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We consider the problem of how to manipulate the entanglement properties of a general two-particle pure
state, shared between Alice and Bob, by using only local operations at each end and classical communication
between Alice and Bob. A method is developed in which this type of problem is found to be equivalent to a
problem involving the cutting and pasting of certain shapes along with certain coloring problems. We consider
two problems. First, we find the most general way of manipulating the state to obtain maximally entangled
states. After such a manipulation, the entangled sfdt®st|22)+ - - - +|mm) are obtained with probability
pm- We obtain an expression for the optimal average entanglement obtainable. Also, some results of Lo and
Popescue-print quant-ph/970703&ertaining to this problem are given simple geometric proofs. Second, we
consider how to manipulate one two-particle entangled siateto another| ') with certainty. We derive
Nielsen’s theorentwhich states a necessary and sufficient condition for this to be possegiteg the method
of areas[S1050-29479)01809-7

PACS numbd(s): 03.67.Hk

[. INTRODUCTION states will transform to one another in this way. Niel§éh
has completely solved this problem. However his proof of
Quantum entanglement has many applications includindpis theorem uses some unfamiliar mathematics. An alterna-
quantum teleportatiofil], quantum cryptography2], and tive reasonably simple proof of Nielsen’s theorem is given
quantum communicatiof3]. This has led people to regard here which, again, involves cutting and pasting of areas
entanglement as a resource. However, entanglement can e}{ong with a certain coloring problem.
ist in different forms and so it is useful to know how it can _ The main advantage of this method is that it provides a
be manipulated from one form to another. In this paper the/iSua@l way of solving various problems relating to the ma-
problem of manipulating a general pure two-particle en-Nipulation of two-particle pure entanglement. It is not neces-

tangled state in order to obtain maximally entangled stateS2'Y 1 develop vastly different methods for each problem.
will be considered. We will also consider the problem of

how to manipulate one general pure two-particle entangled !l OBTAINING MAXIMALLY ENTANGLED STATES

state to another. Alice and Bob are allowed to do whatever A. Introduction

they want locally and they are allowed to communicate clas-
sically with one another. They are not allowed to exchang(%
guantum states. This type of situation has already been muc
discussed in the literature. The problem of how to optimally [

manipulate a large numbeN, of copies of a general pure |¢):E \/)\_i|i)A|i)B, 1)
two-particle entangled state into maximally entangled states =1

by local means has been completely solved in the asymptotic

. : Where we choos@;=\,; and where the statds), g are
limit N—co [4]. However, the perhaps more basic pr0bl‘c‘\morthonormal. We want to manipulate this state in order to

of hpw to ma_nlpulate a single copy of a general pure two-Obtain states which are of the form

particle state into maximally entangled states has not been so

extensively discussed. The most significant work on this is 1 m

by Lo and Popesc[b], who prove certain bounds relating to lom)=—= > [K)alK)g. )

this problem. However, their proofs, while being extraordi- Jm &1

narily ingenious, are rather difficult to follow. The method

developed in this paper, which completely solves the probWe will call this state amm-state. Anm-state is equivalent to

lem, involves the cutting and pasting of areas along with dog,m copies of 2-statep4]. After the process is completed,

coloring problem. Once the basic methods have been put iwe should have a certaim-state with a certain probability

place, it is very easy to picture what is happening. Thisp,,. Particle A goes to Alice and particl® goes to Bob.

method is used to find the maximum obtainable average erAlice and Bob are allowed to perform whatever operations

tanglement and to derive a formula of Lo and Popescu whiclthey want locally and also they communicate classically with

gives the maximum probability of obtaining a given maxi- each other. This can happen in the following way. Alice

mally entangled state. performs a measurement and communicates the result to
A related problem is how to transform one pure two-Bob, who then performs a measurement which depends on

particle entangled state to another, and to establish whicthe result of Alice’s measurement, and then Bob communi-

The most general pure two-particle state can be written in
He Schmidt form 7]
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cates his result back to Alice and she makes another mea- niN
surement, and so on back and forth. This is the most general
way in which Alice and Bob can manipulate their state with-
out actually exchanging quantum states in the process. What-
ever measure of entanglement we employ, the amount of
entanglement should not increase during such a process. Lo
and Popescu show that, for the very special case of a two-
particle pure state, this process is equivalent to one in which
Alice makes one measurement and communicates the result
to Bob, who then may perform a unitary evolution operation
on his particles. The reason for this significant simplification
is that, due to the Schmidt decomposition, any operation by
Bob is equivalent, so far as the resulting form of the state is FIG. 1. The start state can be plotted on a graph. Such a graph is
concerned, to some operation by Alice. Hence, Alice cartalled an area diagram. This area diagram has step structure in
simply do everything herself in one go and then communi-which the steps go down towards the right.

cate the final result to Bob. The most general operation pos-

sible by Alice is a generalized measurement. This is equivadnto the|l)s basis is equivalent to the most general proce-
lent to Alice introducing an ancillaS, performing a general dure for manipulating the two particles by local means to
unitary evolution on particléA and the ancillaS, and then ~m-states. We will use Eq4) later when we come to show
making a projective measurement on the ancilla. Let ughat the method developed in the next section is equivalent to
imagine that the ancilla has a basis set of stites Since the most general method.

we allow a completely general evolution éf+S, we can

assume, without loss of generality, that the final measure- B. How to obtain maximally entangled states

ment projects onto subspaces spanned by the stbtes
Furthermore, it is shown in the Appendix that there is no
advantage to be had by performing a nonmaxial, de-
generatgmeasurement and so we can assume that this me
surement is maximal and projects onto the operdiegl|.
For each outcomd, the two particlesA and B should be
projected into amw-statelgom)', where

Now consider the initial statg)) given in Eq.(1). We will
introduce an ancillaR, in the state|1)g. This ancilla has
basis statefn)g, wheren=1,2,.. .N. We will take N to be
e'ew large and will want to consider the case whiRreends
to infinity. We define the integers;=N\;, where, for the
moment, we are taking the, to be rational numbers so the
integersN; can be found withN finite. This constraint can be
m relaxed wherN tends to infinity. The initial state dRAB is
|¢m>|:i P 3 |1)rl¥). Alice now evolvesR+A using the following trans-

I \/ﬁ &1 formations.

The superscript is included since we do not require that the

Schmidt vectors satisfik)s=|k)5 for | #1”. After Alice has
communicated the result, of the measurement to Bob, Bob
could rotate these vectors into the same standard form for allhe fact that these transformations evolve orthogonal states
| (thus removing the need for the superscript at this $tageto orthogonal states ensures that they can be implemented by
but this is not important. It is enough that Alice and Bob unitary evolution. Under these transformations, the state
know whatl is so they know what state they have. We do not|1)r|#) evolves to

require a superscripton the|k), states since, as explained N

below, Alice can rotate her Schmidt vectors to standard form 1 ' o

as part of the overall unitary transformation she performs. W stard = N Z ngl IMrliYali)e (6)

Just before Alice makes her measurement projecting onto

[I)s, the state of the system will be which we will call thestart state We see that each of thé
terms in this superposition has the same amplitude. Each of
) = I I 4 these terms will be represented by a rectangular element
| arged Z \/;” >S|¢m'> @ width 1 and height M. The area of the element isNLand is
equal to the probability associated with the corresponding
where the coefficients/, can be taken to be real since any term in Eq.(6). Each element can be labeled by,i() corre-
phases can be absorbed into appropriately redefifed  sponding to the termin)gli)alj)g (initially i=j but after
Note that if, at this stage, thé&), states had a superscript  Alice has performed operations on her particles this will not
then they could be rotated into standard form by applying aecessarily be the case for every teriihe elements are
series of controlled unitary operationd,, to A where the then arranged on a graph where elements having the same
control is the|l)s state. At this stage Alice has not done are placed in the same row and elements having the same
anything which is irreversible. Having completed her localare placed in the same column. The resulting graph looks
manipulations, Alice will perform a maximal projective mea- like a series of steps as shown in Fig. 1. We will call this the
surement. It follows from the result of Lo and Popescu thaiarea diagram The total area under the steps is 1 correspond-
manipulating the state into the for(d) and then measuring ing to the total probability. On the vertical axigN is plot-

1 [
|1>R|i>A~W( 21 |n>R) liYa- (5
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ted. On the horizontal axis thewhich appears irfi), is
plotted. For smalh everyi position will be filled. However,
because of the form of the stai®), oncen gets bigger than

N, there will no longer be anyl),|l)g terms. This is the
reason for the step at=N,. There will be further steps at
eachn=N;. The height of the rightmost step iN,/N

=\, . Subsequent steps will be at heightsas shown in Fig.

1. If a projective measurement were to be performedR@t

this stage, then, corresponding to each outcoimthe state

of A+B would be projected onto am-state wherem is
equal to the number of elements in th&h row on the area
diagram. This will give a distribution afn-states with prob-
abilities which are equal to the large horizontal rectangular
areas of widthm and height\ ,,— \ .1 formed by extending

the horizontal parts of the step back to the vertical axis.
However, the area in the diagram can be moved around by
Alice in a way to be described below by performing local  piG. 2. Area is transferred up the area diagram to go from the

unitary operations. When this is followed by a projective start steps shown by the bold line to the target steps shown by the
measurement oR, different distributions ofn-states can be dashed line. The total area transferred u4sT.

realized.

The termgn)gli)ali)s and|n")gli")ali")s are biorthogo-  with no change for all othein”)g|i”)a. We will call this the
nal if and only if g(n|n")ga(ili")a=0 (orthogonal at Al-  swap operation. The effect of this operation is to move ele-
ice’s end and g(j|j")g=0 (orthogonal at Bob’s endIf two  ments around on the area diagram. If there are elements at
terms are only orthogonal at either Alice’s end or at Bob’shoth the f,i) and (0',i’) positions, then they will have their
end, then they are monoorthogonal. In fact, since all termgositions swapped. If there is only an element at one of the
are located at distinct places on the grditat is, they have two positions, then it will be moved to the other position
different (n,i)], they will always be orthogonal at Alice’s while the original position will become vacant. These moves
end. Hence, the only pairs of monoorthogonal terms we willill not effect Bob’s part of the state. If two terms are bi-
deal with are those which are orthogonal at Alice’s end andmong-orthogonal before the swap operation is applied to
parallel at Bob’s end. This means that if two terms are eaclyne or both of them, then they will be lirong-orthogonal
monoorthogonal to a third term, then they are monoorthogoafterwards. In other words, the swap operation does not
nal to each other, and hence monoorthogonal terms can kghange the color of the elements. Initially, as stated above,
grouped together into nonoverlapping sets. In the area diall elements in the same row are different colors and ele-
gram we will impose the constraint that all elements in aments in the same column are the same color. In moving
row, that is, for a givem, correspond to terms which are elements of area around, we impose only the constraint that,
biorthogonal. This ensures that when we perform a projecat the end of the process, all elements in a row are different
tive measurement ont®, the resulting state will be an colors. Although elements in any given column start off be-
m-state. ing the same color, we do not demand that this is true at the

We will color all the elements which correspond to termsend of the process. We can move a large number of elements
which are monoorthogonal to one another a given c@hlis  at once. In the limit alN—, the elements will become
is possible since they can be grouped together in nonoveinfinitesimal in height. Hence, in this limit, we can make
lapping sets Elements corresponding to terms which arenorizontal cuts anywhere. We can make vertical cuts along
biorthogonal will be colored with different colors. Thus, ini- the edges of the columns. The area can be cut up into smaller
tially, all the elements in a given column are the same colopjeces and then pieces can be moved around and pasted into
and every column is colored a different color to every othemew positions. It is possible to move area around like this in
column. When area is moved around, the constraint thaény way we want by repeated app"cations of the swap op-
terms corresponding to elements in a row be biorthogonaération. The empty space above the steps can be used as a
means that all elements in any given row must be differenb"pboard for the temporary Storage of pieces of area to fa-
colors. cilitate the rearrangement of area if required.

The method of areas to be developed here involves mov- |n Fig. 2 the original step structure is shown by a full line.
ing area elements around in such a way that there is a n@ new step structure is shown by a dashed line. We will
movement of area up and to the left. We will see that it isimpose the constrairito be justified laterthat the new step
possible to have a net movement of area up the area diagragiructure consists of steps which, like the original steps, go
but not down the diagram. This means that the net movemenicross and dowrbut never up towards the right. The area
of area across any horizontal line drawn on the diagram must==3 S which will be cut away from some parts of the steps
be up. The basic unitary operatiokj(n,i<>n",i"), em- s equal to the areZ=3T, which will be added to other
ployed by Alice is defined by the transformation equations parts of the steps. Each of these areas consisiwhaller

disjoint parts labeled by going up the diagram. Note, area
IMgli)a—=In")eli" A, (7) T, lies between are§, andS, . ;. Note also that the are&

and T, can themselves be made up of disjoint parts. The
[N)Rli"Ya—[M)Rli)As (8)  constraint that there is no net movement of area downwards




PRA 60 METHOD OF AREAS FOR MANIPULATING THE.. .. 1915

(a)

FIG. 3. This figure shows the start stefisold line) and the
target stepgdashed lingof the recoloring problem discussed in the
text.

means thak!_,T,<3'",S, for all r'. The original steps are

of height\;. Let the new steps be of heigh{ . Since the
columns are of unit width, these lengths are numerically
equal to the areas of the columns, and hence the constrair
that area is moved only to the left is equivalent to the set of
constraints

[ I FIG. 4. This figure shows the recoloring procedure described in
Sa=D o) the text. After the recoloring, no color is in more than one place
=L across any given row.

for all p=1 to | with equality holding wherp=1. umn of the are& so that pointa coincides with poin’ as

We could simply move the areédto the aredl element by shovyn in Fig. 4b). However, it may b_e too long to all fllt into
element by applying the swap operator. However, if we digthe rightmost column_of ared (as is indeed the case in our
this it is likely that elements corresponding to monoorthogo-€x@mplé, and hence it will displace some of the area in the
nal terms would end up in the same row. If we can redistrib-column below this, marked as arBan Fig. 4(a). Because of
ute the area so that it corresponds to the new step structuf@@ nature of the swapping operation, this akeavill be
but without there being any elements of the same color in th&0Vved to the old position oA so that poini coincides with
same row, then we will have realized another distribution ofP0int b” as shown in Fig. é). Area A is now in its final
mrstates. This is because Alice could then perform a projecPosition. Let us imagine that the column from which afea
tive measurement oR and corresponding to each outcome, Was taken was colored red. This red color will now be di-
n, will be an m-state and theserstates will clearly have a Vided between what is left of the original column and the
different distribution. The probability of a givem state is areaA in its new position. Since the steps go up towards the
equal to the area of the horizontal rectangle formed by proleft it is impossible to have red at more than one position in
jecting leftwards the top and bottom of the step at position @ny given row. The rightmost column dfis now filled so
This rectangle has widtin and height\/,—\/.,,. Hence, W€ start on the next rightmost column. We swap d@dato

for the new area diagram, the probability of getting ran position in the next rightmost colur_nr_1 of ardaAgain, thi_s
; could be too long. In our example it is too long and projects
state is

into the column below into the area markédHenceC will
Pm=(\\ =N} )m. (10) be moved to wherd8 was. This takes us to the situation
shown in Fig. 4c). Now we move are& into position in the
We will show first that this coloring problem can be solved next rightmost column of ared. This could again be too
and second that the process described here is general in tleng and project into the column below, but in this example
sense that any distribution of-states which can be achieved this is not the case. Rather, ar€as too short leaving a gap.
by local means can be achieved by this method. Hence, Egblence no area is moved back to the rightmost colums of
(9) and(10) define the possible distributions pfstates that and this means we have finally dispensed with the net effect
can be obtained. of moving the area from this rightmost column®fNow we
The solution to the coloring problem will be explained by select the next rightmost column & In our example this
reference to the example shown in Fig. 3. This example haarea is marked in Fig. 4(c). This area is now moved up
R=1 (since all of T is above all ofS). However, it will be  following the same procedure. Thus, we mdvénto posi-
clear that the method works for the general case. We start biyon as high as possible in the rightmost columriTofvhich
taking the rightmost column in the ar& This is areaA in ~ has not yet been filled. This places it below af2dt could
Fig. 4. This area is then swapped into the rightmost col-be the case thaf is too long and projects into the column
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below, in which case some area would be swapped back and If we project onto/n)g, we will obtain anm,-state where

we would have to continue as before. However, in our parm, can be read off from Eq(13). We can relabel the's
ticular example are® fits in belowC and the recoloring is such thatm,, ;<m,. Thus, we can impose the following.
finally completed as shown in Fig(d). This method can be Constraint A If outcomen corresponds to am,-state,
applied to any recoloring problem of this nature. The generathen, without loss of generality, we can impose the constraint
method is that area is swapped from the rightmost nonemptshatm,,, ;<m,.

column ofSto as high a position as possible in the rightmost By examining Eq.(13) we can see that there is a second
nonfull column of T. We note that a given color can end up constraint that can be imposed on the form of the final target
in, at most, two different columns and that any color movedstate.

from a column will always end up higher than its original  Constraint B.For the target state we can, without any loss
position. This means that it is impossible for two elements ofof generality, impose the constraint that

area which started in the same colurtiraving the same

color) to end up in the same row. Hence, the coloring prob- , ) 1
lem has been solved. |60l (| V¥ {arged|*< R (14
C. Proof that this is the most general method where| 6) is any normalized state for systeBnsince this is

; P ; rue of Eq.(13).

of Z?ev;ngpsr;ﬁ;v r;:?:t(;tial‘zrg(;qss}lr? |§;§ gz\ﬁ&n@;y%\,ﬁ?he?i We can identify the ancill& with the anquIaR introduced
consistent with maintaining the step structure, we will now€alier. HenyceSzR andM=N. Now con3|d,er the statd).
show that this corresponds to the most general way of ma2!"C€ Alice’s operations do not effect Bob's system, we see
nipulating entanglement to produnestates in the sense that that we have the following constraint. _
any distribution ofm-states which can be achieved by local  Constraint CWhile the stat¢¥) is being manipulated by
operation classical communication can be achieved by thilPCal unitary operations by Alice, we will always have
method. The idea of this proof will be to show that the target
state(just before Alice measures onto the angitan be put la(i | ¥ 2=, :& (15)
into a certain form which is inconsistent with any movement N
of area downwards.

We have already established that the most general findpr all j.

state just before Alice makes her measurentest call this Since Eq/(6) is related to Eq(1) by reversible operations,
the target state is the state given in Eq4). If we write », ~ We can take Eq(6), which corresponds to an area diagram,
= /m,, then Eq.(4) becomes as our starting point. We will now see that area cannot be

- moved down in the area diagram. For the purposes of this
! proof, consider a change in the way the area diagram is plot-
[Viarged =2 2, Vnil1)dk)alKp - (1) ted such that thgin |j)s (rather than thé in |i),) is plotted
- on the horizontal axis. This will simply have the effect of
redistributing elements horizontally but not vertically since
n/N is still plotted on the vertical axis. We label elements in
this modified area diagram bjn,j}. ConstraintC implies
that the column corresponding to a giveon this modified
area diagram will always have the same area. This is because
Alice’s actions cannot effect the total aréar probability)
associated with colump However, Alice can change the
1)g— L In)s, (12)  Vvalue associated with area elements and hence she can move
\/W new, the area in columfup and down. It is possible that she can
bring about a net movement of ar@a probability) down in
where W, is the set ofM, integers from E!_{M,)+1 to  this column. This would lead to the area being compressed
E|r=0Mr (we setM,=0). Under this transformation, E¢) into a smaller space than it would “naturally” fit. Any net
becomes movement of area downwards, whether on {hg} picture
or the (n,i) picture, would correspond to this happening in at
1 my least ong column. This is exactly what we want to rule out.
Vet == > 2 > In)gk)alk)s. (13 We will now see that any such net movement downwards
M T 1w will violate constraintB (which we were free to impose on
o ) ~ the target staje
Every term in this state has the same amplitude. In arriving |t at some stage, the state has been manipulated to the

at this state from the previous target sta@sand (11), we  state| W), then the area of thén,j} element will beA,;
have done nothing that is irreversible. Furthermore, if we= | ¢j|(n|W)[2. Initially, for the start statd W, in Eq.

measure onto thén)s basis, we are just as likely to get a (6), we have
givenm-state as with the previous target state. Hence, we can
regard this as our new target state. Any method by which n’ ,
. . . . . n
m-states can be obtained is equivalent to manipulating the E AStArte (16)
state into the form(13). =™ N

We can consider further unitary transformations by Alice on
this state to put it into a form in which every term has the
same amplitude. Let the dimension of the anc8lbe M and
define M;=My, (again we will letM—x) and let Alice
perform the following transformations on E@f):
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for all n’<N;. However, if there is a net movement of area A

down the area diagram with respect to the horizontal fine n/N

=n’, then, since the total area in a given column is constant

(by constraintC), this net movement of area downwards _\_

must happen in at least one column of the modified area
diagram. Hence, for at least one valuejoive must have

n’'<N;

n!
> AE‘]-’QEBW. (17)

n=1

kmax |

U,

(18 S

The contradiction between Eqg&l7) and (18) proves that a m-r m-r, m I
net movement of area downwards is not possible on the
modified area diagram and hence neither is it possible on the FIG. 5. This figure shows a strategy for obtaining the maximum
unmodified area diagram. Note that this proof goes througﬁro_bability of a giverm-state. The ared is equal to the are& This
for any sort of operations by Alice and in particular it does d€finesro and\ g .
not assume that the only operations Alice can make are the
swap operations defined in E(Y). width m,, to the end of rowB, which has original width
To complete the proof that the manipulations describedng. Since we can only move area to the left, we require that
earlier are equivalent to the most general way of manipulatmg+1<my (if mg+1=m,, then the rows will simply have
ing the state to obtaim-states, we note the following. interchanged their lengths and hence there will be no change
(i) The target statd13) can be represented on an areain the distribution ofm-states. The original contribution of
diagram in whichn/N (whereN=M) is on the vertical axis these two rows td will be
and m, is plotted on the horizontal axis. Singg, is an
integer and since we can impose constraintithout loss of
generality, this area diagram will have a step struciume
which the steps of integer width go down towards the pight
(i) The initial state can be taken to be the start statéThe contribution afterwards will be
|V given in Eq.(6) and this can be represented by an
area diagram with the step structure. my 1 mg 1
(iii) Tﬁe total area of ch))th of these diagrams is 1. There-2 Efina= (W_ N loga(ma—1) + WJ’ N) loga(mg+1).
fore, the most general way of manipulating the start state into (21)
m-states corresponds to going from one area diagram with
the step structure to another with the step structure in a walt can only be advantageous to move elements of area if
consistent with the constraint that there is no net movemend Esina— AEiniial 1S positive. However, by making the substi-

However, sinceM =N, Eqg. (14) implies

n’<N; n’

ta'rgetg
n2 i Anj N

»
>

Mp Mg
AEinitiaI:W log,mp + N log,mg . (20)

of area downwards. tutions
(iv) The method, employing the swap operator, discussed L .

previously can be used to go from one step structure to an- _ _

other in any way that is consistent with there being no net MaA=X+5+0 Mg=X—35—T, (22)

downward movement of area. Hence, it is equivalent to the

most general method. we can see thal\Egn,— AEiiia IS Negative ifr>0. The

constraint tham,>mg+ 1 implies thatr >0 and hence any

D. Getting the highest possible average movement of area must lead to a smalekVe also see from

. . this that since only one distribution ofi-states leads to the
If we are only interested in the average amount of en-

. . maximumE, any attempt to alter the distribution ofstates
tang!ement n Fhe form of maximally entangled. states we caf) i resyit in a decrease & (this point was also made by Lo
obtain, this being equal t&= X ,plog,m, then it turns out

. ; and Popesci5]).
that any movement of area will decrease this average. Hence pesciS))

this average has a maximum given by the original area dia-
gram E. Proof of a formula of Lo and Popescu

We will now use this method to derive a formula central

_ to the paper of Lo and Popesfhi. Imagine that we have a
EM¥= Am—A\ m log,m. 19 )

% (An~Am-a) % (19 general two-particle pure entangled state and we want to

have a giverm-state with as high a probability as possible.

To see that any movement of area will decrease this averag@/e want to know what this probability is and what strategy
consider moving one element on the area diagfaith area  to use. This corresponds to the area redistribution shown in

equal to 1N) from the end of rowA, which has original Fig. 5. The target area diagram consists of a block of width
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m with an additional bit on top. This defineg and )\mixro that there will exist a procedure in which an ancilla of di-
(see diagram The areaS has been moved to the ardga Mensionz rather thanN is used to effect the same general-
where these two areas are equal. The height of the maifed measurement and this will lead to an exact rather than

block isA™ | which can be calculated since we know that@" @Pproximate method. In addition, Alice need only com-
fo municate one of the signals to Bob, thus answering objec-
I tion (ii).
roAme, =Up, #T=U, +S= > N, (23
i=m-ro+1 Ill. PROOF OF NIELSEN’'S THEOREM
where the last equality follows from the fact that thi A. Introduction

column is of area\;. The total probability of getting the  The set of constraints9) is exactly Nielsen's condition
mestate is equal to the area of the main block, g™ [6] for being able to manipulate an entangled stai@, with
=mAp” . We can use this formula if we know wheg is  schmidt coefficients/x; to another| '), with Schmidt co-
since them\p®; can be calculated from E¢23). This can efficients J\/. However, we cannot immediately interpret

be established by the following considerations. Define théhe new area diagram as being equivalent thy&) state

areaU, to consist of all the columnis=m—r+1 tominthe  since, unlike in the original area diagram, a given column
start area diagram so that can be multicolored. We will see that, nevertheless, we can

use the area diagrams to prove Nielsen’s theorem. This proof
works along similar lines to the previous proof. First, we put
U= > N\, (24)  the target state into step form. Alice introduces an an@lla

t=merd of dimensionM with basis stateH ). If the problem can be
solved, then, for similar reasons to before, she must be able
to manipulate the total state into the form

m

wherer=1,2,...m. The areaU,+T consists of a main
block of widthr and height\ i, " plus, forr #r,, an extra

bit lying outside this blockwhenr <r a bit of T lies outside

this block and whem>r a bit of U, lies outside the block ¥ targed = Z Vg v, (28)
Hence,
where
U+ =0 (25)
|
with equality in the case=r,. Therefore, |l//'>':;1 VN [)ali) (29)

7 (26) Substituting Eq(28) into Eq. (29) we obtain

1
)\maxrc):min(F(UrnLT)
r

_ NN

and we obtain the formula of Lo and Popescu, Wtarge?_El Z Vil gli)ali)g - (30)

|
m i =N i
P min—( E )\i), 27 Define M ;= w \;M. We apply the transformation
r Fli=m=r+1
i 1 3 .
wherer=1,2,. .. ,m. The geometric origin of this formula is [Dsli)i— M, nEW, Msli)a. 3D
now clear.

where W; is the set of integers fromE(L;%Mki)Jrl to

F. Comments on efficiency EL:OM ki (we setMg;=0). Under this transformation, Eq.

The main reason for developing this method is to provide'30) becomes
some degree of conceptual clarity in describing possible en- 1
tanglement manipulations. To this end we have introduced PN T Al
an infinite-dimensional ancilla. Two objections may be IV trger M E| Z ngvn MsialiYe- 32
raised to this{i) Infinite-dimensional systems are unphysical
and so this method is only approximdienless all ther;’'s ~ Each term has equal amplitude in this state. If we project it
are rationa); (i) since there are a very large number of pos-onto |n)s, then we will get a state with, sayn, terms
sible outcomes to the measurement on the ancilla, Alice mugtvherem,, can be read off fron{32)], not all of which are
communicate a lot of information to Bob. In fact, the infinite biorthogonal. We can relabel theés so thatm,=m,,; and
ancilla is not necessary. Consider the final area diagram. Thisence we can draw an area diagram with a step structure.
will consist of a large number of rows. However, many rowsThe terms corresponding to a givenare not necessarily
will have the same colors in the same positions. Hence, thbi-orthogonal and hence we cannot impose on the target area
state ofA and B for these cases is the same. Since a finitediagram the constraint that elements in a row must all be
number of cut and paste actions are required in any manipwolored different colors. Rather we will have a different col-
lation, there will only be a finite numbegz, of distinct types  oring problem. As before, we will identify the systei@snd
of rows even in the limit adN tends to infinity. This means R so thatM =N.
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This transformation has simplified the state of the anéilla
for the terms corresponding to each pi¢gei ]. In so doing,
we have recovered the coefficiegh;/Q. The total state is
5 now

; =5 3 Wil @9

Now, if we measure onto thig|)r basis we get a state which
is a realization of ¢’ if the terms are biorthogonal. In col-
oring terms, this means we require that all the pieces labeled
with the samey in Fig. 6 should be of different color. Thus,
we have another coloring problem. If we can solve this col-
oring problem under the assumption that net movement of
area is up, then we will have given a constructive proof that
Nielsen’s bound can be obtained. In the remainder of this
subsection of the paper, we will show that this can be done
The start state i§¥,» in Eq. (6) and is represented by (this proof can be obmitted on first readjngo complete the
an area diagram with step structure in which each column igroof of Nielsen’s theorem, we need to show that area can
colored with only one color, this being different from the only be moved up. This will be done later.
color of the other columns. The target area diagram is shown A way to solve this coloring problem was suggested to the
in Fig. 6. Since this has been recolored, the columns in thiauthor by Mahtani. This solution is obtained by correcting
diagram will not necessarily be of one color. The height ofthe solution to the previous coloring problem in Sec. Il B.
theith column is\{ =N//N. We chose a numbe@ which  First, this coloring procedure, illustrated by example in Fig.
we will let tend to infinity, though in Fig. 6 we have st 4, is used to go from the start area diagrampresenting
=5. We divide each column up equally in@pieces which |)) to the target diagram, where the heights of the columns
are numbered|=1,2,. .. ,Q starting at the bottom. Thgth ~ are\{ . Now we note that it is a property of this recoloring
piece in theith column is labeledq,i]. If the target area procedure that a given color can end up in at most two col-
diagram has been obtained from the start area diagram hymns. There are two ways in which a piece of area can be
moving finite-sized bits of area arouxas will be the case in moved to the left. Either it can be moved direcths are the
our recoloring strategythen there will be a finite number of piecesA andD in Fig. 4), or it can first be swapped to the
horizontal boundaries between different colors. Some of theight and then be moved back to a further left position than it
pieces[q,i] are likely to have these boundaries on them.started in(as are pieceB andC in Fig. 4). We will call the
However, aQ— o the total area of such pieces will tend to first type directly swappedpieces and the second type of
zero and we can assume that each piece has a unique colpieces, theswapped baclpieces. Since these swapped back
The idea will be to collect all the pieces with a giverSince  pieces(for example, piec®) must be shorter than the piece
their areas are proportional &g , they can correspond to the that displaced them from their original colurtin the case of
new state|y')9. However, each of these pieces having theB this was pieceA), since they always end up at the top of
sameq must be colored with a different color since the termstheir destination column, and since the column they end up
in [¢')9 are biorthogonal. There afg; terms in the state in is higher than their starting column, they must occupy
vector corresponding to each column, and since these aRfoportionally less of their final column than the pieces that
divided intoQ pieces, there am//Q terms corresponding to displaced then{piece B occupies proportionally less of its

[3v4
— ||

FIG. 6. The columns of the target diagram are divided up @to
equal parts. In this figure we ha¥@=5 but we will letQ— .

B. Obtaining Nielsen’s bound

the[q,i] piece which will be of the form{unnormalized final column than piecé\ of its final column. This means
that when the columns are divided up into a large numQ@er,

aN{/Q of equal pieces the colors of the swapped back pieces will
iY== MoliYaliVe. (33) not appear in two pieces with the samedence, we will first

fa.in \/ﬁ n(q_lz),\,i/,QH Ml >A|Jq'>B correct the other colors. However, the procedure which cor-

rects the colors of the directly swapped pieces disturbs this
The total state is the sum of all such terms. We can transforr"operty of the swapped back pieces. Hence, after correcting

the total state by applying the transformation for a bunch of directly swapped pieces, we yvill have to cor-
rect for the swapped back pieces as well. First, we will con-

aN//Q sider the colors corresponding to the directly swapped

g E MRl a— | D rli)a (34) pieces. Before we do that, note that some columns will re-

main unchangedneither have area moved into them or out
of them and hence their color cannot end up in two pieces
with the sameg. These columns can be completely ignored
and we can consider only the remaining columns. We start at

N the rightmost column and go left considering only the col-
(a1 =\ glaeli}aliads-

N; n=(q—1)N//Q+1

for all g,i. This sends the terdiq,i]) to the state

(35  uUmns which have changed. The first changed columns we
meet will be shorter than originally, will each be colored
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both these areas being of the same c@pmand so that color
X; C, is above coloC,, etc. This is shown in Fig.(B) (the role
of areaW will be explained later We chooseY ¢ to be such
that the proportion ofC in L relative to the height ot is
equal to the proportion of, in Ry relative to the height of
X; Ry . This condition can be expressed as

(a)

[ =]
‘

o
et
L8]

IS

| o
b
e
>
-

LY

s

Xt Y Yy

z )\I )\r . (37)
Co| Xr|C; Xi, | €2 v C; L Rk

Furthermore, the ared, of color C, is placed inR, at the

L R, R, Ry same relative position d®, as the areX,+ Y, of color Cy
has been placed in colunin[see Fig. T)]. This ensures
that when the columns are divided up as shown in Fig. 6, but
with Q large, the piecepq,i, ] in L of color Cy will have a

X+Y, different color from the piecefsg,ig ] in Ry since the latter

pieces will be of colotCy,.

Having carried out this correcting procedure for these col-
umns, we see that there is a problem. Pi&ewhich has
been swapped back somewhere to the left if of colorC.
This piece may overlagin the sense of occupying some
C, pieces with the samg) with the pieceY,, also of colorCy,

C which is in columnR;. We can se&’ will not also overlap

Co with the piecesY,,Y3, ... (also of colorCgy) in columns

R,,R;, ... for thefollowing reasons{i) It is smaller than
X;1 and hence can only partly overlap with the piese
+Y, (of color C;) in columnL in Fig. 7; (ii) this piece of
Bolor C, in columnL does not overlap with the coldz, in
columns R,,R3, ... . Hence, this problem only concerns
pieceS’ and columnR;. Let us assume that pie& is in
with only one color, and will have had some area swappegolumnL’ and that the original color of columi’ is Cj.
out of them directly. After one or more of these monochro-\we can use colo€} to correct for pieces’ in L’ andY; in
matic columns, we will meet a column into which these di-R; by essentially the same correcting procedure as before.
rectly swapped pieces have been moved. The last directlyhys we swap a piece @ and of areaV’ from L’ into Y
swapped piece may displace a piece from this column, whick, R, and at the same time swap a piece of c&grand of
will be a swapped back piec€ This piece, when it IS greaw’ from Y, in R intoL’. The area$’ andW’ (both of
swapped back, will end up at a column,somewhere to the 4|01 C,) are collected together at the top of coluinh The
left. But before we get there, we may meet a few moregj e of arean’ is chosen to be just such tHat+W’ (which

monochromatic columnsRy, from which piecesXy have s of colorC,) no longer overlaps with any of the col6, in
been directly swapped. We will courk=K,K—-1,...,1 R,. The maximum size of ared/’ is given by
backwards so first we me&y as we go leftwards. Eventu-

(b) §

X2+Y2

X3+ Y3

BN

FIG. 7. To solve the coloring problem we consider correct

gram by moving the areag, andW.

ally, on our journey leftwards, we meet colurhnnto which S +W W
S has been swapped, then piecgs to X;. When the last , max_ _max (38)
pieceX; is swapped into position, it may displace piege N )\§1

which will be swapped back. Thus, we will repeat the same

story as we continue leftwards. Columns will come inWe could havaV’ smaller than the value given by this equa-
bunches of a few monochromatic colum(ssich asR,) fol- tion since it is possible that not all & overlaps withY; in
lowed by a multicolored colum(such ad.). The columnd. R;. Hence,

and Ry are shown in Fig. (& for the caseK=3. Columns

not relevant to the present discussion are not shown. We S\
label the original color of. asC, and the color oR, asCy. W' = ,—1, (39
Various distanceswhich are numerically equal to areas A~ AR

since the columns are of unit widtlare marked on the fig-

ure. The strategy we will adopt is the following. We note  This correcting procedure is carried out in the following
that, as things stand, the colB in all of R also appears in way. First, the rightmost bunch of columns likg andL are

L and, hence, there must be some of the same color in dikelected. Then the directly swapped pieces are corrected.
ferent columns for the sangg To correct this, we can swap And then the swapped back pieces are corrected. Then the
an areay,, of color Cq from L into Ry, thus swapping the next bunch of columns are subject to the same correcting
same areaY, of C, back intoL. We do this for allk. We  protocol until all the bunches have been corrected. If this
then resort columib. so thatY, lies immediately belowx,, procedure can be carried out successfully, then we will have
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solved this coloring problem. The only possible problem aN
would be if we had to swap more of the colog from L than

there is in the column. However, we can show that this will

not happen. From Fig.(@ we see that the area, of the

original colorCy in L satisfies

. I 2 o i
N — 2 Xy—=S=z=\, =\j . (40 FIG. 8. The ministep form consists of the pieces being arranged
k=1 ' k along thei axis starting with theg=1 pieces.

The inequality must be satisfied since otherwise elements %{Iong thei axis we have they=1 pieces, then the=2

color C, in row L will be in the same row as elements of iaces and so on. This can be accomplished by Alice per-

color C, inrow R, but we proved in Sec. 1 B that this could ¢ ming swap operations. We will call this theinistep form

not happen with this coloring of the diagram. From E@) oy the area diagramWe are, of course, assuming that sys-

and(40) we obtain temA has a large enough Hilbert space to be able to do this.
If this is not the case, then an additional ancilla could be

B AR, _ Mg Xk _ X% introduced to effectively increase the size Afs Hilbert
Yk—)\,_)\, X< = (41) space). Let the state corresponding to this diagram be
LR > Xw+S X X +S |wT. Now we change from then(i) to the{n,j} picture
K K

wherej is thej in |j)g. The {n,j} element can only be
Since S’ has to be corrected folS must also have been Moved up and down the diagram when Alice performs local
corrected for(if L and Ry are taken to represent a general OPerations. Hence, in the, j; picture all the ministeps will
bunch of columns To correct forSwill require an areaV of overlay each other so there will ¢ elements at each posi-

color C, to be swapped into a colunf®! somewhere on the 10N- The height of thgth ?n?lllur?” will beN;/Q. Hence, if
right. By analogy with Eq(39) we have we define A,j=|g(j|s(n|¥™™)|?, then for the start state
| Wiy we have

S\, :
RY Sz n ,

we , (42 S psa 1 Q (44)

Mgy S X +S -1 N
kl

for all n’<N;/Q. The factorQ comes from the fact that
where the second inequality follows sian;,,s)\Rlsz. there areQ sets of ministeps overlaying each other in the
1 o
{n,j} picture.

Hence, Now we go back to ther(,i) picture and consider the
target statg€28). We can apply the transformation
> YW=z, (43)
: 1
.

which means that there is enough of the cdaligrin column Ds V, q;/\q @s: 49
L to complete this coloring strategy. Hence, the coloring
problem has been solved. where V=, Q and W, is the set of integers from

This proof looks rather different from Nielsen's own (2,_3V,)+1 to 3}_,V, (we setV,=0). We will let Q
proof of his theorem since it is pictorial whereas Nielsen’'s—o. Under this transformation, E¢28) becomes
proof is algebraic and relies on a number of mathematical
theorems. However, the method employed by Nielsen, which , 1
involves performingr transforms on pairs of terms, could be W arged = NG Evv layd w9, (46)
described by area diagrams. Thdsé¢ransformscorrespond Qa=w

to a cut and paste operation on two columns in which th‘?/vhere the superscrift is equal tol for qe W, . This state

same proportion is cut from each column and added to the now consists of a number of terrfts) | ' )9 each having the

other. Indeed, another solution to the above coloring problem . G N
can be obtained by translating Nielsen’'s method into thig’aMe amplitude 1/Q. Each term|g)g4")%, can individu

pictorial language ally be put into the step form
aN/Q

C. Proof that Nielsen’s bound cannot be beaten lq)g ¢’ Yi— |V’ ,q)= %2 > InYgliyali)d
. I n=(q—1)N/Q+1
We need to prove that Nielsen’s bound cannot be beaten. (47)

This is equivalent to proving that it is not possible to have

net movement of area down the area diagram. The start staly applying transformations similar to E¢p). If this trans-
corresponds to a step structure. Each column in this can fermation is applied to all terms, then the resulting area dia-
divided up intoQ pieces as shown in Fig. 6. Next we collect gram will consist of a series of ministeps lined up vertically
together all the pieces corresponding to a gigeand place as shown in Fig. 9. Next, Alice applies swap operations to
them in order along theaxis as shown in Fig. 8. Thus, going move these sets of ministeps so that they are lined up along
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/N the most general way of transforming a general two-particle
pure state into maximally entangled states. An expression for

—|_| q=0 the optimal average entanglement was derived. Certain re-
sults of Lo and Popescu were given geometric interpreta-

é tions. This method has also been used to prove Nielsen's
| theorem, which pertains to going from one two-patrticle pure
—1— _ state to another with certainty. There remains a number of
_| 1 open problems relating to manipulation of two-particle pure
— entanglement, which may be possible to solve using the
—l q=1 method of areas. First, we could generalize Nielsen’s theo-
—> rem to the problem where we go from one state to another

I i but not necessarily with certainty. In fact, this has been done

FIG. 9. This shows an intermediate state of the area diagrarrl?y Vidal [8] employing methods different from those in this

involved | ing that Nielsen’s bound ¢ be beaten. paper. Second, we cogld consider the problem of going from
involved in proving that Flieisen's botind cannot be beaten one state to a distribution of statel. The method may also

generalize to more than two particles but there are two main
obstacles to applying the method to this problem. First, there
is no Schmidt decomposition for more than two particles

thei axis starting with theq=1 pieces giving an area dia-
gram in ministep form(as in Fig. 8. The state becomes

1 N/Q and, second, the transformations used to put the state in a
|‘I’tr2irgieP: \/%2 2 > InYglj+1(a—1))alj)d. form having terms of equal amplitude do not generalize to
q j n=1 more than two patrticles.
(48)
For this state we have ACKNOWLEDGMENTS

1 Q | am grateful to Anna Mahtani for suggesting a way to
|s( 6] s(n|wmn N 2< — >i1== (49)  solve the second coloring problem, to Daniel Jonathan for
targe N N . . . .

q comments relating to Sec. 1D in an earlier version, and to

Adrian Kent for discussions. | would also like to thank the

for any normalized statgf)s . . ~ Royal Society for funding.
The problem is to go from the start diagram in ministep

form to the target diagram, which is also in ministep form. If
and only if we can do this can we also go between the cor-
responding diagrams in standard step form since Alice can |n this appendix we show that there can be no advantage
transform reversibly between the two types of forms of thejf Alice makes a nonmaximal rather than a maximal mea-

area diagram. If there is to be net movement of area downsurement ontcs Assume that the state just before measure-
wards in the ministep form, then this must happen for at leashent is

one value of]. Hence, comparing with Eq44), net down-
ward movement of area implies

APPENDIX

EI ci| sl Py, (A1)
n’ n'Q
PG (50 . i
=1 N where|®,) is some state of systediB and not necessarily
an m-state. Imagine that the projective measurement is non-
for at least one value gfandn’ <N;/Q. However, Eq(49)  maximal and one of its projectors|is)s(1|+]2)g(2|. In the
implies case of having the corresponding outcome, the resulting

normalized state will be

’ ’

n n
ngl Aﬁaﬁrga: ngl 3§ |s<n|‘1’t";i';‘e>I2$ : (51 C1|1)g|®1)+¢5|2)d|Py), (A2)

n'Q
N
which contradicts Eq(50) and hence there can be no net This could, for example, be am-state if systemS is re-

movement of area downwards in the ministep form. Thegarded as being part of systefn Rather than performing

standard step form area diagrams are simply elongated vetﬁ's nonmaximal measurement, Alice could instead change

. - : s er notation for thei ) 5 states such that, jf)» appears in the
sions of one set of ministeps in the ministep form, and henceh pansions of®,) and|®,), she writesi)a as|1i)a. The

by the similarity of these shapes, there can be no movemeft:Pans . )
of area downwards in the standard picture. This proveé‘:"ﬁn""Inlng vector$|>_A are r_elabelgd dQ”A' We are free to
Nielsen’s boundgiven algebraically in Eq(9)]. assume that the dimension éfis big enough to do this.

Then we write|k,i)a=|k)as|i}a. Now Alice performs the

transformations
IV. CONCLUSIONS

In this paper a method of areas has been developed which |L)el1)ar—[2)d|L)ar, (A3)
enables us to understand the manipulation of pure two-
particle entanglement. This approach has been used to find [2)d]1)ar—12)g[2) A - (A4)
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Under these transformations the first two terms in &ql)  This trick can be repeated everywhere there is a degeneracy
become in the original nonmaximal measurement and a maximal
measurement can then be performed instead. This maximal
|2)s(Ce|1)ar| P 1)+ Col2)ar | P5)). (A5)  measurement will give rise to the same distribution of the
same states as the nonmaximal measurement and so there
A maximal measurement will now give rise to a state withcan be no advantage to performing nonmaximal measure-
the same form as the state in H&2) for the outcome 2. ments.
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