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Method of areas for manipulating the entanglement properties of one copy
of a two-particle pure entangled state

Lucien Hardy
Centre for Quantum Computation, The Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom

~Received 2 March 1999!

We consider the problem of how to manipulate the entanglement properties of a general two-particle pure
state, shared between Alice and Bob, by using only local operations at each end and classical communication
between Alice and Bob. A method is developed in which this type of problem is found to be equivalent to a
problem involving the cutting and pasting of certain shapes along with certain coloring problems. We consider
two problems. First, we find the most general way of manipulating the state to obtain maximally entangled
states. After such a manipulation, the entangled statesu11&1u22&1•••1umm& are obtained with probability
pm . We obtain an expression for the optimal average entanglement obtainable. Also, some results of Lo and
Popescu~e-print quant-ph/9707038! pertaining to this problem are given simple geometric proofs. Second, we
consider how to manipulate one two-particle entangled stateuc& to anotheruc8& with certainty. We derive
Nielsen’s theorem~which states a necessary and sufficient condition for this to be possible! using the method
of areas.@S1050-2947~99!01809-0#

PACS number~s!: 03.67.Hk
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I. INTRODUCTION

Quantum entanglement has many applications includ
quantum teleportation@1#, quantum cryptography@2#, and
quantum communication@3#. This has led people to regar
entanglement as a resource. However, entanglement ca
ist in different forms and so it is useful to know how it ca
be manipulated from one form to another. In this paper
problem of manipulating a general pure two-particle e
tangled state in order to obtain maximally entangled sta
will be considered. We will also consider the problem
how to manipulate one general pure two-particle entang
state to another. Alice and Bob are allowed to do whate
they want locally and they are allowed to communicate cl
sically with one another. They are not allowed to exchan
quantum states. This type of situation has already been m
discussed in the literature. The problem of how to optima
manipulate a large number,N, of copies of a general pur
two-particle entangled state into maximally entangled sta
by local means has been completely solved in the asymp
limit N˜` @4#. However, the perhaps more basic proble
of how to manipulate a single copy of a general pure tw
particle state into maximally entangled states has not bee
extensively discussed. The most significant work on this
by Lo and Popescu@5#, who prove certain bounds relating t
this problem. However, their proofs, while being extraor
narily ingenious, are rather difficult to follow. The metho
developed in this paper, which completely solves the pr
lem, involves the cutting and pasting of areas along wit
coloring problem. Once the basic methods have been pu
place, it is very easy to picture what is happening. T
method is used to find the maximum obtainable average
tanglement and to derive a formula of Lo and Popescu wh
gives the maximum probability of obtaining a given max
mally entangled state.

A related problem is how to transform one pure tw
particle entangled state to another, and to establish w
PRA 601050-2947/99/60~3!/1912~12!/$15.00
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states will transform to one another in this way. Nielsen@6#
has completely solved this problem. However his proof
his theorem uses some unfamiliar mathematics. An alte
tive reasonably simple proof of Nielsen’s theorem is giv
here which, again, involves cutting and pasting of are
along with a certain coloring problem.

The main advantage of this method is that it provide
visual way of solving various problems relating to the m
nipulation of two-particle pure entanglement. It is not nec
sary to develop vastly different methods for each problem

II. OBTAINING MAXIMALLY ENTANGLED STATES

A. Introduction

The most general pure two-particle state can be written
the Schmidt form@7#

uc&5(
i 51

I

Al i u i &Au i &B , ~1!

where we choosel i>l i 11 and where the statesu i &A,B are
orthonormal. We want to manipulate this state in order
obtain states which are of the form

uwm&5
1

Am
(
k51

m

uk&Auk&B . ~2!

We will call this state anm-state. Anm-state is equivalent to
log2m copies of 2-states@4#. After the process is completed
we should have a certainm-state with a certain probability
pm . Particle A goes to Alice and particleB goes to Bob.
Alice and Bob are allowed to perform whatever operatio
they want locally and also they communicate classically w
each other. This can happen in the following way. Ali
performs a measurement and communicates the resu
Bob, who then performs a measurement which depends
the result of Alice’s measurement, and then Bob commu
1912 ©1999 The American Physical Society
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PRA 60 1913METHOD OF AREAS FOR MANIPULATING THE . . .
cates his result back to Alice and she makes another m
surement, and so on back and forth. This is the most gen
way in which Alice and Bob can manipulate their state wi
out actually exchanging quantum states in the process. W
ever measure of entanglement we employ, the amoun
entanglement should not increase during such a process
and Popescu show that, for the very special case of a t
particle pure state, this process is equivalent to one in wh
Alice makes one measurement and communicates the r
to Bob, who then may perform a unitary evolution operati
on his particles. The reason for this significant simplificati
is that, due to the Schmidt decomposition, any operation
Bob is equivalent, so far as the resulting form of the stat
concerned, to some operation by Alice. Hence, Alice c
simply do everything herself in one go and then commu
cate the final result to Bob. The most general operation p
sible by Alice is a generalized measurement. This is equ
lent to Alice introducing an ancilla,S, performing a genera
unitary evolution on particleA and the ancillaS, and then
making a projective measurement on the ancilla. Let
imagine that the ancilla has a basis set of statesu l &S . Since
we allow a completely general evolution ofA1S, we can
assume, without loss of generality, that the final measu
ment projects onto subspaces spanned by the statesu l &S .
Furthermore, it is shown in the Appendix that there is
advantage to be had by performing a nonmaximal~i.e., de-
generate! measurement and so we can assume that this m
surement is maximal and projects onto the operatorsu l &S^ l u.
For each outcome,l, the two particlesA and B should be
projected into anm-stateuwml

& l , where

uwml
& l5

1

Aml
(
k51

ml

uk&Auk&B
l . ~3!

The superscriptl is included since we do not require that th

Schmidt vectors satisfyuk&B
l 5uk&B

l 8 for lÞ l 8. After Alice has
communicated the result,l, of the measurement to Bob, Bo
could rotate these vectors into the same standard form fo
l ~thus removing the need for the superscript at this sta!,
but this is not important. It is enough that Alice and Bo
know whatl is so they know what state they have. We do n
require a superscriptl on theuk&A states since, as explaine
below, Alice can rotate her Schmidt vectors to standard fo
as part of the overall unitary transformation she perform
Just before Alice makes her measurement projecting o
u l &S , the state of the system will be

uC target&5(
l

Am l u l &Suwml
& l , ~4!

where the coefficientsAm l can be taken to be real since an
phases can be absorbed into appropriately redefinedu l &S .
Note that if, at this stage, theuk&A states had a superscriptl,
then they could be rotated into standard form by applyin
series of controlled unitary operations,Û l , to A where the
control is theu l &S state. At this stage Alice has not don
anything which is irreversible. Having completed her loc
manipulations, Alice will perform a maximal projective me
surement. It follows from the result of Lo and Popescu t
manipulating the state into the form~4! and then measuring
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onto theu l &S basis is equivalent to the most general proc
dure for manipulating the two particles by local means
m-states. We will use Eq.~4! later when we come to show
that the method developed in the next section is equivalen
the most general method.

B. How to obtain maximally entangled states

Now consider the initial stateuc& given in Eq.~1!. We will
introduce an ancilla,R, in the stateu1&R . This ancilla has
basis statesun&R , wheren51,2, . . .N. We will takeN to be
very large and will want to consider the case whereN tends
to infinity. We define the integersNi5Nl i , where, for the
moment, we are taking thel i to be rational numbers so th
integersNi can be found withN finite. This constraint can be
relaxed whenN tends to infinity. The initial state ofRAB is
u1&Ruc&. Alice now evolvesR1A using the following trans-
formations.

u1&Ru i &A˜
1

ANi
S (

n51

Ni

un&RD u i &A . ~5!

The fact that these transformations evolve orthogonal st
to orthogonal states ensures that they can be implemente
unitary evolution. Under these transformations, the st
u1&Ruc& evolves to

uCstart&5
1

AN
(

i
(
n51

Ni

un&Ru i &Au i &B ~6!

which we will call thestart state. We see that each of theN
terms in this superposition has the same amplitude. Eac
these terms will be represented by a rectangular elem
width 1 and height 1/N. The area of the element is 1/N and is
equal to the probability associated with the correspond
term in Eq.~6!. Each element can be labeled by (n,i ) corre-
sponding to the termun&Ru i &Au j &B ~initially i 5 j but after
Alice has performed operations on her particles this will n
necessarily be the case for every term!. The elements are
then arranged on a graph where elements having the san
are placed in the same row and elements having the sai
are placed in the same column. The resulting graph lo
like a series of steps as shown in Fig. 1. We will call this t
area diagram. The total area under the steps is 1 correspo
ing to the total probability. On the vertical axisn/N is plot-

FIG. 1. The start state can be plotted on a graph. Such a gra
called an area diagram. This area diagram has step structu
which the steps go down towards the right.
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1914 PRA 60LUCIEN HARDY
ted. On the horizontal axis thei which appears inu i &A is
plotted. For smalln every i position will be filled. However,
because of the form of the state~6!, oncen gets bigger than
NI there will no longer be anyuI &AuI &B terms. This is the
reason for the step atn5NI . There will be further steps a
each n5Ni . The height of the rightmost step isNI /N
5l I . Subsequent steps will be at heightsl i as shown in Fig.
1. If a projective measurement were to be performed onR at
this stage, then, corresponding to each outcomen, the state
of A1B would be projected onto anm-state wherem is
equal to the number of elements in thenth row on the area
diagram. This will give a distribution ofm-states with prob-
abilities which are equal to the large horizontal rectangu
areas of widthm and heightlm2lm11 formed by extending
the horizontal parts of the step back to the vertical ax
However, the area in the diagram can be moved around
Alice in a way to be described below by performing loc
unitary operations. When this is followed by a projecti
measurement onR, different distributions ofm-states can be
realized.

The termsun&Ru i &Au j &B andun8&Ru i 8&Au j 8&B are biorthogo-
nal if and only if R^nun8&RA^ i u i 8&A50 ~orthogonal at Al-
ice’s end! and B^ j u j 8&B50 ~orthogonal at Bob’s end!. If two
terms are only orthogonal at either Alice’s end or at Bo
end, then they are monoorthogonal. In fact, since all te
are located at distinct places on the graph@that is, they have
different (n,i )#, they will always be orthogonal at Alice’s
end. Hence, the only pairs of monoorthogonal terms we
deal with are those which are orthogonal at Alice’s end a
parallel at Bob’s end. This means that if two terms are e
monoorthogonal to a third term, then they are monoortho
nal to each other, and hence monoorthogonal terms ca
grouped together into nonoverlapping sets. In the area
gram we will impose the constraint that all elements in
row, that is, for a givenn, correspond to terms which ar
biorthogonal. This ensures that when we perform a pro
tive measurement ontoR, the resulting state will be an
m-state.

We will color all the elements which correspond to term
which are monoorthogonal to one another a given color~this
is possible since they can be grouped together in nono
lapping sets!. Elements corresponding to terms which a
biorthogonal will be colored with different colors. Thus, in
tially, all the elements in a given column are the same co
and every column is colored a different color to every oth
column. When area is moved around, the constraint
terms corresponding to elements in a row be biorthogo
means that all elements in any given row must be differ
colors.

The method of areas to be developed here involves m
ing area elements around in such a way that there is a
movement of area up and to the left. We will see that it
possible to have a net movement of area up the area diag
but not down the diagram. This means that the net movem
of area across any horizontal line drawn on the diagram m
be up. The basic unitary operation,U(n,i↔n8,i 8), em-
ployed by Alice is defined by the transformation equation

un&Ru i &A˜un8&Ru i 8&A , ~7!

un8&Ru i 8&A˜un&Ru i &A , ~8!
r
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with no change for all otherun9&Ru i 9&A . We will call this the
swap operation. The effect of this operation is to move e
ments around on the area diagram. If there are elemen
both the (n,i ) and (n8,i 8) positions, then they will have thei
positions swapped. If there is only an element at one of
two positions, then it will be moved to the other positio
while the original position will become vacant. These mov
will not effect Bob’s part of the state. If two terms are b
~mono!-orthogonal before the swap operation is applied
one or both of them, then they will be bi-~mono!-orthogonal
afterwards. In other words, the swap operation does
change the color of the elements. Initially, as stated abo
all elements in the same row are different colors and e
ments in the same column are the same color. In mov
elements of area around, we impose only the constraint t
at the end of the process, all elements in a row are differ
colors. Although elements in any given column start off b
ing the same color, we do not demand that this is true at
end of the process. We can move a large number of elem
at once. In the limit asN˜`, the elements will become
infinitesimal in height. Hence, in this limit, we can mak
horizontal cuts anywhere. We can make vertical cuts alo
the edges of the columns. The area can be cut up into sm
pieces and then pieces can be moved around and pasted
new positions. It is possible to move area around like this
any way we want by repeated applications of the swap
eration. The empty space above the steps can be used
clipboard for the temporary storage of pieces of area to
cilitate the rearrangement of area if required.

In Fig. 2 the original step structure is shown by a full lin
A new step structure is shown by a dashed line. We w
impose the constraint~to be justified later! that the new step
structure consists of steps which, like the original steps,
across and down~but never up! towards the right. The area
S5(Sr which will be cut away from some parts of the ste
is equal to the areaT5(Tr which will be added to other
parts of the steps. Each of these areas consists ofR smaller
disjoint parts labeled byr going up the diagram. Note, are
Tr lies between areaSr andSr 11. Note also that the areasSr
and Tr can themselves be made up of disjoint parts. T
constraint that there is no net movement of area downwa

FIG. 2. Area is transferred up the area diagram to go from
start steps shown by the bold line to the target steps shown by
dashed line. The total area transferred up isS5T.
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PRA 60 1915METHOD OF AREAS FOR MANIPULATING THE . . .
means that( r 51
r 8 Tr<( r 51

r 8 Sr for all r 8. The original steps are
of height l i . Let the new steps be of heightl i8 . Since the
columns are of unit width, these lengths are numerica
equal to the areas of the columns, and hence the const
that area is moved only to the left is equivalent to the se
constraints

(
i 5p

I

l i8<(
i 5p

I

l i , ~9!

for all p51 to I with equality holding whenp51.
We could simply move the areaS to the areaT element by

element by applying the swap operator. However, if we
this it is likely that elements corresponding to monoorthog
nal terms would end up in the same row. If we can redistr
ute the area so that it corresponds to the new step struc
but without there being any elements of the same color in
same row, then we will have realized another distribution
m-states. This is because Alice could then perform a pro
tive measurement onR and corresponding to each outcom
n, will be an m-state and thesem-states will clearly have a
different distribution. The probability of a givenm state is
equal to the area of the horizontal rectangle formed by p
jecting leftwards the top and bottom of the step at positionm.
This rectangle has widthm and heightlm8 2lm118 . Hence,
for the new area diagram, the probability of getting anm
state is

pm5~lm8 2lm118 !m. ~10!

We will show first that this coloring problem can be solv
and second that the process described here is general i
sense that any distribution ofm-states which can be achieve
by local means can be achieved by this method. Hence,
~9! and~10! define the possible distributions ofm-states that
can be obtained.

The solution to the coloring problem will be explained b
reference to the example shown in Fig. 3. This example
R51 ~since all ofT is above all ofS). However, it will be
clear that the method works for the general case. We star
taking the rightmost column in the areaS. This is areaA in
Fig. 4~a!. This area is then swapped into the rightmost c

FIG. 3. This figure shows the start steps~bold line! and the
target steps~dashed line! of the recoloring problem discussed in th
text.
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umn of the areaT so that pointa coincides with pointa8 as
shown in Fig. 4~b!. However, it may be too long to all fit into
the rightmost column of areaT ~as is indeed the case in ou
example!, and hence it will displace some of the area in t
column below this, marked as areaB in Fig. 4~a!. Because of
the nature of the swapping operation, this areaB will be
moved to the old position ofA so that pointb coincides with
point b8 as shown in Fig. 4~b!. Area A is now in its final
position. Let us imagine that the column from which areaA
was taken was colored red. This red color will now be
vided between what is left of the original column and t
areaA in its new position. Since the steps go up towards
left, it is impossible to have red at more than one position
any given row. The rightmost column ofT is now filled so
we start on the next rightmost column. We swap areaB into
position in the next rightmost column of areaT. Again, this
could be too long. In our example it is too long and proje
into the column below into the area markedC. HenceC will
be moved to whereB was. This takes us to the situatio
shown in Fig. 4~c!. Now we move areaC into position in the
next rightmost column of areaT. This could again be too
long and project into the column below, but in this examp
this is not the case. Rather, areaC is too short leaving a gap
Hence no area is moved back to the rightmost column oS
and this means we have finally dispensed with the net ef
of moving the area from this rightmost column ofS. Now we
select the next rightmost column ofS. In our example this
area is markedD in Fig. 4~c!. This area is now moved up
following the same procedure. Thus, we moveD into posi-
tion as high as possible in the rightmost column ofT which
has not yet been filled. This places it below areaC. It could
be the case thatC is too long and projects into the colum

FIG. 4. This figure shows the recoloring procedure described
the text. After the recoloring, no color is in more than one pla
across any given row.
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1916 PRA 60LUCIEN HARDY
below, in which case some area would be swapped back
we would have to continue as before. However, in our p
ticular example areaD fits in belowC and the recoloring is
finally completed as shown in Fig. 4~d!. This method can be
applied to any recoloring problem of this nature. The gene
method is that area is swapped from the rightmost nonem
column ofS to as high a position as possible in the rightmo
nonfull column ofT. We note that a given color can end u
in, at most, two different columns and that any color mov
from a column will always end up higher than its origin
position. This means that it is impossible for two elements
area which started in the same column~having the same
color! to end up in the same row. Hence, the coloring pro
lem has been solved.

C. Proof that this is the most general method

Having shown that it is possible to have a net movem
of area up the area diagram in any general way which
consistent with maintaining the step structure, we will no
show that this corresponds to the most general way of
nipulating entanglement to producem-states in the sense tha
any distribution ofm-states which can be achieved by loc
operation classical communication can be achieved by
method. The idea of this proof will be to show that the targ
state~just before Alice measures onto the ancilla! can be put
into a certain form which is inconsistent with any moveme
of area downwards.

We have already established that the most general
state just before Alice makes her measurement~we call this
the target state! is the state given in Eq.~4!. If we write n l
5m l /ml , then Eq.~4! becomes

uC target&5(
l

(
k51

ml

An l u l &Suk&Auk&B
l . ~11!

We can consider further unitary transformations by Alice
this state to put it into a form in which every term has t
same amplitude. Let the dimension of the ancillaSbeM and
define Ml5Mn l ~again we will let M˜`) and let Alice
perform the following transformations on Eq.~4!:

u l &S˜
1

AMl
(

nPWl

un&S , ~12!

where Wl is the set ofMl integers from (( r 50
l 21Mr)11 to

( r 50
l M r ~we setM050). Under this transformation, Eq.~4!

becomes

uC target8 &5
1

AM
(

l
(
k51

ml

(
nPWl

un&Suk&Auk&B
l . ~13!

Every term in this state has the same amplitude. In arriv
at this state from the previous target states~4! and ~11!, we
have done nothing that is irreversible. Furthermore, if
measure onto theun&S basis, we are just as likely to get
givenm-state as with the previous target state. Hence, we
regard this as our new target state. Any method by wh
m-states can be obtained is equivalent to manipulating
state into the form~13!.
nd
r-

al
ty
t

d

f

-

t
is

a-

l
is
t

t

al

g

e

n
h
e

If we project ontoun&S , we will obtain anmn-state where
mn can be read off from Eq.~13!. We can relabel then’s
such thatmn11<mn . Thus, we can impose the following.

Constraint A. If outcomen corresponds to anmn-state,
then, without loss of generality, we can impose the constr
that mn11<mn .

By examining Eq.~13! we can see that there is a seco
constraint that can be imposed on the form of the final tar
state.

Constraint B.For the target state we can, without any lo
of generality, impose the constraint that

z B^uuS^nuC target8 & z2<
1

M
, ~14!

whereuu&B is any normalized state for systemB since this is
true of Eq.~13!.

We can identify the ancillaSwith the ancillaR introduced
earlier. Hence,S[R andM5N. Now consider the state~1!.
Since Alice’s operations do not effect Bob’s system, we s
that we have the following constraint.

Constraint C.While the stateuC& is being manipulated by
local unitary operations by Alice, we will always have

z B^ j uC& z25l j5
Ni

N
~15!

for all j.
Since Eq.~6! is related to Eq.~1! by reversible operations

we can take Eq.~6!, which corresponds to an area diagra
as our starting point. We will now see that area cannot
moved down in the area diagram. For the purposes of
proof, consider a change in the way the area diagram is p
ted such that thej in u j &B ~rather than thei in u i &A) is plotted
on the horizontal axis. This will simply have the effect
redistributing elements horizontally but not vertically sin
n/N is still plotted on the vertical axis. We label elements
this modified area diagram by$n, j %. ConstraintC implies
that the column corresponding to a givenj on this modified
area diagram will always have the same area. This is bec
Alice’s actions cannot effect the total area~or probability!
associated with columnj. However, Alice can change then
value associated with area elements and hence she can
the area in columnj up and down. It is possible that she ca
bring about a net movement of area~or probability! down in
this column. This would lead to the area being compres
into a smaller space than it would ‘‘naturally’’ fit. Any ne
movement of area downwards, whether on the$n, j % picture
or the (n,i ) picture, would correspond to this happening in
least onej column. This is exactly what we want to rule ou
We will now see that any such net movement downwa
will violate constraintB ~which we were free to impose o
the target state!.

If, at some stage, the state has been manipulated to
state uC&, then the area of the$n, j % element will beAn j
5 zB^ j uS^nuC& z2. Initially, for the start stateuCstart& in Eq.
~6!, we have

(
n51

n8

An j
start5

n8

N
~16!
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PRA 60 1917METHOD OF AREAS FOR MANIPULATING THE . . .
for all n8<Ni . However, if there is a net movement of ar
down the area diagram with respect to the horizontal linn
5n8, then, since the total area in a given column is cons
~by constraintC), this net movement of area downward
must happen in at least one column of the modified a
diagram. Hence, for at least one value ofj, we must have

(
n51

n8<Ni

An j
target.

n8

N
. ~17!

However, sinceM5N, Eq. ~14! implies

(
n51

n8<Ni

An j
target<

n8

N
. ~18!

The contradiction between Eqs.~17! and ~18! proves that a
net movement of area downwards is not possible on
modified area diagram and hence neither is it possible on
unmodified area diagram. Note that this proof goes thro
for any sort of operations by Alice and in particular it do
not assume that the only operations Alice can make are
swap operations defined in Eq.~7!.

To complete the proof that the manipulations describ
earlier are equivalent to the most general way of manipu
ing the state to obtainm-states, we note the following.

~i! The target state~13! can be represented on an ar
diagram in whichn/N ~whereN5M ) is on the vertical axis
and mn is plotted on the horizontal axis. Sincemn is an
integer and since we can impose constraintA without loss of
generality, this area diagram will have a step structure~in
which the steps of integer width go down towards the righ!.

~ii ! The initial state can be taken to be the start st
uCstart& given in Eq.~6! and this can be represented by
area diagram with the step structure.

~iii ! The total area of both of these diagrams is 1. The
fore, the most general way of manipulating the start state
m-states corresponds to going from one area diagram
the step structure to another with the step structure in a
consistent with the constraint that there is no net movem
of area downwards.

~iv! The method, employing the swap operator, discus
previously can be used to go from one step structure to
other in any way that is consistent with there being no
downward movement of area. Hence, it is equivalent to
most general method.

D. Getting the highest possible average

If we are only interested in the average amount of
tanglement in the form of maximally entangled states we
obtain, this being equal toE5(mpmlog2m, then it turns out
that any movement of area will decrease this average. He
this average has a maximum given by the original area
gram

Emax5(
m

~lm2lm11!m log2m. ~19!

To see that any movement of area will decrease this aver
consider moving one element on the area diagram~with area
equal to 1/N) from the end of rowA, which has original
nt
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width mA , to the end of rowB, which has original width
mB . Since we can only move area to the left, we require t
mB11,mA ~if mB115mA , then the rows will simply have
interchanged their lengths and hence there will be no cha
in the distribution ofm-states!. The original contribution of
these two rows toE will be

DEinitial5
mA

N
log2mA1

mB

N
log2mB . ~20!

The contribution afterwards will be

DEfinal5S mA

N
2

1

ND log2~mA21!1S mB

N
1

1

ND log2~mB11!.

~21!

It can only be advantageous to move elements of are
DEfinal2DEinitial is positive. However, by making the subst
tutions

mA5x1
1

2
1r , mB5x2

1

2
2r , ~22!

we can see thatDEfinal2DEinitial is negative if r .0. The
constraint thatmA.mB11 implies thatr .0 and hence any
movement of area must lead to a smallerE. We also see from
this that since only one distribution ofm-states leads to the
maximumE, any attempt to alter the distribution ofm-states
will result in a decrease ofE ~this point was also made by Lo
and Popescu@5#!.

E. Proof of a formula of Lo and Popescu

We will now use this method to derive a formula centr
to the paper of Lo and Popescu@5#. Imagine that we have a
general two-particle pure entangled state and we wan
have a givenm-state with as high a probability as possibl
We want to know what this probability is and what strate
to use. This corresponds to the area redistribution show
Fig. 5. The target area diagram consists of a block of wi

FIG. 5. This figure shows a strategy for obtaining the maxim
probability of a givenm-state. The areaT is equal to the areaS. This
definesr 0 andlm2r 0

max .
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m with an additional bit on top. This definesr 0 and lm2r 0

max

~see diagram!. The areaS has been moved to the areaT
where these two areas are equal. The height of the m
block islm2r 0

max , which can be calculated since we know th

r 0lm2r 0

max 5Ur 0
1T5Ur 0

1S5 (
i 5m2r 011

I

l i , ~23!

where the last equality follows from the fact that thei th
column is of areal i . The total probability of getting the
m-state is equal to the area of the main block, i.e.,pm

max

5mlm2r 0

max . We can use this formula if we know whatr 0 is

since thenlm2r 0

max can be calculated from Eq.~23!. This can

be established by the following considerations. Define
areaUr to consist of all the columnsi 5m2r 11 to m in the
start area diagram so that

Ur5 (
i 5m2r 11

m

l i , ~24!

where r 51,2, . . . ,m. The areaUr1T consists of a main
block of width r and heightlm2r 0

max plus, for rÞr 0, an extra

bit lying outside this block~whenr ,r 0 a bit ofT lies outside
this block and whenr .r 0 a bit of Ur lies outside the block!.
Hence,

Ur1T>rlm2r 0

max , ~25!

with equality in the caser 5r 0. Therefore,

lm2r 0

max 5min
r

S 1

r
~Ur1T! D , ~26!

and we obtain the formula of Lo and Popescu,

pm
max5min

r

m

r S (
i 5m2r 11

I

l i D , ~27!

wherer 51,2,. . . ,m. The geometric origin of this formula is
now clear.

F. Comments on efficiency

The main reason for developing this method is to prov
some degree of conceptual clarity in describing possible
tanglement manipulations. To this end we have introdu
an infinite-dimensional ancilla. Two objections may
raised to this:~i! Infinite-dimensional systems are unphysic
and so this method is only approximate~unless all thel i ’s
are rational!; ~ii ! since there are a very large number of po
sible outcomes to the measurement on the ancilla, Alice m
communicate a lot of information to Bob. In fact, the infini
ancilla is not necessary. Consider the final area diagram.
will consist of a large number of rows. However, many ro
will have the same colors in the same positions. Hence,
state ofA and B for these cases is the same. Since a fin
number of cut and paste actions are required in any man
lation, there will only be a finite number,z, of distinct types
of rows even in the limit asN tends to infinity. This means
in
t

e

e
n-
d

l

-
st

is

e
e
u-

that there will exist a procedure in which an ancilla of d
mensionz rather thanN is used to effect the same genera
ized measurement and this will lead to an exact rather t
an approximate method. In addition, Alice need only co
municate one of thez signals to Bob, thus answering obje
tion ~ii !.

III. PROOF OF NIELSEN’S THEOREM

A. Introduction

The set of constraints~9! is exactly Nielsen’s condition
@6# for being able to manipulate an entangled state,uc&, with
Schmidt coefficientsAl i to another,uc8&, with Schmidt co-
efficients Al i8. However, we cannot immediately interpr
the new area diagram as being equivalent to auc8& state
since, unlike in the original area diagram, a given colum
can be multicolored. We will see that, nevertheless, we
use the area diagrams to prove Nielsen’s theorem. This p
works along similar lines to the previous proof. First, we p
the target state into step form. Alice introduces an ancillS
of dimensionM with basis statesu l &S . If the problem can be
solved, then, for similar reasons to before, she must be
to manipulate the total state into the form

uC target&5(
l

Am l u l &Suc8& l , ~28!

where

uc8& l5(
i 51

I

Al i8u i &Au i &B
l . ~29!

Substituting Eq.~28! into Eq. ~29! we obtain

uC target&5(
l

(
i

Am ll i u l &Su i &Au i &B
l . ~30!

DefineMli 5m ll iM . We apply the transformation

u l &Su i & i˜
1

AMli
(

nPWli

un&Su i &A , ~31!

where Wli is the set of integers from ((k50
l 21 Mki)11 to

(k50
l Mki ~we setM0i50). Under this transformation, Eq

~30! becomes

uC target8 &5
1

AM
(

l
(

i
(

nPWli

un&Su i &Au i &B
l . ~32!

Each term has equal amplitude in this state. If we projec
onto un&S , then we will get a state with, say,mn terms
@wheremn can be read off from~32!#, not all of which are
biorthogonal. We can relabel then’s so thatmn>mn11 and
hence we can draw an area diagram with a step struct
The terms corresponding to a givenn are not necessarily
bi-orthogonal and hence we cannot impose on the target
diagram the constraint that elements in a row must all
colored different colors. Rather we will have a different co
oring problem. As before, we will identify the systemsSand
R so thatM5N.
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B. Obtaining Nielsen’s bound

The start state isuCstart& in Eq. ~6! and is represented b
an area diagram with step structure in which each colum
colored with only one color, this being different from th
color of the other columns. The target area diagram is sho
in Fig. 6. Since this has been recolored, the columns in
diagram will not necessarily be of one color. The height
the i th column isl i85Ni8/N. We chose a numberQ which
we will let tend to infinity, though in Fig. 6 we have setQ
55. We divide each column up equally intoQ pieces which
are numberedq51,2,. . . ,Q starting at the bottom. Theqth
piece in thei th column is labeled@q,i #. If the target area
diagram has been obtained from the start area diagram
moving finite-sized bits of area around~as will be the case in
our recoloring strategy!, then there will be a finite number o
horizontal boundaries between different colors. Some of
pieces@q,i # are likely to have these boundaries on the
However, asQ˜` the total area of such pieces will tend
zero and we can assume that each piece has a unique c
The idea will be to collect all the pieces with a givenq. Since
their areas are proportional tol i8 , they can correspond to th
new stateuc8&q. However, each of these pieces having t
sameq must be colored with a different color since the term
in uc8&q are biorthogonal. There areNi8 terms in the state
vector corresponding to each column, and since these
divided intoQ pieces, there areNi8/Q terms corresponding to
the @q,i # piece which will be of the form~unnormalized!

u@q,i #&5
1

AN
(

n5(q21)Ni8/Q11

qNi8/Q

un&Ru i &Au j qi&B . ~33!

The total state is the sum of all such terms. We can transf
the total state by applying the transformation

AQ

Ni8
(

n5(q21)Ni8/Q11

qNi8/Q

un&Ru i &A˜uq&Ru i &A ~34!

for all q,i . This sends the termu@q,i #& to the state

u@q,i #8&5Al i8

Q
uq&Ru i &Au j qi&B . ~35!

FIG. 6. The columns of the target diagram are divided up intoQ
equal parts. In this figure we haveQ55 but we will let Q˜`.
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This transformation has simplified the state of the ancillaR
for the terms corresponding to each piece@q,i #. In so doing,
we have recovered the coefficientAl i8/Q. The total state is
now

uC8&5
1

AQ
(
q51

I

Al i8uq&Ru i &Au j qi&B . ~36!

Now, if we measure onto theuq&R basis we get a state whic
is a realization ofuc8& if the terms are biorthogonal. In col
oring terms, this means we require that all the pieces labe
with the sameq in Fig. 6 should be of different color. Thus
we have another coloring problem. If we can solve this c
oring problem under the assumption that net movemen
area is up, then we will have given a constructive proof t
Nielsen’s bound can be obtained. In the remainder of t
subsection of the paper, we will show that this can be do
~this proof can be obmitted on first reading!. To complete the
proof of Nielsen’s theorem, we need to show that area
only be moved up. This will be done later.

A way to solve this coloring problem was suggested to
author by Mahtani. This solution is obtained by correcti
the solution to the previous coloring problem in Sec. II
First, this coloring procedure, illustrated by example in F
4, is used to go from the start area diagram~representing
uc&) to the target diagram, where the heights of the colum
arel i8 . Now we note that it is a property of this recolorin
procedure that a given color can end up in at most two c
umns. There are two ways in which a piece of area can
moved to the left. Either it can be moved directly~as are the
piecesA and D in Fig. 4!, or it can first be swapped to th
right and then be moved back to a further left position tha
started in~as are piecesB andC in Fig. 4!. We will call the
first type directly swappedpieces and the second type
pieces, theswapped backpieces. Since these swapped ba
pieces~for example, pieceB) must be shorter than the piec
that displaced them from their original column~in the case of
B this was pieceA), since they always end up at the top
their destination column, and since the column they end
in is higher than their starting column, they must occu
proportionally less of their final column than the pieces th
displaced them~pieceB occupies proportionally less of it
final column than pieceA of its final column!. This means
that when the columns are divided up into a large numberQ,
of equal pieces the colors of the swapped back pieces
not appear in two pieces with the sameq. Hence, we will first
correct the other colors. However, the procedure which c
rects the colors of the directly swapped pieces disturbs
property of the swapped back pieces. Hence, after correc
for a bunch of directly swapped pieces, we will have to c
rect for the swapped back pieces as well. First, we will co
sider the colors corresponding to the directly swapp
pieces. Before we do that, note that some columns will
main unchanged~neither have area moved into them or o
of them! and hence their color cannot end up in two piec
with the sameq. These columns can be completely ignor
and we can consider only the remaining columns. We sta
the rightmost column and go left considering only the c
umns which have changed. The first changed columns
meet will be shorter than originally, will each be colore
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1920 PRA 60LUCIEN HARDY
with only one color, and will have had some area swapp
out of them directly. After one or more of these monoch
matic columns, we will meet a column into which these
rectly swapped pieces have been moved. The last dire
swapped piece may displace a piece from this column, wh
will be a swapped back pieceS. This piece, when it is
swapped back, will end up at a column,L, somewhere to the
left. But before we get there, we may meet a few mo
monochromatic columns,Rk , from which piecesXk have
been directly swapped. We will countk5K,K21, . . . ,1
backwards so first we meetRK as we go leftwards. Eventu
ally, on our journey leftwards, we meet columnL into which
S has been swapped, then piecesXK to X1. When the last
pieceX1 is swapped into position, it may displace pieceS8,
which will be swapped back. Thus, we will repeat the sa
story as we continue leftwards. Columns will come
bunches of a few monochromatic columns~such asRk) fol-
lowed by a multicolored column~such asL). The columnsL
and Rk are shown in Fig. 7~a! for the caseK53. Columns
not relevant to the present discussion are not shown.
label the original color ofL asC0 and the color ofRk asCk .
Various distances~which are numerically equal to area
since the columns are of unit width! are marked on the fig
ure. The strategy we will adopt is the following. We no
that, as things stand, the colorCk in all of Rk also appears in
L and, hence, there must be some of the same color in
ferent columns for the sameq. To correct this, we can swa
an area,Yk , of color C0 from L into Rk , thus swapping the
same area,Yk , of Ck back intoL. We do this for allk. We
then resort columnL so thatYk lies immediately belowXk ,

FIG. 7. To solve the coloring problem we consider corre
bunches of columns such as those shown here. We correct the
gram by moving the areasYk andW.
d
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-
tly
h

e

e
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both these areas being of the same colorCk and so that color
C1 is above colorC2, etc. This is shown in Fig. 7~b! ~the role
of areaW will be explained later!. We chooseYK to be such
that the proportion ofCk in L relative to the height ofL is
equal to the proportion ofC0 in Rk relative to the height of
Rk . This condition can be expressed as

Xk1Yk

lL8
5

Yk

lRk
8

. ~37!

Furthermore, the areaYk of color C0 is placed inRk at the
same relative position ofRk as the areaXk1Yk of color Ck
has been placed in columnL @see Fig. 7~b!#. This ensures
that when the columns are divided up as shown in Fig. 6,
with Q large, the pieces@q,i L# in L of color Ck will have a
different color from the pieces@q,i Rk

# in Rk since the latter

pieces will be of colorC0.
Having carried out this correcting procedure for these c

umns, we see that there is a problem. PieceS8 which has
been swapped back somewhere to the left ofL is of colorC0.
This piece may overlap~in the sense of occupying som
pieces with the sameq) with the pieceY1, also of colorC0,
which is in columnR1. We can seeS8 will not also overlap
with the piecesY2 ,Y3 , . . . ~also of colorC0) in columns
R2 ,R3 , . . . for thefollowing reasons:~i! It is smaller than
X1 and hence can only partly overlap with the pieceX1
1Y1 ~of color C1) in column L in Fig. 7; ~ii ! this piece of
color C1 in columnL does not overlap with the colorC0 in
columns R2 ,R3 , . . . . Hence, this problem only concern
pieceS8 and columnR1. Let us assume that pieceS8 is in
column L8 and that the original color of columnL8 is C08 .
We can use colorC08 to correct for pieceS8 in L8 andY1 in
R1 by essentially the same correcting procedure as bef
Thus, we swap a piece ofC08 and of areaW8 from L8 into Y1

in R1 and at the same time swap a piece of colorC0 and of
areaW8 from Y1 in R1 into L8. The areasS8 andW8 ~both of
color C0) are collected together at the top of columnL8. The
size of areaW8 is chosen to be just such thatS81W8 ~which
is of colorC0) no longer overlaps with any of the colorC0 in
R1. The maximum size of areaW8 is given by

S81Wmax8

lL8
8

5
Wmax8

lR1
8

. ~38!

We could haveW8 smaller than the value given by this equ
tion since it is possible that not all ofS8 overlaps withY1 in
R1. Hence,

W8<
SlR1

8

lL8
8 2lR1

8
. ~39!

This correcting procedure is carried out in the followin
way. First, the rightmost bunch of columns likeRk andL are
selected. Then the directly swapped pieces are correc
And then the swapped back pieces are corrected. Then
next bunch of columns are subject to the same correc
protocol until all the bunches have been corrected. If t
procedure can be carried out successfully, then we will h

t
ia-
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solved this coloring problem. The only possible proble
would be if we had to swap more of the colorC0 from L than
there is in the column. However, we can show that this w
not happen. From Fig. 7~a! we see that the area,z, of the
original colorC0 in L satisfies

lL82 (
k51

K

Xk2S5z>lR1
8 >lRk

8 . ~40!

The inequality must be satisfied since otherwise element
color C1 in row L will be in the same row as elements
color C1 in row R1 but we proved in Sec. II B that this coul
not happen with this coloring of the diagram. From Eqs.~37!
and ~40! we obtain

Yk5
lRk

8

lL82lRK
8

Xk<
lRk

8 Xk

(
k8

Xk81S

<
zXk

(
k8

Xk81S

. ~41!

Since S8 has to be corrected for,S must also have bee
corrected for~if L and Rk are taken to represent a gene
bunch of columns!. To correct forSwill require an areaW of
color C0 to be swapped into a columnR19 somewhere on the
right. By analogy with Eq.~39! we have

W<

SlR
19

8

lL82lR
19

8
<

Sz

(
k8

Xk81S

, ~42!

where the second inequality follows sincelR
19

8 <lR1
<z.

Hence,

(
k

Yk1W<z, ~43!

which means that there is enough of the colorC0 in column
L to complete this coloring strategy. Hence, the color
problem has been solved.

This proof looks rather different from Nielsen’s ow
proof of his theorem since it is pictorial whereas Nielse
proof is algebraic and relies on a number of mathemat
theorems. However, the method employed by Nielsen, wh
involves performingT transforms on pairs of terms, could b
described by area diagrams. TheseT transformscorrespond
to a cut and paste operation on two columns in which
same proportiont is cut from each column and added to t
other. Indeed, another solution to the above coloring prob
can be obtained by translating Nielsen’s method into t
pictorial language.

C. Proof that Nielsen’s bound cannot be beaten

We need to prove that Nielsen’s bound cannot be bea
This is equivalent to proving that it is not possible to ha
net movement of area down the area diagram. The start
corresponds to a step structure. Each column in this ca
divided up intoQ pieces as shown in Fig. 6. Next we colle
together all the pieces corresponding to a givenq and place
them in order along thei axis as shown in Fig. 8. Thus, goin
l

of

l

al
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e

m
s

n.

ate
be

along the i axis we have theq51 pieces, then theq52
pieces, and so on. This can be accomplished by Alice p
forming swap operations. We will call this theministep form
for the area diagram.~We are, of course, assuming that sy
temA has a large enough Hilbert space to be able to do t
If this is not the case, then an additional ancilla could
introduced to effectively increase the size ofA’s Hilbert
space.! Let the state corresponding to this diagram
uCstart

mini&. Now we change from the (n,i ) to the$n, j % picture
where j is the j in u j &B . The $n, j % element can only be
moved up and down the diagram when Alice performs lo
operations. Hence, in the$n, j % picture all the ministeps will
overlay each other so there will beQ elements at each pos
tion. The height of thej th column will beNj /Q. Hence, if
we define An j5 zB^ j uS^nuCmini& z2, then for the start state
uCstart

mini& we have

(
n51

n8

An j
start5

n8Q

N
~44!

for all n8<Nj /Q. The factorQ comes from the fact tha
there areQ sets of ministeps overlaying each other in t
$n, j % picture.

Now we go back to the (n,i ) picture and consider the
target state~28!. We can apply the transformation

u l &S˜
1

AVl
(

qPWl

uq&S , ~45!

where Vl5m lQ and Wl is the set of integers from
(( r 50

l 21Vr)11 to ( r 50
l Vr ~we set V050). We will let Q

˜`. Under this transformation, Eq.~28! becomes

uC target9 &5
1

AQ
(

qPWl

uq&Suc8&q, ~46!

where the superscriptq is equal tol for qPWl . This state
now consists of a number of termsuq&Suc8&q each having the
same amplitude 1/AQ. Each term,uq&Suc8&q, can individu-
ally be put into the step form

uq&Suc8&q
˜uC8,q&5AQ

N(
i

(
n5(q21)N/Q11

qN/Q

un&Su i &Au i &B
q

~47!

by applying transformations similar to Eq.~5!. If this trans-
formation is applied to all terms, then the resulting area d
gram will consist of a series of ministeps lined up vertica
as shown in Fig. 9. Next, Alice applies swap operations
move these sets of ministeps so that they are lined up a

FIG. 8. The ministep form consists of the pieces being arran
along thei axis starting with theq51 pieces.
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the i axis starting with theq51 pieces giving an area dia
gram in ministep form~as in Fig. 8!. The state becomes

uC target
mini &5A1

N(
q

(
j

(
n51

N/Q

un&Su j 1I ~q21!&Au j &B
q .

~48!

For this state we have

zB^uuS^nuC target
mini & z2<

1

N (
q

15
Q

N
~49!

for any normalized stateuu&B .
The problem is to go from the start diagram in minist

form to the target diagram, which is also in ministep form.
and only if we can do this can we also go between the c
responding diagrams in standard step form since Alice
transform reversibly between the two types of forms of
area diagram. If there is to be net movement of area do
wards in the ministep form, then this must happen for at le
one value ofj. Hence, comparing with Eq.~44!, net down-
ward movement of area implies

(
n51

n8

An j
target.

n8Q

N
~50!

for at least one value ofj andn8,Nj /Q. However, Eq.~49!
implies

(
n51

n8

An j
target5 (

n51

n8

zB^ j uS^nuC target
mini & z2<

n8Q

N
, ~51!

which contradicts Eq.~50! and hence there can be no n
movement of area downwards in the ministep form. T
standard step form area diagrams are simply elongated
sions of one set of ministeps in the ministep form, and hen
by the similarity of these shapes, there can be no movem
of area downwards in the standard picture. This pro
Nielsen’s bound@given algebraically in Eq.~9!#.

IV. CONCLUSIONS

In this paper a method of areas has been developed w
enables us to understand the manipulation of pure t
particle entanglement. This approach has been used to

FIG. 9. This shows an intermediate state of the area diag
involved in proving that Nielsen’s bound cannot be beaten.
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the most general way of transforming a general two-part
pure state into maximally entangled states. An expression
the optimal average entanglement was derived. Certain
sults of Lo and Popescu were given geometric interpre
tions. This method has also been used to prove Nielse
theorem, which pertains to going from one two-particle pu
state to another with certainty. There remains a numbe
open problems relating to manipulation of two-particle pu
entanglement, which may be possible to solve using
method of areas. First, we could generalize Nielsen’s th
rem to the problem where we go from one state to anot
but not necessarily with certainty. In fact, this has been d
by Vidal @8# employing methods different from those in th
paper. Second, we could consider the problem of going fr
one state to a distribution of states@9#. The method may also
generalize to more than two particles but there are two m
obstacles to applying the method to this problem. First, th
is no Schmidt decomposition for more than two partic
and, second, the transformations used to put the state
form having terms of equal amplitude do not generalize
more than two particles.
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APPENDIX

In this appendix we show that there can be no advant
if Alice makes a nonmaximal rather than a maximal me
surement ontoS. Assume that the state just before measu
ment is

(
l

cl u l &SuF l&, ~A1!

whereuF l& is some state of systemAB and not necessarily
an m-state. Imagine that the projective measurement is n
maximal and one of its projectors isu1&S^1u1u2&S^2u. In the
case of having the corresponding outcome, the resulting~un-
normalized! state will be

c1u1&SuF1&1c2u2&SuF2&, ~A2!

This could, for example, be anm-state if systemS is re-
garded as being part of systemA. Rather than performing
this nonmaximal measurement, Alice could instead cha
her notation for theu i &A states such that, ifu i &A appears in the
expansions ofuF1& and uF2&, she writesu i &A as u1,i &A . The
remaining vectorsu i &A are relabeled asu2,i &A . We are free to
assume that the dimension ofA is big enough to do this.
Then we writeuk,i &A5uk&A8u i &A . Now Alice performs the
transformations

u1&Su1&A8˜u2&Su1&A8 , ~A3!

u2&Su1&A8˜u2&Su2&A8 . ~A4!

m
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Under these transformations the first two terms in Eq.~A1!
become

u2&S~c1u1&A8uF1&1c2u2&A8uF2&). ~A5!

A maximal measurement will now give rise to a state w
the same form as the state in Eq.~A2! for the outcome 2.
re

m

This trick can be repeated everywhere there is a degene
in the original nonmaximal measurement and a maxim
measurement can then be performed instead. This max
measurement will give rise to the same distribution of t
same states as the nonmaximal measurement and so
can be no advantage to performing nonmaximal meas
ments.
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