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Experimental realization of a two-bit phase damping quantum code
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Using nuclear-magnetic-resonance techniques, we experimentally investigated the effects of applying a
two-bit phase error detection code to preserve quantum information in nuclear spin systems. Input states were
stored with and without coding, and the resulting output states were compared with the originals and with each
other. The theoretically expected result, net reduction of distortion and conditional error probabilities to second
order, was indeed observed, despite imperfect coding operations which increased the error probabilities by
approximately 5%. A systematic study of the deviations from the ideal behavior provided quantitative mea-
sures of different sources of error, and good agreement was found with a numerical model. Theoretical
questions in quantum error correction in bulk nuclear spin systems including fidelity measures, signal strength,
and syndrome measurements are discussed.@S1050-2947~99!02309-4#

PACS number~s!: 03.67.Lx, 03.67.Hk
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I. INTRODUCTION

Recent progress in experimental implementation of qu
tum algorithms has demonstrated in principle that quan
computers could solve specific problems in fewer steps t
any classical machine@1–5#. These first generation quantu
computers were two-spin molecules in solution. They w
initialized, manipulated and measured at room tempera
using bulk nuclear-magnetic-resonance~NMR! spectroscopy
techniques@6–9#. Classical redundancy in the ensemble a
the discrete nature of the answers ensured that the co
answers were obtained despite gate imperfections and m
erate rates of decoherence. However, the accumulatio
errors would be detrimental in larger quantum computers
for longer computations in the future, and methods to pro
quantum information will be needed.

Classically, errors~bit flips! are detected and fixed b
error correcting codes. Information is encoded redundan
and the output contains information on both the enco
input and the errors that have occurred, so that the errors
be reversed. Generalization to quantum information is n
trivial since it is impossible to clone an arbitrary quantum
~qubit! and to measure quantum states without disturbing
system. Furthermore, there is a continuum of possible err
and finally, entanglement can cause errors to propagate
idly throughout the system.

Despite the apparent difficulties, quantum error correct
was shown to be possible theoretically, and can be usefu
reliable computation even when coding operations are im
fect. Shor@10# and Steane@11# realized a major breakthroug
by constructing the earliest quantum error correcting cod
Prudent use of quantum entanglement enables the info
tion on the errors to be obtained by nondemolition measu
ments without disturbing the encoded inputs; it also enab
digitization of errors. These schemes correct for storage
PRA 601050-2947/99/60~3!/1924~20!/$15.00
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rors but not for the extra errors introduced by the cod
operations. The extension to handle gate errors and
achieve reliable computation with a certain accuracy thre
old were subsequently developed by many others@12–17#.

In this paper, we report experimental progress toward
elusive goal of continued quantum computation. We imp
ment a simple phase error detection scheme@18# that en-
codes one qubit in twoand detects a single phase error
either one of the two qubits. The output state is rejected if
error is detected so that the probability to accept an erro
ous state is reduced to the smaller probability of having m
tiple errors. Our aim is to study the effectiveness of quant
error correction in a real experimental system, focusing
effects arising from imperfections of the logic gates. The
fore, the experiment is designed to eliminate potential ar
cial origins of bias in the following ways. First, we compa
output states stored with and without coding~the latter is
unprotected but less affected by gate imperfections!. Second,
by ensuring that all qubits used in the code decohere
nearly the same rate, we eliminate apparent improvem
brought by having an ancilla with a lifetime much long
than the original unencoded qubit. Third, our experiment u
lizes only naturally occurring error processes. Finally, th
main error processes and their relative importance to the
periment are thoroughly studied and simulated to substa
ate any conclusions. In these aspects, our study differs
nificantly from previous work@19# demonstrating quantum
error correction working only in principle.

Using nuclear spins as qubits, we performed two sets
experiments:~i! The ‘‘coding experiments’’ in which input
states were encoded, stored, and decoded, and~ii ! the ‘‘con-
trol experiments’’ in which encoding and decoding we
omitted. Comparing the output states obtained from the c
ing and the control experiments, both error correction
coding and extra errors caused by the imperfect coding
1924 ©1999 The American Physical Society
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PRA 60 1925EXPERIMENTAL REALIZATION OF A TWO-BIT PHASE . . .
erations were taken into account when evaluating the ac
advantage of coding. In our experiments, coding reduced
net error probabilities to second order as predicted, but at
cost of small additional errors that decreased with the or
nal error probabilities. We identified the major imperfecti
in the logic gates to be the inhomogeneity in the rad
frequency~rf! field used for single spin rotations. Simulatio
results including both phase damping and rf field inhomo
neity confirmed that the additional errors were mostly cau
by rf field inhomogeneity. The causes and effects of ot
deviations from theory were also studied.Tomography ex-
perimentsgiving the full density matrices at major stages
the experiments further confirmed the agreement betw
theoretical expectations and the actual results.

The rest of the paper is structured into five sections: S
tion II consists of a comprehensive review of the backgrou
material for the subsequent sections of the paper. This b
ground material includes the phase damping model, the t
bit coding scheme, and the theory of bulk NMR quantu
computation. These are reviewed in Secs. II A, II B, a
II C. Readers who are familiar with these subjects can s
the appropriate parts of the review. Section III describes
methods to implement the two-bit coding scheme in NM
and the fidelity measures to evaluate the scheme. Sectio
presents the experimental details. Section V consists of
experimental results together with a thorough analysis.
effects of coding, gate imperfections, and the causes and
fects of other discrepancies are studied in detail. In Sec.
we conclude with a summary of our results. We also disc
syndrome measurement in bulk NMR, the equivalence
tween logical labeling and coding, the applicability of th
two-bit detection code as a correction code exploiting cl
sical redundancy in the bulk sample, and the signal stren
issue in error correction in bulk NMR. Sections III and
contain the main results of the paper; the remainder is
cluded for the sake of completeness and to develop nota
and terminology we believe will be helpful to the gene
reader.

II. THEORY

A. Phase damping

Phase damping is a decoherence process that results
loss of coherence between different basis states. It can
caused by random phase shifts of the system due to its in
action with the environment. For example, letuc&5au0&
1bu1& be an arbitrary pure initial state. A phase shiftP can
be represented as a rotation about theẑ axis by some angleu,

P5expF2
iu

2
szG5Fe2 iu/2 0

0 eiu/2G , ~1!

wheresz is a Pauli matrix. The resulting state is given b
Puc&5ae2 iu/2u0&1beiu/2u1&. Let r be the density matrix of
the initial qubit,

r5uc&^cu5F uau2 ab*

a* b ubu2 G . ~2!
al
e

he
i-

-

-
d
r

en

c-
d
k-
o-

ip
e
,
IV
he
e

ef-
I,
s

e-

-
th

-
on
l

the
be
r-

After the phase shift given by Eq.~1!, the density matrix
becomes

r85Puc&^cuP†5PrP†5F uau2 ab* e2 iu

a* beiu ubu2 G . ~3!

Here, we model phase randomization as a stochastic M
kov process withu drawn from a normal distribution. The
density matrix resulting from averaging overu is

^r8&u5E 1

A2ps
e2 u2/2s2

PrP†du

5F uau2 ab* e2 s2/2

a* be2 s2/2 ubu2 G , ~4!

wheres2 is the variance of the distribution ofu. Since the
process’s Markovian, the total phase shift during a time
riod t is a random-walk process with variance proportional
t. Therefore, we replaces2/2 by lt in Eq. ~4! when the time
elapsed ist. Since the diagonal and the off-diagonal eleme
represent the populations of the basis states and the qua
coherence between them, the exponential decay of the
diagonal elements caused by phase damping signifies
loss of coherence without any net change of quanta.

Phase damping affects a mixed initial state similarly:

Fa b*

b c G˜F a e2ltb*

e2ltb c G , ~5!

since the density matrix of a mixed state is a weighted av
age of the constituent pure states.

One can represent an arbitrary density matrix for one
bit as a Bloch vector (x,y,z), defined to be the real coeffi
cients in thePauli matrix decomposition

r5 1
2 ~ I 1xsx1ysy1zsz!, ~6!

FIG. 1. Trajectories of different points on the Bloch sphere u
der the effect of phase damping. Points move along the perpend

lars to theẑ axis at rates proportional to the distances to theẑ axis.
As a result, the Bloch sphere turns into an ellipsoid.
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1926 PRA 60DEBBIE LEUNG et al.
where the Pauli matrices are given by

sx5F0 1

1 0G , sy5F0 2 i

i 0 G , sz5F1 0

0 21G . ~7!

The space of all possible Bloch vectors is the unit sph
known as the Bloch sphere. Phase damping describes
axisymmetric exponential decay of thex̂ and ŷ components
of any Bloch vector, as depicted in Fig. 1.

In contrast to the above picture of phase damping a
continuous process, we now describe an alternative mod
phase damping as a discrete process. This will facilitate
derstanding of quantum error correction. The essence is
any quantum processr˜E(r) can be written in theoperator
sum representationas @20,21#

E~r!5(
k

AkrAk
† , ~8!

where the sum is over afinite number ofdiscreteeventsAk

that are analogous to quantum jumps, and(kAk
†Ak is posi-

tive. For instance, Eq.~5! describing phase damping can b
rewritten as

E~r!5~12p!IrI †1pszrsz
†, ~9!

where p5(12e2lt)/2. In Eq. ~9!, the outputE(r) can be
considered as a (12p):p mixture of r andszrsz

† ; in other
words, E(r) is a mixture of the states after the event ‘‘n
jump’’ ~I! or ‘‘a phase error’’ (sz) has occurred. The
weights 12p andp are the probabilities of the two possib
events. In general, each termAkrAk

† in Eq. ~8! represents the
resulting state after the eventAk has occurred, with probabil
ity tr(AkrAk

†). This important interpretation is used throug
out the paper. Note that the decomposition ofE(r) is a math-
ematical interpretation rather than a physical process.
component statesAkrAk

† of E(r) are not generally obtainabl
because they are not necessarily orthogonal to each oth

We emphasize that Eqs.~5! and ~9! describe the same
physical process. Equation~9! provides a discrete interpreta
tion of phase damping, with the continuously changing
rametere2lt embedded in the probabilities of the possib
events.

For a system of multiple qubits, weassumeindependent
decoherence on each qubit. For example, for two qubitA
andB with error probabilitiespa andpb , the joint process is
given by

E~r!5~12pa!~12pb!~ I ^ I !r~ I ^ I !

1~12pa!pb~ I ^ sz!r~ I ^ sz!

1pa~12pb!~sz^ I !r~sz^ I !1papb~sz^ sz!r~sz

^ sz!, ~10!
e
the

a
of
n-
at

e

.

-

wherer now denotes the 434 density matrix for the two
qubits. The eventssz^ I and I ^ sz are first-order errors,
while sz^ sz is second order. First- and second-order eve
occur with probabilities linear and quadratic in the sm
error probabilities.

Having described the noise process, we now procee
describe a coding scheme that will correct for it.

B. The two-bit phase damping detection code

Quantum error correction is similar to its classical an
logue in many aspects. First, the input is encoded in a la
system that goes through the decoherence process, su
transmission through a noisy channel or storage in a no
environment. The encoded states~codewords! are chosen
such that information on the undesired changes~error syn-
dromes! can be obtained in the extra degrees of freedom
the system upon decoding. Then corrections can be m
accordingly. However, in contrast to the classical case, qu
tum errors occur in many different forms such as pha
flips—and not just as bit flips. Furthermore, the quantu
information must be preserved without ever measuring it
cause measurement that obtains information about a quan
state inevitably disturbs it. There are excellent references
the theory of quantum error correction@22–26#. We limit the
present discussion to detection codes only.

For a code to detect errors, it suffices to choose the co
word spaceC such that all errors to be detected mapC to its
orthogonal complement. In this way, detection can be d
unambiguously by a projection ontoC withoutdistinguishing
individual codewords, hence without disturbing the encod
information. To make this concrete, consider the code@18#

u0L&5
1

A2
~ u00&1u11&), ~11!

u1L&5
1

A2
~ u01&1u10&), ~12!

where the subscriptL denotes logical states. An arbitrar
encoded qubit is given by

uc&5au0L&1bu1L& ~13!

5
1

A2
@a~ u00&1u11&)1b~ u01&1u10&)]. ~14!

After the four possible errors in Eq.~10!, the possible out-
comes are

uc II &5I ^ I uc&5a
u00&1u11&

A2
1b

u01&1u10&

A2
, ~15!
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PRA 60 1927EXPERIMENTAL REALIZATION OF A TWO-BIT PHASE . . .
ucZI&5sz^ I uc&5a
u00&2u11&

A2
1b

u01&2u10&

A2
, ~16!

uc IZ&5I ^ szuc&5a
u00&2u11&

A2
1b

2u01&1u10&

A2
,

~17!

ucZZ&5sz^ szuc&5a
u00&1u11&

A2
1b

2u01&2u10&

A2
,

~18!

with thefirst-ordererroneous statesucZI& anduc IZ& orthogo-
nal to the correct stateuc II &. Therefore, it is possible to dis
tinguish Eq.~15! from Eqs. ~16! and ~17! by a projective
measurement during decoding, which is described next.

The encoding and decoding can be performed as follo
We start with an arbitrary input state and a ground-state
cilla, represented as qubitsA andB in the circuit in Fig. 2.

To encode the input qubit, a Hadamard transformationH
is applied to the ancilla, followed by a controlled not fro
the ancilla to qubitA ~written asCNba). Let A andB be the
first and second label. Then, the two operations have ma
representations

H5
1

A2
F1 1

1 21G , CNba5F 1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

G , ~19!

and the qubits transform as~Fig. 2!

uc1&5~au0&1bu1&)u0& ~20!

˜

I ^ H

uc2&5
1

A2
~au0&1bu1&)~ u0&1u1&) ~21!

FIG. 2. Circuit for encoding and decoding. QubitA is the input
qubit. H is the Hadamard transformation, and the symbol next toH
is a controlled not with the dot and circle being the control a
target bits.uc123& are given by Eqs.~20!–~23!. r4 and r5 are
mixtures of the states in Eqs.~15!–~18! and in Eqs.~24!–~27!. A
phase error in either one of the qubits will be revealed by qubB
being in u1& after decoding, and in that case, qubitA will be re-
jected.
s.
n-

ix

˜

CNba

uc3&5
1

A2
~au0&1bu1&)u0&1~au1&1bu0&)u1&

~22!

5
1

A2
~a~ u00&1u11&)1b~ u01&1u10&),

~23!

where Eq.~23! is the desired encoded state.
The decoding operation is the inverse of the encod

operation ~see Fig. 2! so as to recover the input (au0&
1bu1&)u0& in the absence of errors. Phase errors lead
other decoded outputs. The possible decoded states are
by

uc II &⇒
dec

~au0&1bu1&)u0&, ~24!

ucZI&⇒~au0&2bu1&)u1&, ~25!

uc IZ&⇒~au0&1bu1&)u1&, ~26!

ucZZ&⇒~au0&2bu1&)u0&. ~27!

Note that the ancilla becomesu1& upon decoding if and
only if a singlephase error has occurred. Moreover, qubitsA
andB are in product states but they are classically correla
Therefore, syndrome can be read out by a projective m
surement onB without measuring the encoded state. T
decoding operation transforms the codeword space and
orthogonal complement to the subspaces spanned byu0& and
u1& in qubit B, while all the encoded information, either wit
or without error, goes to qubitA.

We illustrate the role of entanglement in the digitizatio
and detection of errors as follows. Suppose the error i
phase shift on qubitA: u0&˜u0&, u1&˜eiuu1&. Then, the
encoded state becomes

1

A2
@a~ u00&1eiuu11&)1b~eiuu10&1u01&)] ~28!

5
1

A2

11eiu

2
@a~ u00&1u11&)1b~ u10&1u01&)]

1
1

A2

12eiu

2
@a~ u00&2u11&)1b~2u10&1u01&)].

~29!

The decoded state is now a superposition of the states g
by Eqs.~24! and ~26!:

1

A2

11eiu

2
~au0&1bu1&)u0&1

1

A2

12eiu

2
~au0&2bu1&)u1&.

~30!

Measurement of qubitB projects it to eitheru0& or u1&. Be-
cause of entanglement, qubit A is projected to having no
phase error, or a complete phase flip.
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We quantify the error correcting effect of coding usin
the discrete interpretation of the noise process, leaving a
discussion of the fidelity to Sec. III. Recall from Eq.~10! that
the errorsI ^ I , I ^ sz , sz^ I , andsz^ sz occur with prob-
abilities (12pa)(12pb), (12pa)pb , pa(12pb), and
papb , respectively, and only in the first and the last ca
will the output state be accepted. The probability of acce
ing the output state is (12pa)(12pb)1papb whereas the
probability of accepting the correct state is (12pa)(12pb).
The conditional probability of a correct, accepted state
therefore

~12pa!~12pb!

~12pa!~12pb!1papb
'12papb ~31!

for small pa , pb . The code improves the conditional err
probability to second-order, as a result of screening out
first-order erroneous states.

We conclude this section with a discussion of some pr
erties of the two-bit code. First, the code also applies
mixed input states since the code preserves all constit
pure states in the mixed input. Second, we show here
two qubits are the minimum required to encode one qu
and to detect any phase errors. LetC be the two-dimensiona
codeword space and letE be a nontrivial error to be detected
For phase damping,E is unitary and thereforeEC is also
two-dimensional. Moreover,C andEC must be orthogonal if
E is to be detected. Therefore, the minimum dimension
the system is four, which requires two qubits. However,
ing only two qubits implies other intrinsic limitations. Firs
the code can detect but cannot distinguish errors. There
it cannot correct errors. Moreover,uc IZ& decodes to a correc
state in spinA that is rejected. These affect the absolu
fidelity ~the overall probability of successful recovery! but
not the conditional fidelity~the probability of successful re
covery if the state is accepted!. Second, the errorsz^ sz
cannot be detected. This affects both fidelities but only
second order. To understand why these limitations are int
sic, let $Ek% be the set of nontrivial errors to be detecte
SinceEkC has to be orthogonal toC for all k, and sinceC has
a unique orthogonal complement of dimension two in a tw
bit code, it follows that allEkC are equal, and it is impossibl
to distinguish~and correct! the different errors. By the sam
token, for any distinct errorsEk8 and Ek , Ek8EkC5C be-
cause they are both orthogonal toEk8C, which has a unique
two-dimensional orthogonal complement. Therefore, a tw
bit code that detects single phase errors can never d
double errors. Finally, since a detection code cannot cor
errors, it can only improve the conditional fidelity of th
acceptedstates but not the absolute fidelity. Here, we on
remark that the conditional fidelity is a better measure in
experiments due to the bulk system used to implement
two-bit code. A discussion of fidelity measures in our expe
ments and quantum error correction in bulk systems will
postponed until Secs. III and VI. The system in which t
two-bit code is implemented will be described next.

C. Bulk NMR quantum computation

Nuclear spin systems are good candidates for quan
computers for many reasons. Nuclear spins can have
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coherence times. Coupled operations involving multiple q
bits are built in as coupling of spins within molecules. Com
plex sequences of operations can be programmed and ca
out easily using modern spectrometers. However, the sig
from a single spin is so weak that detection is not feasi
with current technology unless a bulk sample of identi
spin systems is measured. These identical systems run
same quantum computation in classical parallelism. Com
tation can be performed at room temperature starting w
mixed initial states by distilling the signal of the small exce
population in the desired ground state. How NMR quant
computation can be done is described in detail in the follo
ing.

The quantum system (hardware). In our two-bit NMR
system,u0& andu1& describe the ground and excited states
the nuclear spin~the states aligned with and against an e
ternally applied static magnetic fieldB0 in the1 ẑ direction!.
As in the previous section, we call the spins denoted by
first and second registersA andB. The reducedHamiltonian
for our system is well approximated by (\51) @27,28# ~see
also Fig. 3!

H52
va

2
sz^ I 2

vb

2
I ^ sz1

pJ

2
sz^ sz1Henv . ~32!

The first two terms on the right-hand side of Eq.~32! are
Zeeman splitting terms describing the free precession
spins A and B about the2 ẑ direction with frequencies
va/2p andvb/2p. The third term describes a spin-spin co
pling of J Hz, which is electron mediated. It is known as th
J coupling.Henv represents coupling to the reservoir, such
interactions with other nuclei, and higher-order terms in
spin-spin coupling.

Universal set of quantum logic gates. A set of logic gates
is universal if any operation can be approximated by som
suitable sequence of gates chosen from the set. Depen
on whether computation is fault-tolerant or not, the minim
requirements for universality are different. In the latter ca
any coupled two-qubit operation together with the set of
single qubit transformations form auniversal setof quantum
gates@29–32#. Both requirements are satisfied in NMR a
follows.

Single qubit rotations. Spin-flip transitions between th
two energy eigenstates can be induced by pulsed radio
quency~rf! magnetic fields. These fields, oriented in thex̂ŷ

FIG. 3. Energy diagram for the two-spin nuclear system. T
transitions labeledalow , ahigh , blow , andbhigh refer to transitions
(u0&↔u1&)u0&, (u0&↔u1&)u1&, u0&(u0&↔u1&), and u1&(u0&↔u1&),
respectively.



t
e
In

r,

e
i-

-

s
o

to
b

in
n-

be

n

it

th
n
y
ti
he

b
de

i-
oi

n

h

t
to

lib-
e
al

ve
t, it

is

of

mp-
om-
m
.
ur
p-

ess
er-

ty

PRA 60 1929EXPERIMENTAL REALIZATION OF A TWO-BIT PHASE . . .
plane perpendicular toB0, selectively address eitherA or B
by oscillating at angular frequenciesva or vb . In the clas-
sical picture, an rf pulse along the axisĥ rotates a spin abou
ĥ by an angleu proportional to the product of the puls
duration and amplitude of the oscillating magnetic field.
the quantum picture, the rotation operatore2 i (u/2)sW •ĥ rotates
the Bloch vector@Eq. ~6!# likewise. Throughout the pape
we denote rotations ofp/2 along thex̂ and ŷ axes for spins
A and B by Xa , Ya , Xb , and Yb with respective matrix
representationse2 i (p/4)sx^ I , e2 i (p/4)sy^ I , e2 i (p/4)I ^ sx, and
e2 i (p/4)I ^ sy. The rotations in the reverse directions are d
noted by an additional ‘‘bar’’ above the symbols of the orig
nal rotations, such asX̄a . The angle of rotation is given
explicitly when it differs fromp/2. This set of rotations gen
erates the Lie group of all single qubit operations, SU~2!. For
example, the Hadamard transformation can be written aH
5 ie2 i (3p/4)syei (p/2)sx, which can be implemented in tw
pulses.

Coupled operations. Quantum entanglement, essential
quantum information processing, can be naturally created
the time evolution of the system. In the respective rotat
frames of the spins~tracing the free precession of the u
coupled spins!, only theJ-coupling term,e2 i (pJt/2)sz^ sz, is
relevant in the time evolution. Entanglement is created
cause the evolution depends on the state ofboth spins. A
frequently used coupled ‘‘operation’’ is a time delay of 1/2J,
denoted by t, which corresponds to the evolutio
e2 i (p/4)sz^ sz. For instance, appendingt with thesingle qubit

rotations ei (p/4)sz^ I and ei (p/4)I ^ sz about the2 ẑ axes ofA
andB, we implement the unitary operation

x5eip/4F 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 21

G , ~33!

which is a cross-phase modulation between the two qub
Together with the set of all single qubit transformations,x
completes the requirement for universality. For instance,
controlled notCNba mentioned in the previous section ca
be written as (H ^ I ) x (H ^ I ), and can be implemented b
concatenating the sequences for each constituent opera
It is also crucial that the free evolution, which leads to t
creation of entanglement, can be reversed by applyingrefo-
cusingp pulses, such that the creation of entanglement
tween qubits can be stopped. This technique will be
scribed in detail later.

Measurement. The measured quantity in NMR exper
ments is the time-varying voltage induced in a pick-up c
in the x̂ŷ plane:

V~ t !52V0Tr$e2 iHtr~0!eiHt@~ isx1sy! ^ I

1I ^ ~ isx1sy!#%. ~34!

The signalV(t), known as the free-induction decay~FID!, is
recorded with a phase-sensitive detector. In Eq.~34!, the
onset of acquisition of the FID is taken to bet50. If the
density matrix r(0) has the Pauli matrix decompositio
-

y
g

-

s.

e

on.

e-
-

l

r(0)5( i , j 50
3 ci j s i ^ s j wheres0,1,2,3 are the identity matrix

and sx,y,z respectively, then the spectrum ofV(t) has four
lines at frequenciesva/2p1J/2, va/2p2J/2, vb/2p1J/2,
and vb/2p2J/2 with corresponding integrated areas~peak
integrals!

I ahigh
52@ i ~c102c13!1c202c23#, ~35!

I alow
52@ i ~c101c13!1c201c23#, ~36!

I bhigh
52@ i ~c012c31!1c022c32#, ~37!

I blow
52@ i ~c011c31!1c021c32#. ~38!

Note that the expressionc102c13 (c101c13) occuring in the
high ~low! frequency line of spinA is the coefficient of
sx^ u1&^1u (u0&^0u) in r(0). Similarly, c202c23 (c20
1c23) is the coefficient ofsy^ u1&^1u (u0&^0u). They sig-
nify transitions between the statesu0&↔u1& for spin A when
spinB is in u1& (u0&). Similar observations hold for the hig
and low lines of spinB.

Thermal States. In bulk NMR quantum computation a
room temperature, a pure initial state is not available due
large thermal fluctuations (\va , \vb!kT). Instead, a con-
venient class of initial states arises from the thermal equi
rium states~thermal states!. In the energy eigenbasis, th
density matrix is diagonal with diagonal entries proportion
to the Boltzmann factors, in other words,r th5(1/Z)e2H/kT,
wherekT is the thermal energy andZ is the partition func-
tion normalization factor. At room temperature,^H/kT&
'1026, Z'dim(r th) andr th'(I 2H/kT)/dim(r th) to first
order. For most of the time, the identity term in the abo
expansion is omitted in the analysis for two reasons. Firs
does not contribute to any signal in Eqs.~35!–~38!. Physi-
cally, it represents a completely random mixture which
isotropicand, by symmetry, has nonetmagnetization at any
time. Second, the identity is invariant under a wide range
processes. Processes that satisfyE(I )5I are calledunital.
These include all unitary transformations and phase da
ing. Under unital processes, the evolution of the state is c
pletely determined by the evolution of the deviation fro
identity @6,9#, in which case the identity can be neglected

The unitality assumption is a good approximation in o
system. The main cause of nonunitality is amplitude dam
ing. In general, for a nonunital but trace-preserving proc
E, the observable evolution of the deviation can be und
stood as follows@33#. Rewriting

r5yI 1rd , ~39!

whererd5r2yI is the traceless deviation from the identi
andy51/dim(r). Then,

E~r!5yI 1 r̃d , ~40!

FIG. 4. Pulse sequence forCÑ. Time runs from left to right.
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r̃d5y„E~ I !2I …1E~rd!. ~41!

The observed evolution of the deviation isrd˜ r̃d . The sec-
ond term in Eq.~41! comes from the evolution ofrd when
the identity is neglected, and the first term is the correct
due to nonunitality. In our experiment, amplitude damping
slow compared to all other time scales, therefore,E(I )2I is
small and can be treated as a small extra distortion of
state when making the unitality assumption.

Temporal labeling. One convenient method to create a
bitrary initial deviationsfrom the thermal mixture is tempo
ral labeling @9,34#. The idea is to add up the results of
series of experiments that begin with different preparat
pulses before the intended experiment, so as to cancel ou
signals from the undesired components in the initial therm
mixture. Mathematically, let$Pk% be the set of initial pulses
and letE(r) be the intended computation process. By line
ity, (kE(Pkr thPk

†)5E((kPkr thPk
†). Summing over the ex-

perimental results~on the left side! is equivalent to perform-
ing the experiment with initial state(kPkr thPk

† ~on the right
side!. Temporal labeling assumes the repeatability of the
periments, which is true up to small fluctuations.

Example. As an example of the above theories, consi
applying the pulse sequence in Fig. 4 to the thermal stat

The pulses are short compared to other relevant t
scales. Therefore, other changes of the system during
pulses are ignored. The unitary operation implemented
the above sequence is given by

CÑ5e2 i ~p/4! sx^ Ie2 i ~p/4! sz^ sze2 i ~p/4! sy^ I ~42!

5
1

A2 F 12 i 0 0 0

0 0 0 212 i

0 0 11 i 0

0 12 i 0 0

G , ~43!

similar to CNba described in Sec. II C.
The deviation density matrix of the thermal state is p

portional to2H. Neglecting theJ-coupling term, which is
much smaller than the Zeeman terms,

r th;
va

2
sz^ I 1

vb

2
I ^ sz ~44!

5 1
2 diag~va1vb ,va2vb ,2va1vb ,2va2vb!,

~45!

where ‘‘diag’’ indicates a diagonal matrix with the give
elements. For simplicity, we omit the proportionality co
stant in Eq.~44!, and rename the right-hand side asr th . The
sequence transformsr th to

rcn5CÑr thCÑ † ~46!

5 1
2 diag~va1vb ,2va2vb ,2va1vb ,va2vb!

~47!

5
va

2
sz^ sz1

vb

2
I ^ sz, ~48!
n
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in which the populations ofu01& and u11& are interchanged
Therefore,CÑ andCNba act in the same wayon the thermal
state.

By inspection of Eqs.~44! and~48!, it can be seen thatr th
andrcn have zero peak integrals given by Eqs.~35!–~38!. To
obtain more information about the states, a readout pulseXa
can be applied to transform the two states to

r th8 52
va

2
sy^ I 1

vb

2
I ^ sz ~49!

and

rcn8 52
va

2
sy^ sz1

vb

2
I ^ sz. ~50!

Now, in r th8 is a termsy^ I with coefficientc2052va/2 that
contributes to two spectral lines atva/2p6J/2 with equal
and positive, real peak integrals. The readout pulse tra
forms the unobservable coefficientc30 in r th to the observ-
able 2c20 in r th8 , yielding information onthe state before
the readout pulse. Similarly, rcn8 has asy^ sz term with
coefficientc2352va/2 that gives rise to two spectral line
with real and opposite peak integrals~Fig. 5!. All outputs in
our experiments are peak integrals of this type carrying
formation on the decoded states.

FIG. 5. ~a! Spectrum ofA after a readout pulse on the therm

state.~b! Spectrum ofA after CÑ and a readout pulse.

FIG. 6. Schematic diagram for the two-bit code experiment.CÑ
is used to prepare the initial state.Ya(u) is a variable angle rotation
applied to prepare an arbitrary input state, which is then subjec
phase damping~PD!. In the coding experiment, encoding and d
coding operations,Uenc andUdec, are performed before and afte
phase damping, whereas in the control experiment, these opera
are omitted.Xa is used as a readout pulse onA to determine the
output stater5 in spin A. r i corresponds touc i& or r i in Fig. 2.
Details are described in the text.
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III. TWO-BIT CODE IN NMR

We now describe how the two-bit code experiment can
implemented in an ensemble of two-spin systems. Modifi
tions of the standard theories in Sec. II B are needed. Th
include methods for state preparation, designing encod
and decoding pulse sequences, methods to store the
with controllable phase damping, and finally methods to re
out the decoded qubit. Fidelity measures for deviation d
sity matrices are also defined.

Spins A and B are designated to be the input and t
ancilla qubits, respectively. The output states of spinA are
reconstructed from the peak integrals at frequenc
va/2p6J/2. Figure 6 schematically summarizes the ma
steps in the experiments, with details given in the text.

Some notation is defined as follows. Initial states and
put states refer tor0 and r1 in Fig. 6. The phrase ‘‘idea
case’’ refers to the scenario of having perfect logical ope
tions throughout the experiments and pure phase dam
during storage.

Initial-state preparation. It is necessary to initialize spin
B to u0& before the experiment. This can be done with te
poral labeling using two experiments: the first experim
starts with no additional pulses; the second experiment s
with CÑ ~Fig. 4!. Therefore, the equivalent initial stat
is r th1rcn ~all symbols are as defined in the example
Sec. II C!:

Fva1vb 0 0 0

0 2vb 0 0

0 0 2va1vb 0

0 0 0 2vb

G ~51!

5vasz^ u0&^0u1vbI ^ sz. ~52!

The first term in Eq.~52! is the desired initial state. Th
second term cannot affect the observable of interest,
spectrum atva/2p, because of the following. The identity i
A is invariant under the preparation pulseYa(u). The input
state is thus the identity, which has no coherence to s
with. Therefore, the output state after phase damping in b
the control and the coding experiment is still the identi
This is nontrivial in the coding experiment. However, i
spection of Eqs.~24!–~27! shows that spinA is changed at
most by a phase in the coding experiment. While Eqs.~24!–
~27! apply only to the case whenB starts inu0&, the result
can be generalized to any arbitrary diagonal density matri
B ~proof omitted!. It follows from Eqs.~35!–~38! that the
second term is not observable in the output spectrum ofA.

In contrast, the input state in spinA can be a mixed state
as given by the first term in Eq.~52!, since the phase damp
ing code is still applicable. Different input states can be p
pared by rotations about theŷ-axis of different anglesu
P@0,p# to span a semicircle in the Bloch sphere in thex̂ẑ
plane. Due to axisymmetry of phase damping@Eq. ~4!#, these
states suffice to represent all states to test the code.

We conclude with an alternative interpretation of t
initial-state preparation. Let the fractional populations
u00&, u01&, u10&, and u11& be p00, p01, p10, andp11 in the
thermal state. Then, the initial state after temporal labelin
e
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g
bit
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~p011p11!I ^ u1&^1u12p10 I ^ u0&^0u

12~p002p10! u00&^00u, ~53!

where the identity term is not omitted, unlike Eq.~52!. Tem-
poral labeling serves to randomize spinA in the first term in
Eq. ~53! whenB is u1&. We have shown previously that th
identity input state ofA is preserved throughout both th
coding and the control experiments in the ideal case. Con
quently, only the last term in Eq.~53! contributes to any
detectable signals in all the experiments, and we can c
sider the last term as the initial state. Having justified bo
pictures using the first term in Eq.~52! and the last term in
Eq. ~53! as initial state, both will be used throughout the re
of the paper.

Encoding and decoding. The original encoding and de
coding operations are composed of the Hadamard trans
mation andCNba , as defined in Sec. II C. The actual s
quences can be simplified and are shown in Fig. 7.

The operatorUenc can be found by multiplying the com
ponent operators in Fig. 7, giving

Uenc5
1

A2 F 1 21 0 0

0 0 i i

0 0 1 21

i i 0 0

G . ~54!

The encoded states are slightly different from those in S
II B:

u0L&5
1

A2
~ u00&1 i u11&), ~55!

u1L&5
1

A2
~ i u01&1u10&), ~56!

but the scheme is nonetheless equivalent to the original
The decoding operationUdec is given by

Udec5
1

A2 F 1 0 0 2 i

21 0 0 2 i

0 2 i 1 0

0 2 i 21 0

G5Uenc
† . ~57!

The possible decoded outputs are the same as in Sec.
except for an overall sign in the single error cases.

Storage. The time delay between encoding and decod
corresponds to storage time of the quantum state. During
delay time, phase damping, amplitude damping, andJ cou-

FIG. 7. Pulse sequences to implement the encoderUenc and the
decoderUdec. Time runs from left to right.X(Y)a(b) andt are as
defined in Sec. II C.
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pling evolution occur simultaneously. How to make pha
damping the dominant process during storage is explaine
follows.

First of all, the time constants of amplitude dampingT1’s
are much longer than those of phase dampingT2’s. Storage
times td are chosen to satisfytd<T2!T1. This ensures tha
the effects of amplitude damping are small.

The remaining two processes, phase damping
J-coupling, can be considered as independent and com
ing processes in between any two pulses since all the p
damping operators commute with theJ-coupling evolution
exp(2i sz^szpJtd/2). We chooseJtd to be even integers to
approximate the identity evolution. AsJ is known with lim-
ited accuracy, we add refocusingp pulses@35# to spin B

~about theŷ axis! in the middle and at the end of the pha
damping period to ensure trivial evolution underJ coupling.
These pulses flip theẑ axis for B during the second half o
the storage time so that evolution in the first half is alwa
reversed by that in the second half. In this way, a cont
lable amount of phase damping is achieved to good appr
mation.

Control Experiment. For each storage timetd , input state
and temporal labeling experiment, a control experimen
performed with the coding and decoding operations omitt
Since phase damping andJ coupling can be considered a
independent processes, andJ coupling is arranged to ac
trivially, the resulting states illustrate phase damping of s
A without coding.

Output and readout. For an input state prepared wit
Ya(u), the state after encoding, dephasing and decodingr5
in Fig. 6! is derived in Appendix A and is given by Eq.~A7!
~from here onwards,va is omitted!

r5
coded5@cosu~12pa2pb12papb!sz

1sinu~12pa2pb!sx# ^ ~ I 1sz!/2

1@cosu~pa1pb22papb!sz

1sinu~2pa1pb!sx# ^ ~ I 2sz!/2. ~58!

In the control experiment, the corresponding output stat
given by @Eq. ~A2!#

r5
control5@cosusz1~122pa!sinusx# ^ ~ I 1sz!/2.

~59!

TABLE I. Input and output states of spinA in the coding and the
control experiments.

z component x component
Input state cosu sinu

Coding expt.:
Accepted state (12pa2pb12papb)cosu (12pa2pb)sinu
Rejected state (pa1pb22papb)cosu (2pa1pb)sinu
Control expt.:
Accepted state cosu (122pa)sinu
Rejected state 0 0
e
as

d
ut-
se

s
l-
i-

is
d.

n

is

The initial state used in the derivation of Eq.~59! is the first
term in Eq.~52!, and the encoding and decoding operatio
are as given by Eqs.~54! and ~57!.

In the ideal case, the output state can be read out
single spectrum. Recall that the coefficients of2sy^ (I
6sz) and2sx^ (I 6sz) are the real and imaginary parts o
the low- and the high-frequency lines ofA. Therefore, the
coefficients of2sz^ (I 6sz) and 2sx^ (I 6sz) in r5

coded

andr5
control can be read out as the real and imaginary parts

the low- and the high-frequency lines ofA, if Xa is applied
before acquisition. This pulse transforms thez component of
A to they component leaving thex component unchanged, a
described in Sec. II C. Note that only states with spinB
beingu0& (u1&) contribute to the low-~high!-frequency line.
Therefore, in the coding experiments, the accepted~rejected!
states ofA can be read out separately in the low~high!-
frequency line. There are no rejected states in the con
experiments.

The rest of the paper makes use of the following notati
‘‘Output states’’ or ‘‘accepted states’’ refer to the reduc
density matrices ofA beforethe readout pulse, and are d
noted by ra

coded[B^0ur5
codedu0&B and ra

control

[B^0ur5
controlu0&B . Rejected states refer toB^1ur5

codedu1&B

from the coding experiments.
The accepted and rejected states for a given input as

culated from Eqs.~58! and ~59! are summarized in Table I.
The output statesra

coded and ra
control , as predicted by

Table I, are plotted in Fig. 8 in thex̂ẑ plane of the Bloch
sphere ofA. The north and south poles represent the Blo
vectors6 ẑ (u0& and u1&). The time trajectories of various
initial states are indicated by the arrows. The Bloch spher
distorted to an ellipsoid after each storage time. We conc
trate on the cross section in one half of thex̂ẑ plane, and call
the curve an ‘‘ellipse’’ for convenience. The storage tim
plotted have equal spacing and correspond topa50, 0.071,
0.133, 0.185, 0.230, and 0.269. For each ellipse,pb is chosen
to be the same aspa . The main experimental results will b
comprised of information of this type.

Fidelity. One can quantify how well the input states a

FIG. 8. Predicted output states~a! with or ~b! without coding.
The arrows indicate the direction of time and the ellipses repre
snapshots of the original surface of the Bloch sphere.
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preserved using various fidelity measures. In classical c
munication, the fidelity can be defined as the probability
successful recovery of the input bit string in the worse ca
In quantum information processing, when the input is apure
state, the above definition generalizes to theminimal overlap
fidelity,

F5minr in
tr~routr in!. ~60!

We emphasize that Eq.~60! applies topure input states only.
For simplicity, fidelities for mixed input states will not b
given here. The reason why Eq.~60! is sufficient for our
purpose will become clear later.

Whenr in androut are qubit states of unit trace with re
spective Bloch vectorsr̂ in andrWout , Eq.~60! can be rewritten
as

F5minr̂ in

1
2 ~11 r̂ in•rWout!. ~61!

Recall from Eq. ~5! that, for phase damping, whenr̂ in

5(r x ,r y ,r z), rWout5(e2ltr x ,e2ltr y ,r z). Therefore,

r̂ in•rWout5e2lt~r x
21r y

2!1r z
2 ~62!

522p~r x
21r y

2!11, ~63!

where we have used the factu r̂ inu251 for pure states andp
5(12e2lt)/2. The minimum in Eq.~61! is attained for in-
put states on the equatorial plane withr x

21r y
251. Therefore,

F512p5 1
2 ~11e2lt!. ~64!

With coding, the accepted state is@see Eqs.~24!–~27!#

ra
coded5~12pa!~12pb!r in1papbszr insz. ~65!

If one considers the conditional fidelity in the accepted sta
rout in Eq. ~60! should be taken as the postmeasurem
density matrix,

rout5
ra

coded

tr~ra
coded!

5
ra

coded

~12pa!~12pb!1papb
~66!

'~12papb!r in1papbszr insz. ~67!

Note that the above expression is identical to the expres
for single qubit phase damping but with error probabilityp
5papb . Therefore, coding changes the conditional er
probability to second-order, and the conditional fidelity
improved toFC512papb .

The amount of distortion can also be summarized by
ellipticities of the ‘‘ellipses’’ that result from phase dampin
-
f
e.

e,
t

on

r

e

The ellipticity e is defined to be the ratio of the major axis
the minor axis. Without coding, the major axis remains u
changed under phase damping, and the minor axis shrink
a factor ofe2lt, therefore,e5elt. Using Eq.~64!,

F5
1

2 S 11
1

e D . ~68!

With coding, FC is given by the same expression on t
right-hand side of Eq.~68!. In the ideal case, the overla
fidelity and the ellipticity have a one-to-one corresponden
In the presence of imperfections, the overlap fidelity and
ellipticity, one being the minimum of the input-output ove
lap and the other being an average parameter of distort
are more effective in reflecting different types of distortio

We now generalize to new definitions of fidelity for de
viation density matrices for the two-bit code. In NMR, qua
tum information is encoded in the small deviation of the st
from a completely random mixture. The problem with th
usual definitions of fidelity is that they do not change sign
cantly even when the small deviation changes complet
This is true whether the fidelities are defined for pure
mixed input states. To overcome this problem, we introdu
the strategy of identifying the initial excess population
u00& as the pure initial state so that usual definitions of fid
ity for pure input states are applicable. This improves
sensitivity of the fidelity measures and provides a closer c
nection to the pure state picture.

The initial state in Eq.~53! can be rewritten as

r5arpure1~12a!rquiet, ~69!

wherea52(p002p10)5\va/2kT, and

rpure5u00&^00u, ~70!

rquiet'
1

12a
@~p011p11!I^ u1&^1u12p10I^ u0&^0u#.

~71!

It has already been shown thatrquiet is irrelevant to the
evolution and the measurement ofrpure when all processes
are unital. Thereforerquiet is neglected and the small sign
resulting from the slow nonunital processes will be treated
extra distortion to the observable component. The input s
prepared byYa(u) can be written as

r in5ar in
pure1~12a!rquiet. ~72!

For the state changer in˜E(r in), we consider the overlap
betweenr in

pure andE(r in
pure) in place of the overlap betwee

r in and E(r in). This defines a new overlap fidelityFd

5minr
in
puretr@r in

pureE(r in
pure)#5minr̂ in

1
2 (11 r̂ in•rWout) similar

to the pure state case.
Fd can be calculated from the experimental results in

following manner. The measured Bloch vector ofA, rWm , is
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proportional to that defined byB^0uE(r in
pure)u0&B . Due to

limitations in the measurement process, this proportiona
constantã is not knowna priori. However, whenu50 in
the control experiment,E(r in

pure)5r in
pure and rWm5ã r̂ in .

Therefore,ã5urWmuu50 can be determined. In other word
urWmuu50 is used to normalize all other measured output sta
before using the expression forFd .

The expression forFd can also be used for the condition
fidelity in the coding experiment if the post-measurem
accepted output state is known. This requires tr(ra

coded)
5(12pa2pb12papb) to be determined for each storag
time. The correct normalization is again given by the out
at u50, which equalsrWm5tr(ra

coded)ã r̂ in .
In summary, each ellipse obtained in the coding and

control experiment is normalized by the amplitude atu50:

Fd5minr̂ in

1

2 F11
r̂ in•rWm

urWm~u50!u
G . ~73!

It is interesting to note that in contrast to the fidelity me
sure, the ellipticity measure naturally performs an equival
normalization, and thus can be used for deviations with
modifications.

We now turn to the experimental results, beginning wit
description of our apparatus.

IV. APPARATUS AND EXPERIMENTAL PARAMETERS

We performed our experiments on carbon-13 labeled
dium formate (CHOO2Na1) ~Fig. 9! at 15 °C. The nuclear
spins of proton and carbon were used as input and an
respectively. Note that the system was heteronuclear.
sodium formate sample was a 0.6-ml 1.26 molar solut
~8:1 molar ratio with anhydrous calcium chloride! in deuter-
ated water@36#. The sample was degassed and flame se
in a thin-walled, 5-mm NMR sample tube.

The time constants of phase damping and amplit

FIG. 9. 13C-labeled formate. The nuclear spins of the neighb
ing proton and carbon represent qubitsA andB.

TABLE II. T1’s and T2’s for CaCl2-doped formate at 15 °C
measured using standard inversion recovery and Carr-Pur
Meiboom-Gill pulse sequences, respectively.

T1 T2

1H 9 s 0.65 s
13C 13.5 s 0.75 s
y
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damping are shown in Table II. The factT1!T2 ensures that
the effect of amplitude damping is small compared to ph
damping. The experimental conditions are chosen such
proton and carbon have almost equalT2’s. This eliminates
potential bias caused by having a long-lived ancilla wh
evaluating the effectiveness of coding. This also realize
common assumption in coding theory that identical quant
systems are available for coding. Subsidiary experime
with qubits having very differentT2’s are described in Ap-
pendix B.

Phase damping arises from constant or low-freque
nonuniformities of the ‘‘static’’ magnetic field that random
ize the phase evolution of the spins in the ensemble. Sev
processes contribute to this inhomogeneity on microscopi
macroscopic scales. Which process dominates phase d
ing varies from system to system@28#. For instance, intermo-
lecular magnetic dipole-dipole interaction dominates ph
damping in a solution of small molecules, whereas
modulation of direct electron-nuclear dipole-dipole intera
tions becomes more important if paramagnetic impurities
present in the solution. For molecules with quadrupolar
clei ~spin .1/2), modulation of the quadrupolar couplin
dominates phase damping. Other mechanisms such as ch
cal shift anisotropy can also dominate phase damping
other circumstances. These microscopic field inhomoge
ities have no net effects on the static field when avera
over time, but they result in irreversible phase randomizat
with parameters intrinsic to the sample. Another origin
inhomogeneity comes from the macroscopic applied st
magnetic field. In contrast to the intrinsic processes, ph
randomization due to this inhomogeneity can be reversed
applying refocusing pulses as long as diffusion of molecu
is insignificant.

Phase damping caused by the intrinsic irreversible p
cesses alone has a time constant denoted byT2, while the
combined process has a shorter time constant denote
T2* . T2 is measured by the Carr-Purcell-Meiboom-Gill@35#
experiment using multiple refocusing pulses.T2* can be es-
timated from the linewidth of the NMR spectral lines: durin
acquisition, the signal decays exponentially due to ph
damping, resulting in Lorentzian spectral lines with lin
width 1/pT2* .

In our experiment,T2* ’s for proton and carbon were est
mated to within 0.05 s to be'0.35 and 0.50 s. The storag
times td were approximately 0, 62, 123, 185, 246, and 3
ms (n/J for n50,12,24,36,48, and 60!. The maximum stor-
age time was 120t, long compared to the clock cycle an
was comparable toT2* . The decay constantl, defined in
Sec. II A, was given byl51/T2* . The error probabilities
after a storage time oftd were pi5@12exp(2td /T2i* )#/2 for
spins i 5A,B. To reconstruct the ellipse for each stora
time, 11 experiments were run with input states spannin
semicircle in thex̂ẑ plane. Each input state was prepared
a Ya(u) pulse withu5np/10 for n50,1, . . .,10.

All experiments were performed on an Oxford Instr
ments superconducting magnet of 11.7 Tesla, giving pre
sion frequencies ofvA/2p'500 MHz for proton and
vB/2p'125 MHz for carbon. A Varian UNITY Inova
spectrometer with a triple-resonance probe was used to
the pulsed rf fields to the sample and to measure the FID

-
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PRA 60 1935EXPERIMENTAL REALIZATION OF A TWO-BIT PHASE . . .
The rf pulses selectively rotated a particular spin by oscil
ing on resonance with it. Thep/2 pulse durations were cali
brated, and they were typically 8 to 14ms. To perform logi-
cal operations in the respective rotating frames of the sp
reference oscillators were used to keep track of the free
cession of both spins, leaving only theJ-coupling term of
195.0 Hz in the time evolution. Each FID was recorded
'6.8 s~until the signal had faded completely!. The thermal
state was obtained after a relaxation time of 80 s (@T1’s!
before each pulse sequence.

Using the above apparatus and procedures, we perfor
the experiments as outlined in Sec. III. The experimen
results are described in the next section. Tomography res
following the evolution of the state are presented in App
dix C.

V. RESULTS AND DISCUSSION

A. Decoded Bloch spheres

The output states,ra
coded and ra

control , obtained as
described in Secs. III and IV, and the analysis that confir
the correction effects of coding, are presented in this s
tion.

Figure 10 shows the accepted states in thex̂ẑ plane of the
Bloch sphere ofA. r5

coded and r5
control are plotted in Figs.

10~a! and 10~b!. The ellipse for each storage time is obtain
by a least-squares fit described later.

The most important feature in Fig. 10 is the reduction
the ellipticities of the ellipses due to coding, which repr
sents partial removal of the distortion caused by ph
damping—the signature of error correction. Coding is eff

FIG. 10. ~a! Experimental data~circles! showing the output
states from the coding experiment. Each ellipse~solid line! corre-
sponds to one storage time and is obtained by a least-squar
@Eq. ~79!# to the data. The storage times aren361.5 ms forn
50,1, . . . ,5, and smaller ellipses correspond to increasingn. ~b!
Experimental data~crosses! and fitted ellipses~solid lines! for the
control experiment. A replica of~a! is plotted in dotted lines for
comparison. In both figures, uncertainties in the data are m
smaller than the circles and crosses.
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tive throughout the range of storage times tested.
We quantify the correction effects due to coding using

ellipticities. When deviations from the ideal case such
offsets of the angular positions of the points along the
lipses and attenuation of signal strength with increasingu
exist, the minimum overlap fidelities and the ellipticities a
no longer related by Eq.~68!. Since the ellipticity is an av-
erage measure of distortion which is less susceptible to s
tering of individual data points, we first study the elliptic
ties. Moreover, since the deviations from the ideal case
small, we can stillinfer the fidelities from the ellipticities
using Eq.~68!. A discussion of the discrepancies and t
exact overlap fidelities will be given later.

Ellipticities. In the ideal case, the ellipticity for each e
lipse can be obtained experimentally as

e5A I ~u50!

I ~u5 p/2!
, ~74!

fit

h

FIG. 11. ~a! Ellipticity and ~b! inferred fidelity as a function of
the storage time in the coding and the control experiments. E
bars represent 95% confidence level.
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whereI denotes the intensity~amplitude square! of the peak
integral.I is given by thex̂ and ẑ components of the outpu
states as

I 5r x
21r z

2 . ~75!

In the ideal case,I (u) can be found from Table I:

I control~u!5124~pa2pa
2!sin2u, ~76!

I coded~u!5~12pa2pb12papb!2

24papb~12pa2pb1papb!sin2u, ~77!

and both are of the functional form

I ideal~u!5A1B sin2u. ~78!

Experimentally, the output Bloch vectors do not form perfe
ellipses. We modify Eq.~78! to include signal strength at
tenuation with increasingu and constant offsets in the ang
lar positions:

I exp~u!5@A1B sin2~u1D !#@12C~u1D !#, ~79!

and perform nonlinear least-squares fits of the experime
data to determineA,B,C, andD. The fitted ellipses plotted in
Fig. 10 follow from Eq.~79! and the fitted parameters. Th
ellipticities e are found using Eq.~74! by interpolating the
intensities atu50 andu5p/2. The ellipticities are plotted in
Fig. 11~a!. The uncertainties of the fitted parameters ori
nate from the uncertainties in the data, which are estima
to be'1% for the amplitude and 1.5° for the phase in t
measured peak integrals. These uncertainties are propa
numerically to the ellipticities as plotted in Fig. 11~a!. Ideal
case predictions and simulation results are also plotted
Fig. 11~a!. The simulation takes into account the major im
perfection in the pulses and will be described later.

Error correction. The effectiveness of coding to corre
errors is evident when comparing the ellipticities from t
coding and the control experiments@Fig. 11~a!#. Without

coding, the ellipticity grows exponentially asetd /T2a* ~for T2a*
fitted to be '0.4 s). With coding, the growth is slowe
down, with almost zero growth for smalltd . The suppression
of linear growth of the ellipticity can be further quantified b
weighted quadratic fitse5c01c1td1c2td

2 to the ellipticities.
For the control experiments,c051.0060.01, c151.31
60.21, andc358.860.8 whereas for the the coding expe
ments, c051.1060.02, c1520.2460.29, and c353.8
60.9 (td in seconds!. Therefore, the linear term ‘‘vanishes
due to coding. The small negative coefficient for the line
term originates from the scattering of the data point at z
storage time.

To quantify the ‘‘cost of the noisy gates’’ caused by t
imperfect pulses, we compare the ellipticities from the co
ing experiments and from the ideal case, the quadratic fit
which are, respectively,eexpt

coded51.1020.24td13.80td
2 and

e ideal
coded51.0010.15td12.50td

2 . The imperfections cause th
ellipticity to increase by 0.1 attd50 and this extra distortion
decreaseswith td . We take advantage of the fact that th
simulation results are close to the data points but are no
t

al

-
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scattered to have a better estimate of this ‘‘cost of the no
gates.’’ The simulation data can be fitted byesim

coded51.06
10.32td12.47td

2 . Compared to the ideal case, the codi
operations increase the ellipticity by'0.06 attd50, and this
extra distortion remains almost constant for alltd .

The error probabilities as inferred from the ellipticitie
pe512Fe5 1

2 (121/e) are plotted in Fig. 11~b! as a func-
tion of storage time.

Error correction is also manifested by expressingpe in the
coding experiment as a function of the originalpe in the
control experiment, as plotted in Fig. 12. The quadratic fit
the experimental results givespexp

coded5c01c1p1c2p2 where
p stands for pe in the control experiment,c050.047
60.008, c1520.0560.12, andc251.3860.40. Therefore,
the expected improvementp˜papb is confirmed. Experi-
mentally, the error probabilities are larger than in the id
case by at most 4.7% and these extra errors decrease wp.
The quadratic fit to the simulation results~which is a good
approximation of the experimental data! gives psim

coded

50.03220.032p11.783p2 and differs from the ideal cas
by a constant amount of'0.03360.003 for all p, which
represents the cost of the noisy gates. In conclusion, co
with noisy gates is still effective in our experiments, ev
though the noisy gates add a constant amount of distorti

B. Discrepancies

While the data exhibit a clear correction effect, there a
notable deviations from the ideal case. First, the ellipses w
coding are smaller than their counterparts without codi
This is most obvious when the storage time is zero, in wh
case the coding and the control experiments should prod
equal outputs. Second, the signal strength is attenuated
increasingu relative to ideal ellipses. Third, although th
data points are well fitted by ellipses, their angular positio
are not exactly as expected (u offsets!. Finally, the spacings

FIG. 12. Error probabilities in the coding experiments vs t
corresponding values in the control experiments. Error bars re
sent 95% confidence level. The 45° line is plotted as a dotted l
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PRA 60 1937EXPERIMENTAL REALIZATION OF A TWO-BIT PHASE . . .
between the ellipses deviate from expectation. The cause
these discrepancies and their implications on error correc
are discussed next.

Gate imperfections: rf field inhomogeneity. The major
cause of experimental errors is rf field inhomogeneity, wh
causes gate imperfections. This was determined by a s
of experiments~details of which are not given here!, and a
thorough numerical simulation as described below. T
physical origin of the problem is as follows. The coil wind
ings produce inhomogeneous rf fields that randomize
angles of rotation among molecules. For a single rotation,
signal averaged over the ensemble decreases exponen
with the pulse duration to good approximation. A measure
the rf field inhomogeneity is the signal strength after ap/2
pulse. They are measured to be'0.96 and 0.92 for proton
and carbon respectively. In other words, a singlep/2 pulse
has an error of'4 –8%.

Radio-frequency field inhomogeneity affects our expe
ments in many ways. First, it attenuates the signal in both
coding and the control experiments, but the effects are m
more severe in the coding experiments that have eight e
pulses. For instance, when the storage time is zero, the
experiments should have identical outputs, but the ellips
the coding experiment is actually 5–15 % smaller. Seco
for each ellipse, attenuation increases withu as the prepara
tion pulseYa(u) becomes longer.

The effects of the rf field inhomogeneity are complicate
because the errors from different rf pulses are correlated,
the correlation depends on the temporal separation betw
the pulses and the diffusion rate of the molecules. The c
relation time of the rf field inhomogeneity is comparable
the experimental time scales. For this reason, prediction
the effects of rf field inhomogeneity are analytically intra
table.

Numerical simulations were performed to model t
dominant effects of rf field inhomogeneity. We followed th
evolution of the states assuming random rf field streng
drawn from Lorentzian distributions~also known as Cauchy
distributions! with means and standard deviations match
pulse calibration and attenuation for thep/2 pulses. All pa-
rameters in the simulation, includingT2* ’s, were determined
experimentally without introducing any free parameters.
the exact time correlation function for the errors was u
known, except for numerical evidence of a long correlat
time, weassumedperfect correlation in the errors. The sim
lated ensemble output signal was obtained by Gaussian
gration with numerical errors bounded to below 1.5%. T
results were shown in Fig. 13.

Besides phase damping and error correction effects in
data, the simulations also reproduce extra signal attenua
in the coding experiments. The ellipticities obtained fro
simulations~see Fig. 11! approximate the experimental va
ues very well. Such agreement to experimental results is
prising in the absence of free parameters in the model. Si
lation results allow the discrepancy between the obser
and the ideal ellipticities to be explained in terms of the
field inhomogeneity and allow the ‘‘cost of coding’’ to b
better estimated to be the constant 6% increase in ellipti
or the'3% increase in error probabilities.

The simulation results also predict increasing attenua
with u. From the fitted parameterC @see Eq.~79!#, the am-
of
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plitudes atu5p are '4% weakerthan the corresponding
values atu50 in the simulations. Experimentally, this a
tenuation increases from'8 to 15% ~as storage time in-
creases from 0 to 308 ms! in the control experiments, an
remains'8% in the coding experiments. Therefore, rf fie
inhomogeneity contributes to the attenuation but only p
tially.

We conclude that rf field inhomogeneity as we have mo
eled explains the diminished signal strength in the cod
experiments. The simulation quantifies the ‘‘cost of the no
gates.’’ rf field inhomogeneity also explains part of the a
tenuation with increasingu. We can also conclude that othe
discrepancies not predicted by the simulations arenot caused
by rf field inhomogeneity and these discrepancies are
scribed next.

Other discrepancies. The simulation results show that r
field inhomogeneity doesnot explain why the attenuation a
large u increases with storage time without coding, and
does not explain theu offsets along the ellipses and th
unexpected spacings between them.

The increased attenuation with storage time at largeu can
be caused by amplitude damping. A precise description@37#
of amplitude damping during storage is out of the scope
this paper and we consider only the dominant effect p
dicted by a simple picture.Phenomenologically, the loss of
energy to the lattice is described in the NMR literature b

z~ t !5z~`!1@z~0!2z~`!#e2t/T1, ~80!

wherez(`)51 is the thermal equilibrium magnetization. A
z(0)561 atu50 andp, we expect no changes atu50, but
expect uzu at u5p to decrease by 0–7 % fortd'0
2308 ms andT1'9 s for proton. Note that refocusin
does not affect spinA in the control experiments@38# but it
swapsu0L& and u1L& halfway during storage, symmetrizin
the amplitude damping effects in the coding experimen

FIG. 13. Simulated output states, plotted similarly as in Fig.
The simulation results are fitted by ellipses similar to those of
experimental data.
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Therefore, we expect increased attenuation with storage
in the control experiments only. This matches our obser
tions thatI (u5p) decreases from 8% to 16% in the contr
experiments, and remains 8% in the coding experime
Moreover, earlier data taken without refocusing~not pre-
sented! have the same trend of increased attenuation w
storage time in both the coding and the control experime
These are all in accord with the hypothesis that amplitu
damping is causing the observed effect.

The second unexplained discrepancy is that the ou
states span more than a semiellipse in the coding experim
but slightly less than a semiellipse in the control experime
We are not aware of any quantum process that can be a c
of it. It is notable that the output states and the fitted ell
ticities can be used to infer the initial values ofu, and they
are roughly proportional to the expected values for each
lipse. The proportionality constants are 5–8 % higher th
unity in the coding experiment, and 0–1.6 % lower in t
control experiments. Moreover, similar effects are obser
in many other experimental runs. Therefore, this is likely
be a systematic error.

We have no convincing explanation for the anomalo
spacings between the ellipses in the experiment. Howe
from the fact that all the data points belonging to the sa
ellipse are well fitted by it, the anomalous spacings are
likely to be caused by random fluctuations on the time sca
of each ellipse experiment. The effect of the anomalous sp
ings is reflected in the scattering of the ellipticities of t
data and the large uncertainties in the quadratic fits.

While it is impossible to eliminate or to fully explain
these imperfections, it is possible to show that the deviati
cannot affect the conclusion that error correction is effecti

Effects of the discrepancies. We now consider the effect
of the discrepancies on the ellipticities and the inferred
delities in the experiments. First of all, radial attenuation
the signal due to rf field inhomogeneity does not affect
ellipticities nor the inferred fidelities~taken as conditiona
fidelities!. Second, different expressions for the ‘‘ellipticity
are not equivalent when the output states do not form per
ellipses. However, they differ by no more than 7 and 3%
the control and the coding experiments.u offsets along the
ellipses are not reflected in the ellipticities, resulting in ov
estimated inferred fidelities. This is bounded by 3%. T
scattering of the ellipticities due to anomalous spacings
tween the ellipses is averaged out with curve fits to the d
The most crucial point is, none of these effects have a
pendence on the storage time that can be mistaken as
correction. Therefore, the effects of error correction can s
be confirmed in the presence of all these small discrepan

C. Overlap fidelity

The two previous subsections dealing with the ellipticit
provide an analysis of the global performance of the code
stricter analysis is provided in this section using the over
fidelities given by Eq.~73! in Sec. III. The minimal overlap
reflects all defects and deviations hidden in the ellipticities
well as other distortions such as that caused by amplit
damping.

All measurements are normalized using the amplitude
u50 as described in Sec. III. In the control experiments,
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output states atu50 are least affected by amplitude dampin
and rf field inhomogeneity. Therefore, the normalization c
be done accurately. In the coding experiment, the signa
tenuation atu50 due to rf field inhomogeneity can lead t
overestimated fidelities. We determine the uncertainties
to rf field inhomogeneity by the following method. For eac
storage time, the amplitudes of the accepted and the reje
states atu50 are summed. The sum is compared with t
corresponding amplitude atu50 in the control experimen
to estimate the attenuation due to rf field inhomogeneity. T
effects on the overlap fidelities are bounded to below 2
The errors in the measured peak integrals are propagate
the fidelities, which result in standard deviations no mo
than 0.7%. We apply similar procedures to the simulat
results. The net error probabilities, given b
12F for the control and 12FC for the coding experiments
are plotted in Fig. 14. The large difference in the rates
growth of error probabilities confirms the effectiveness
coding even when a stricter measure of fidelity is used.

VI. CONCLUSION

We have demonstrated experimentally, in a bulk NM
system, that by using a two-bit phase damping detec
code, the distortion of the accepted output states can
largely removed. These experimental results also provi
quantitative measures of the major imperfections in the s
tem. The principle source of errors, rf field inhomogenei
was studied and a numerical simulation was developed
model our data. Despite the imperfections, a net amoun
error correction was observed, when comparing cases
and without coding, and including gate errors in both cas

Our analysis also addresses several theoretical ques
in quantum error correction in bulk samples such as the
delity measures of deviation density matrices. In the follo
ing, we conclude with some observations regarding quan

FIG. 14. Overlap fidelity as defined in Eq.~73!. Points indicate
experimental data and dashed lines indicate simulation results
ror bars represent 95% confidence level.
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PRA 60 1939EXPERIMENTAL REALIZATION OF A TWO-BIT PHASE . . .
error correction in bulk systems, including syndrome m
surements, the equivalence between error correction
logical labeling@6,9#, the applicability and advantages of d
tection codes, and some issues in signal strength.

Projective syndrome measurements traditionally e
ployed in the standard theory of quantum error correction
impossible in ensemble quantum computation. Measu
ments via the acquisition of the FID do not reduce individu
quantum states and provide only ‘‘average syndrome
Moreover, the quantum states are destroyed after acquisi
However, the important point is that syndrome measurem
is not necessaryin error correction@39,13#.

In each molecule, the syndrome bits carry the error s
drome for that particular molecule after decoding. These
can either be used in a controlled operation to correct
error @39#, or in the case of a detection code, to ‘‘logical
label’’ the correct and erroneous states. Conversely, log
labeling to obtain effective pure states can be considere
error detection: unsuitable initial states are ‘‘detected’’ a
are labeled as ‘‘bad’’ to start with. Both processes invo
ejecting the entropy of the system to the ancilla bits. Er
detection and logical labeling are therefore similar conce

The distinction between correction and detection code
blurred when using bulk systems. The objective of error c
rection is to achieve reliable data transmission or informat
processing with a high probability of success. When inf
mation is encoded in single systems, encoding with an e

FIG. 15. Experimental data described in Sec. V. The solid lin
which are linear fits to the data points, indicate the flow directio
of the points on the Bloch sphere subject to phase damping. In

no coding case, the flows are nearly planar, towards theẑ axis,
whereas in the encoded case, the flows are nearly radial, tow
the center.
-
nd

-
re
e-
l
’’
n.
nt

-
ts
e

al
as
d

r
s.
is
r-
n
-
or

detection scheme will fail to provide reliable output for tw
different reasons: accepting an erroneous state or losing
state upon the detection of an error. Therefore, cod
schemes capable ofdistinguishing and correctingerrors are
necessary to improve the probability of successful data p
cessing. In contrast, in a bulk sample, a large initial red
dancy exists upon preparation, and the combined signal o
the accepted cases forms the output. Therefore, rejectio
the erroneous cases results in a reduction of the sig
strength in the improved accepted cases without necess
causing a failure. Detection codes thus provide a trade
between probability of error-free computation and sign
strength.

As suggested by this analysis, and in concert with o
experimental results, it thus makes sense to use detec
codes instead of correction codes in bulk quantum comp
ing systems under certain circumstances. Fundamentally,
valuable to be able to interchange resources depending
their relative costs. This is illustrated by the following simp
example. Suppose a total pool ofm qubits is available for
transmission, and one just wants to correct for single ph
flip errors of probabilityp. Using a three-bit code, one woul
obtain an aggregate signal strength ofm/3, with fidelity
123p2, whereas with a two-bit code, the accepted sig
strength would bem(122p)/2, with fidelity 12p2. There-
fore, whenp<1/6, the two-qubit code performs better in th
model due to its higher rate.

Another example relevant to bulk computation aris
when the encoding and decoding circuits fail with probab
ity proportional to the number of elementary gates used.
though errors in consecutive gates can be made to ca
sometimes, this basic scenario is substantiated by our ex
ment, in which imperfect pulses contribute significantly
the net error. Assume now that we haven molecules, which
are either two- or three-qubit systems. Let us compare
performance of the two- and three-bit codes, based on
strength of the correct output signal. Because the correc
code requires at least three times as many operations a
detection code@40#, the figures of merit obtained for the tw
schemes aren(123pg) andn(122p)(12pg), respectively,
where pg is the gate failure probability. In this model, th
detection code performs better forp<pg /(12pg) due to the
simplicity of the coding operations.

A third example is the case of current state NMR quant
computation at room temperature, in which the intrinsic s
nal strength decreases exponentially with the number of

,
s
he

rds

FIG. 16. Ellipticities obtained in the chloroform experiment
with ~a! proton and~b! carbon as the ancilla. Carbon dephases mu
faster than proton. Error bars represent 95% confidence level.
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FIG. 17. Experimental and ideal density matricesr0 , r1 , r3 , r4 and r5. The basis is as indicated in the diagram. For each den
matrix, the amplitudes~top! and the phases~bottom! for the corresponding entries are plotted. The amplitudes are shown in arbitrary
and the phases of entries with small amplitudes are omitted. The data are taken for a coding experiment withu5p/2 andtd'123 ms~24/
J).
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bits @6,9,34#. In this model, the initial signal strength of a
effective pure state ofm qubits is approximately of orde
22m, and thus, for an ensemble ofn molecules, the signa
strengths of the outputs from the correction and detec
codes are aboutn/8 andn(122p)/4, respectively. Accord-
ing to this measure of performance, the detection code
performs the correction code forp<1/4 (p<0.27 in our ex-
periments!.
n

t-

If signal strength indeed decreases exponentially withm,
then some interesting generalizations can be made. For
trary qubit errors, at-error detection code has distanc
d>t11, while a t-error correction code has distanc
d>2t11 @26#. If one encodesk bits in l, the extra number of
qubits used,l 2k, satisfies the singleton bound@23,42,43#,
l 2k>2d22. Therefore, the output signal strengths for d
tection and correction codes would be approximately prop
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tional to @12p f(p)#/22t and 1/24t, where f (p) is a polyno-
mial. The detection code is thus always better asymptotic
in this model@41#.

Our work illustrates how a careful study of dynamics
bulk quantum systems can provide a valuable opportunit
demonstrate and test theories of quantum information
computation. The development of temporal, spatial, logic
and related labeling techniques opens a window allow
information about the dynamics of single quantum syste
to be extracted from bulk systems. Furthermore, by syst
atically developing an experimental toolbox of quantum c
cuits and quantum error correction and detection codes,
periments that test multiple particle quantum behav
become increasingly accessible. With improvements in
initial polarization in the systems and recently developed
beling algorithms that do not incur exponential signal lo
@44#, and with better methods to control the major source
error, the rf field inhomogeneity, we believe that furth
study of bulk quantum systems will complement the study
single quantum systems, provide new insights into the
namical behavior of open quantum systems, and further
potential for quantum information processing.
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APPENDIX A: MIXED STATE DESCRIPTION
OF THE TWO-BIT CODE

Recall that the initial state after ancilla preparation
given byr05sz^ (I 1sz)/2 @see Eq.~52!, with va omitted#.
After Ya(u), the new density matrix is given by

r15~cosusz1sinusx! ^ ~ I 1sz!/2. ~A1!

Without coding, phase damping changes the density
trix to

r5
control5@cosusz1~122pa!sinusx# ^ ~ I 1sz!/2.

~A2!

With coding, the encoding, phase damping, and decod
change the density matrix tor3 , r4, andr5:
ly

to
d

l,
g
s
-

-
x-
r
e
-

s
f

f
-
e

-

.
-

to
l,

e,

-

a-

g

r3
coded5cosu~sz^ sz1sy^ sx!/21sinu~sx^ I 1I ^ sy!/2,

~A3!

r4
coded5cosu@sz^ sz1~122pa!~122pb!sy^ sx#/2

1sinu@~122pa!sx^ I 1~122pb!I ^ sy#/2,

~A4!

r5
coded5cosusz^ @ I 1~122pa!~122pb!sz#/2

1sinusx^ @~122pa!I 1~122pb!sz#/2

~A5!

5cosusz^ @~12pa2pb12papb!~ I 1sz!

1~pa1pb22papb!~ I 2sz!#/2

1sinusx^ @~12pa2pb!~ I 1sz!

1~2pa1pb!~ I 2sz!#/2 ~A6!

5@cosu~12pa2pb12papb!sz

1sinu~12pa2pb!sx# ^ ~ I 1sz!/2

1@cosu~pa1pb22papb!sz

1sinu~2pa1pb!sx# ^ ~ I 2sz!/2. ~A7!

Alternative understanding of the code. The operation of
the code can be further understood using the above mix
state description. Without coding, the input qubit is stored
the termssz^ I andsx^ I , which decay at different rates an
distort the state asymmetrically. With coding, the input qu
is stored in the terms (sz^ sz1sy^ sx) and (sx^ I 1I
^ sy), which decay at the same overall rate to first ord
The resulting decoded state therefore shrinks radially up
first order.

When subject to phase damping, the points on the Bl
sphere move inwards transversely without coding, distort
the shape axisymmetrically~Fig. 15!. In contrast, the points
move somewhat radially with coding, preserving the sphe
cal shape better.

APPENDIX B: THE CASE OF VERY DIFFERENT T2’S

While the case of equalT2’s is interesting from a theoret
ical standpoint, different spins in a molecule typically ha
quite differentT2’s. To study the two-bit code in this regime
we performed experiments with carbon-13 labeled chlo
form dissolved in acetone@45,9#. All parameters were similar
to the sodium formate sample, except for the relaxation ti
constants.

In the chloroform experiment,T1’s were 16 s and 18.5 s
andT2’s were 7.5 s and 0.35 s for proton and carbon, resp
tively. Separate experiments with the ancilla dephasing m
slower or faster than the input were performed by int
changing the roles of proton and carbon.T2* ’s and td’s were
as listed in@46#. The ellipticities are shown in Fig. 16.

From Fig. 16~a!, it is apparent that coding almost remov
the distortion entirely when a much better ancilla is ava
able. The question is, is coding advantageous over storin
the good ancilla alone? Theoretically, coding is always
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vantageous because the error probability is always redu
from pi ( i being the input spin! to papb . Figure 16~b!
shows that experimentally such improvement is margin
because the advantage of coding is offset by the noise in
duced. Therefore, when theT2’s are very different, the bottle
neck is the dephasing of the bad qubit.

APPENDIX C: TOMOGRAPHY RESULTS
AT MAJOR STEPS

Quantum state tomography@9# is a procedure to recon
struct the density matrix given a certain set of measureme
et
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In two-spin NMR systems, 8 out of the 15 coefficients,ci j ,
in the Pauli decomposition are obtainable from the peak
tegrals, Eqs.~35!–~38!. The remaining seven parameters c
be obtained by repeating the measurement process with
ditional readout pulses before acquisition. These pulses
mute the coefficientsci j . A series of nine experiments with
different readout pulses is sufficient to reconstruct the co
plete deviation density matrix.

We reconstructed the deviation density matrices in
coding experiments. The results foru5p/2 and td
'123 ms are shown in Fig. 17. The ideal matrices w
calculated using equations derived in Appendix A.
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