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Robustness of decoherence-free subspaces for quantum computation
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It was shown recently@D. A. Lidar et al., Phys. Rev. Lett.81, 2594~1998!# that within the framework of the
semigroup Markovian master equation, decoherence-free~DF! subspaces exist which are stable to first order in
time to a perturbation. Here this result is extended to the non-Markovian regime and generalized. In particular,
it is shown that within both the semigroup and the non-Markovian operator sum representation, DF subspaces
are stable to all orders in time to a symmetry-breaking perturbation. DF subspaces are thus ideal for quantum
memory applications. For quantum computation, however, the stability result does not extend beyond the first
order. Thus, to perform robust quantum computation in DF subspaces, they must be supplemented with
quantum error correcting codes.@S1050-2947~99!03309-0#

PACS number~s!: 03.67.Lx, 03.65.Bz
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I. INTRODUCTION

The power promised by quantum computers@1# has initi-
ated an intense scrutiny of the physical viability of the
computers@2–4#. The central obstacle in the experimen
realization of such computers has proven to be maintain
the quantum coherence of states which form the corners
of the speedup promised by quantum computers. The m
cause of this degradation of the quantum coherence is
coupling of the computer to the environment, and the sub
quent decoherence induced by this coupling. To overco
this difficulty, quantum error correcting codes~QECC! in-
spired by classical coding theory have been developed@5#.
These codes are ‘‘active’’ in the sense that decoherenc
fought by continuous application of error correction proc
dures to quantum bits~qubits!, which are encoded over th
Hilbert space of several physical qubits. Another appro
has emerged more recently, in which the structure of
physical decoherence process is used to protect the pre
quantum coherence@6–11#. These ‘‘passive’’ errorpreven-
tion codes rely on symmetries of the decoherence proces
encode qubits into states which reside in thedecoherence-
free ~DF! subspacesof multiple physical qubit systems. Th
conditions under which such DF subspaces can exist h
been established in both the Lindblad~Markovian! formula-
tion @9,10# and for the non-Markovian case@7#.

The non-Markovian formulation of the reduced dynam
of a subsystem is used extensively in the quantum comp
tion literature, where it is known as the ‘‘operator sum re
resentation’’~OSR! @12#. While it is exact, it is not always
clear how to separate the system from the bath in this
proach, since for any finite-dimensional bath the dynam
are reversible~albeit potentially with a very large Poincar´
recurrence time! @13# as long as no measurements are ma
In the Lindblad formulation, on the other hand, the dynam
being described area priori that of the system alone, subje
to preservation of complete positivity of the system dens
matrix. The dynamics are irreversible, but the price paid
that the Markovian approximation must be invoked@14#. The
first aim of this paper is to clarify the relation between the
two formulations. We do this with a derivation of the Lind
PRA 601050-2947/99/60~3!/1944~12!/$15.00
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blad semigroup master equation~SME! from the OSR in a
way which highlights the differences and similarities b
tween the two. Derivations of master equations are num
ous, starting with the work of Zwanzig and others in the la
1950s@15#: our current derivation is novel in that it star
from a fixed-basis form of the OSR, which is constructed
formally resemble the SME, yet it is still exact. This fixe
basis representation allows one to clearly identify the man
in which the temporal coarse-graining assumption is invok
in the process of making the transition from non-Markovi
to Markovian dynamics, as well as the consequences of
The fixed-basis OSR equation leads to several importan
sults concerning the decay of quantum coherence. First,
show that any finite total Hamiltonian will have a zero firs
order decoherence rate in the non-Markovian case, but
this feature can be destroyed by the coarse-grained time
eraging made upon going to the Markovian limit. Second
nonvanishing first-order decay rate within the no
Markovian OSR formulation necessarily implies a singul
ity of the total Hamiltonian. We show explicitly how thi
accounts for the behavior seen in the prototypical exampl
phase damping, which is commonly used in the quant
computation literature.

The second, and main, focus of this paper is the use of
fixed-basis OSR representation to provide a general stab
analysis of DF subspaces. In Ref.@10# it was shown that,
within the SME, DF subspaces are stable to symme
breaking perturbations, to first order in time. This leads t
lowering of the threshold for fault-tolerant quantum comp
tation @16,17# in DF subspaces. This stability result was o
tained for the ‘‘memory fidelity,’’ i.e., for a quantum com
puter not subject to external ‘‘programming pulses.’’ Sinc
DF subspaces also appear in the non-Markovian set
@7,11#, it is natural to inquire then whether the robustness
DF subspaces with respect to perturbations extends als
the non-Markovian situation. We make a stability analy
within the OSR here to address this, and find that the rob
ness of the DF subspaces is upheld in the more general
ation. Indeed, we show that, in fact, within both the SME a
the OSR, DF subspaces are stable to a symmetry-brea
perturbation toall orders of time.
1944 ©1999 The American Physical Society
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PRA 60 1945ROBUSTNESS OF DECOHERENCE-FREE SUBSPACES . . .
The generality of this stability result for memory fidelit
does not extend, however, to the ‘‘dynamical fidelity
which measures the preservation of quantum coherenc
the case of a quantum computer thatis subject to externa
programming pulses. We examine this dynamical fide
here and find that in this case, a DF subspace is stable on
first order in time. Thus while a DF subspace can drastic
extend the decoherence time for quantum memory, op
tions performed on the DF subspace must be performed
idly ~in comparison to the perturbing error rate! in order
achieve to a similar extension of the decoherence time
implementing quantum computation. Barring methods t
rely on symmetrizing operations on a time scale faster t
the primary decoherence rate@18#, DF subspaces were, how
ever, never meant to be a complete solution to the prob
of decoherence on a quantum computer. Their usefulness
in the elimination of the primary source of decoherence a
the subsequent lengthening of the decoherence time to
determined solely by the decoherence due to perturbing
rors. DF subspaces should be supplemented by a QEC
order to achieve a decoherence-free quantum computer.
is possible using a concatenation of DF and QECC codes
was shown in Ref.@11#. The instability of DF subspace
while the system is evolving thus sets a lower bound on h
rapidly operations on the DF subspace must be performe
order realize the robustness of DF subspaces.

The structure of the paper is as follows. In Sec. II A
brief review of the OSR formalism is presented, followed
the derivation of the fixed basis form for the OSR equation
Sec. II B. This equation is used to derive the SME in S
II C. In Sec. III we turn to the main subject of the pape
namely short-time expansions of the fidelity. Addressing fi
the fidelity over the entire system Hilbert space, we der
the first-order decoherence rate within the OSR and sh
that it vanishes generally in the OSR for non-Markovian d
namics, provided that the total Hamiltonian is of a nonsing
lar form. This condition precludes the situation of a syst
coupled to an infinite number of degrees of freedom. W
then show that this first-order rate may become finite a
result of the coarse-grained time averaging performed on
ing to the Markovian limit. The generality of the non
Markovian result appears initially surprising, since there
ist elementary examples of nonvanishing first-ord
decoherence rates in the non-Markovian situation. In S
III B, we show with the example of the well-known case
decoherence due to phase damping how this reflects an
derlying singularity in the total Hamiltonian. Section IV the
deals with the special issue of stability for the DF subspac
After a brief summary of the conditions for DF subspaces
the two approaches, we then show that DF subspaces
enhanced stability over the general system Hilbert spa
namely that they are stable toall orders of symmetry-
breaking perturbations, both within the non-Markovian OS
and the Markovian~SME! limit. In Sec. V, we then addres
the ‘‘dynamical fidelity’’ of DF subspaces under extern
fields, corresponding to a ‘‘quantum computer program
We show that this is stable to a lesser extent, possessi
vanishingfirst-order decoherence rate in both the SME a
the OSR, but having nonzero terms of higher order in tim
We conclude with a summary and discussion of the impli
tions for quantum computation in Sec. VI.
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II. THE OPERATOR SUM REPRESENTATION

A. Brief review

The dynamics of a quantum systemScoupled to a bathB,
which together form a closed system, evolves unitarily un
the combined system-bath HamiltonianHSB5H ^ IB1IS
^ HB1HI . HereH, HB , andHI are, respectively, the sys
tem, bath, and interaction Hamiltonians, andI is the identity
operator. Assuming thatS and B are initially decoupled, so
that the total initial density matrix is a tensor product of t
system and bath density matrices (r and rB , respectively!,
the system dynamics are described by the reduced de
matrix:

r~0!°r~ t !5TrB@U~r ^ rB!U†#. ~2.1!

Here TrB is the partial trace over the bath andU5
exp„2( i /\)HSBt…. By using a spectral decomposition for th
bath, rB5(nnun&^nu, and introducing a basis$un&%n51

N for
the N-dimensional system Hilbert spaceH, this can be re-
written in the OSR as@12,19#

r~ t !5(
i 50

K

A i~ t ! r~0! A i
†~ t !, ~2.2!

where the Kraus operators$A i% have matrix elements given
by

@A i #mn~ t !5AnŠmz^muU~ t !un& zn‹; i 5~m,n!. ~2.3!

Hereun,m& are basis elements of the bath Hilbert space, a
K5NB

2 , whereNB is the number of bath degrees of freedo
Also, by unitarity ofU, one derives the normalization con
dition

(
i 50

K

A i
†A i5I , ~2.4!

which guarantees preservation of the trace ofr:

Tr@r~ t !#5TrS (
i

A ir~0!A i
†D 5TrS r~0!(

i
A i

†A i D
5Tr@r~0!#. ~2.5!

The Kraus operators belong to the Hilbert-Schmidt sp
A(H) ~itself a Hilbert space! of bounded operators acting o
the system Hilbert space, and are represented byN3N ma-
trices, just liker. A(H) is endowed with the scalar produc

^A i ,A j&5Tr@A iA j
†#. ~2.6!

B. Fixed-basis form of the operator sum representation

While the OSR evolution equation, Eq.~2.2!, is perfectly
general, it presents difficulties when trying to separate
the unitary evolution of the system from the possibly no
unitary decoherence which occurs from the coupling of
system to the bath. The reason is that, in general, each K
operator will contain a contribution from both the unita
and the nonunitary components of the evolution. When o
makes the assumption of Markovian dynamics, however,
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1946 PRA 60D. BACON, D. A. LIDAR, AND K. B. WHALEY
shall see that the semigroup master equation~SME! does
separate the evolution of the system into unitary and non
tary parts@20#. This motivates us to manipulate the OSR in
a form similar to the SME, but without making any Marko
ian assumption.

It is convenient for this purpose to introduce afixed op-
erator basis forA(H) @21#. Let $Ka%a50

M , with K05I , be
such a basis, so that the expansion of the Kraus operato
given by

A i~ t !5 (
a50

M

bia~ t !Ka . ~2.7!

For example,$Ka%a51
M could be the generators of the L

algebra su(N)(M5N221), or some subalgebra there
~with M,N221) @10# . Under this expansion, the OSR ev
lution equation, Eq.~2.2!, becomes

r~ t !5 (
a,b50

M

xab~ t !Kar~0!Kb
† , ~2.8!

wherexab(t) is the Hermitian matrix

xab~ t !5(
i 50

K

bia~ t !bib* ~ t !. ~2.9!

Likewise the normalization condition, Eq.~2.4!, is given by

(
a,b50

M

xab~ t !Kb
†Ka5I . ~2.10!

Next we separate out the action of the identity on both
~2.8! and Eq.~2.10! yielding

r~ t !5x00r~0!1 (
a51

M

@xa0~ t !Kar~0!1x0a~ t !r~0!Ka
† #

1 (
a,b51

M

xab~ t !Kar~0!Kb
† , ~2.11!

x00I1 (
a51

M

@x0a~ t !Ka
†1xa0~ t !Ka#1 (

a,b51

M

xab~ t !Kb
†Ka

5I . ~2.12!

Multiplying Eq. ~2.12! by 1
2 r(0) separately from both the

left and the right, adding the resulting equations, and sub
tuting the resulting expression forx00r(0) into Eq. ~2.11!,
we find

r~ t !2r~0!52
i

\
@S~ t !,r~0!#1

1

2 (
a,b51

M

xab~ t !

3$@Ka ,r~0!Kb
† #1@Kar~0!,Kb

† #%,

~2.13!

whereS(t) is the Hermitian operator defined by

S~ t !5
i\

2 (
a51

M

@xa0~ t !Ka2x0a~ t !Ka
† #. ~2.14!
i-

is

.

ti-

Equation~2.13! is the desired result: it represents a fixe
basis OSR evolution equation. This generally resembles
SME in form, but this resemblance should be conside
with caution: it can be shown by explicit resummation th
for purely unitary evolution, r(t)5U(t)r(0)U†(t), the
terms in the fixed-basis OSR are@S(t),r(0)#
5@sin(Ht/\),r(0)# and 1

2 (ab(•••)5U(t)r(0)U†(t)
1( i /\)@sin(Ht/\),r(0)#2r(0). Hence the first term alone
@S(t),r(0)# does not necessarily account for the entire u
tary dynamics, as one might naively be led to suspect.

C. Comparison of the fixed-basis operator sum representation
equation with the semigroup master equation

We recall that in the semigroup approach, under the
sumptions of~i! Markovian dynamics,~ii ! complete positiv-
ity, and ~iii ! initial decoupling between the system and t
bath, the system evolves according to the SME@14,20,22#:

]r~ t !

]t
5L@r~ t !#[2

i

\
@H,r~ t !#1LD@r~ t !#, ~2.15!

LD@r~ t !#5
1

2 (
a,b51

M

aab$@Fa ,r~ t !Fb
† #1@Far~ t !,Fb

† #%,

~2.16!

where aab is a constant Hermitian matrix. This equatio
bears a clear resemblance to Eq.~2.13!. In fact, taking the
derivative of Eq.~2.13!, we find

]r~ t !

]t
52

i

\
@Ṡ~ t !,r~0!#1

1

2 (
a,b51

M

ẋab~ t !$@Ka ,r~0!Kb
† #

1@Kar~0!,Kb
† #%. ~2.17!

Noticing the subtle and important differences between
SME Eq. ~2.16! and this OSR evolution equation~2.17! al-
lows us to understand the exact manner in which the se
group evolution can arises from the OSR evolution under
above-mentioned conditions. The most important differen
between these two equations is the fact that the SME p
vides a prescription for determiningr(t) at all timest, given
r(t8) at any other timet8>0, whereas Eq.~2.17! determines
r(t) in terms ofr(0), i.e., at the special timet50 where the
system and the bath are in a product state.

We now show that explicit use of a coarse-graining ov
time, together with the above-mentioned assumptions, le
one naturally from the OSR evolution equation, Eq.~2.17!,
to the SME. We note that it is of course possible to der
the SME with other methods~such as adding an infinite bat
@23,24#! given the appropriate assumptions. Our goal, h
however, is not so much to rederive the SME as to spec
cally establish a route from the non-Markovian OSR to t
Markovian SME.

At this point it is useful to introduce a time scalet for the
bath ‘‘memory’’ ~whose definition will be made more pre
cise below! and to coarse-grain the evolution of the syste
in terms of this time scale:

r j5r~ j t!; xab; j5xab~ j t!; j PN. ~2.18!
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PRA 60 1947ROBUSTNESS OF DECOHERENCE-FREE SUBSPACES . . .
Further, rewriting the OSR Eq.~2.13! as r(t)5L(t)r(0)
and definingL̃(t) through L(t)5Texp@*0

t L̃(s)ds#, we find
that

]r~ t !

]t
5L̃~ t !@r~ t !#. ~2.19!

Defining L̃ j5* j t
( j 11)tL̃(s)ds, with tn5t, we have

E
0

t

L̃~s!ds5t (
j 50

n21

L̃ j . ~2.20!

Next we will make the assumption that on the time scale
the batht, the evolution generatorsL̃(t) commute in the
‘‘average’’ sense that@ L̃ j ,L̃k#50, ; j ,k. Physically, we
imagine this operation as arising from the ‘‘resetting’’ of th
bath density operator over the time scalet. Under this as-
sumption, the evolution of the system is Markovian whet
@t:

L~ t !5 )
j 50

n21

exp@tL̃ j #. ~2.21!

Further, under the discretization of the evolution, this pro
uct form of the evolution implies that

r j 115exp@tL̃ j #@r j #. ~2.22!

In the limit of t!t we expand this exponential, to find tha

r j 112r j

t
5L̃ j@r j #. ~2.23!

This equation is simply a discretization of Eq.~2.19! under
the assumption thatt!u, where u is the time scale of
change for the system density matrix. Notice in particu
that the right-hand side of Eq.~2.23! contains theaverage

value of L̃(t) over the interval. Now, from the OSR evolu
tion equation~2.17!, we know the explicit form ofL̃(t) over
the first interval from 0 tot. Discretizing over this interval
we find that

r12r0

t
52

i

\
@^Ṡ&,r0#1

1

2 (
a,b51

M

^ẋab&$@Ka ,r0Kb
† #

1@Kar~0!,Kb
† #%[L̃0@r0#, ~2.24!

where

^X&[
1

tE0

t

X~s!ds. ~2.25!

Thus, in the sense of the coarse graining above, we h
arrived at an explicit form forL̃0. Consider the evolution
beyond this first interval. Deriving an explicit form forL̃1
and for higher terms is now impossible because Eq.~2.17!
gives the evolution in terms ofr(0). However, since we
have made the assumption that the bath ‘‘resets’’ over
time scalet, we expect the bath to interact with the system
the same manner over everyt length coarse-grained interva
f

-

r

ve

e

This is equivalent to assuming thatL̃ i5L̃0 , ; i ~which of
course is the most trivial way of satisfying the Markovia
evolution condition @ L̃ i ,L̃ j #50, ; i , j ). Then, using Eq.
~2.23!, one is led to the well known form of the semigrou
equation of motion:

]r~ t !

]t
52

i

\
@^Ṡ&,r~ t !#1

1

2 (
a,b51

M

^ẋab&$@Ka ,r~ t !Kb
† #

1@Kar~ t !,Kb
† #% ~2.26!

~under the natural identification of theK ’s with theF’s of the
SME!.

We can write this equation of motion in an alternati
form which distinguishes between the system and bath c
tributions to the Liouvillian evolution. Because Eq.~2.17! is
linear in thexab(t) matrix, one can calculatexab

(0)(t) for the
isolated system and hence define the new terms which c
about from the coupling of the system to the bath:

xab~ t !5xab
(0)~ t !1xab

(1)~ t !. ~2.27!

The terms which correspond to the isolated system w
therefore produce a normal2( i /\)@H,r(t)# Liouville term
in Eq. ~2.26!. Thus Eq.~2.26! can be rewritten as

]r~ t !

]t
52

i

\
@H1^Ṡ(1)&,r~ t !#1

1

2 (
a,b51

M

^ẋab
(1)&

3$@Ka ,r~ t !Kb
† #1@Kar~ t !,Kb

† #%, ~2.28!

which with the identification of̂ ẋab& with aab , and Ka
with Fa , is equivalent to Eqs.~2.15! and ~2.16!, except for
the presence of the second term derived from^Ṡ(1)& in the
Liouvillian. This second term inducing unitary dynamics o
the system,̂ Ṡ(1)&, is referred to as theLamb shift. It explic-
itly describes the effect the bath has on the unitary part of
system dynamics and ‘‘renormalizes’’ the system Ham
tonian. It is often implicitly assumed to be present in E
~2.15! @25#.

In summary, we have shown in this section how coar
graining the evolution over the bath time scalet allows one
to understand the connection between the OSR and the s
group evolution. Specifically, we have made the assumpti
that ~i! the time scale for the evolution of the system dens
matrix is much larger than the time scale for the resetting
the bath (t@u), ~ii ! the evolution of the system should b
Markovian (@ L̃ i ,L̃ j #50, ; i , j ), and ~iii ! the bath resets to
the same state so that the system evolution is the same
every coarse-graining (L̃ i5L̃0 , ; i ). This last assumption
can be relaxed, and replaced by an ensemble average t
over the different states to which the bath resets, i.e.,L̃ i

5^^L̃ i&&. The importance of Eq.~2.17! lies in the fact that it
allows one to pinpoint the exact point at which the assum
tion of Markovian dynamics is made and, further, due to
general likeness of its form to the SME, provides an eas
translatable connection when going from the non-Markov
OSR to the Markovian SME. Notice also that the assumpt
of Markovian dynamics introduces an arrow of time in t
evolution of the system through the ordering of the enviro



re

s
g
n
es

n
in

C
m

e

-

un
at
xi-
r

io
te

rix

nc

st
th

u-
th
n

rse-
-
in

e.
es

he

e

ned

q.

de-

ro

ce

1948 PRA 60D. BACON, D. A. LIDAR, AND K. B. WHALEY
mental states: the system evolves through time in the di
tion of each successive resetting of the bath.

III. SHORT-TIME EXPANSIONS OF THE MEMORY
FIDELITY IN THE OSR

The mixed-state memory fidelity@26#

Fm~ t !5Tr@r~0!r~ t !# ~3.1!

is a good measure of the degree to which a system serve
a perfect quantum memory.Fm(t) is the mixed state analo
of the survival probability for a pure state wave functio
When the initial preparation is pure, a perfect, noisel
quantum memory will haveFm(t)51, but in the noisy case
0<Fm(t)<1. If one starts out in a mixed state, the
Fm(0),1, and it is usually necessary to resort to some k
of purification @27#. We will consider here only short-time
expansions of the fidelity, since it is known that using QEC
it is possible to restore the coherence of a quantum syste
long as corrections are applied sufficiently frequently@16#.
Thus, we perform a power expansion of the fidelity in tim
@28#,

Fm~ t !5(
n

1

n! S t

tn
D n

, ~3.2!

where thedecoherence ratesare defined as

1

tn
5$Tr@r~0!r (n)~0!#%1/n, ~3.3!

and r (n) denotes thenth time derivative of the density ma
trix.

A. First-order decoherence rate in the OSR

Throughout the literature on decoherence there abo
many examples of nonzero first order decoherence r
~e.g., @9,29,30#!. Specific attention has been given to ma
mizing this time scale in order to maintain long-lived cohe
ent states. We therefore pose the question here, how do
first-order decoherence rates for non-Markovian evolut
behave within the OSR? The first-order decoherence ra
given by

1

t1
5Tr@r~0!ṙ~0!#. ~3.4!

We note that by substituting in the reduced density mat
Eq. ~2.1!, and evaluating the derivative att50, we are im-
mediately led to the vanishing of the first-order decohere
rate from the cyclic property of the trace:

1

t1
5TrS†r~0!TrB@2 iHSBr~0!1 ir~0!HSB#‡50.

~3.5!

Therefore, for the general non-Markovian dynamics, fir
order decoherence rates are rigorously zero, provided
HSB is finite. What is not obvious from this simple manip
lation is how a coarse-graining procedure can lead to
commonly encountered nonvanishing first-order decohere
c-

as

.
s

d

as

d
es

-
the
n
is

,

e

-
at

e
ce

rates. This therefore suggests employing the ‘‘pre-coa
grained’’ OSR, Eq.~2.17!, for the derivative, and then car
rying out the specific coarse-graining procedure outlined
the preceding section on Eq.~3.4!, in order to understand
how nonvanishing first order decoherence rates can aris

Using Eq.~2.17!, the first-order decoherence rate becom

1

t1
5TrFr~0!S 2

i

\
@Ṡ~0!,r~0!#1

1

2 (
a,b51

M

ẋab~0!

3$@Ka ,r~0!Kb
† #1@Kar~0!,Kb

† #% D G . ~3.6!

Using the decomposition of the Kraus operators, Eq.~2.2!,
and knowing that U(0)5IS^ IB , we find that A i(0)
5AnISd i ,(n,n) . Thus, since theKa’s form a linearly indepen-
dent basis, it follows, using Eq.~2.7!, that the expansion
coefficients must be

bia~0!5da0And i ,(n,n) . ~3.7!

By direct evaluation,

ẋab~0!5(
n

An$@da0ḃ~n,n!,b* ~0!1db0ḃ(n,n),a~0!#%,

~3.8!

which implies the vanishing@as long asḃ(n,n),a(0) remains
finite# in Eq. ~3.6! of every term except

Tr†r~0!@Ṡ~0!,r~0!#‡.

However, this in turn vanishes by cyclic permutation of t
trace. Thus we see that within the OSR,the first-order deco-

herence rate is always zero when the b˙
(n,n),a(0) remain fi-

nite. To determine the significance of this restriction, w
choose as a basis for the Kraus operators a set ofM Ka’s
which form a Lie algebra and hence have a suitably defi
inner product@Eq. ~2.6!#:

Tr@KaKb
† #5H dab for a>1, b>1

Ndb0da0 otherwise.
~3.9!

We then find using the definition of the Kraus operators, E
~2.3!,

b(nn),a~ t !5Tr@Ka
†An^nuU~ t !un&#. ~3.10!

Differentiating this and recalling that U(t)5
exp(2iHSBt/\), we find that

ḃ(nn),a~0!52
i

\
Tr@Ka

†An^nuHSB~0!un&#. ~3.11!

Thus in order forḃ(nn),a(0) to remain finite,̂ nuHSB(0)un&
must be finite. Hence our conclusion that the first-order
coherence rate vanishes in the OSR is valid for anyfinite
total Hamiltonian~by a which we mean its matrix elements!,
and conversely, any finite total Hamiltonian will have a ze
first-order decoherence rate@31#.

Examination of our derivation of the SME, Eqs.~2.26!
and~2.28!, now shows how non-zero first-order decoheren
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rates can arise when the evolution is considered to be M
kovian. In the derivation of the semigroup equation in t
Markovian limit, we made the assumption that the matric
ẋab(t) can be identified with the constant matricesaab of
the semigroup equation, Eq.~2.16!. However, when this is
done, the matrix elementsẋab(0) in Eq. ~3.6! are replaced
by their time-averaged values, for which the relation~3.8! no
longer applies. Hence, in general, the first-order decohere
rates are necessarily not zero when the Markovian coa
graining is applied. For a finite total HamiltonianHSB, non-
zero first-order rates are therefore seen to be an artifact o
Markovian assumption, and their appearance emphasize
delicate nature of the transition to the Markovian regime

B. Example: Phase damping

The restriction to a finite total Hamiltonian above may
first sight seem obvious. However, consider, for instance,
often quoted example of phase damping of a qubit. In t
case, it would appear that there is a finite first-order deco
ence rate. Yet, it is often presented within the OSR@32,33#,
which, as we have just shown above, would predictzero
first-order decoherence rates for any nonsingular Ham
tonian. In this example, the Kraus operators are given
@32#

A05S 1 0

0 e2ltD , A15S 0 0

0 A12e22ltD , ~3.12!

and a simple calculation using these operators yields a m
mum first-order decoherence rate of 1/t152l/2. How can
this be?

To resolve this dichotomy, we consider how the abo
phase damping Kraus operators are generated from the
tary dynamics of a qubit systemS and a qubit bathB. The
evolution operator

U~ t !5S 1 0 0 0

0 e2lt 0 A12e22lt

0 0 1 0

0 2A12e22lt 0 e2lt

D u↓0&

u↓1&

u↑0&

u↑1&
~3.13!

@where the first qubit represents the bath (u↑&,u↓&) and the
second represents the system (u0&,u1&) as denoted in the col
umns above# with the bath initially in the stateu↓& immedi-
ately gives the Kraus operators of Eq.~3.12!. Now, it is easy
to calculate the Hamiltonian which generates this evolut
„usingHSB(t)5 i\@dU(t)/dt#U†(t)…:

HSB~ t !5S 0 0 0 0

0 0 0 2g~ t !

0 0 0 0

0 g~ t ! 0 0

D , ~3.14!

where

g~ t !5 i\
ge2gt

A12e22gt
. ~3.15!
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However, we see that ast˜0, g(t)˜`. Thus, in this
simple example, we find that att50, the Hamiltonian be-
comes singular. This illustrates our claim that first-order d
coherence rates in the OSR are the result of an infi
Hamiltonian, and do not contradict the general OSR resul
zero rates for finite Hamiltonians.

The diverging Hamiltonian in this example is in fa
equivalent tononclosednessof the systemS1B. It is well
known that phase damping can be generated by a mode
random phase kicks@34#, which implies anexternalrandom
force, i.e., that the systemS1B is in fact not closed. Since
this is in contradiction to our initial assumptions~Sec. II A!,
it should not come as a surprise that a nonvanishing fi
order decoherence rate is found in this situation. A sim
divergence will result of course from a bath with an infini
number of degrees of freedom@23,24#. The OSR phase
damping example thus can still be used~as is commonly
done in the analysis of quantum error correction! under the
caveat that one cannot claim that it arises from a finite clo
system (S1B).

IV. EFFECT OF SYMMETRY-BREAKING
PERTURBATIONS ON MEMORY FIDELITY

OF DECOHERENCE-FREE SUBSPACES

Our discussion in the preceding sections was comple
general, dealing with the decoherence of the entire sys
Hilbert space. We now restrict our attention to the behav
of the fidelity in DF subspaces. We first briefly summari
the basic theory of DF subspaces and then generalize
first-order stability results obtained within the SME in Re
@10#.

A. Theory of decoherence-free subspaces:
Markovian versus non-Markovian approach

Recently, conditions for the existence of decoherence-
subspaces within the framework of the Markovian SME a
proach@9,10# and in a non-Markovian@7# setting were de-
rived. We first clarify here the connection between the SM
and the non-Markovian results.

In the SME approach it was shown that a necessary
sufficient condition for decoherence-free dynam
„LD@ r̃(t)#50… in a subspaceH̃5Span@$u ı̃ & i 51

N0 %] is that all

of the basis statesu ı̃ & satisfy the condition

Fau ı̃ &5cau ı̃ &, ;a, ı̃ , ~4.1!

where theFa’s are the error generators in the semigroup E
~2.16!. Since the$Fa% form a Lie algebraL, this condition
has a simple group-theoretic interpretation, namely, the
states are thesingletsof L, i.e., they are the states that tran
form according to the one-dimensional representations ofL .
From Sec. II C, and in particular Eq.~2.26!, it follows that
these error generators become identical to the$Ka% ~the ba-
sis operators in the fixed expansion of the Kraus operat!
when the short-time averaging approximations leading fr
the OSR to the SME are made.

Within the framework of non-Markovian evolution, it ha
likewise been shown@7,11# that a necessary and sufficie
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TABLE I. Different order decoherence rates for the mixed-state memory (t) and dynamical (t̄) fidelities
under the various conditions cited in the text. Unless otherwise noted,n>1.

SME OSR

General 1/t1Þ0 1/t150
1/tnÞ0, n>2 1/tnÞ0, n>2

DF subspaces 1/tn50 1/tn50
memory fidelity fore-perturbed DF subspaces 1/tn50 1/tn50
dynamical fidelity fore-perturbed DF subspaces 1/t̄150 1/t̄150

1/t̄nÞ0, n>2 1/t̄nÞ0, n>2

aFinite bath and finite total Hamiltonian only.
bBoth with and without perturbing Lamb shift.
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condition for decoherence-free dynamics over a similar s
spaceH̃5Span@$u ı̃ & i 51

N0 %] is that all of the basis statesu ı̃ &
satisfy the condition

Sau ı̃ &5cau ı̃ &, ;a, ı̃ , ~4.2!

whereSa’s ~system operators! are defined by the interactio
Hamiltonian

HI5(
a

Sa ^ Ba . ~4.3!

The Ba are bath operators. The fixed-basis OSR equa
~2.13! sheds light on the relationship between these two
conditions. To the extent that the error generatorsFa can be
derived from expansion of the Kraus operators with a sub
quent short-time averaging approximation, the DF condit
given for the non-Markovian dynamics is more general th
that given by the semigroup approach. We notice that in
limit of small averaging timet, the error generatorsFa’s
will, in fact, correspond directly to theSa’s. This can be seen
by expanding the full evolution operatorU(t) to first-order in
t:

U~t!5I2
i

\
HSBt1O~t2!. ~4.4!

To this order, the Kraus operatorsA i(t) @see Eq.~2.3!# will
only contain terms which correspond to terms that appea
the HamiltonianHSB. These areH, the system Hamiltonian
I , the identity; and theSa’s from Eq. ~4.3!. Terms corre-
sponding toH will result in unitary evolution of the system
while I is removed from the set of Kraus operators~since
these are considered error generators! via our derivation of
the SME. To first-order in time, therefore, the only err
generators are theSa’s. Thus in the case of small averagin
time t, we see that the two DF conditions are exactly equi
lent.

However, it is important to note that the SME approa
has other advantages. Thus in many cases it is either imp
tical or undesirable to derive the$Fa% from a short-time ex-
pansion of the type discussed in Sec. II C. In fact, in Lin
blad’s axiomatic approach@14#, the $Fa% are the primary
objects and they do not follow from an expansion of a u
tary operator. While the$Fa% are often identified heuristi
cally from a factorization such as in Eq.~4.3! @35#, in some
-

n
F

e-
n
n
e

in

-

c-

-

-

cases~notably strong coupling! one simply cannot clearly
separate system and bath in the form assumed in that e
tion. In this sense, then, the SME provides greater genera
than the non-Markovian approach within the Hamiltoni
representation subject to Eq.~4.3!. Motivated by this aspect
we take condition~4.1! to be necessary and sufficient for D
subspaces.

Further, one should note that while the semigroup
condition, Eq.~4.1!, guarantees that the evolution of the sy
tem will be unitary, the system may still be subject to unita
evolution induced by the bath in the form of the Lamb sh
Such bath-induced evolution, although it does not introdu
decoherence, is undesirable in the course of a quantum c
putation. To the extent that we desire the DF subspace
serve as the basis for a quantum computer, we therefore m
impose one of two conditions on the DF subspace. Th
conditions are~i! suitable control over the system is obtain
so that the Lamb shift term can be canceled out, or~ii ! the
Lamb shift does not induce dynamics on the subspace,
HLambu ı̃ &5hl u ı̃ &. Under the first condition, the DF subspa
is not reduced in dimension. However, this condition may
physically impossible to realize. The second condition do
not make any assumptions about the amount of control
has over the system Hamiltonian, but it may have the un
sirable effect of causing a reduction in the size of the
subspace. Similar conclusions regarding the effect of
Lamb shift hold for the non-Markovian case.

Finally, in both the SME representation and the OSR,
implicit assumption has been made that the system Ha
tonian does not induce the evolution of states from with
DF subspace to states outside of the DF subspace:

Hu ı̃ &5(
j

hi j u j̃ &. ~4.5!

It is a simple matter to satisfy this additional condition in t
SME. However, this is not the case in the OSR due to
absence of an explicit appearance ofH.

We now proceed to the question of stability of DF su
spaces in the non-Markovian and Markovian cases. The
culations in the next two subsections are rather tedious,
the reader who is not interested in the details may wish
skip directly to the results for the memory fidelity, summ
rized in Table I.
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B. Stability of the memory fidelity in the non-Markovian case

Consider the addition to a DF subspace of new perturb
terms in the interaction Hamiltonian:HSB8 5HSB1eHI8 . In
this case, we find that to first-order ine, the new full evolu-
tion operator is given by

U8~ t !5 (
n50

`
~2 i t /\!n

n!
~HSB1eHI8!n

5U~ t !1 (
k51

`

ek(
n5k

`
~2 i t /\!n

n!
f n

(k)~HSB,HI8!,

~4.6!

where

f 1
(1)~HSB,HI8!5HI8 ,

f 2
(1)~HSB,HI8!5HSBHI81HI8HSB,

f 3
(1)~HSB,HI8!5HSB

2 HI81HSBHI8HSB1HI8HSB
2 , ~4.7!

f 2
(2)~HSB,HI8!5HI8

2,

f 3
(2)~HSB,HI8!5HSBHI8

21HI8HSBHI81HI8
2HSB,

etc. HereU(t) is the unperturbed evolution operator. Fro
Eqs. ~2.3! and ~2.7! we thus see that to first-order ine the
operatorsKa in which the Kraus operators are expanded w
have new terms due to$ f n

(1)%, hereby denoted by$eGp%p51
P ,

which are proportional toe. These terms modify the evolu
tion over the DF subspace@Eq. ~2.13!# so that
]r̃/]t°]r̃8/]t5]r̃/]t1L8(t)@ r̃(0)#, where

L8~ t !@ r̃~0!#[2
i

\
@S8~ t !,r̃~0!#

1
1

2 (
a51

M

(
p51

P

xap~ t !LKa ,eGp
@ r̃~0!#

1xap* ~ t !LeGp ,Ka
@ r̃~0!#1O~e2!. ~4.8!

Here

S8~ t !5e
i\

2 (
p51

P

@xp0~ t !Gp2x0p~ t !Gp
†# ~4.9!

and

Lx,y@r#[@x,ry†#1@xr,y†#. ~4.10!

Terms ofO(e2), not written out explicitly in Eq.~4.8!, in-
clude LeGp ,eGq

@ r̃(0)#, Le2Gp ,Ka
@ r̃(0)#, etc. Assuming that

e!1, we may neglect these terms. Now, for the purpose
argument, we will assume that the system has perfect q
tum memoryover the DF subspace in the absence of
perturbing error generators, i.e.,Fm

(DF)(t)5Tr@ r̃(0)r̃(t)#
51. The perturbation, however, decreases the fidelity be
this perfect value. The modified memory fidelity can be wr
ten formally as
g

l

of
n-
e

w
-

Fm8 ~ t !512 (
k51

(
n5k

1

n!

tn

~tn
(k)!n

,

wheretn
(k) represents theO(ek) contribution to thenth-order

decoherence timetn . It was shown in Ref.@10# that, within
the SME, the term which is first order in both the perturb
tion and time vanishes: 1/t1

(1)50. This left open the possi
bility of terms of orderO(et2) and higher spoiling the fidel-
ity. Here we will generalize this result in the non-Markovia
case~the Markovian case will be dealt with in Sec. IV C! and
show that in fact 1/tn

(1)50 for all n, so that the entireO(e)
contribution vanishes, and only terms of orderO(e2t2) can
spoil the memory fidelity. For simplicity of notation, sinc
we are considering here only the 1/tn

(1) decoherence rates
we drop the~k! superscript from now on.

The perturbeddecoherence rates are thus given by

S 1

tn
D n

5Tr@ r̃~0!$r̃8~ t !%(n)#5Tr@ r̃~0!$L8~ t !@ r̃~0!#% t50
(n21)#.

~4.11!

Using Eq.~4.8! and noting that the terms involvingS8 vanish
directly by permutation under the trace, we obtain to fir
order ine

S 1

tn
D n

5
1

2 F (
a51

M

(
p51

P

xap
(n21)~ t !Tr†r̃~0!LKa ,eGp

@ r̃~0!#‡

1xap* (n21)~ t !Tr†r̃~0!LeGp ,Ka
@ r̃~0!#‡G . ~4.12!

To evaluate this, we need to knowKar(0̃). Now, when we
expand the Kraus operators about a fixed basisKa as in Eq.
~2.7!, this basis will consist of all possible products of th
three termsH, Sa , and I @recall the definition of the Kraus
operators, Eq.~2.3!#. Assuming a perfect quantum memor

@H,r̃~0!#50, ~4.13!

we can commuteH with r̃(0) and, using the DF condition
Sau ı̃ &5cau ı̃ &, for a given product ofSa’s and H’s we can
replace eachSa with its eigenvalueca . Thus, for example,

H2S1Hr̃5H2S1r̃H5H2c1r̃H5c1H3r̃. ~4.14!

It follows that for a DF subspace in the OSR, the basis
eratorsKa will satisfy the condition

Kar̃~ t !5daHmar̃~ t !, ~4.15!

with ma an integer andda a real number. Using this resul
we then cycle the trace in Eq.~4.12!, and again using

@H,r̃(0)#50 we find for the first trace

Tr†r̃~0!LKa ,eGp
@ r̃~0!#‡5eda Tr@2r̃~0!Hmar̃~0!Gp

†

2 r̃~0!Gp
†Hmar̃~0!

2 r̃~0!Gp
†r̃~0!Hma#50.

~4.16!



t
n
-
he

de

try
ve
in

e-
-

ra
an

th
b

q.

ar

r

e

g

ix:
m

ty

the

tri-
try-

1952 PRA 60D. BACON, D. A. LIDAR, AND K. B. WHALEY
The second trace vanishes similarly. Thus we see tha
orders of decoherence rates must vanish to first-order ie,
i.e., 1/tn50. Examining Eq.~4.8!, it is clear that the second
order e2 term does not lead to a similar vanishing of t
traces. Therefore, we have proved thatunder non-Markovian
evolution, DF subspaces are completely stable to first-or
under a symmetry-breaking perturbation, where by ‘‘com-
pletely’’ we mean explicitly stable to all orders of time.

C. Stability of the memory fidelity in the Markovian case

The stability of DF subspaces with respect to symme
breaking perturbations in the non-Markovian case deri
above is a significant extension of the stability derived
Ref. @10# for the Markovian SME. However, the result pr
sented in Ref.@10# only examined the effect of a symmetry
breaking perturbation on the first-order decoherence
(1/t1

(1)50). Here we show that the stronger non-Markovi
result derived above (1/tn

(1)50 ;n>1) also holds in the
Markovian SME.

The effect of perturbing a DF subspace in the SME is
addition of new error generators, hereby denoted
$eGp%p51

P , to the master equation~which was partially
treated in Ref.@10#! as well as a perturbing Lamb shift term
in the master equation~which was not treated in Ref.@10#!.
These terms modify the SME@Eqs.~2.15! and~2.16!# so that
]r(t)/]t5L8@r(t)#, with

L8@r~ t !#[L@r~ t !#2
i

\
@eHLamb8 ,r~ t !#

1
1

2 (
p51

P

(
a51

M

$gpaLeGp ,Fa
@r~ t !#

1gpa* LFa ,eGp
@r~ t !#%1O~e2!, ~4.17!

whereL@r(t)# is the unperturbed SME term given by E
~2.15!, eHLamb8 is the perturbing Lamb shift, andLx,y@r(t)# is
given by Eq. ~4.10!. The perturbed decoherence rates
given by

S 1

tn
D n

5Tr@ r̃~0!r̃ (n)~0!#5Tr†r̃~0!$~L8!n@ r̃~0!#%‡,

~4.18!

where (L8)n@ r̃(0)#5L8@L8†•••L8@ r̃(0)#‡#, n times. To
evaluate this expression, recall~i! the DF condition
L@ r̃(0)#50 and~ii ! that we are working only to first-orde
in e. Now, for simplicity, consider first (L8)2@ r̃(0)#, and
denote the second and third terms on the right-hand sid
Eq. ~4.17! by A1@r(t)# andA2@r(t)#. By the DF condition,
L†L@ r̃(0)#‡5A1†L@ r̃(0)#‡5A2†L@ r̃(0)#‡50. Also,
Ai†Aj@ r̃(0)#‡ is of O(e2). Only the two terms withL acting
on A1@ r̃(0)# and A2@ r̃(0)# do not vanish. This reasonin
generalizes easily forn.2, so we find that to first-order ine,
all

r

-
d

te

e
y

e

of

S 1

tn
(1)D n

5TrF r̃~0!Ln21S 2
i

\
@eHLamb8 ,r̃~0!#

1
1

2(
p51

P

(
a51

M

$gpaLeGp ,Fa
@ r̃~0!#

1gpa* LFa ,eGp
@ r̃~0!#% D G . ~4.19!

Now, the DF condition, Eq.~4.1!, implies that the DF error
generators commute with the DF density matr

@Fa ,r̃(0)#50. We also again assume perfect quantu
memory @Eq. ~4.13!#. Thus, for an arbitrary operatorA
PA(H), we find that we can commute the initial densi
matrix through the operatorL:

L@ r̃~0!A#52
i

\
@H,r̃~0!A#1

1

2 (
a,b51

M

aab@2Far̃~0!AFb
†

2Fb
†Far̃~0!A2 r̃~0!AFb

†Fa#

52
i

\
r̃~0!@H,A#1

1

2 (
a,b51

M

aabr̃~0!

3~2FaAFb
†2Fb

†FaA2AFb
†Fa!

5 r̃~0!L@A#,

so that

L (n21)@ r̃~0!A#5 r̃~0!L (n21)@A#,

L (n21)@Ar̃~0!#5L (n21)@A#r̃~0!. ~4.20!

Examining the contribution to the decoherence rates from
Lamb-shift term, we thus find that

S 1

tn
(1)D

Lamb

n

52
i

\
Tr@ r̃~0!†L (n21)@eHLamb#,r̃~0!‡#50,

~4.21!

which vanishes by cycling under the trace. Next, the con
bution to the decoherence rates due to the symme
breaking perturbing error generators in Eq.~4.19! is given by

S 1

tn
(1)D

SBP

n

5
1

2(
p51

P

(
a51

M

Tr$r̃~0!L (n21)
†gpaLeGp ,Fa

@ r̃~0!#

1gpa* LFa ,eGp
@ r̃~0!#‡%. ~4.22!

Expanding the first of these terms,
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e

2 (
p51

P

(
a51

M

gpa Tr$r̃~0!L ~n21!@2Gpr̃~0!Fa
†2Fa

†Gpr̃~0!

2 r̃~0!Fa
†Gp#%

5
e

2 (
p51

P

(
a51

M

gpa Tr„r̃~0!$L ~n21!@2GpFa
† #r̃~0!2L ~n21!

3@Fa
†Gp#r̃~0!2 r̃~0!L ~n21!@Fa

† r̃Gp#%…

5e (
p51

P

(
a51

M

gpa Tr$r̃~0!L ~n21!
†@Gp ,Fa

† #‡r̃~0!%

~4.23!

5e (
p51

P

(
a51

M

gpaTr$L ~n21!
†r̃~0!@Gp ,Fa

† #r̃~0!‡#.

~4.24!

Using Fa
† r̃(0)5ca* r̃(0), we see that r̃(0)@Gp ,Fa

† #r̃(0)

5 r̃(0)(Gpca* 2ca* Gp) r̃(0) and thus this term vanishe
Similar reasoning implies the vanishing of the second term
Eq. ~4.22!. Thus we have proven that 1/tn

(1)50: under Mar-
kovian evolution, DF subspaces are completely stable
first-order under a symmetry-breaking perturbation@36#.

V. THE DYNAMICAL FIDELITY

The results derived in the preceding section imply that
subspaces are robust to small perturbations when the DF
space is operating as a quantummemory. In order to address
what happens when perturbations are made on the syste
it evolves according to some desired quantumcomputation,
we have to first define an analog of the mixed-state mem
fidelity for an evolving system. This is

Fd~ t !5Tr@rU~ t !r~ t !#, ~5.1!

whererU(t) is the desired unitary evolution

rU~ t !5US~ t !r~0!US
†~ t ! with US~ t !5expF2

i

\
HSt G .

~5.2!

HereHS is the system Hamiltonian, and may include a ‘‘pr
gram’’ Hamiltonian which implements a quantum algorith
on the system. Thisdynamicalfidelity is a good measure o
the difference between the desired evolution of the sys
and the actual, ‘‘noisy’’ evolution. Thus, 0<Fd(t)<1, with
Fd(t)51 if and only if the evolution is perfect, i.e.,r(t)
5rU(t).

The decoherence rates for the dynamical fidelity are
fined in the same manner as for the memory fidelity

Fd~ t !5(
n

1

n! S t

t̄n
D n

:
1

t̄n

5ˆTr@$rU~ t !r~ t !%(n)#‰1/n.

~5.3!
n

to

F
b-

as

ry

m

-

A. Markovian case

First we consider the dynamical fidelity within the conte
of the Markovian limit, using the SME approach. We restr
our attention as before to DF subspaces, so the density
trix r̃ satisfies Eq.~2.15! with LD@ r̃(t)#50. We then imag-
ine this DF subspace to be perturbed by a symme
breaking perturbation:LD°LD8 , where the perturbed densit
matrix satisfies the following SME:

]r̃

]t
52

i

\
@HS ,r̃~ t !#1LD8 @ r̃~ t !#.

Similarly to Eq.~4.8! ~see also Ref.@10#!, the new terms in
this SME are given by

LD8 @ r̃~ t !#5 (
a51

M

(
p51

P

$aapLFa ,eGp
@ r̃~ t !#1aap* LeGp ,Fa

@ r̃~ t !#%

1O~e2!. ~5.4!

Theperturbedfirst-order dynamical fidelity decoherence ra
is given by

1

t̄1

5TrF r̃U~0!
]r̃~0!

]t
1

]r̃U~0!

]t
r̃~0!G . ~5.5!

The first of these terms vanishes via the arguments given
the memory fidelity~essentially, sinceFar̃5car̃ by the DF
subspace property!. The second term also vanishes, by p
mutation of the trace after using ]rU(0)/]t5
2 i\@HS ,r(0)#. Thus we find thatDF subspaces are stabl
to first-order in time also when the system is allowed
evolve.

Further, it is easy to see that the higher-order dynam
fidelities now do not vanish. For example, the second-or
dynamic decoherence rate contains terms l
@HS ,r(0)#LD8 @r(t)# t50, which do not allow the simple per
mutation of the trace.

B. Non-Markovian case

Is there an analogous result for the non-Markovian sit
tion? We can address this within the OSR. The argument
Sec. III A showed that the first-order decoherence rate w
always vanish, and so according to the arguments gi
above, this applies also to the dynamical fidelity. Examin
the second-order decoherence rates, we find

S 1

t̄2
D 2

5TrF\2
†HS ,@HS ,r̃~0!#‡r̃~0!1@HS ,r̃~0!#L8~ t !

3@ r̃~0!# t501 r̃~0!H ]L8~ t !

]t
@ r̃~0!#J

t50
G , ~5.6!

where L8 is now given by Eq.~4.8!. As in the semigroup
analysis above, the second of these traces does not va
~nor does the first, but it will be canceled due to a contrib
tion from the third!.

Thus we find that for thedynamicalfidelity, the effect of
a symmetry-breaking perturbation results in a second-o
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time instability in the system for both Markovian and no
Markovian situations. It is remarkable that while the memo
fidelity is completelyrobust to first-order (e) perturbing er-
rors, the dynamical fidelity does not show the same rob
ness, with instability arising at second order in time. In ter
of real quantum computation, therefore, this implies that
subspaces must be supplemented by QECC in order t
truly useful beyond merely providing high-quality quantu
memory. In particular, the instability in the dynamical fide
ity implies that in order to realize the robustness of DF s
spaces to symmetry-breaking perturbations, operations
the DF subspace must be performed over a time scale s
in comparison with the perturbing error rate. Thus, for t
realistic scheme in which DF subspaces are supplemente
quantum error correcting codes~by, for example, concatena
ing the DF subspaces within QECC as in Ref.@11#!, if the
operations performed on the DF subspace in order to exe
the QECC are executed frequently and rapidly, the
scheme can provide a significant improvement over pure
subspaces.

VI. SUMMARY AND CONCLUSIONS

We have shown here how the formally exact operator s
representation~OSR! for the time evolution of the density
matrix can be cast in a form which bears a significant res
blance to the semigroup master equation~SME!, through the
introduction of a time-independent~fixed! operator basis. By
using this fixed-basis OSR equation, we were able to ea
calculate the fidelity in the OSR, as well as to provide
derivation of the SME which makes explicit the role play
by the coarse-graining assumption. Somewhat surprisin
we found an important difference between the OSR and
SME, namely, the first-order decoherence ratealwaysvan-
ishes in the former, but not always in the latter, for a fin
Hamiltonian. This effect is readily traced to the coars
graining time averaging assumption within our derivatio
This result is significant for both error-correction schem
aimed at improving the fidelity, and for commonly used si
plified models of decoherence. We illustrated the latter w
the well-known case of phase damping.

Using the fixed-basis OSR, we have then undertake
detailed study of short-time expansions of the mixed-s
fidelity under a variety of conditions. The mixed-state fid
ity provides a measure of the extent of quantum coherenc
the system. We have examined both the usual mixed-s
memory fidelity relevant to quantum memory and a dyna
y
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cal fidelity which we defined to act as a measure of coh
ence for a time-evolving system. Our main achievement h
has been to extend the robustness results of Ref.@10# regard-
ing decoherence-free~DF! subspaces. For the preservation
quantummemory, we showed that in both the OSR and SM
approaches, DF subspaces are stable toall orders in timeto
a symmetry-breaking perturbation. The first errors enter
the quantum memory can therefore only beO(e2), wheree
measures the strength of the perturbation. This result g
beyond the first-order stability result ofO(et2) arrived at in
Ref. @10#, which was restricted to the Markovian case.
shows thatDF subspaces are indeed ideal for quantu
memory in all situations. In making this statement, we not
that we have not shown here how to perform input and o
put to the DF subspaces. Further investigation is neede
address this issue. The quantum memory stability results
summarized in Table I. For the dynamical fidelity, a weak
result is obtained, namely that this has only a vanishingfirst-
order decoherence rate under a perturbation. Thus the
errors entering the dynamical fidelity can beO(et2).

This stability analysis of static and dynamic fidelities is
particular relevance for practical implementations of qua
tum computation. The complete stability to perturbations
static fidelity within DF subspaces is very encouraging
use in quantum memory. Thus passive error correction
pears to be sufficient for this. In contrast, the weaker fir
order stability condition derived for the dynamical fideli
within DF subspaces implies that application of active err
correction techniques will likely be necessary in order
preserve coherenceduring computation. Further, if the op
erations performed on the DF subspace in order to exe
active error correction are executed rapidly, then the full
stability to symmetry-breaking perturbations can be rec
ered. Such a scheme of combining active and passive e
correction is possible by concatenating codes constru
from DF subspaces with active quantum error correction
demonstrated in Ref.@11#.
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