate in the non-Markovian case, but that
dures to quantum bit&qubitg, which are encoded over the this feature can be destroyed by the coarse-grained time av-
Hilbert space of several physical qubits. Another approackeraging made upon going to the Markovian limit. Second, a
has emerged more recently, in which the structure of th@onvanishing first-order decay rate within the non-
physical decoherence process is used to protect the precioMarkovian OSR formulation necessarily implies a singular-
guantum coherencs—11]. These “passive” erropreven- ity of the total Hamiltonian. We show explicitly how this
tion codes rely on symmetries of the decoherence process tccounts for the behavior seen in the prototypical example of
encode qubits into states which reside in thecoherence- phase damping, which is commonly used in the quantum
free (DF) subspacesf multiple physical qubit systems. The computation literature.
conditions under which such DF subspaces can exist have The second, and main, focus of this paper is the use of the
been established in both the Lindbl@darkovian formula-  fixed-basis OSR representation to provide a general stability
tion [9,10] and for the non-Markovian cas$é]. analysis of DF subspaces. In R¢LO] it was shown that,

The non-Markovian formulation of the reduced dynamicswithin the SME, DF subspaces are stable to symmetry-
of a subsystem is used extensively in the quantum computdreaking perturbations, to first order in time. This leads to a
tion literature, where it is known as the “operator sum rep-lowering of the threshold for fault-tolerant quantum compu-
resentation”(OSR) [12]. While it is exact it is not always tation[16,17] in DF subspaces. This stability result was ob-
clear how to separate the system from the bath in this apained for the “memory fidelity,” i.e., for a quantum com-
proach, since for any finite-dimensional bath the dynamicguter not subject to external “programming pulses.” Since
are reversible (albeit potentially with a very large Poincare DF subspaces also appear in the non-Markovian setting
recurrence timg[13] as long as no measurements are made7,11], it is natural to inquire then whether the robustness of
In the Lindblad formulation, on the other hand, the dynamicsDF subspaces with respect to perturbations extends also to
being described ara priori that of the system alone, subject the non-Markovian situation. We make a stability analysis
to preservation of complete positivity of the system densitywithin the OSR here to address this, and find that the robust-
matrix. The dynamics are irreversible, but the price paid isness of the DF subspaces is upheld in the more general situ-
that the Markovian approximation must be invokéd]. The  ation. Indeed, we show that, in fact, within both the SME and
first aim of this paper is to clarify the relation between thesethe OSR, DF subspaces are stable to a symmetry-breaking
two formulations. We do this with a derivation of the Lind- perturbation tcall orders of time.
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The generality of this stability result for memory fidelity Il. THE OPERATOR SUM REPRESENTATION
does not extend, however, to the “dynamical fidelity,”
which measures the preservation of quantum coherence in
the case of a quantum computer thgisubject to external 1 he dynamics of a quantum syst&weoupled to a batii,
programming pulses. We examine this dynamical fidelityWh'Ch toggther form a closed system, eyolves unitarily under
here and find that in this case, a DF subspace is stable only {§€ combined system-bath Hamiltoniddsg=H®1g+ s
first order in time. Thus while a DF subspace can drastically® 18 ™ Hi . HereH, Hg, andH, are, respectively, the sys-

extend the decoherence time for quantum memory, opera{?m' bath, and interaction Hamiltonians, dnid the identity

tions performed on the DF subspace must be performed ra perator. Ass.ur'n'mg th‘ﬁ andB are initially decoupled, so
idly (in comparison to the perturbing error rata order hat the total initial density matrix is a tensor product of the

achieve to a similar extension of the decoherence time fosystem and bath density matrices nd pg, respectively,

implementing quantum computation. Barring methods thaihe system dynamics are described by the reduced density

- : . matrix:
rely on symmetrizing operations on a time scale faster than

the primary decoherence rdtB8], DF subspaces were, how- p(0)—p(t)=Tra[U(p® pg)UT]. 2.1)
ever, never meant to be a complete solution to the problem
of decoherence on a quantum computer. Their usefulness ligdere Tg is the partial trace over the bath and=
in the elimination of the primary source of decoherence anadxp(— (i/4)Hggt). By using a spectral decomposition for the
the subsequent lengthening of the decoherence time to omath, pg==,v|v)(v|, and introducing a basif n>}L for
determined solely by the decoherence due to perturbing ethe N-dimensional system Hilbert spad¢, this can be re-
rors. DF subspaces should be supplemented by a QECC {gritten in the OSR a§12,19
order to achieve a decoherence-free quantum computer. This
is possible using a concatenation of DF and QECC codes, as K
was shown in Ref[11]. The instability of DF subspaces p(t)=2, Ai(t) p(0) Al (1), (2.2
while the system is evolving thus sets a lower bound on how =0
rapidly operations on the DF subspace must be performed i} are the Kraus operatofé\} have matrix elements given
order realize the robustness of DF subspaces. by

The structure of the paper is as follows. In Sec. Il A a
brief review of the OSR formalism is presented, followed by ) — S
the derivation of the fixed basis form for the OSR equation in A& = VoMK g UO[l); = (wp). (23
Sec. Il B. This equation is used to derive the SME in SecHere|, ) are basis elements of the bath Hilbert space, and
II'C. In Sec. IIl we turn to the main subject of the paper, K =N2 whereNg is the number of bath degrees of freedom.

namely short-time expansions of the fidelity. Addressing firstasg, by unitarity ofU, one derives the normalization con-
the fidelity over the entire system Hilbert space, we deriveyjtion

the first-order decoherence rate within the OSR and show

that it vanishes generally in the OSR for non-Markovian dy- K

namics, provided that the total Hamiltonian is of a nonsingu- E AiTAiz I (2.9
lar form. This condition precludes the situation of a system 1=0

coupled to an infinite number of degrees of freedom. WeWhiCh Larantees preservation of the trace of
then show that this first-order rate may become finite as a 9 P ®
result of the coarse-grained time averaging performed on go-

ing to the Markovian limit. The generality of the non- Tr[p(t)]:Tr(E Aip(O)AiT)ZTI’(p(O)E A?Ai)
Markovian result appears initially surprising, since there ex- ! !

ist elementary examples of nonvanishing first-order =T p(0)]. (2.5
decoherence rates in the non-Markovian situation. In Sec.

Il B, we show with the example of the well-known case of The Kraus operators belong to the Hilbert-Schmidt space
decoherence due to phase damping how this reflects an uny(s) (itself a Hilbert spaceof bounded operators acting on
derlying singularity in the total Hamiltonian. Section IV then {he system Hilbert space, and are represented s\ ma-

deals with the special issue of stability for the DF subspacegyices, just likep. A(H) is endowed with the scalar product
After a brief summary of the conditions for DF subspaces in

the two approaches, we then show that DF subspaces have (A ,Aj)zTr[AiAjT]. (2.6)
enhanced stability over the general system Hilbert space,
namely that they are stable tall orders of symmetry-
breaking perturbations, both within the non-Markovian OSR
and the MarkoviaSME) limit. In Sec. V, we then address While the OSR evolution equation, E.2), is perfectly

the “dynamical fidelity” of DF subspaces under external general, it presents difficulties when trying to separate out
fields, corresponding to a “quantum computer program.”the unitary evolution of the system from the possibly non-
We show that this is stable to a lesser extent, possessinguaitary decoherence which occurs from the coupling of the
vanishingfirst-order decoherence rate in both the SME andsystem to the bath. The reason is that, in general, each Kraus
the OSR, but having nonzero terms of higher order in timeoperator will contain a contribution from both the unitary
We conclude with a summary and discussion of the implicaand the nonunitary components of the evolution. When one
tions for quantum computation in Sec. VI. makes the assumption of Markovian dynamics, however, we

A. Brief review

B. Fixed-basis form of the operator sum representation
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shall see that the semigroup master equati®®NE) does Equation(2.13 is the desired result: it represents a fixed-
separate the evolution of the system into unitary and nonunibasis OSR evolution equation. This generally resembles the
tary partq 20]. This motivates us to manipulate the OSR into SME in form, but this resemblance should be considered
a form similar to the SME, but without making any Markov- with caution: it can be shown by explicit resummation that
ian assumption. for purely unitary evolution, p(t)=U(t)p(0)U'(t), the

It is convenient for this purpose to introducdigedop- terms in the fixed-basis OSR are[S(t),p(0)]
erator basis forA(H) [21]. Let {K }Y_,, with Ko=1, be  =[sinHt/4),p(0)] and 38 ) =U(t)p(0)U(1)
such a basis, so that the expansion of the Kraus operators is(i/%)[sin(Ht/%),p(0)]— p(0). Hence the first term alone
given by [S(t),p(0)] does not necessarily account for the entire uni-

tary dynamics, as one might naively be led to suspect.

M
A= 2 Bia(DK,- (2.7

C. Comparison of the fixed-basis operator sum representation

equation with the semigroup master equation
For example{K }M_, could be the generators of the Lie K . g d K
algebra su)(M=N?—1), or some subalgebra thereof We.recall t'hat In th‘? semigroup qpproach, under _the as-
(with M<N?—1) [10] . Under this expansion, the OSR evo- sumptions O.f('? _Markowan _dynamlcs(u) complete positiv-
lution equation, Eq(2.2), becomes ity, and (i) initial decoupling between the system and the

bath, the system evolves according to the SME,20,22:

M
_ t dp(t) i
PO= 20 Xas(OKap(OKG, @8 = —Lp(0]=— L [H.p(0]+ Lo[p(t)], (219
where x,4(t) is the Hermitian matrix "
1
S oo Lo olP0I=3 X aullFe.pOFLIH[Fup(t) FLI)
t)= > bl (t)b*(1). . af=
Xap(t) 2 ia(D)Di5(1) (2.9 2.16
Likewise the normalization condition, E(R.4), is given by \yhere a,p is a constant Hermitian matrix. This equation
M bears a clear resemblance to Eg.13. In fact, taking the
z X B(t)KLK =1 (2.10 derivative of Eq.(2.13), we find
w520 o o
N he action of the identity on both Eq. 22 _ _ I ¢ LS i
ext we separate out the action of the identity on bo A ——==2[S1).p(0)]+ 5 2 Xap(W{Ka,p(0)KE]
(2.8) and Eq.(2.10 yielding af=1
M +[K,p(0),K 1. (2.17

p()=X000(0) + 2 [Xao()Kp(0) + X0a(t)p(0)K ]
a=l Noticing the subtle and important differences between the

M SME Eq.(2.16 and this OSR evolution equatig2.17) al-
+ 2 Xap(DKp(0KT, (2.11)  lows us to understand the exact manner in which the semi-
ap=1 group evolution can arises from the OSR evolution under the
M M above-mentioned conditions. The most important difference

between these two equations is the fact that the SME pro-
vides a prescription for determining(t) at all timest, given
p(t’) at any other tim¢’ =0, whereas Eq2.17) determines
=1. (212 p(t) in terms ofp(0), i.e., at the special time=0 where the
system and the bath are in a product state.

We now show that explicit use of a coarse-graining over
me, together with the above-mentioned assumptions, leads
one naturally from the OSR evolution equation, E2.17),
to the SME. We note that it is of course possible to derive

i 1M the SME with other methodsuch as adding an infinite bath
p(t)—p(0)=— %[S(t),p(())]"— 5 > Xap(t) [23,24) given the appropriate assumptions. Our goal, here
a,p=1 however, is not so much to rederive the SME as to specifi-
cally establish a route from the non-Markovian OSR to the

Xod + 2 [Xoa(DKG+XaoDKal+ 20 Xas(DKGK,

Multiplying Eq. (2.12) by 3p(0) separately from both the
left and the right, adding the resulting equations, and substiﬁ
tuting the resulting expression fargge(0) into Eq. (2.11),
we find

X{[Ka’p(O)K;’]"'[KaP(O)*KL]}' Markovian SME.
(2.13 At this point it is useful to introduce a time scatdor the
_ N _ bath “memory” (whose definition will be made more pre-
where$(t) is the Hermitian operator defined by cise below and to coarse-grain the evolution of the system

in terms of this time scale:

an—ﬁg [Xao(DK o= x0a(DKIT. (214
T2 &y e R X0l Rl pi=p(i7): Xapi=Xap(i7); JeN. (218
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Further, rewriting the OSR Eq2.13 as p(t)=A(t)p(0)  This is equivalent to assuming that=L,, Vi (which of
and definingL(t) through A(t)=Texd [;L()ds], we find  course is the most trivial way of satisfying the Markovian

that evolution condition [L;,L;1=0, Vi,j). Then, using Eg.
(1) (2.23, one is led to the well known form of the semigroup
p(t) - - I
= L(O[p(t)]. (2.19 equation of motion:
e ap(t) i . 1 X .
DefiningL;= [ V"L (s)ds, with 7n=t, we have o = 7 US O]+ 5 a;:l (Xap[Ka,p(1)Kg]
' S 1 HIKop(t) K]} (2.26
f L(s)ds=r> L;. (2.20 aPtt g :
0 =0

(under the natural identification of th&'s with the F's of the
Next we will make the assumption that on the time scale ofSME).

the bathr, the evolution generatorE(t) commute in the We can write this equation of motion in an alternative
“ " Tl . , form which distinguishes between the system and bath con-
average” sense thafL;,L,]=0,Vj,k. Physically, we

imagine this operation as arising from the “resetting” of the tributions to the Liouvillian evolution. Because EQ.17) is

i i i (0)
bath density operator over the time scaleUnder this as- !lsno?:trelg ;hz(earﬁ(;)n:jnﬁzz(c’;g;?r?; tﬁilzlgatﬁgfg; fo;'ihhecome
sumption, the evolution of the system is Markovian when ! y ! W whl

about from the coupling of the system to the bath:

>l
n-1 Xap()=x5HO + x5 (2.27)
At)= L. 2.2 : : :
® jI:[O exil L] (2.23 The terms which correspond to the isolated system will

therefore produce a normal (i/%)[H,p(t)] Liouville term
Further, under the discretization of the evolution, this prod4in Eq. (2.26. Thus Eq.(2.26) can be rewritten as
uct form of the evolution implies that

- ap(t) i . 12
pJ+l:eXn:TL]][p]] (222 Tz_%[H+<S(l)>,p(t)]+§a;=1 <X511B)>
In the limit of 7<<t we expand this exponential, to find that X{[K p(t)K;]-ﬁ-[K () KE]} (2.29
’”L;pj:Ej[pj]. (223 which with the identification of x,z) with a,z, andK,

with F,, is equivalent to Eqs(2.15 and(2.16), except for

This equation is simply a discretization of EQ.19 under the presence of the second term derived fi@ft) in the

the assumption that<6, where ¢ is the time scale of Liouvillian. This second term inducing unitary dynamics on
change for the system density matrix. Notice in particularthe system(éﬂ”), is referred to as theamb shift It explic-
that the right-hand side of Eq2.23 contains theaverage itly describes the effect the bath has on the unitary part of the
value ofL(t) over the interval. Now, from the OSR evolu- system dynamics and “renormalizes” the system Hamil-

tion equation(2.17), we know the explicit form of(t) over tonian. It is often implicitly assumed to be present in Eq.

the first interval from O tor. Discretizing over this interval, (2.195 [25]. . . )
we find that In summary, we have shown in this section how coarse-

graining the evolution over the bath time scalallows one
P 1M to understand the connection between the OSR and the semi-
=— %[<S>,po]+ > 2 (Xap[Ka ,poKL] group evolution. Specifically, we have made the assumptions
ap=1 that (i) the time scale for the evolution of the system density
T matrix is much larger than the time scale for the resetting of
F[Kap(0).Kgl}=Lol pol, (224 i1e bath ¢ 6), (i) the evolution of the system should be
where Markovian (L;,L[;]=0, Vi,j), and (iii) the bath resets to
the same state so that the system evolution is the same over
11~ PR . . .
_ every coarse-grainingL{=Lgy, Vi). This last assumption
Xy=—] X ' 2.2
X rfo (s)ds 2.29 can be relaxed, and replaced by an ensemble average taken

over the different states to which the bath resets, Le.,

Thus, in the sense of the coarse graining above, we havg«ti». The importance of E¢2.17) lies in the fact that it

arrived at an explicit form foiL,. Consider the evolu~t|on allows one to pinpoint the exact point at which the assump-
beyond this first interval. Deriving an explicit form fdr; tion of Markovian dynamics is made and, further, due to the
and for higher terms is now impossible because L7  general likeness of its form to the SME, provides an easily
gives the evolution in terms of(0). However, since we translatable connection when going from the non-Markovian
have made the assumption that the bath “resets” over th©SR to the Markovian SME. Notice also that the assumption
time scaler, we expect the bath to interact with the system inof Markovian dynamics introduces an arrow of time in the
the same manner over everyength coarse-grained interval. evolution of the system through the ordering of the environ-

P17 Po
T
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mental states: the system evolves through time in the direaates. This therefore suggests employing the “pre-coarse-

tion of each successive resetting of the bath. grained” OSR, Eq.(2.17), for the derivative, and then car-
rying out the specific coarse-graining procedure outlined in
IIl. SHORT-TIME EXPANSIONS OF THE MEMORY the preceding section on E¢B.4), in order to understand
EIDELITY IN THE OSR how nonvanishing first order decoherence rates can arise.

. o Using Eq.(2.17), the first-order decoherence rate becomes
The mixed-state memory fidelif26]

Fu(H)=Tr p(0)p(t)] (3.1 g
T1

is a good measure of the degree to which a system serves as

a perfect quantum memorf.,(t) is the mixed state analog + +

of the survival probability for a pure state wave function. X{[Ka'P(O)Kﬁ]+[KaP(0).K5]})
When the initial preparation is pure, a perfect, noiseless

guantum memory will hav& (t)=1, but in the noisy case Using the decomposition of the Kraus operators, 1),
O<F(t)<1. If one starts out in a mixed state, then and knowing thatU(0)=Is®lz, we find that A;(0)
F,(0)<1, and it is usually necessary to resort to some kind= /vl sSi, (v - Thus, since th& ,’s form a linearly indepen-
of purification[27]. We will consider here only short-time dent basis, it follows, using Eq2.7), that the expansion
expansions of the fidelity, since it is known that using QECCcoefficients must be

it is possible to restore the coherence of a quantum system as

i 1 &
p(0>( ~#[S0p(01+5 2 Xapl(0)

. (3.6

long as corrections are applied sufficiently frequenlg). Dio(0)= 8,0\ (1) - 3.7
Thus, we perform a power expansion of the fidelity in time ) )
[28] By direct evaluation,
n - . .
E =S iI(L) | 32 Xas(0)=2 H{[8a0bs ) 5(0)F 00Dy (O]},
nl\ 7 v
(3.9

where thedecoherence rateare defined as S I . .
which implies the vanishingas long ad, ,) .(0) remains

finite] in Eq. (3.6) of every term except

Tr[p(0)[S(0),p(0)]1.

However, this in turn vanishes by cyclic permutation of the
trace. Thus we see that within the OSRe first-order deco-

herence rate is always zero when th@,g,a(O) remain fi-
nite. To determine the significance of this restriction, we
Throughout the literature on decoherence there aboundhoose as a basis for the Kraus operators a séf ok ,’s
many examples of nonzero first order decoherence rateghich form a Lie algebra and hence have a suitably defined
(e.9.,[9,29,30). Specific attention has been given to maxi- inner produc{Eq. (2.6)]:
mizing this time scale in order to maintain long-lived coher-
ent states. We therefore pose the question here, how do the
first-order decoherence rates for non-Markovian evolution
behave within the OSR? The first-order decoherence rate is
given by We then find using the definition of the Kraus operators, Eq.
(2.3,

1 .
T—lzTr[p(O)p(O)]. (3.4 By, a(D)=THKu(v[U(1)|2)]. (3.10

1
—={Tp(0)p™(O) 11", (33

and p(™ denotes thenth time derivative of the density ma-
trix.

A. First-order decoherence rate in the OSR

. Oap for a=1, =1 39
TK Kz]= . .
KK NS840 Otherwise. 3.9

We note that by substituting in the reduced density matrixDifferentiating  this and  recalling  that U(t)=
Eq. (2.1), and evaluating the derivative &0, we are im-  exp(~iHsgt/%1), we find that
mediately led to the vanishing of the first-order decoherence

: ; . i
rate from the cyclic property of the trace: B(su.al0)=— %Tr[KZ\/;<v|HSB(O)|v)]. (3.11)

1
T_l:TrS[P(O)TrB[_'HSBP(O)+'P(O)HSB]]:O- Thus in order forb,, ,(0) to remain finite(»|Hgg(0)|v)
(3.55  must be finite. Hence our conclusion that the first-order de-
coherence rate vanishes in the OSR is valid for &nite
Therefore, for the general non-Markovian dynamics, first-total Hamiltonian(by a which we mean its matrix elemepts
order decoherence rates are rigorously zero, provided thaind conversely, any finite total Hamiltonian will have a zero
Hgg is finite. What is not obvious from this simple manipu- first-order decoherence rafai].
lation is how a coarse-graining procedure can lead to the Examination of our derivation of the SME, EgR.26
commonly encountered nonvanishing first-order decoherencand(2.28, now shows how non-zero first-order decoherence
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rates can arise when the evolution is considered to be MamHowever, we see that as—0, g(t)—o. Thus, in this
kovian. In the derivation of the semigroup equation in thesimple example, we find that &t 0, the Hamiltonian be-
Markovian limit, we made the assumption that the matricecomes singular. This illustrates our claim that first-order de-
Xaﬁ(t) can be identified with the constant matriceg, of coherence rates in the OSR are the result of an infinite
the semigroup equation, E¢.16.. However, when this is Hamiltonian, and do not contradict the general OSR result of
zero rates for finite Hamiltonians.

The diverging Hamiltonian in this example is in fact
fguivalent tononclosednessf the systemS+B. It is well

done, the matrix elemenﬁsaﬁ(O) in Eq. (3.6) are replaced
by their time-averaged values, for which the relat{8r8) no
longer applies. Hence, in general, the first-order decoheren
rates are necessarily not zero when the Markovian coars
graining is applied. For a finite total Hamiltoniddsg, non-
zero first-order rates are therefore seen to be an artifact of tH|
Markovian assumption, and their appearance emphasizes t
delicate nature of the transition to the Markovian regime.

nown that phase damping can be generated by a model of
random phase kickig34], which implies anexternalrandom
rce, i.e., that the systei®+B is in fact not closed. Since
js is in contradiction to our initial assumptiofSec. Il A),
it should not come as a surprise that a nonvanishing first-
order decoherence rate is found in this situation. A similar
divergence will result of course from a bath with an infinite
number of degrees of freedofi23,24. The OSR phase

The restriction to a finite total Hamiltonian above may atdamping example thus can still be uséxb is commonly

first sight seem obvious. However, consider, for instance, thelone in the analysis of quantum error correctionder the
often quoted example of phase damping of a qubit. In thisaveat that one cannot claim that it arises from a finite closed
case, it would appear that there is a finite first-order decohewsystem §+B).

ence rate. Yet, it is often presented within the O38R,33,
which, as we have just shown above, would predieto

B. Example: Phase damping

first-order decoherence rates for any nonsingular Hamil- IV. EFFECT OF SYMMETRY-BREAKING
tonian. In this example, the Kraus operators are given by PERTURBATIONS ON MEMORY FIDELITY
[32] OF DECOHERENCE-FREE SUBSPACES
1 o0 0 0 Our discus_sion i_n the preceding sections was qompletely
Ao:< _M), A1:< _2M>, (3.1 ge_zneral, dealing with the de_coherence qf the entire system
0 e vVi-e Hilbert space. We now restrict our attention to the behavior

. . . . . of the fidelity in DF subspaces. We first briefly summarize
and a §|mple calculation using these operators yields a ming,e pasic theory of DF subspaces and then generalize the
tmhiusn:)élrr)st-order decoherence rate ofr# —A/2. How can st order stability results obtained within the SME in Ref.

To resolve this dichotomy, we consider how the above[lo]'
phase damping Kraus operators are generated from the uni-
tary dynamics of a qubit syste@and a qubit battB. The A. Theory of decoherence-free subspaces:
evolution operator Markovian versus non-Markovian approach

Recently, conditions for the existence of decoherence-free

! 0 0 0 |10) subspaces within the framework of the Markovian SME ap-
0 e M 0 Vi—-e 2M||]1) proach[9,10] and in a non-Markoviaf7] setting were de-
u(t)= 0 0 1 0 110) rived. We first clarify here the connection between the SME
and the non-Markovian results.
0 —Ji-e 2t 0 e ™ [11) In the SME approach it was shown that a necessary and

(3.13  sufficient conditon for decoherence-free  dynamics

Z _ ~ N
[where the first qubit represents the bath)(| 1)) and the (Lolp(D)]=0)in Esubspacé{=8pa|ﬁ{||)i:°1 ] is that all
second represents the systei®)(|1)) as denoted in the col- of the basis statels) satisfy the condition

umns abovéwith the bath initially in the stat¢| ) immedi-

ately gives the Kraus operators of H§.12. Now, it is easy Fo[D)=c,[1), Va1, (4.1
to calculate the Hamiltonian which generates this evolution
. . T .
(usingHsg(t) =iA[dU(t)/dtJU(t)): where theF,’s are the error generators in the semigroup Eq.

0 0 0 0 (2.16). Since the{F,} form a Lie algebral, this condition
has a simple group-theoretic interpretation, namely, the DF

0 0 0 —g(t) states are thsingletsof £, i.e., they are the states that trans-

0O 0O O o |’ 314 form according to the one-dimensional representations of
From Sec. Il C, and in particular E@2.26), it follows that

0 g 0 0 these error generators become identical to{tkg} (the ba-

sis operators in the fixed expansion of the Kraus operators

when the short-time averaging approximations leading from

the OSR to the SME are made.

g(t)=ih ———. (3.15 Within the framework of non-Markovian evolution, it has

Jl—-e " likewise been showii7,11] that a necessary and sufficient

Hgg(t) =

where

— 9yt



1950 D. BACON, D. A. LIDAR, AND K. B. WHALEY PRA 60

TABLE I. Different order decoherence rates for the mixed-state memoraitd dynamical6 fidelities
under the various conditions cited in the text. Unless otherwise noted..

SME OSR

General 14, #0 1/7,=0
l7,#0,n=2 1/m,#0,n=2

DF subspaces /=0 1/7,=0

memory fidelity fore-perturbed DF subspaces T3F0 1/7,=0

dynamical fidelity fore-perturbed DF subspaces 1/r,=0 1/r,=0
17,#0,n=2 1r,#0,n=2

Finite bath and finite total Hamiltonian only.
®Both with and without perturbing Lamb shift.

condition for decoherence-free dynamics over a similar subeases(notably strong couplingone simply cannot clearly
spaceﬂzSparlj{ﬁ)ile}] is that all of the basis statds)  Separate system and bath in the form assumed in that equa-

satisfy the condition tion. In this sense, the_n, the SME prov_ides greater g_ener_ality
than the non-Markovian approach within the Hamiltonian
s.M=c,[1), YaT (4.2 representation subject to E@.3). Motivated by this aspect,

we take conditior{4.1) to be necessary and sufficient for DF
whereS,’s (system operatoysare defined by the interaction SuPspaces. _ _
Hamiltonian Further, one should note that while the semigroup DF
condition, Eq.(4.1), guarantees that the evolution of the sys-
tem will be unitary, the system may still be subject to unitary
H=2 S,®B,. (4.3 evolution induced by the bath in the form of the Lamb shift.
“ Such bath-induced evolution, although it does not introduce
The B, are bath operators. The fixed-basis OSR equatiorqecoherence, Is undesirable in the course of a quantum com-
(2.13 sheds light on the relationship between these two D utation. To the_ extent that we desire the DF subspace to
conditions. To the extent that the error generatgysan be Serve as the basis for a quantum computer, we therefore must
dmpose one of two conditions on the DF subspace. These

derived from expansion of the Kraus operators with a subs conditions ardi) suitable control over the system is obtained
uent short-time averaging approximation, the DF condition . .
d ging app o that the Lamb shift term can be canceled out(iiorthe

given for the non-Markovian dynamics is more general tha b shift d tind q . th b .
that given by the semigroup approach. We notice that in th amb shift does not induce dynamics on the subspace, I.€.,

limit of small averaging timer, the error generators,’s ~ Huamd1)=hi[1). Under the first condition, the DF subspace
will, in fact, correspond directly to th8,’s. This can be seen IS not reduced in dimension. However, this condition may be

by expanding the full evolution operatbi(t) to first-orderin  Physically impossible to realize. The second condition does
. not make any assumptions about the amount of control one

" has over the system Hamiltonian, but it may have the unde-
i sirable effect of causing a reduction in the size of the DF
U(T)=|—gHssT+O(TZ)- (4.4  subspace. Similar conclusions regarding the effect of the

Lamb shift hold for the non-Markovian case.
To this order, the Kraus operatofs(t) [see Eq.(2.3)] will Finally, in both the SME representation and the OSR, the

only contain terms which correspond to terms that appear ifiMPlicit assumption has been made that the system Hamil-

the HamiltonianHsg. These ard, the system Hamiltonian: tonian does not induce the_evolunon of states from within

I, the identity; and theS,’s from Eq. (4.3. Terms corre- DF subspace to states outside of the DF subspace:

sponding toH will result in unitary evolution of the system,

while | is removed from the set of Kraus operatgsince

these are considered error generateia our derivation of H|~|>=E hi'ﬁ)- (4.5

the SME. To first-order in time, therefore, the only error Y

generators are th®,’s. Thus in the case of small averaging

time 7, we see that the two DF conditions are exactly equiva-

lent. It is a simple matter to satisfy this additional condition in the
However, it is important to note that the SME approachSME. However, this is not the case in the OSR due to the

has other advantages. Thus in many cases it is either impraabsence of an explicit appearancethf

tical or undesirable to derive tHé&,} from a short-time ex- We now proceed to the question of stability of DF sub-

pansion of the type discussed in Sec. Il C. In fact, in Lind-spaces in the non-Markovian and Markovian cases. The cal-

blad’s axiomatic approachl4], the {F,} are the primary culations in the next two subsections are rather tedious, and

objects and they do not follow from an expansion of a uni-the reader who is not interested in the details may wish to

tary operator. While thdF,} are often identified heuristi- skip directly to the results for the memory fidelity, summa-

cally from a factorization such as in EGt.3) [35], in some  rized in Table I.
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B. Stability of the memory fidelity in the non-Markovian case

Consider the addition to a DF subspace of new perturbing

terms in the interaction Hamiltoniatdgg=Hgg+€H| . In
this case, we find that to first-order &) the new full evolu-
tion operator is given by

zé _It/ﬁ)n(HSB-i-eH "
—U(t>+2 kE '”h)nf‘k’(HSB. HI),
(4.6)
where
fP(Hsg,H)=H/,
f89(Hsg,H{) =HsgH| +H/ Hsg,
f8)(Hsp,H/)=H3gH| +HsgH Hsp+ H/HEg, (4.7

f@(Hgg,H)=H/?

f@(Hsp,H{)=HsgH| 2+ H/HggH| +H|?Hsgp,

etc. HereU(t) is the unperturbed evolution operator. From

Egs. (2.3 and (2.7) we thus see that to first-order inthe
operatorK ,
have new terms due ("}, hereby denoted beGy}r_, ,

which are proportional t@. These terms modify the evolu-

tion over the DF subspacelEq. (2.13] so that
aplat—dp’ lat=aplat+L'(t)[p(0)], where
L' (H[p(0)]=~ —[S’(t) p(0)]
1 M P
t3 2, 2 Xap(Dl, 0, [P(0)]
+Xap(Dles, k [p(0)]+O(€). (4.8
Here
it o )
S(t)=eo p; [Xpo(1)Gp—xop(DGH] (4.9
and
Ly p1=[x.0Y 1+ [xp,y"]. (4.10
Terms of O(€?), not written out explicitly in Eq.(4.8), in-
clude L g cc, [p(0)], L 26, K [p(0)], etc. Assuming that
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in which the Kraus operators are expanded will

1951

I"I

Frh=1- Z Ek

n! (7{ (k)

where7 represents th@(€e*) contribution to thenth-order
decoherence time,,. It was shown in Ref[10] that, within
the SME, the term which is first order in both the perturba-
tion and time vanishes: #)=0. This left open the possi-
bility of terms of orderO(et?) and higher spoiling the fidel-
ity. Here we will generalize this result in the non-Markovian
case(the Markovian case will be dealt with in Sec. I\j @nd
show that in fact ZXY=0 for all n, so that the entir©(e)
contribution vanishes, and only terms of ord®fe?t?) can
spoil the memory fidelity. For simplicity of notation, since
we are considering here only ther§? decoherence rates,
we drop the(k) superscript from now on.

The perturbeddecoherence rates are thus given by

1\ (n) (n— 1)
P =T p(0){p" ()} M]=Trp(0){L" ([ p(0) T}y
(4.11
Using Eq.(4.8) and noting that the terms involvir§f vanish

directly by permutation under the trace, we obtain to first-
order ine

1\n
Tn)

M P
2, 2 X VOTp(O)Lk,, o [p(O)]]

+xay DOTIp(0)Le, k [P(O]]]. (412

To evaluate this, we need to knd,p(0). Now, when we
expand the Kraus operators about a fixed bKsjss in Eq.
(2.7), this basis will consist of all possible products of the
three termsH, S,, andl [recall the definition of the Kraus
operators, Eq(2.3)]. Assuming a perfect quantum memory

[H,p(0)]=0, (4.13

we can commutéd with p(0) and, using the DF condition
S.[1)=c,[1), for a given product ofS,’s andH’s we can
replace eacl$, with its eigenvaluec,,. Thus, for example,

(4.19

It follows that for a DF subspace in the OSR, the basis op-
eratorsK , will satisfy the condition

H2S,Hp=H?S,pH=H%c,pH=c,H%p.

Kap(t)=d HMp(t), (4.15

with m, an integer andl, a real number. Using this result,
we then cycle the trace in Eq4.12, and again using

[H,p(0)]=0 we find for the first trace

e<1, we may neglect these terms Now, for the purposes of +
argument, we will assume that the system has perfect quan- T1P(0)Lk o [P(O)]] ed,, Tr[2p(0)H™<p(0)G]
tum memoryover the DF subspace in the absence of the
perturbing error generators, i.e5{PP(t)=Trp(0)p(t)]

=1. The perturbation, however, decreases the fidelity below
this perfect value. The modified memory fidelity can be writ-
ten formally as

—p(0)GjHMp(0)
—p(0)Glp(0)H™]=0.
(4.1
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The second trace vanishes similarly. Thus we see that all 1\" 5 i 5
orders of decoherence rates must vanish to first-ordet, in W) =Tr p(O)L”l( - g[eHﬁamb,p(O)]
i.e., 1r,=0. Examining Eq(4.9), it is clear that the second- Tn

order €2 term does not lead to a similar vanishing of the 1 PoM
traces.. Therefore, we have proved thater non—Mark_ovian + Ez E {gpaLer,Fa[:’(o)]
evolution, DF subspaces are completely stable to first-order p=1a=1

under a symmetry-breaking perturbatiowhere by “com-
pletely” we mean explicitly stable to all orders of time. +9§aLFQ,er[7>(0)]}) } (4.19

C. Stability of the memory fidelity in the Markovian case Now, the DF condition, Eq(4.1), implies that the DF error

The stability of DF subspaces with respect to symmetrygenerators commute with the DF density matrix:
breaking perturbations in the non-Markovian case deriveqﬁ:a ,B(O)]:O We also again assume perfect quantum
above is a significant extension of the stability derived inmemory [Eq. (4.13]. Thus, for an arbitrary operatof

Ref. [10] for the Markovian SME. However, the result pre- < A(), we find that we can commute the initial density
sented in Ref[10] only examined the effect of a symmetry- matrix through the operatdr:

breaking perturbation on the first-order decoherence rate

(1/74Y=0). Here we show that the stronger non-Markovian _ Lo

result derived above (#)=0Vn=1) also holds in the | = 5\AT= — *[H 5(0)AT+ = a 12F S(0AE"

e Hovian SME. [P(0)A]==7THP(OAl+ 5 2 awpl2Fup(0)AF)
The effect of perturbing a DF subspace in the SME is the

e~ ~ t
addition of new error generators, hereby denoted by —FsFap(0)A=p(0)AF 5F, ]
{GGP}E:]-' to the master equatiofwhich was partially i 1M
treated in Ref[10]) as well as a perturbing Lamb shift term =— %B(O)[H,A]wt 5 > aaﬁ,;(o)
in the master equatiofwhich was not treated in Reff10]). a,p=1

These terms modify the SMEEQs.(2.15 and(2.16)] so that

t_ et _ T
ap(t)lat=L"[p(t)], with X (2F.AF p—FpF.A—AFgF,)

i =p(0)L[A],
L'Tp()]=LIp(D)] = 7 eH{ampp(1)]

so that

N| =

P M
+5 2 2 {0palec, £ [p(D)]
S L D[p(0)A]=p(0)L Y A],

+9palr, o PO} +O(e?), (417

L= D[Ap(0)]=L""D[ATp(0). (4.20
whereL[p(t)] is the unperturbed SME term given by Eq.

(2.19), €H| 4mp is the perturbing Lamb shift, arld, \[p(t)]is  Examining the contribution to the decoherence rates from the
given by Eq.(4.10. The perturbed decoherence rates are_amb-shift term, we thus find that
given by

Ea ——i—T~O[L(”’1) Hambl,p(0)]]=0
A A "p(0) [ €Hiamnl,p(0)]1=0,

) (4.2)

Lamb

1 n - - ~ ~
(E) =T p(0)p™(0)]=THp(0){(L")"[p(0)]}],
(4.18

which vanishes by cycling under the trace. Next, the contri-
where L')"[p(0)]=L'[L'[---L'[p(0)]]], n times. To bution to the decoherence rates due to the symmetry-

evaluate this expression, recall) the DF conditon breaking perturbing error generators in 419 is given by
L[p(0)]=0 and(ii) that we are working only to first-order
in e. Now, for simplicity, consider firstI(')?[p(0)], and ( 1 )” 1 PM

denote the second and third terms on the right-hand side of | —; 252 > Tr{E(O)L(nfl)[gpaLer,FQ[TJ(O)]
Tr‘l

Eq. (4.17 by A;[p(t)] andA,[p(t)]. By the DF condition, p=1a=1
LILLp(0)]1=A4lL[p(0)]]=A2[L[p(0)]]=0. Also,
Ai[A;[p(0)]]is of O(€?). Only the two terms with. acting
on A;[p(0)] and A,[p(0)] do not vanish. This reasoning
generalizes easily far>2, so we find that to first-order ig, Expanding the first of these terms,

SBP

+05Le, o [P0} (422



PRA 60 ROBUSTNESS OF DECOHERENCE-FREE SUBSPACES ... 1953

€ P M A. Markovian case
— - (n—1) - L = e . . . s o
2 pzl 0;1 Upa THP(O)L'" P [2Gpp(0)F, —F,Gpp(0) First we consider the dynamical fidelity within the context
of the Markovian limit, using the SME approach. We restrict
—Z(O)FLGp]} our attention as before to DF subspaces, so the density ma-

trix p satisfies Eq(2.15 with Lp[p(t)]=0. We then imag-
ine this DF subspace to be perturbed by a symmetry-
breaking perturbation: p—Lf, , where the perturbed density
matrix satisfies the following SME:

"3 2 21 Gpe Trp(O{L" P[2G,F;Tp(0) ~ L™

X [FiGplp(0)=p(0)L"H[F pGyl}) _
J I ~ ~

y == FIHs BT+ Lp[p(1)]

. 2 9pa TH{(O)L" VLG, Fi1Io(0)}

HM'U

Similarly to Eq.(4.8) (see also Refl10]), the new terms in
(4.23  this SME are given by

M P

P M - . . -
=epzl 2 0L Y [5(0)[ Gy FLI(O)T]. Lolp(]= 2 pzl {aapbr, o [P(D]+ kL r [P(D]}
(4.24 +0(e2). (5.4)

Using FIp(0)=c*p(0), we seethat p(o)[Gp,FT]p(o) The perturbedfirst-order dynamical fidelity decoherence rate

=p(0)(G,ct—cXG,)p(0) and thus this term vanishes. 'S 9IVEN by

Similar reasoning implies the vanishing of the second term in ~

Eq. (4.22. Thus we have proven thatri,})=0: under Mar- _1 =Tr p (0) —— (0) + apU(O)"g(o) (5.5
kovian evolution, DF subspaces are completely stable to T v at ' '
first-order under a symmetry-breaking perturbatiB6].

The first of these terms vanishes via the arguments given for

V. THE DYNAMICAL FIDELITY the memory fidelity(essentially, sinc&,p=c,p by the DF
subspace properntyThe second term also vanishes, by per-

The results derived in the preceding section imply that DFmutation of the trace after usingdpy(0)/dt=
subspaces are robust to small perturbations when the DF sub-i#[Hg,p(0)]. Thus we find thaDF subspaces are stable
space is operating as a quantomemory In order to address to first-order in time also when the system is allowed to
what happens when perturbations are made on the system agolve

it evolves according to some desired quantcomputation Further, it is easy to see that the higher-order dynamic
we have to first define an analog of the mixed-state memoryidelities now do not vanish. For example, the second-order
fidelity for an evolving system. This is dynamic  decoherence rate contains terms like
[Hs,p(0)]IL5[ p(t)Ji=0, Which do not allow the simple per-
Fa()=Trpu(t)p(t)], (5.1 mutation of the trace.
wherep(t) is the desired unitary evolution B. Non-Markovian case

Is there an analogous result for the non-Markovian situa-
i tion? We can address this within the OSR. The arguments of

pu(t)=Us(t)p(0)Ut) with Us(t)zex;{ - gHst}- Sec. lll A showed that the first-order decoherence rate will
(5.2) always vanish, and so according to the arguments given

above, this applies also to the dynamical fidelity. Examining

. I . the second-order decoherence rates, we find
HereHg is the system Hamiltonian, and may include a “pro-

gram” Hamiltonian which implements a quantum algorithm
on the system. Thidynamicalfidelity is a good measure of

2

=Tr| 42[Hs,[Hs,p(0)1]p(0)+[Hs,p(0)IL' (1)

the difference between the desired evolution of the system \ 72
and the actual, “noisy” evolution. Thus,<OF 4(t)=<1, with aL' (1)
Fd(t)(tz)l if and only if the evolution is perfect, i.eg(t) X[Z(O)]t_oJrB(O)[ [73(0)]} , (5.6)
= pull). t=0
The decoherence rates for the dynamical fidelity are de- . _ . _
fined in the same manner as for the memory fidelity whereL’ is now given by Eq.(4.8). As in the semigroup
analysis above, the second of these traces does not vanish
1/t\" 1 (nor does the first, but it will be canceled due to a contribu-
Fm=S — || = —¢v ) () LML tion from the third.
alt) ; n! (rn) T {M{pu®p(OFT]} Thus we find that for thelynamicalfidelity, the effect of

(5.3 a symmetry-breaking perturbation results in a second-order
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time instability in the system for both Markovian and non- cal fidelity which we defined to act as a measure of coher-
Markovian situations. It is remarkable that while the memoryence for a time-evolving system. Our main achievement here
fidelity is completelyrobust to first-order €) perturbing er- has been to extend the robustness results of[Réf.regard-
rors, the dynamical fidelity does not show the same robusting decoherence-fre@®F) subspaces. For the preservation of
ness, with instability arising at second order in time. In termsguantummemory we showed that in both the OSR and SME
of real quantum computation, therefore, this implies that DFapproaches, DF subspaces are stabkltorders in timeto
subspaces must be supplemented by QECC in order to e symmetry-breaking perturbation. The first errors entering
truly useful beyond merely providing high-quality quantum the quantum memory can therefore only ®ée?), wheree
memory. In particular, the instability in the dynamical fidel- measures the strength of the perturbation. This result goes
ity implies that in order to realize the robustness of DF sub-beyond the first-order stability result 6f(et?) arrived at in
spaces to symmetry-breaking perturbations, operations oRef. [10], which was restricted to the Markovian case. It
the DF subspace must be performed over a time scale shahows thatDF subspaces are indeed ideal for quantum
in comparison with the perturbing error rate. Thus, for thememory in all situationsin making this statement, we note
realistic scheme in which DF subspaces are supplemented ltyat we have not shown here how to perform input and out-
qguantum error correcting codésy, for example, concatenat- put to the DF subspaces. Further investigation is needed to
ing the DF subspaces within QECC as in Rdfl]), if the  address this issue. The quantum memory stability results are
operations performed on the DF subspace in order to execusaimmarized in Table |. For the dynamical fidelity, a weaker
the QECC are executed frequently and rapidly, the fullresult is obtained, namely that this has only a vanishiirsg
scheme can provide a significant improvement over pure Dierder decoherence rate under a perturbation. Thus the first

subspaces. errors entering the dynamical fidelity can 0¢et?).
This stability analysis of static and dynamic fidelities is of
VI. SUMMARY AND CONCLUSIONS particular relevance for practical implementations of quan-

tum computation. The complete stability to perturbations of
We have shown here how the formally exact operator sumatic fidelity within DF subspaces is very encouraging for

representatiofOSR for the time evolution of the density |,ge in quantum memory. Thus passive error correction ap-
matrix can be cast in a form which bears a significant reseMpeqrs 1o be sufficient for this. In contrast, the weaker first-
blance to the semigroup master equatiSME), through the  orqer stability condition derived for the dynamical fidelity
introduction of a time-independeftxed) operator basis. By ithin DF subspaces implies that application of active error-
using this fixed-basis OSR equation, we were able to easilgorrection techniques will likely be necessary in order to
calculate the fidelity in the OSR, as well as to provide preserve coherencduring computation. Further, if the op-
derivation of the SME which makes explicit the role played grations performed on the DF subspace in order to execute
by the coarse-graining assumption. Somewhat surprisingactive error correction are executed rapidly, then the full DF
we found an important difference between the OSR and theiapility to symmetry-breaking perturbations can be recov-
SME, namely, the first-order decoherence rawaysvan-  gred. Such a scheme of combining active and passive error
ishes in the former, but not always in the latter, for a finitecqrrection is possible by concatenating codes constructed

Hamiltonian. This effect is readily traced to the coarse-from DF subspaces with active quantum error correction, as
graining time averaging assumption within our derivation.qemonstrated in Ref11].

This result is significant for both error-correction schemes

aimed at improving the fidelity, and for commonly used sim- ACKNOWLEDGMENT
plified models of decoherence. We illustrated the latter with CKNO G S
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