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Experimental realization of a two-bit phase damping quantum code

Debbie Leund;? Lieven Vandersypef? Xinlan Zhou?®? Mark Sherwood, Constantino YannorfiMark Kubinec?
and Isaac Chuaig
IEdward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4085
’IBM Almaden Research Center, San Jose, California 94120
3S0lid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075
“College of Chemistry, D62H Hildebrand Hall, University of California at Berkeley, Berkeley, California 94720-1460
(Received 30 November 1998

Using nuclear-magnetic-resonance techniques, we experimentally investigated the effects of applying a
two-bit phase error detection code to preserve quantum information in nuclear spin systems. Input states were
stored with and without coding, and the resulting output states were compared with the originals and with each
other. The theoretically expected result, net reduction of distortion and conditional error probabilities to second
order, was indeed observed, despite imperfect coding operations which increased the error probabilities by
approximately 5%. A systematic study of the deviations from the ideal behavior provided quantitative mea-
sures of different sources of error, and good agreement was found with a numerical model. Theoretical
guestions in quantum error correction in bulk nuclear spin systems including fidelity measures, signal strength,
and syndrome measurements are discug&i50-294719)02309-4

PACS numbd(s): 03.67.Lx, 03.67.Hk

[. INTRODUCTION rors but not for the extra errors introduced by the coding
operations. The extension to handle gate errors and to
Recent progress in experimental implementation of quanachieve reliable computation with a certain accuracy thresh-
tum algorithms has demonstrated in principle that quantunold were subsequently developed by many oth&gs-17.
computers could solve specific problems in fewer steps than In this paper, we report experimental progress toward this
any classical machingl—5]. These first generation quantum elusive goal of continued quantum computation. We imple-
computers were two-spin molecules in solution. They werament a simple phase error detection schdri@ that en-
initialized, manipulated and measured at room temperatureodes one qubit in twand detects a single phase error in
using bulk nuclear-magnetic-resonaribMR) spectroscopy either one of the two qubits. The output state is rejected if an
techniqueg6—9]. Classical redundancy in the ensemble anderror is detected so that the probability to accept an errone-
the discrete nature of the answers ensured that the corregtis state is reduced to the smaller probability of having mul-
answers were obtained despite gate imperfections and motiple errors. Our aim is to study the effectiveness of quantum
erate rates of decoherence. However, the accumulation @iror correction in a real experimental system, focusing on
errors would be detrimental in larger quantum computers andffects arising from imperfections of the logic gates. There-
for longer computations in the future, and methods to protectore, the experiment is designed to eliminate potential artifi-
guantum information will be needed. cial origins of bias in the following ways. First, we compare
Classically, errorgbit flips) are detected and fixed by output states stored with and without codiftpe latter is
error correcting codes. Information is encoded redundantlyunprotected but less affected by gate imperfectioBscond,
and the output contains information on both the encodedby ensuring that all qubits used in the code decohere at
input and the errors that have occurred, so that the errors carearly the same rate, we eliminate apparent improvements
be reversed. Generalization to quantum information is nonbrought by having an ancilla with a lifetime much longer
trivial since it is impossible to clone an arbitrary quantum bitthan the original unencoded qubit. Third, our experiment uti-
(qubit) and to measure quantum states without disturbing théizes only naturally occurring error processes. Finally, the
system. Furthermore, there is a continuum of possible errorsnain error processes and their relative importance to the ex-
and finally, entanglement can cause errors to propagate raperiment are thoroughly studied and simulated to substanti-
idly throughout the system. ate any conclusions. In these aspects, our study differs sig-
Despite the apparent difficulties, quantum error correctiomificantly from previous wor 19] demonstrating quantum
was shown to be possible theoretically, and can be useful fagrror correction working only in principle.
reliable computation even when coding operations are imper- Using nuclear spins as qubits, we performed two sets of
fect. Sho10] and Steangl1] realized a major breakthrough experimentsy(i) The “coding experiments” in which input
by constructing the earliest quantum error correcting codesstates were encoded, stored, and decoded(igntthe “con-
Prudent use of quantum entanglement enables the inform#&-ol experiments” in which encoding and decoding were
tion on the errors to be obtained by nondemolition measureemitted. Comparing the output states obtained from the cod-
ments without disturbing the encoded inputs; it also enablesg and the control experiments, both error correction by
digitization of errors. These schemes correct for storage ercoding and extra errors caused by the imperfect coding op-
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erations were taken into account when evaluating the actudfter the phase shift given by Ed1), the density matrix

advantage of coding. In our experiments, coding reduced thbecomes

net error probabilities to second order as predicted, but at the

cost of small additional errors that decreased with the origi-

nal error probabilities. We identified the major imperfection

in the logic gates to be the inhomogeneity in the radio- p' =Ply)(y|PT=PpP'=

frequency(rf) field used for single spin rotations. Simulation

results including both phase damping and rf field inhomoge-

neity confirmed that the additional errors were mostly causef<

by rf field inhomogeneity. The causes and effects of othe

deviations from theory were also studietbmography ex-

perimentsgiving the full density matrices at major stages of

the experiments further confirmed the agreement between

theoretical expectations and the actual results. (p")p= f 1 e~ 0%125°p pPTde
The rest of the paper is structured into five sections: Sec- o J27s

tion 1l consists of a comprehensive review of the background

material for the subsequent sections of the paper. This back- |al? ab*e™ s72

ground material includes the phase damping model, the two- =

bit coding scheme, and the theory of bulk NMR quantum

computation. These are reviewed in Secs. Il A, 11 B, and

Il C. Readers who are familiar with these subjects can skipvheres? is the variance of the distribution af. Since the

the appropriate parts of the review. Section Il describes th@rocess’s Markovian, the total phase shift during a time pe-

methods to implement the two-bit coding scheme in NMR,riod t is a random-walk process with variance proportional to

and the fidelity measures to evaluate the scheme. Section It/ Therefore, we replacg?/2 by \t in Eq. (4) when the time

presents the experimental details. Section V consists of thelapsed ig. Since the diagonal and the off-diagonal elements

experimental results together with a thorough analysis. Theéepresent the populations of the basis states and the quantum

effects of coding, gate imperfections, and the causes and e¢oherence between them, the exponential decay of the off-

fects of other discrepancies are studied in detail. In Sec. Vidiagonal elements caused by phase damping signifies the

we conclude with a summary of our results. We also discustoss of coherence without any net change of quanta.

syndrome measurement in bulk NMR, the equivalence be- Phase damping affects a mixed initial state similarly:

tween logical labeling and coding, the applicability of the

two-bit detection code as a correction code exploiting clas-

sical redundancy in the bulk sample, and the signal strength

issue in error correction in bulk NMR. Sections Il and V

contain the main results of the paper; the remainder is in-

cluded for the sake of cqmpletgness and to develop nOtat'oé}nce the density matrix of a mixed state is a weighted aver-
and terminology we believe will be helpful to the general

age of the constituent pure states.
reader. . . .
One can represent an arbitrary density matrix for one qu-
bit as a Bloch vectorX,y,z), defined to be the real coeffi-
cients in thePauli matrix decomposition

|a|2 ab*e i?
a*be?  |b|?

3

Here, we model phase randomization as a stochastic Mar-
ov process withd drawn from a normal distribution. The
density matrix resulting from averaging overis

. 4

a*be” s2/2 |b|2

a e—Mb*

e Mp c

a b*

b ¢ ' ®)

—

Il. THEORY

A. Phase damping N
L . p=§(|+XO'X+y0'y+ZO'Z), (6)
Phase damping is a decoherence process that results in the

loss of coherence between different basis states. It can be
caused by random phase shifts of the system due to its inter-
action with the environment. For example, let)=a|0)
+b|1) be an arbitrary pure initial state. A phase skftan

be represented as a rotation aboutztais by some anglé,

e—i0/2 0

0 ei 012

: D

i
P=ex 502

where o, is a Pauli matrix. The resulting state is given by
P|ly)=ae '%20)+be ??1). Let p be the density matrix of
the initial qubit,

FIG. 1. Trajectories of different points on the Bloch sphere un-
der the effect of phase damping. Points move along the perpendicu-
_ ) lars to thez axis at rates proportional to the distances tozfsis.
As a result, the Bloch sphere turns into an ellipsoid.

la]> ab*

P:|¢><¢|: a*b |b|2
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where the Pauli matrices are given by where p now denotes the ¥4 density matrix for the two
qubits. The eventsr,®| and | ® o, are first-order errors,
0 —i
. , Oz=

0 1
1 0

1 0 occur with probabilities linear and quadratic in the small
|- ) error probabilities.
0 1 X ; .
Having described the noise process, we now proceed to
describe a coding scheme that will correct for it.
The space of all possible Bloch vectors is the unit sphere
known as the Bloch sphere. Phase damping describes the

axisymmetric exponential dgcay (_Jf tﬁeandil components B. The two-bit phase damping detection code
of any Bloch vector, as depicted in Fig. 1. L . .

In contrast to the above picture of phase damping as Quantum error correction is similar to its classical ana-
continuous process, we now describe an alternative model p9U€ in many aspects. First, the input is encoded in a larger
phase damping as a discrete process. This will facilitate ungyStem that goes through the decoherence process, such as
derstanding of quantum error correction. The essence is thf@nsmission through a noisy channel or storage in a noisy

any quantum procegs— &(p) can be written in theperator environme_nt. The_encoded statémgieword$ are chosen
sum representatioas[20,21] such that information on the undesired chan@asor syn-

dromes can be obtained in the extra degrees of freedom in
the system upon decoding. Then corrections can be made
accordingly. However, in contrast to the classical case, quan-
g(p)zz AkPAl: (8) tum errors occur in many different forms such as phase
K flips—and not just as bit flips. Furthermore, the quantum
information must be preserved without ever measuring it be-
where the sum is over finite number ofdiscreteeventsa, ~ Cause measurem'ent tha’g obtains information about a quantum
that are analogous to quantum jumps, ah@\[A, is posi- state inevitably disturbs it. There are excellent references on

tive. For instance, Eq5) describing phase damping can be the theory_ of quantum error (_:orrectl{)212—2@. We limit the
rewritten as present discussion to detection codes only.

For a code to detect errors, it suffices to choose the code-
word space” such that all errors to be detected n@&po its
orthogonal complement. In this way, detection can be done
unambiguously by a projection ontbwithoutdistinguishing
individual codewords, hence without disturbing the encoded
wherep=(1—e *)/2. In Eq. (9), the outputE(p) can be information. To make this concrete, consider the cfithj
considered as a (1p):p mixture of p and azpol; in other
words, £(p) is a mixture of the states after the event “no

while o,® o, is second order. First- and second-order events
i 0

Oy= , O-y:

&p)=(1—p)lplT+pa,pol, (9)

jump” (1) or “a phase error” @, has occurred. The 1

weights 1—p andp are the probabilities of the two possible 100)= EQOOH'H»’ (1)
events. In general, each temapAl in Eq. (8) represents the

resulting state after the eveAf has occurred, with probabil-

ity tI’(AkpAb. This important interpretation is used through- i(|01>+|10>) (12

out the paper. Note that the decompositior€Qs) is a math- 1) J2

ematical interpretation rather than a physical process. The

component state%kpAl of &(p) are not generally obtainable

because they are not necessarily orthogonal to each other.Where the subscript denotes logical states. An arbitrary
We emphasize that Eq¢5) and (9) describe the same encoded qubit is given by

physical process. Equatidf) provides a discrete interpreta-

tion of phase damping, with the continuously changing pa-

rametere ' embedded in the probabilities of the possible ly)y=al0,)+b|1,) (13
events.
For a system of multiple qubits, wessumandependent
decoherence on each qubit. For example, for two qubits _i
andB with error probabilitiegp, andpy, the joint process is N \/E[a(|00> +[11) +b(|02)+]10)]. (14
given by
After the four possible errors in Eq10), the possible out-

Ep)=(1—p)(1—pp(I)p(lal) comes are

+(1_pa)pb(|®0'z)p(|®a'z)

+Pa(1=pPp) (0,21 p(0,®1)+ papp(o,®0;)p(0, |00)+|11) |02)+|10)

®0’z), (10) |¢II>:|®I|¢>:a \/E + \/5 ’ (15)
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CNpa

1
A a0y s6lty ——1-CB S = 1#5)= 5 (al0) +b11)]0) + (al1) blODI)
I 1| 1| P! | (22)
| | | | |
B: o) —| H } i H HE|
= f f — - (a([00)+11)) + b(|01) +|10)),
lon)  le2y o3 P4 Ps V2 23

FIG. 2. Circuit for encoding and decoding. Qubits the input  \yhere Eq.(23) is the desired encoded state.
qubit. H is the Hadamard transformation, and the symbol nex to The decoding operation is the inverse of the encoding
is a controlled not with the dot and circle being the control andoperation (see Fig. 2 so as to recover the inputal(O}
target bits.[y;_3) are given by Eqs(20(23). ps and ps are L 1)111)10y in the absence of errors. Phase errors lead to

mixtures of the states in Eq§l5)—(18) and in Eqs.(24)—(27). A . .
phase error in either one of the qubits will be revealed by gBbit other decoded outputs. The possible decoded states are given

being in|1) after decoding, and in that case, qubitwill be re- by
jected.
dec
|#1)=(al0)+b[1))|0), (24)
| hz21)=(al0)=b|1))[1), (25
| 3 = |OO>_|11>+b|01>_|10> 18
va)=o@ll=aTg 2 W |12)=(al0) +b|1))|1), (26)
|¢p22)=(al0)—b|1))|0). (27
|00)—|11) —|02)+]10)
lhz)=1®0,dh)=a 2 +b 2 , Note that the ancilla becomés) upon decoding if and
(17) only if a singlephase error has occurred. Moreover, qubits
andB are in product states but they are classically correlated.
Therefore, syndrome can be read out by a projective mea-
|00)+|11) = —|01)—|10) surement onB without measuring the encoded state. The
|22)= 0,0, h)=a V2 +b V2 ' decoding operation transforms the codeword space and its

(18) orthogonal complement to the subspaces spanng@)bgnd
|1) in qubit B, while all the encoded information, either with

. ) or without error, goes to qubh.
with thefirst-ordererroneous states) and|) orthogo- We illustrate the role of entanglement in the digitization
nal to the correct statly). Therefore, it is possible to dis- ang detection of errors as follows. Suppose the error is a
tinguish Eq.(15) from Egs.(16) and (17) by a projective phase shift on qubitx: [0)—|0), |1)—€'?|1). Then, the
measurement during decoding, which is described next.  gncoded state becomes

The encoding and decoding can be performed as follows.
We start with an arbitrary input state and a ground-state an-
cilla, represented as qubifsandB in the circuit in Fig. 2. —[a(]00)+€'?|11)) + b(e'?|10) + |01))] (28

To encode the input qubit, a Hadamard transformalion V2
is applied to the ancilla, followed by a controlled not from
the ancilla to qubitA (written asCN,,). Let A andB be the 1 1+e'!
first and second label. Then, the two operations have matrix =~ —5 —[a([00)+[11) +b([10)+[01))]
representations

1 _Aif
1000 TG 2 [a(]00)—|11)) +b(~[10)+[01))].
11 1 0 00 1
= (29
H ﬁ[l —1}' CNoa=lg o 1 o 19
0100 The decoded state is now a superposition of the states given
by Egs.(24) and(26):
and the qubits transform 4kig. 2) 1 1+e? 1 1—gl?
— ———(a|0)+b|1))|0)+— a|0)—Db|1))|1).
(@l bl1)[0) = = (@lo)-bla|1)
|¢1)=(a]0)+b|1))|0) (20 (30)
Measurement of qubiB projects it to eithet0) or |1). Be-

I®H
i |¢2>=i(a|0)+b|1))(|0>+|1)) (21)  cause of entanglemengubit A is projected to having no
V2 phase error, or a complete phase flip.
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We quantify the error correcting effect of coding using A

the discrete interpretation of the noise process, leaving a full |[11) = (o, +®,)/2 +7/2 E
discussion of the fidelity to Sec. Ill. Recall from E40) that Ibhigh Tahigh
the errorsl®l, I®o,, o,®l|, ando,® o, occur with prob- (Y0 s ZEusven o, (@, D)2 - z/2
abilities  (1-pa)(1—pp), (1=Pa)Pp, Pa(l—Ppp), and
PaPy, respectively, and only in the first and the last cases Blow
will the output state be accepted. The probability of accept- Ry Ao S— (o, +0,)/2 - /2
ing the output state is (£p,)(1—py)+ PaP, Whereas the tblow i °

robability of accepting the correct state is 1-py).
?he congitional pr%b:fbility of a correct, ;cpé?a)éted psbt)ate is |00y == (0, ~®)/2 + 712
therefore

FIG. 3. Energy diagram for the two-spin nuclear system. The
(1—pa)(1—pp) . a1 tr|:;1)nsiti|cins| (')abe||%@|ow|:lar|ufh- |t())|°\,\i(,) an?fhigh re:;e'rlto| gansii;ions
~1— — s > , — , an — y

for small p,, p,. The code improves the conditional error conerence times. Coupled operations involving multiple qu-
probability to second-order, as a result of screening out thejts are built in as coupling of spins within molecules. Com-
first-order erroneous states. _ _ plex sequences of operations can be programmed and carried
We conclude this section with a discussion of some propgyt easily using modern spectrometers. However, the signal
erties of the two-bit code. First, the code also applies tGrom a single spin is so weak that detection is not feasible
mixed input states since the code preserves all constitueRfith current technology unless a bulk sample of identical
pure states in the mixed input. Second, we show here thalyin systems is measured. These identical systems run the
two qubits are the minimum required to encode one qubisame quantum computation in classical parallelism. Compu-
and to detect any phase errors. Cette the two-dimensional - tation can be performed at room temperature starting with
codeword space and IEtbe a nontrivial error to be detected. mixed initial states by distilling the signal of the small excess
For phase dampingk is unitary and thereforé&C is also  population in the desired ground state. How NMR quantum
two-dimensional. Moreovet; andEC must be orthogonal if  computation can be done is described in detail in the follow-
E is to be detected. Therefore, the minimum dimension ofng.
the system is four, which requires two qubits. However, us- The quantum system (hardwardh our two-bit NMR
ing only two qubits implies other intrinsic limitations. First, system)0) and|1) describe the ground and excited states of
the code can detect but cannot distinguish errors. Thereforgae nuclear spirithe states aligned with and against an ex-
it cannot correct errors. Moreoveti),,) decodes to a correct ternally applied static magnetic fieR}, in the + 2 direction.

state in SpinA that is reje_c_ted. These affect the abSOIUteAs in the previous section, we call the spins denoted by the
fidelity (the overall probability of successful recoviryut first and second registefsandB. ThereducedHamiltonian

not the conditional fidelity(the probability of successful re- f : I . 1) [27 2
covery if the state is acceptedSecond, the error,® o, ac;g(;) LIJ:rigsygtem is well approximated byt £1) 27,28 (see

cannot be detected. This affects both fidelities but only in
second order. To understand why these limitations are intrin- W, wy, .

sic, let{E,} be the set of nontrivial errors to be detected. H==75 08l = 5180+ 50,80, Hep, - (32)
SinceE,C has to be orthogonal 16 for all k, and since’ has

alunique 'orthogonal complement of dimensiqn two in a WO-rpe first two terms on the right-hand side of E§2) are

bit code, it follows that alE,C are equal, and it is impossible Zeeman splitting terms describing the free precession of

to distinguish(and correctthe different errors. By the same . A . .
spins A and B about the —z direction with frequencies

token, for any distinct errorg,, and E,, E,.E,C=C be- . \ . .

cause they are both orthogonalEgQ.C, which has a unique w?/ZW andwb/27-r.. The third term de§cr|bes a spin-spin cou-

two-dimensional orthogonal complement. Therefore, a twoP!ing of J Hz, which s electron mediated. Itis known as the
! e%f:oupllng.Hem, represents coupling to the reservoir, such as

bit code that detects single phase errors can never det L " i oth lei. and hiah dor t i th
double errors. Finally, since a detection code cannot corredftéractions with other nuciei, and higher-order terms in the

errors, it can only improve the conditional fidelity of the Spin-spin coupling. . :
acceptedstates but not the absolute fidelity. Here, we only. Umversa! set of quant'um logic gates set.of logic gates
remark that the conditional fidelity is a better measure in out® _unlversal if any operation can be approximated by some
experiments due to the bulk system used to implement thgwtable sequence Of_ gates chosen from the set. Dgp_endmg
two-bit code. A discussion of fidelity measures in our experi-On Whether computation is fault-tolerant or not, the minimun

ments and quantum error correction in bulk systems will berequirements for univ.ersality are different. Ir] the latter case,
postponed until Secs. Il and VI. The system in which thedY coupled two-qubit operation together with the set of all

two-bit code is implemented will be described next. single qubit transformatio_ns formusniversal_ s_ebf quantum
P gates[29-32. Both requirements are satisfied in NMR as

follows.
C. Bulk NMR quantum computation Single qubit rotations Spin-flip transitions between the
Nuclear spin systems are good candidates for quanturfyvo energy eigenstates can be induced by pulsed radio fre-
computers for many reasons. Nuclear spins can have longuency(rf) magnetic fields. These fields, oriented in the
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plane perpendicular tB,, selectively address eithér or B p(0)=2i3,j:00ijoi®oj whereay ; , zare the identity matrix
by oscillating at angular frequencies, or w,. In the clas- andoy, , respectively, then the spectrum ¥{t) has four

sical picture, an rf pulse along the axjsrotates a spin about lines at frequencies /27 +J/12, wa/2m—J12, wy/2m+J12,
7 by an angled proportional to the product of the pulse and w,/27—J/2 with corresponding integrated aregmeak

duration and amplitude of the oscillating magnetic field. Inlntegrals)

the quantum picture, the rotation operagor (27 7 rotates = —[i(Cyo—C1a) +Cog—C (35)
the Bloch vectorfEq. (6)] likewise. Throughout the paper, Phigh 107 Caa)+ o0~ Cadl

we denote rotations of/2 along thex andy axes for spins I, =—[i(Cyo+ Cia) + Copt Cpal, (36)
A and B by X,, Y,, X,, andY, with respective matrix Bow

representationsfi(71'/4)(rx®|’ e*i(*n'/4)a'y®|' e*i(*n'/4)|®(rx, and
e (MM1®9y The rotations in the reverse directions are de-
noted by an additional “bar” above the symbols of the origi-

nal rotations, such aX,. The angle of rotation is given by, = ~[1(Cort Ca1) + Copt Caal. (38)
explicitly when it differs fromr/2. This set of rotations gen- ) o
erates the Lie group of all single qubit operations(®UFor ~ Note that the expressiarny—cy3 (C10t €13) Occuring in the
example, the Hadamard transformation can be writtehi as Nigh (low) frequency line of spinA is the coefficient of
— e~ 137)ryei (727 \which can be implemented in two @x®[1)(1] (|0)(0]) in p(0). Similarly, cz—Ca3 (C20
pulses. +Cyg) is the coefficient ofoy®[1)(1]| (]0)(0[). They sig-

Coupled operationsQuantum entanglement, essential toNify transitions between the stati|1) for spin A when
quantum information processing, can be naturally created b§PinBisin|1) (|0)). Similar observations hold for the high
the time evolution of the system. In the respective rotating@nd low lines of spirB. _
frames of the spingtracing the free precession of the un- ~ Thermal Statesin bulk NMR quantum computation at
coupled sping only the J-coupling term,e™!(7¥2oz®7; js  room temperature, a pure initial state is not available due to
relevant in the time evolution. Entanglement is created belarge thermal fluctuationsifw,, % wp<kT). Instead, a con-
cause the evolution depends on the statéath Spins_ A V-enient class of initial states arises from the.thermal-equi”b'
frequently used coupled “operation” is a time delay of 1/2 fium states(thermal statés In the energy eigenbasis, the
denoted by 7, which corresponds to the evolution density matrix is diagonal with diagonal entries proportional
e (797,99, For instance, appendingwith thesingle qubit 0 the Boltzmann factors, in other wordsy, = (1/2)e ™",
rotations (77221 and el (™17, about the— 7 axes ofA vyherekT is _the.thermal energy and is the partition func-
andB, we implement the unitary operation tion normalization factor. At room temperatur(aH/k_T}

’ ~10°%, Z~dim(py,) and py,~ (1 —H/KT)/dim(pyy) to first

0 o order. For most of the time, the identity term in the above
expansion is omitted in the analysis for two reasons. First, it
does not contribute to any signal in Eq85)—(38). Physi-
cally, it represents a completely random mixture which is
isotropic and, by symmetry, has neet magnetization at any
time. Second, the identity is invariant under a wide range of
rocesses. Processes that satigfl) =1 are calledunital.
hese include all unitary transformations and phase damp-
gqg. Under unital processes, the evolution of the state is com-
pletely determined by the evolution of the deviation from

Ibyign= ~ L1 (Cor~ Ca1) + Coz~ Ca2], (37)

i w4

(33

>
Il
@
o O O -
o O —» O
o » O

-1

which is a cross-phase modulation between the two qubitilj.
Together with the set of all single qubit transformatiogs,
completes the requirement for universality. For instance, th

controlled notCN,, mentioned in the previous section can ! . . : ) .
be written as®1) y (H®1), and can be implemented by identity [6,9], in which case the identity can be neglected.

concatenating the sequences for each constituent operatiog.;re]; u?ﬁael'%aﬁﬁsggggogf Iﬁoifrﬁ?;:itaﬂgrgﬁmliﬂzg 'ga?:r_
It is also crucial that the free evolution, which leads to the. Y j Y P P

. . ing. In general, for a nonunital but trace-preserving process
creation of entanglement, can be reversed by applyefgr . o
cusing 7 pulses, such that the creation of entanglement begiotgg ;sb?(i[g\?vggs]evlggxﬂgnd the deviation can be under-
tween qubits can be stopped. This technique will be de- : 9

scribed in detail later. =l + (39)
Measurement The measured quantity in NMR experi- P Po:

ments is the time-varying voltage induced in a pick-up COIIWherep5=p—v| is the traceless deviation from the identity

in the Xy plane: andv= 1/dim(p). Then,
V(t)=—V,Tr{e "p(0)e™[(ioy+ o)) @I Ep)=vl+ 7y, (40
+le(iowt+ay)]}. (39
The signalV(t), known as the free-induction decéylD), is N | = Ya_ T Xa
recorded with a phase-sensitive detector. In E34l), the '

onset of acquisition of the FID is taken to be 0. If the
density matrix p(0) has the Pauli matrix decomposition  FIG. 4. Pulse sequence T@N. Time runs from left to right.
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ps=v(EN—1)+E(py). (41)

e
5

The observed evolution of the deviationgs— p ;. The sec-
ond term in Eq.41) comes from the evolution g5 ;5 when

S
A

+
(N[

the identity is neglected, and the first term is the correction Wa, J Wa_J Wa_J
due to nonunitality. In our experiment, amplitude damping is 2m 2 2 2 n 2
slow compared to all other time scales, therefdi@) — 1 is @) ®)

small and can be treated as a small extra distortion of the

state when making the unitality assumption. FIG. 5. (a) Spectrum ofA after a readout pulse on the thermal
Temporal labeling One convenient method to create ar- giate (b) Spectrum ofA after CN and a readout pulse.

bitrary initial deviationsfrom the thermal mixture is tempo-

ral labeling[9,34]. The idea is to add up the results of &, \ynich the populations ofo1) and|11) are interchanged.

series of experiments that begin with different preparatio — .
pulses before the intended experiment, so as to cancel out trh- ereforeCN andCNp, act in the same wagn the thermal

\ X . e ate
signals from the undesired components in the initial thermaP . . .
mixture. Mathematically, lefP,} be the set of initial pulses By inspection of Eqs(44) and(48), it can be seen thak,

and let&(p) be the intended computation process. By Iinear-and’? cn have zero pe?" integrals given by EG85)—(38). To
ity, = E(PepinPl)=E(EPepnPl). Summing over the ex- obtain more information about the states, a readout pXilse

perimental resultgon the left sid¢is equivalent to perform- can be applied to transform the two states to
ing the experiment with initial statEkPkpthPE (on the right

sidg. Temporal labeling assumes the repeatability of the ex- ;. Wa @p

periments, which is true up to small fluctuations. Pin= " Ty@1+ 2 l® 0, (49
Example As an example of the above theories, consider

applying the pulse sequence in Fig. 4 to the thermal state. 5
The pulses are short compared to other relevant time

scales. Therefore, other changes of the system during the

pulses are ignored. The unitary operation implemented by o :_ﬁg 0 +ﬁ|®0 (50)

the above sequence is given by en 2 7yTT2 2 z

CN=e (T 0@l 1 (M) 087z (m/4) 0y (42 Now, in py, is a termo,® | with coefficientc o= — w,/2 that
] contributes to two spectral lines at,/27+ J/2 with equal
1-i 0 0 0 and positive, real peak integrals. The readout pulse trans-
11 0 0 0 —1—i forms the unobservable coefficietdy in py, to the observ-
:E 0 0 1+4i L (43)  able —cy in pyy,, yielding information onthe state before
_ the readout pulseSimilarly, p(,, has ao,® o, term with
0 1-1 0 0 coefficientc,3= — w,/2 that gives rise to two spectral lines

with real and opposite peak integrdlsg. 5. All outputs in

similar to CN,, described in Sec. Il C. , our experiments are peak integrals of this type carrying in-
The deviation density matrix of the thermal state is pro-t5rmation on the decoded states.

portional to —H. Neglecting theJ-coupling term, which is
much smaller than the Zeeman terms,

[Exptl | [Ya®)] PD [Xa]
W, wp contrgl +< _
P~ 0@+ S l®0, (44)  experiment [&]|[va®) PD X
_ 14
_zdlaQwEﬁ—wb,wa—wb,—wa—i-wb,—wa—wb),( ) . Expt3 [, 0|[ U || PD || Uite | X,
45)  coding +< -
experiment Expit | || [Ya®)]|[Une ]| PD_|[Uuee||[Xa]
where “diag” indicates a diagonal matrix with the given perinend K Etd | L‘)e‘:"d‘“g Read out
elements. For simplicity, we omit the proportionality con- o ‘po ' oo ‘ps
1 1

stant in Eq.(44), and rename the right-hand side@g. The
sequence transforms,, to -
FIG. 6. Schematic diagram for the two-bit code experim€n.

NS Nt (46) is used to prepare the initial staté,(0) is a variable angle rotation
applied to prepare an arbitrary input state, which is then subject to
phase dampingPD). In the coding experiment, encoding and de-
coding operationsy.,. and U, are performed before and after
phase damping, whereas in the control experiment, these operations
are omitted.X, is used as a readout pulse énto determine the
|®o (49) output stateps in spin A. p; corresponds tdy;) or p; in Fig. 2.

byl . . .
Details are described in the text.

14
=sdiag wat+ 0y, — W~ 0p, — W+ O, ®;— W)

(47)
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Ill. TWO-BIT CODE IN NMR — [—

Umc = Yb Xa Ya T Ya
We now describe how the two-bit code experiment can be >
implemented in an ensemble of two-spin systems. Modifica-
tions of the standard theories in Sec. Il B are needed. These _ v <7
include methods for state preparation, designing encoding U | = Ya T Ya Xa Yb >

and decoding pulse sequences, methods to store the qubit
with controllable phase damping, and finally methods to read FIG. 7. Pulse sequences to implement the encbigg and the
out the decoded qubit. Fidelity measures for deviation dendec0deMgec. Time runs from left to rightX(Y)a,) and 7 are as
sity matrices are also defined. defined in Sec. Il C.

Spins A and B are designated to be the input and the
ancilla qubits, respectively. The output states of shiare (Port P11 ®[1)(1[+2p1o 1©|0)0
reconstructed from the peak integrals at frequencies _
wa/2+J/2. Figure 6 schematically summarizes the major *2(poo=P1o) 10000, ©3

steps in the experiments, with details given in the text. where the |dent|ty term is not omitted, unlike Hﬁz) Tem-
Some notation is defined as follows. Initial states and in-pora| |a_be|ing serves to randomize Swirin the first term in
put states refer tg, and p; in Fig. 6. The phrase “ideal Eq. (53) whenB is |1). We have shown previously that the
case” refers to the scenario of having perfect logical operajdentity input state ofA is preserved throughout both the
tions throughout the experiments and pure phase dampingyding and the control experiments in the ideal case. Conse-
during storage. quently, only the last term in Eq53) contributes to any
Initial-state preparation It is necessary to initialize Spin detectable Signajs in all the experimentsl and we can con-
B to |0) before the experiment. This can be done with tem-sjder the last term as the initial state. Having justified both
poral labeling using two experiments: the first experimentpictures using the first term in E¢52) and the last term in
starts with no additional pulses; the second experiment startsq. (53) as initial state, both will be used throughout the rest
with CN (Fig. 4). Therefore, the equivalent initial state of the paper.
iS pih+ pen (all symbols are as defined in the example in  Encoding and decodingThe original encoding and de-

Sec. 11 O: coding operations are composed of the Hadamard transfor-
mation andCNy,, as defined in Sec. Il C. The actual se-
watwp, 0 0 0 quences can be simplified and are shown in Fig. 7.
0 — oy 0 0 The operatotJ ., can be found by multiplying the com-
1 onent operators in Fig. 7, givin
0 0 -wgtw, O Gy P P 9. 7, giving
0 0 0 — oy 1 -1 0 O
110 O i i

= w,40,8|0){0|+ wpl ® 7. (52 Uenczﬁ 0 0 1 -1/ (54)

The first term in Eq.(52) is the desired initial state. The i i 0 O

second term cannot affect the observable of interest, the . _ .
spectrum atv /277, because of the following. The identity in The. encoded states are slightly different from those in Sec.
A is invariant under the preparation pulgg(6). The input

state is thus the identity, which has no coherence to start 1

with. Therefore, the output state after phz_ise (;Iampln_g in poth 10.)=——=(|00)+i|11)), (55)

the control and the coding experiment is still the identity. \/E

This is nontrivial in the coding experiment. However, in-

spection of Egs(24)—(27) shows that spirA is changed at 1

most by a phase in the coding experiment. While Eg4)— |1,)=—=(i|02) +|10)), (56)

(27) apply only to the case whe starts in|0), the result V2

can be generalized to any arbitrary diagonal density matrix i
B (proof omitted. It follows from Egs.(35)—(38) that the
second term is not observable in the output spectrur. of

'but the scheme is nonetheless equivalent to the original one.
The decoding operatiod 4. iS given by

In contrast, the input state in spikican be a mixed state 1 0 0 —i
as given by the first term in E@52), since the phase damp- )
ing code is still applicable. Different input states can be pre- U — 1]1-1 0 0 i _ut (57
pared by rotations about thg-axis of different angless dec 210 —-i 1 0 enc
e[0,7] to span a semicircle in the Bloch sphere in e 0O —-i -1 0
plane. Due to axisymmetry of phase dampiikg. (4)], these
states suffice to represent all states to test the code. The possible decoded outputs are the same as in Sec. 11 B

We conclude with an alternative interpretation of theexcept for an overall sign in the single error cases.
initial-state preparation. Let the fractional populations of Storage The time delay between encoding and decoding
|00y, |01), |10y, and|11) be pyg, Po1, P1g, @andpy, in the  corresponds to storage time of the quantum state. During this
thermal state. Then, the initial state after temporal labeling iglelay time, phase damping, amplitude damping, amdu-
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pling evolution occur simultaneously. How to make phase a b
damping the dominant process during storage is explained a s L 0>
follows. !

First of all, the time constants of amplitude dampihgs 0.75L - e e TN
are much longer than those of phase dampgipg. Storage X
timesty are chosen to satisfyy<T,<T;. This ensures that 51O\
the effects of amplitude damping are small. 2 025

The remaining two processes, phase damping anc§

J-coupling, can be considered as independent and commuta o ittt R
ing processes in between any two pulses since all the phasé_o,z5
damping operators commute with tdecoupling evolution &
exp(—io,®o,mIty2). We chooselty to be even integers to

z-axis of Bloch sphere

-05F [y

approximate the identity evolution. Akis known with lim- 075
ited accuracy, we add refocusing pulses[35] to spin B _ 2 ,
~ . . . ~1 ’ : : 4 oo
(about they axis) in the middle and at the end of the phase > e
damping period to ensure trivial evolution undecoupling. 0 025 05 075 1 0 025 05 075 1
x—axis of Bloch sphere x-axis of Bloch sphere

These pulses flip the axis for B during the second half of
the storage time so that evolution in the first half is always FIG. 8. Predicted output statéa) with or (b) without coding.
reversed by that in the second half. In this way, a control-The arrows indicate the direction of time and the ellipses represent
lable amount of phase damping is achieved to good approxisnapshots of the original surface of the Bloch sphere.
mation.

Control ExperimentFor each storage timtg, input state  The initial state used in the derivation of E§9) is the first
and temporal labeling experiment, a control experiment igerm in Eq.(52), and the encoding and decoding operations
performed with the coding and decoding operations omittedare as given by Eqs54) and(57).
Since phase damping ardcoupling can be considered as  In the ideal case, the output state can be read out in a
independent processes, addcoupling is arranged to act Single spectrum. Recall that the coefficients efr,® (]
trivially, the resulting states illustrate phase damping of spint o) and—o,®(l £ ;) are the real and imaginary parts of

A without coding. the low- and the high-frequency lines &f Therefore, the
Output and readoutFor an input state prepared with coefficients of—o,® (1= a,) and —o,® (1 £0,) in pgde®
Y,(6), the state after encoding, dephasing and decodigg ( andpS®"'™°' can be read out as the real and imaginary parts of
in Fig. 6) is derived in Appendix A and is given by EGA7)  the low- and the high-frequency lines Af if X, is applied
(from here onwardsp, is omitted before acquisition. This pulse transforms theomponent of

Ato they component leaving the component unchanged, as

coded._ described in Sec. Il C. Note that only states with spin

ps —[cosO(1—pa—Py+2papp) oy being|0) (|1)) contribute to the low¢high)-frequency line.
+SiNO(1—pa—pp) @ (1 +0,)/2 Therefore, in the coding experiments, the_ acceprteida_cted
states ofA can be read out separately in the Idhigh)-

+[cosO(pa+Pp—2PaPy) 75 frequency line. There are no rejected states in the control

experiments.
The rest of the paper makes use of the following notation.
“Output states” or “accepted states” refer to the reduced

In the control experiment, the corresponding output state id€nsity matrices C%ﬁ\e(?fforetrlgdgeadout pulse, andco;iisjlde-
given by[Eq. (A2)] noted by pg°?*%=g(0[pe?*0)s and  p5
=5(0[p<°"°0) . Rejected states refer tg(1|p®?q1)g

from the coding experiments.

+sinO(—py+pp) oy @ (1 — ) /2. (58)

pMO'=[cosbo,+ (1-2p,)sinfoy]@ (1 +0,)/2. The accepted and rejected states for a given input as cal-
(59 culated from Eqs(58) and(59) are summarized in Table .
The output statep°?® and pS°""®', as predicted by
TABLE I. I_nput and output states of sphin the coding andthe  Taple |, are plotted in Fig. 8 in thez plane of the Bloch
control experiments. sphere ofA. The north and south poles represent the Bloch
vectors+z (l0) and|1)). The time trajectories of various
z component X component S A~ .
. initial states are indicated by the arrows. The Bloch sphere is
Input state cog sing

distorted to an ellipsoid after each storage time. We concen-
Coding expt.: trate on the cross section in one half of tteeplane, and call
Accepted state (£ pPa—Pp+2PaPp)C0SO  (1—pa—Pp)singd the curve an “ellipse” for convenience. The storage times
Rejected state o+ Pp— 2PaPp) COSH (—patpy)sing plotted have equal spacing and correspongte 0, 0.071,

Control expt.: 0.133, 0.185, 0.230, and 0.269. For each ellipggs chosen
Accepted state caB (1-2p,)siné to be the same gs,. The main experimental results will be
Rejected state 0 0 comprised of information of this type.

Fidelity. One can quantify how well the input states are
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preserved using various fidelity measures. In classical comifhe ellipticity € is defined to be the ratio of the major axis to
munication, the fidelity can be defined as the probability ofthe minor axis. Without coding, the major axis remains un-
successful recovery of the input bit string in the worse casechanged under phase damping, and the minor axis shrinks by
In quantum information processing, when the input [suee  a factor ofe !, therefore,e=e'. Using Eq.(64),

state, the above definition generalizes tortiaimal overlap

fidelity, .

=3

1
1+

ik (68)

F= minpintr(Poutpin)- (60)

With coding, F¢ is given by the same expression on the
We emphasize that E¢60) applies topureinput states only. right-hand side of Eq(68). In the ideal case, the overlap
For simplicity, fidelities for mixed input states will not be fidelity and the ellipticity have a one-to-one correspondence.
given here. The reason why EO) is sufficient for our In the presence of imperfections, the overlap fidelity and the
purpose will become clear later. ellipticity, one being the minimum of the input-output over-
When p;, and p,,; are qubit states of unit trace with re- lap and the other being an average parameter of distortion,
spective Bloch vectors,, andr,,, Eq.(60) can be rewritten ~are more effective in reflecting different types of distortion.
as We now generalize to new definitions of fidelity for de-
viation density matrices for the two-bit code. In NMR, quan-
tum information is encoded in the small deviation of the state
F=ming (14T Fouy)- (61)  from a completely random mixture. The problem with the
n usual definitions of fidelity is that they do not change signifi-
R cantly even when the small deviation changes completely.
Recall from Eq.(5) that, for phase damping, when, This is true whether the fidelities are defined for pure or
=(rx,ry.r), Fout=(e_“fx ,e‘“ry ,r,). Therefore, mixed input states. To overcome this problem, we introduce
the strategy of identifying the initial excess population in
|00) as the pure initial state so that usual definitions of fidel-

fin.Fout: e‘“(r§+r§)+r§ (62) ity fo_r_ pure input_ states are applicable. T_his improves the
sensitivity of the fidelity measures and provides a closer con-
= _2p(r§+r§)+1, (63)  hection to the pure state picture.

The initial state in Eq(53) can be rewritten as

where we have used the fdct,|2=1 for pure states ang .
=(1—e *)/2. The minimum in Eq(61) is attained for in- p=apP'"+(1—a)pdte, (69)
put states on the equatorial plane witht-r;= 1. Therefore,

wherea=2(pgo— P1g) = w /2K T, and

F=1-p=3(1+e™ ™). (64)
pP!"®=00)(0q, (70)
With coding, the accepted state[see Eqs(24)—(27)]

) 1
pqulet% = a_[(p01+ p11)|®|1><l| +2p 1 ® |0><0|]
pSPUe (1—po)(1—Py)pint PaPb0sPin0,.  (65) (7D

If one considers the conditional fidelity in the accepted statelt has already been shown thaf''®! is irrelevant to the
pout in Eq. (60) should be taken as the postmeasuremenevolution and the measurement @f“'® when all processes
density matrix, are unital. Therefor@9''®!is neglected and the small signal
resulting from the slow nonunital processes will be treated as
extra distortion to the observable component. The input state
pseded pseded prepared byY,(6) can be written as

(p29%  (1-P(1-pypapy OO

Pout™

o pure _ quiet
pin=app +(l—-a)p . (72
~(1~PaPb)Pin T PaPb02Pin 0. (67) "
L ) _ For the state changg;,—&(pin), we consider the overlap

Note that the above expression is identical to the expressiofetweenpP'™ and £(pP""®) in place of the overlap between
for S|ngIeT?1ub|tfphase ((jjz_amplnr? but W'iz error g_rthabllth pin and E(piy). This defines a new overlap fidelity,
=papy- Therefore, coding changes the conditional error_ . = purec: pureyy_ i 1447 = o
probability to second-order, and the conditional fidelity is ~ " e LPinE(Pin) J= i 2 (1F Fin-Tou)  similar
improved toFe=1—papy. to the pure state case. . |

The amount of distortion can also be summarized by the s can be calculated from the experimental results in the

ellipticities of the “ellipses” that result from phase damping. following manner. The measured Bloch vectorAfr,,, is
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0 damping are shown in Table Il. The fat{<T, ensures that
/ the effect of amplitude damping is small compared to phase
H _13C damping. The experimental conditions are chosen such that
proton and carbon have almost eqdals. This eliminates
O'Na"' potential bias caused by having a long-lived ancilla when

evaluating the effectiveness of coding. This also realizes a
. FIG. 9. *C-labeled formate. The nuclear spins of the neighbor-common assumption in coding theory that identical quantum
ing proton and carbon represent qubAtand B. systems are available for coding. Subsidiary experiments
with qubits having very different,’s are described in Ap-
. . pendix B.
proportional to that defined by(0|&(pfy")[0)s. Due to Phase damping arises from constant or low-frequency
Iimitationf in the measurement process, this proportionality, 5, niformities of the “static” magnetic field that random-
constante is not knowna priori. However, whend=0 in  ize the phase evolution of the spins in the ensemble. Several
the control experiment&(pPU®)=pP'"® and r,=ar;,. Processes contribute to this inhomogeneity on microscopic or
Therefore,azlfm|9:0 can be determined. In other words, _macros_copic scales. Which process do_minates phase damp-

ing varies from system to systei@8]. For instance, intermo-

fecular magnetic dipole-dipole interaction dominates phase
damping in a solution of small molecules, whereas the
modulation of direct electron-nuclear dipole-dipole interac-
) ) . A %ions becomes more important if paramagnetic impurities are
accepted output state is known. This requiresfi{*) present in the solution. For molecules with quadrupolar nu-
= (1= Pa—Py+2papy) to be determined for each storage ¢jei (spin >1/2), modulation of the quadrupolar coupling
time. The correct normalization is again given by the outputyyminates phase damping. Other mechanisms such as chemi-

IF il o—o is used to normalize all other measured output state
before using the expression faf;.

The expression faf s can also be used for the conditional
fidelity in the coding experiment if the post-measuremen

at /=0, which equa|§m%tf(P§°dec}afin_- . cal shift anisotropy can also dominate phase damping in
In summary, each ellipse obtained in the coding and thether circumstances. These microscopic field inhomogene-
control experiment is normalized by the amplitudefatO: ities have no net effects on the static field when averaged

over time, but they result in irreversible phase randomization
with parameters intrinsic to the sample. Another origin of
inhomogeneity comes from the macroscopic applied static
: (73 magnetic field. In contrast to the intrinsic processes, phase
randomization due to this inhomogeneity can be reversed by
applying refocusing pulses as long as diffusion of molecules
It is interesting to note that in contrast to the fidelity mea-is insignificant.
sure, the ellipticity measure naturally performs an equivalent Phase damping caused by the intrinsic irreversible pro-
normalization, and thus can be used for deviations withoutesses alone has a time constant denoted Hywhile the

Fin*Tm

1+ —
|rm(0:0)|

o1
Fs= min;, 5

modifications. combined process has a shorter time constant denoted by
We now turn to the experimental results, beginning with ars . T, is measured by the Carr-Purcell-Meiboom-G85]
description of our apparatus. experiment using multiple refocusing puls@$. can be es-

timated from the linewidth of the NMR spectral lines: during

acquisition, the signal decays exponentially due to phase
IV. APPARATUS AND EXPERIMENTAL PARAMETERS damping, resulting in Lorentzian spectral lines with line-

We performed our experiments on carbon-13 labeled soW'dth UnTs . . . .
dium formate (CHOONa") (Fig. 9 at 15°C. The nuclear In our ex_pe_rlmentjl'2 's for proton and carbon were esti-
spins of proton and carbon were used as input and anci”g_mted to within 0.05 s to be-0.35 and 0.50 s. The storage
respectively. Note that the system was heteronuclear. Thémesty were approximately 0, 62, 123, 185, 246, and 308
sodium formate sample was a 0.6-ml 1.26 molar solutiod™s ("/J for n=0,12,24,36,48, and 60The maximum stor-
(8:1 molar ratio with anhydrous calcium chlorjde deuter- ~age time was 12@, long compared to the clock cycle and
ated watef36]. The sample was degassed and flame seale@@s comparable td; . The decay constarX, defined in
in a thin-walled, 5-mm NMR sample tube. Sec. Il A, was given byx=1/T5 . The error probabilities

The time constants of phase damping and amplitudafter a storage time dfy were p;=[1—exp(—ty4/T5)]/2 for

spinsi=A,B. To reconstruct the ellipse for each storage
time, 11 experiments were run with input states spanning a

TABLE II. Ty's and T;'s for CaCl-doped formate at 15°C,  semicircle in thexz plane. Each input state was prepared by

me_asured L_Jsing standard inversion recovery and Carr-Purcelly Y.(6) pulse with=nm/10 forn=0,1, . . .,10.
Meiboom-Gill pulse sequences, respectively. All experiments were performed on an Oxford Instru-
- - ments superconducting magnet of 11.7 Tesla, giving preces-
! 2 sion frequencies ofw,/27~500 MHz for proton and
14 9s 0.65s wpl2m~125 MHz for carbon. A Varian UNITY Inova
13 135 s 0.75 s spectrometer with a triple-resonance probe was used to send

the pulsed rf fields to the sample and to measure the FID’s.
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FIG. 10. (a) Experimental datacircles showing the output
states from the coding experiment. Each elligselid line) corre-
sponds to one storage time and is obtained by a least-squares fit
[Eqg. (79)] to the data. The storage times arx61.5 ms forn
=0,1,...,5, and saller ellipses correspond to increasing (b)

Experimental datdcrossey and fitted ellipsegsolid lineg for the 26

control experiment. A replica ofa) is plotted in dotted lines for
comparison. In both figures, uncertainties in the data are much

smaller than the circles and crosses. 22

2}

The rf pulses selectively rotated a particular spin by oscillat-
ing on resonance with it. The/2 pulse durations were cali-
brated, and they were typically 8 to 14s. To perform logi-

cal operations in the respective rotating frames of the spins

Ellipticity &

reference oscillators were used to keep track of the free pre 4

cession of both spins, leaving only tlecoupling term of
195.0 Hz in the time evolution. Each FID was recorded for

~6.8 s(until the signal had faded completgihe thermal i =

state was obtained after a relaxation time of 80ssT(’s)
before each pulse sequence.

Using the above apparatus and procedures, we performe
the experiments as outlined in Sec. lll. The experimental
results are described in the next section. Tomography result

0.8

following the evolution of the state are presented in Appen- oasf

dix C.
025}
V. RESULTS AND DISCUSSION o
A. Decoded Bloch spheres %
0.15
The output statespS®®®? and p<°"™®' obtained as &

described in Secs. lll and IV, and the analysis that confirmsg .|

the correction effects of coding, are presented in this sec-
tion.

Figure 10 shows the accepted states inxh@lane of the
coded control

0.05|

Bloch sphere ofA. pg and pg are plotted in Figs. ok

tive throughout the range of storage times tested.
We quantify the correction effects due to coding using the
ellipticities. When deviations from the ideal case such as
offsets of the angular positions of the points along the el-
lipses and attenuation of signal strength with increasing
exist, the minimum overlap fidelities and the ellipticities are
no longer related by Eq68). Since the ellipticity is an av-
erage measure of distortion which is less susceptible to scat-
tering of individual data points, we first study the elliptici-
ties. Moreover, since the deviations from the ideal case are
small, we can stillinfer the fidelities from the ellipticities
using Eq.(68). A discussion of the discrepancies and the
exact overlap fidelities will be given later.
Ellipticities. In the ideal case, the ellipticity for each el-
lipse can be obtained experimentally as

_ [1(6=0)
““Ni(o=n/2)

1935

(74)

241

@
T

>
T

x

x  wjocoding
©  /wcoding l[l
ideal case

simulation

)
100 150
Storage time {ms]

b

10(a) and 1@b). The ellipse for each storage time is obtained

O /fwcoding

x  w/o coding

ideal case
simulation

by a least-squares fit described later.
The most important feature in Fig. 10 is the reduction of

! L L !
100 150 200 250 300
Storage time [ms]

the ellipticities of the ellipses due to coding, which repre-  FIG. 11. (a) Ellipticity and (b) inferred fidelity as a function of
sents partial removal of the distortion caused by phasehe storage time in the coding and the control experiments. Error
damping—the signature of error correction. Coding is effec-bars represent 95% confidence level.
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wherel denotes the intensitamplitude squaneof the peak 018 . . ; — . .

integral.| is given by thex andz components of the output
states as o o Experiment

-—- Simulation ’ /

A ideal B // i
I=r2+r2, (75) ) J%

In the ideal casel,(6) can be found from Table I:

=
T
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>
T

o
N

o
T

3

I controi( @) =1—4( pa—pg)sinze, (76)

=4

o

®
T

Icodec( ‘9) = (1_ Pa— pb+ Zpapb)2
—4paPp(1—Pa—Pp+ PaPp)SirFl, (77) 004

and both are of the functional form o.02f

Error probability p_with coding

ligeal( @) =A+Bsirte. (79) 0

L
0.25 0.3

0.1 0.15 0.2
Error probability p, without coding

Experimentally, the output Bloch vectors do not form perfect
ellipses. We modify Eq(78) to include signal strength at-

tenuation with increasing and constant offsets in the angu- FIG. 12. Error probabilities in the coding experiments vs the
lar positions: corresponding values in the control experiments. Error bars repre-

sent 95% confidence level. The 45° line is plotted as a dotted line.
lexp( ) =[A+Bsir?(+D)][1-C(6+D)], (79

and perform nonlinear least-squares fits of the experimentaﬁcatte,r,e dto hz;ve a _better estimate of Fhls cos(}e?jf_the oty
data to determin@,B,C, andD. The fitted ellipses plotted in gates.” The S';““'a“on data can bg fitted B _1'06.
Fig. 10 follow from Eq.(79) and the fitted parameters. The +0'32_d+2:47td' Compare_d .t(.) the ideal case, the co_dmg
ellipticities e are found using Eq(74) by interpolating the ~©Perations increase the ellipticity by0.06 atty=0, and this
intensities a®=0 andd= /2. The ellipticities are plotted in €Xtra distortion remains almost constant fortgll =
Fig. 11(a). The uncertainties of the fitted parameters origi- The errorlprobablhtles as mferred .from the ellipticities
nate from the uncertainties in the data, which are estimatefe= 1~ 7<=2(1—1/¢) are plotted in Fig. 1(b) as a func-

to be ~1% for the amplitude and 1.5° for the phase in thellon Of storage time. _ .
measured peak integrals. These uncertainties are propagatedETOr correction is also manifested by expressingn the
numerically to the ellipticities as plotted in Fig. (8L Ideal ~ coding experiment as a function of the original in the
case predictions and simulation results are also plotted ifPNtrol experiment, as plotted in Fig. 12. The quadratic fit to

; ; . ; o : U mcoded 2
Fig. 11(a). The simulation takes into account the major im- the experimental results givegg,®*=co+c,p+czp” where
perfection in the pulses and will be described later. p stands forp. in the control experimentcy=0.047

Error correction The effectiveness of coding to correct +0.008, ¢;=—0.05+0.12, andc,=1.38+0.40. Therefore,
errors is evident when comparing the ellipticities from thethe expected improvemeri— p,py, is confirmed. Experi-
coding and the control experimenffig. 11a]. Without ~ mentally, the error probabilities are larger than in the ideal

, A : Ik * case by at most 4.7% and these extra errors decreas@.with
;gg'dngtbtleeilgicg .g(/(\)/\i/\tﬁ i)é%?:gnttlﬁgygﬁwt; Egorsrc—nzv?/e d The quaderatic fit to the simulation resultshich is a good

coded
down, with almost zero growth for smdj|. The suppression

approximation of the experimental datajives pg,
of linear growth of the ellipticity can be further quantified by =0.032-0.03%+1.783" and differs from the ideal case
weighted quadratic fits=cy+cqty+ cztfj to the ellipticities.

by a constant amount of0.033+0.003 for all p, which
. o N represents the cost of the noisy gates. In conclusion, coding
I:oor Zt{]ean?j?:m—rosl SEXC? gri/ryheer;:asgg;o%.%%it%g%:b(;:i;; 1efp1eri with noisy gates is still effective in our experiments, even
= V. y 3— 0.0 U. - H : :
ments, Cy=1.10+0.02, ¢,=—0.24+0.29, and C,=3.8 though the noisy gates add a constant amount of distortion.
+0.9 (tyin seconds Therefore, the linear term “vanishes”

due to coding. The small negative coefficient for the linear _ _
term originates from the scattering of the data point at zero B. Discrepancies
storage time. While the data exhibit a clear correction effect, there are
To quantify the “cost of the noisy gates” caused by the notable deviations from the ideal case. First, the ellipses with
imperfect pulses, we compare the ellipticities from the cod-coding are smaller than their counterparts without coding.
ing experiments and from the ideal case, the quadratic fits ofhis is most obvious when the storage time is zero, in which
which are, reSpeCtivelyf‘éﬁgfd=1.10— 0.244+3.80F and  case the coding and the control experiments should produce
eicd"edae,d= 1.00+ 0.13d+2.501§. The imperfections cause the equal outputs. Second, the signal strength is attenuated with
ellipticity to increase by 0.1 &= 0 and this extra distortion increasingé relative to ideal ellipses. Third, although the
decreasewwith ty. We take advantage of the fact that the data points are well fitted by ellipses, their angular positions
simulation results are close to the data points but are not aare not exactly as expected 6ffsets. Finally, the spacings
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between the ellipses deviate from expectation. The causes ¢ _
these discrepancies and their implications on error correctior 1
are discussed next.

Gate imperfections: rf field inhomogeneityhe major
cause of experimental errors is rf field inhomogeneity, which  os}
causes gate imperfections. This was determined by a serie®
of experimentgdetails of which are not given hereand a
thorough numerical simulation as described below. The
physical origin of the problem is as follows. The coil wind- |
ings produce inhomogeneous rf fields that randomize the‘:‘
angles of rotation among molecules. For a single rotation, the -os}
signal averaged over the ensemble decreases exponential
with the pulse duration to good approximation. A measure of
the rf field inhomogeneity is the signal strength afterr/@ 1k
pulse. They are measured to b€0.96 and 0.92 for proton . e
and carbon respectively. In other words, a singl@ pulse 0 et of Bloch sphove  -asio of Bloch sphere
has an error of~4—-8%.

Radio-frequency field inhomogeneity affects our experi- FIG. 13. Simulated output states, plotted similarly as in Fig. 10.
ments in many ways. First, it attenuates the signal in both thé&he simulation results are fitted by ellipses similar to those of the
coding and the control experiments, but the effects are mucgxperimental data.
more severe in the coding experiments that have eight extra
pulses. For instance, when the storage time is zero, the two
experiments should have identical outputs, but the ellipse in
the coding experiment is actually 5—15% smaller. Secondplitudes até=m are ~4% weakerthan the corresponding
for each ellipse, attenuation increases witas the prepara- values atd=0 in the simulations. Experimentally, this at-
tion pulseY,(6#) becomes longer. tenuation increases fron+8 to 15% (as storage time in-

The effects of the rf field inhomogeneity are complicated,creases from 0 to 308 msn the control experiments, and
because the errors from different rf pulses are correlated, angmains~89% in the coding experiments. Therefore, rf field
the correlation depends on the temporal separation betweénhomogeneity contributes to the attenuation but only par-
the pulses and the diffusion rate of the molecules. The cortially.
relation time of the rf field inhomogeneity is comparable to  We conclude that rf field inhomogeneity as we have mod-
the experimental time scales. For this reason, predictions afled explains the diminished signal strength in the coding
the effects of rf field inhomogeneity are analytically intrac- experiments. The simulation quantifies the “cost of the noisy
table. gates.” rf field inhomogeneity also explains part of the at-

Numerical simulations were performed to model thetenuation with increasing. We can also conclude that other
dominant effects of rf field inhomogeneity. We followed the discrepancies not predicted by the simulationsrartcaused
evolution of the states assuming random rf field strengthdy rf field inhomogeneity and these discrepancies are de-
drawn from Lorentzian distribution@lso known as Cauchy scribed next.
distributiong with means and standard deviations matching Other discrepanciesThe simulation results show that rf
pulse calibration and attenuation for thé2 pulses. All pa- field inhomogeneity doesot explain why the attenuation at
rameters in the simulation, including;'s, were determined large ¢ increases with storage time without coding, and it
experimentally without introducing any free parameters. Asdoes not explain the offsets along the ellipses and the
the exact time correlation function for the errors was un-unexpected spacings between them.
known, except for numerical evidence of a long correlation The increased attenuation with storage time at l#rgan
time, weassumegberfect correlation in the errors. The simu- be caused by amplitude damping. A precise descrig®ath
lated ensemble output signal was obtained by Gaussian intef amplitude damping during storage is out of the scope of
gration with numerical errors bounded to below 1.5%. Thethis paper and we consider only the dominant effect pre-
results were shown in Fig. 13. dicted by a simple picturePhenomenologicallythe loss of

Besides phase damping and error correction effects in thenergy to the lattice is described in the NMR literature by
data, the simulations also reproduce extra signal attenuation
in the coding experiments. The ellipticities obtained from
simulations(see Fig. 11 approximate the experimental val- z(t)=2z()+[2(0)—z(%)]e ¥T1, (80)
ues very well. Such agreement to experimental results is sur-
prising in the absence of free parameters in the model. Simu-
lation results allow the discrepancy between the observedherez(=)=1 is the thermal equilibrium magnetization. As
and the ideal ellipticities to be explained in terms of the rfz(0)=*1 at6=0 andw, we expect no changes @+ 0, but
field innomogeneity and allow the “cost of coding” to be expect |zl at = to decrease by 0-7% foty~0
better estimated to be the constant 6% increase in ellipticity-308 ms andT;~9 s for proton. Note that refocusing
or the ~3% increase in error probabilities. does not affect spid in the control experiment38] but it

The simulation results also predict increasing attenuatioswaps|0, ) and|1,) halfway during storage, symmetrizing
with 6. From the fitted parametet [see Eq(79)], the am- the amplitude damping effects in the coding experiments.
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Therefore, we expect increased attenuation with storage tim ' ‘ ' ' ' ' ‘
in the control experiments only. This matches our observa *[ . £
tions thatl (§= =) decreases from 8% to 16% in the control S 5 wooang .
experiments, and remains 8% in the coding experiments oz} - Smuetn Pt ;
Moreover, earlier data taken without refocusifigpt pre- ¥
sented have the same trend of increased attenuation wittz | .
storage time in both the coding and the control experiments§ A
These are all in accord with the hypothesis that amplitude
damping is causing the observed effect. , -
The second unexplained discrepancy is that the OUtpL._:I'_ 4 +/,/ . +
states span more than a semiellipse in the coding experime = ., . -7
but slightly less than a semiellipse in the control experiment . /q,’
We are not aware of any quantum process that can be a cau }F - +— -
of it. It is notable that the output states and the fitted ellip- °*®[ L __~-----"~ T
ticities can be used to infer the initial values &fand they -7
are roughly proportional to the expected values for each el o = - - s S o
lipse. The proportionality constants are 5-8 % higher thar Storage time [ms]
unity in the coding experiment, and 0-1.6 % lower in the
control experiments. Moreover, similar effects are observed FIG. 14. Overlap fidelity as defined in E(Z3). Points indicate
in many other experimental runs. Therefore, this is likely toexperimental data and dashed lines indicate simulation results. Er-
be a systematic error. ror bars represent 95% confidence level.
We have no convincing explanation for the anomalous
spacings between the ellipses in the experiment. However,
from the fact that all the data points belonging to the same

ellipse are well fitted by it, the anomalous spacings are unputput states a=0 are least affected by amplitude damping
likely to be caused by random fluctuations on the time scalegnd rf field inhomogeneity. Therefore, the normalization can
of each ellipse experiment. The effect of the anomalous spagre done accurately. In the coding experiment, the signal at-
ings is reflected in the scattering of the ellipticities of thetenuation at9=0 due to rf field inhomogeneity can lead to
data and the large uncertainties in the quadratic fits. overestimated fidelities. We determine the uncertainties due
While it is impossible to eliminate or to fully explain to rf field inhomogeneity by the following method. For each

these imperfections, it is possible to show that the deviationgtorage time, the amplitudes of the accepted and the rejected
cannot affect the conclusion that error correction is effectivestates aty=0 are summed. The sum is compared with the

Effects of the diSCI’epanCieWe now consider the effects Corresponding amp"tude a&=0 in the control experiment

of the discrepancies on the ellipticities and the inferred fito estimate the attenuation due to rf field inhomogeneity. The
delities in the experiments. First of all, radial attenuation ofeffects on the overlap fidelities are bounded to below 2%.
the signal due to rf field inhomogeneity does not affect thethe errors in the measured peak integrals are propagated to
ellipticities nor the inferred fidelitiestaken as conditional the fidelities, which result in standard deviations no more
fidelities). Second, different expressions for the “ellipticity” than 0.7%. We apply similar procedures to the simulation
are not equivalent when the output states do not form perfegesults.  The net error  probabiliies, given by
ellipses. However, they -d|ﬁer by no more than 7 and 3% iny — 7 for the control and % F¢. for the coding experiments,

the control and the coding experimentsoffsets along the  are plotted in Fig. 14. The large difference in the rates of
ellipses are not reflected in the ellipticities, resulting in over-growth of error probabilities confirms the effectiveness of

scattering of the ellipticities due to anomalous spacings be-

tween the ellipses is averaged out with curve fits to the data.

The most crucial point is, none of these effects have a de-

pendence on the storage time that can be mistaken as error VI. CONCLUSION

correction. Therefore, the effects of error correction can still  \ye have demonstrated experimentally, in a bulk NMR

be confirmed in the presence of all these small discrepancie§ystem that by using a two-bit phase damping detection

code, the distortion of the accepted output states can be
largely removed. These experimental results also provided
gquantitative measures of the major imperfections in the sys-
The two previous subsections dealing with the ellipticitiestem. The principle source of errors, rf field inhomogeneity,
provide an analysis of the global performance of the code. Avas studied and a numerical simulation was developed to
stricter analysis is provided in this section using the overlapnodel our data. Despite the imperfections, a net amount of
fidelities given by Eq(73) in Sec. Ill. The minimal overlap error correction was observed, when comparing cases with
reflects all defects and deviations hidden in the ellipticities agnd without coding, and including gate errors in both cases.
well as other distortions such as that caused by amplitude Our analysis also addresses several theoretical questions
damping. in quantum error correction in bulk samples such as the fi-
All measurements are normalized using the amplitudes afelity measures of deviation density matrices. In the follow-
0=0 as described in Sec. Ill. In the control experiments, theng, we conclude with some observations regarding quantum

bility
N\
\

Error prol

0.15| .

C. Overlap fidelity
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FIG. 16. Ellipticities obtained in the chloroform experiments,
with (a) proton andb) carbon as the ancilla. Carbon dephases much
faster than proton. Error bars represent 95% confidence level.
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detection scheme will fail to provide reliable output for two
different reasons: accepting an erroneous state or losing the
state upon the detection of an error. Therefore, coding
schemes capable dlistinguishing and correctingrrors are
necessary to improve the probability of successful data pro-
cessing. In contrast, in a bulk sample, a large initial redun-
; dancy exists upon preparation, and the combined signal of all
. i the accepted cases forms the output. Therefore, rejection of
0 X & 0.5 1 the erroneous cases results in a reduction of the signal
axis Bloch sphere strength in the improved accepted cases without necessarily
, N ..__causing a failure. Detection codes thus provide a tradeoff
FIG. 15. Experimental data described in Sec. V. The solid “nesbetween probability of error-free computation and signal

which are linear fits to the data points, indicate the flow directions
strength.

of the points on the Bloch sphere subject to phase damping. In the . . . .

. - As suggested by this analysis, and in concert with our
no coding case, the flows are nearly planar, towardsztiaais, experimental results, it thus makes sense to use detection
whereas in the encoded case, the flows are nearly radial, towards . . .
the center. g:odes instead of correction codes in bulk quantum comput-

ing systems under certain circumstances. Fundamentally, it is
valuable to be able to interchange resources depending on
their relative costs. This is illustrated by the following simple
error correction in bulk systems, including syndrome mea€xample. Suppose a total pool of qubits is available for
surements, the equivalence between error correction ariansmission, and one just wants to correct for single phase
logical labeling[6,9], the applicability and advantages of de- flip errors of probabilityp. Using a three-bit code, one would
tection codes, and some issues in signal strength. obtain an aggregate signal strength raf3, with fidelity
Projective syndrome measurements traditionally em-1—3p?, whereas with a two-bit code, the accepted signal
ployed in the standard theory of quantum error correction arstrength would ben(1—2p)/2, with fidelity 1—p?. There-
impossible in ensemble quantum computation. Measurefore, whenp=1/6, the two-qubit code performs better in this
ments via the acquisition of the FID do not reduce individualmodel due to its higher rate.
guantum states and provide only “average syndromes.” Another example relevant to bulk computation arises
Moreover, the quantum states are destroyed after acquisitiomhen the encoding and decoding circuits fail with probabil-
However, the important point is that syndrome measuremerity proportional to the number of elementary gates used. Al-
is not necessaryn error correctior[39,13. though errors in consecutive gates can be made to cancel
In each molecule, the syndrome bits carry the error synsometimes, this basic scenario is substantiated by our experi-
drome for that particular molecule after decoding. These bitgnent, in which imperfect pulses contribute significantly to
can either be used in a controlled operation to correct théhe net error. Assume now that we havenolecules, which
error [39], or in the case of a detection code, to “logically are either two- or three-qubit systems. Let us compare the
label” the correct and erroneous states. Conversely, logicgberformance of the two- and three-bit codes, based on the
labeling to obtain effective pure states can be considered adrength of the correct output signal. Because the correction
error detection: unsuitable initial states are “detected” andcode requires at least three times as many operations as the
are labeled as “bad” to start with. Both processes involvedetection cod¢40], the figures of merit obtained for the two
ejecting the entropy of the system to the ancilla bits. Errorschemes ara(1—3py) andn(1—2p)(1—pg), respectively,
detection and logical labeling are therefore similar conceptswhere pg is the gate failure probability. In this model, the
The distinction between correction and detection codes igletection code performs better o< py/(1—pg) due to the
blurred when using bulk systems. The objective of error corsimplicity of the coding operations.
rection is to achieve reliable data transmission or information A third example is the case of current state NMR quantum
processing with a high probability of success. When infor-computation at room temperature, in which the intrinsic sig-
mation is encoded in single systems, encoding with an erronal strength decreases exponentially with the number of qu-
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Po, experiment po, ideal p4,experiment pa,ideal

FIG. 17. Experimental and ideal density matriges pi, p3, pa andps. The basis is as indicated in the diagram. For each density
matrix, the amplitudegtop) and the phase&otton) for the corresponding entries are plotted. The amplitudes are shown in arbitrary units
and the phases of entries with small amplitudes are omitted. The data are taken for a coding experinteatsatandt ~ 123 ms(24/

J).

bits [6,9,34. In this model, the initial signal strength of an If signal strength indeed decreases exponentially with
effective pure state ofm qubits is approximately of order then some interesting generalizations can be made. For arbi-
2~ ™ and thus, for an ensemble ofmolecules, the signal trary qubit errors, at-error detection code has distance
strengths of the outputs from the correction and detectiomi=t+1, while a t-error correction code has distance
codes are about/8 andn(1—2p)/4, respectively. Accord- d=2t+1 [26]. If one encodek bits inl, the extra number of

ing to this measure of performance, the detection code ougubits used)—k, satisfies the singleton bouri@3,42,43,
performs the correction code fprs1/4 (p<0.27 in our ex- |—k=2d—2. Therefore, the output signal strengths for de-
periments. tection and correction codes would be approximately propor-
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tional to[1—pf(p)1/2* and 1/2', wheref(p) is a polyno- ol cosh( 0,0 0, + 0y @ 0,) 12+ SiN B0, ® | +1 ® 0,12,

mial. The detection code is thus always better asymptotically (A3)
in this model[41].
Our work illustrates how a careful study of dynamics in ~ p$°%®%=cosf[ o,® o,+(1-2p,)(1-2py)oy® 0y]/2

bulk quantum systems can provide a valuable opportunity to
demonstrate and test theories of quantum information and
computation. The development of temporal, spatial, logical, (A4)
and related labeling techniques opens a window allowing

information about the dynamics of single quantum systems  p<°?®%=cosfo,®[1+(1—2p,)(1—2pp) o,]/2

to be extracted from bulk systems. Furthermore, by system-
atically developing an experimental toolbox of quantum cir-

+sind[(1—2p,) o1 +(1-2py) I ®0y]/2,

+sinfo,@[(1—2p,) +(1—2py) o,]/2

cuits and quantum error correction and detection codes, ex- (A5)
periments that test multiple particle quantum behavior

become increasingly accessible. With improvements in the =C0S00,®[(1—Pa—Ppt+2PaPp) (I +0,)
initial polarization in the systems and recently developed la-

beling algorithms that do not incur exponential signal loss +(Pat Pp—2PaPp) (1 —0,)]/2

[44], and with better methods to control the major source of

+si —Pa— +
error, the rf field innomogeneity, we believe that further Sin6o,@L(1=Pa=pp) (I +02)

study of bulk quantum systems will complement the study of +(—patpp)(l—0,)]/2 (A6)
single quantum systems, provide new insights into the dy-
namical behavior of open quantum systems, and further the =[cosO(1—pP,— Pp+ 2PaPb) 05

potential for guantum information processing. )
+SiNO(1—pa—Pp) oy @ (1 +0,)/2

+[cost(pat Pp—2PaPb) o,
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APPENDIX A: MIXED STATE DESCRIPTION cal shape better.
OF THE TWO-BIT CODE

Recall that the initial state after ancilla preparation is APPENDIX B: THE CASE OF VERY DIFFERENT  T,'S

given bypo=0,® (I + 0,)/2 [see Eq(52), with », omitted. While the case of equdl,’s is interesting from a theoret-

After Y,(6), the new density matrix is given by ical standpoint, different spins in a molecule typically have
quite differentT,’s. To study the two-bit code in this regime,
we performed experiments with carbon-13 labeled chloro-

p1=(cosfo,+sinfo,) (I +0,)/2. (Al)  form dissolved in acetor/&5,9]. All parameters were similar
to the sodium formate sample, except for the relaxation time
constants.
Without coding, phase damping changes the density ma- In the chloroform experiment;’s were 16 s and 18.5 s
trix to andT,’s were 7.5 s and 0.35 s for proton and carbon, respec-

tively. Separate experiments with the ancilla dephasing much

slower or faster than the input were performed by inter-

peeMl=[cosho,+ (1—2py)sinbay]@ (I + a,)/2. changing the roles of proton and carbdi.’s andty’s were
(A2) as listed in[46]. The ellipticities are shown in Fig. 16.

From Fig. 16a), it is apparent that coding almost removes

the distortion entirely when a much better ancilla is avail-
With coding, the encoding, phase damping, and decodingble. The question is, is coding advantageous over storing in
change the density matrix t®;, p4, andps: the good ancilla alone? Theoretically, coding is always ad-
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vantageous because the error probability is always reducdd two-spin NMR systems, 8 out of the 15 coefficients,,
from p; (i being the input spinto p,p,. Figure 1€b) in the Pauli decomposition are obtainable from the peak in-
shows that experimentally such improvement is marginalfegrals, Eqs(35—(38). The remaining seven parameters can
because the advantage of coding is offset by the noise intrde obtained by repeating the measurement process with ad-
duced. Therefore, when tig’s are very different, the bottle ditional readout pulses before acquisition. These pulses per-
neck is the dephasing of the bad qubit. mute the coefficients;; . A series of nine experiments with
different readout pulses is sufficient to reconstruct the com-
plete deviation density matrix.
We reconstructed the deviation density matrices in the
coding experiments. The results fod==/2 and tgy
Quantum state tomograph$] is a procedure to recon- ~123 ms are shown in Fig. 17. The ideal matrices were
struct the density matrix given a certain set of measurementsalculated using equations derived in Appendix A.
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