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General teleportation channel, singlet fraction, and quasidistillation
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We prove a theorem on direct relation between the optimal fidéljty, of teleportation and the maximal
singlet fractionF,,, attainable by means of trace-preserving local quantum and classical communication
(LQCO) action. For a given bipartite state acting 6A® C? we havef 4= (Fmad+1)/(d+1). We assume
completely general teleportation schefirace preserving LQCC action over the pair and the third particle in
unknown statg The proof involves the isomorphism between quantum channels and a class of bipartite states.
We also exploit the technique &f® U* twirling states(random application of unitary transformation of the
above form and the introduced analogous twirling of channels. We illustrate the power of the theorem by
showing thatany bound entangled state does not provide better fidelity of teleportation than for the purely
classical channel. Subsequently, we apply our tools to the problem of the so-called conclusive teleportation,
then reduced to the question of optimal conclusive increasing of singlet fraction. We provide an example of
state for which Alice and Bob have no chance to obtain perfect singlet by LQCC action, but still singlet
fraction arbitrarily close to unity can be obtained with nonzero probability. We show that a slight modification
of the state has a threshold for singlet fraction, which cannot be exceeded any8i@&0-2947®9)03707-5

PACS numbgs): 03.67.Hk, 03.65.Bz

[. INTRODUCTION (we shall call it singlet state, despite it is, in fact, local trans-
formation of true singlgtshared by a sender Alice and a
receiver Bob allows us to transmit faithfully an unknown

: . . spins state, with additional use of classical bits describing
entangled quantum stage All the manipulations Alice and 2
Bob are allowed to perform are local quantum operations ang"® of (+1) . elementary messages. If the state shared by
classical communicatiofcalled local quantum and classical ~\ic€ and Bob is pure but not maximally entangled, then one
communication(LQCC) or bi-local operationk It means ¢an perfo_rmconclq3|veteleportathn[3]. The main idea of
that, in particular, they cannot exchange quantum bits or eghe latter is that, given a particle monmaximallyentangled
tablish quantum interaction between their labs. Now, supstate V' providing small transmission fidelity, Alice and
pose that Alice wants to teleport an unknown state of som@ob can transform the state by some deliberate LQCC op-
other spins particle, but only if she is sure that the fidelity —erations. As a result, with some probability the final state
of the transfer is better than some given threshblg,  provides much greater transmission fideliisually the per-
(fmin<<1). Which statep give Alice a nonzero chance that fect ong. In the proposed protoc$B] the pairs of particles
after some LQCC operations she can teleport being sure thatere treatednoncollectively i.e., each pair was processed
her requirement is satisfied? The answer to this question wikeparately. The concept obllectiveoperations that involve
be one of the results of this paper. interactions among different pairs, has been implemented for
As one knows, quantum teleportati¢f] allows us to  pure states in the protocol ebncentration of entanglement
transfer the quantum information through quantum entanglegy LQCC operations[4] (see [5] for interesting conse-
states as quantum channésipported by classical channels guences for entanglement measures Egidfor analysis of
Wlth the fidelity better than by means of a class,lcal_ Channebrobability distributions In this approach some number of
itself [2]. For example, two spis-particles in the maximally nonmaximally entangled states are converted via LQCC op-
entangled state, erations into the less number of maximally entangled ones
1 that can be used, for instance, for faithful teleportation pro-
- - i =25+ cess.
Po=|w (V.| [¥,) \/Hizo D), d=2s+1 In realistic conditions, instead of pure entangled states,
(1) Alice and Bob usually share a mixed state that contains noisy
entanglement. The latter case is more complex and it has
longer history. Popescu first has pointed p2it that mixed

Consider the following problem. Alice and Bob are far
from each other, and they share one pair of spparticles in

*Electronic address: michalh@iftia.univ.gda.pl entangled states can allow for teleportation with significantly
TElectronic address: pawel@mifgate.pg.gda.pl better fidelity than the one achieved by using only classical
*Electronic address: fizth@univ.gda.pl bits. He also showefi7] that some noncollective LQCC op-
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erations can transform théxd (d=5) Werner entangled These are the main tools that allow us to prove a strict
mixed states satisfying local hidden variable mod@dlinto  connection between the optimal fidelity, 5, of teleportation

the two spins states violating Bell inequalities. Subse- via a given state and the maximal singlet fractiep, at-
quently, a similar effect by means of local filtering for mixed tainable by means of trace preserving LQCC operations on a
two spin+ states has been fouridl] (see[4] for pure state Single pair. Namely, we prove that there holds the equality
cas@. At the same time the important idea diftillation (or ~ fmax= (Fmaxd+1)/(d+1). We emphasize here that we con-
purification of noisy entanglement has been worked outSider the most general teleportation scheme, which is pos-
[10,11]. Here the aim is to convert some numbermoixed sible. Then the problem of optimal teleportation fidelity is

inseparable states into less number of states close to a maﬁ?—dEC?d to th?, much less .coTpl]jcat(s.kmt still nontrivifab
mally entangled pure one. The distillation protocols are usutask of optimal increasing singlet fraction by means of trace-

ally accomplished by operating on collections of pairs ratheP' ©S€VINg LQCC operations. We illustrate the power of the

than on single pairs. However, the single-pair operations in[eSUIt in Sec. IV-applying it to the problem of optimal tele-

. ; portation fidelity via bound entangled statéke entangled
trodgced In RgstQA] have been shown ta plgy an important ones, which cannot be distillgd9]). This problem has been
role in the distillation protocol capable to distll entangled

) . quite recently risen by Linden and Pope$20] who showed
two-quantum bit(qubif) states[12]. On the other hand, that some of the bound entangled states do not provide better

single-pair operations are much simpler .to perfor.m_experlﬁde”ty by teleportation via purely classical chaniiste[2]
mentally [9,13]. General results concerning the limits for i, this context. Here we prove that it is true for any bound
those operations have been provided by Linden, Massar, anghtangled states and for the most general teleportation
Popescy14] and by Kent{15]. schemes.

In this paper we would like to consider the question con-  |n subsequent sections we apply the results to the problem
cerning the conclusive teleportation we asked at the begirof conclusive teleportation, which is now reduced to the
ning. We first reduce the question to the problem of singleproblem of conclusive increasing singlet fraction. We con-
pair distillation. To this end we provide a number of tools, sider two conceptgi) noncollective distillation, where Alice
which can be useful also in more general context. and Bob have a chance to obtain a perfect singlet @nd

In Sec. Il we consider the problem of equivalence be-noncollective quasidistillation(in short quasidistillatiop
tween bipartite states and quantum channels. The conneghere the perfect singlet cannot be obtained, but there is a
tions between states and channels were considered in Ref#dnzero chance to obtain arbitrarily high singlet fraction.
[16,17). It is clear that if we have a channel, then we canFrom the results concerning noncollective distillatjad,15
produce a bipartite state sending half of the singlet down th&ve know that for a broad class of mixtures it is impossible
channel[16]. However, given a state, it is not clear whether €Ven to increase the singlet fraction. As shown in Re5]
there is a channel, which can produce it in the above way. Ahe noncollective distillation is impossible for mixed states
way of ascribing a channel to a given state is to perfornf full rank. _ _ _ _
teleportation via the statécreating the teleportation chan-  Here we address, in particular, the following question:

nel). One can now ask what channels can be produced b§°€S there exist a state which is not noncollectively distill-
means of teleportation via a given mixed state. Anothe ble, but still is quasidistillable? To answer this question we

question is the following16]: suppose that a mixed state detérmine(in Sec. V) the class of the states, which can be
was produced from a channel, by sending half of a Singlet_dlstllled (we generalize the consideration taking into account

Can we recover the channel by means of sam®bably the case of the singlet of less dimension than the dimension

very sophisticaterteleportation scheme applied to the state?° the system: this corresponds to fidelity teleportation with
This is the question of reversibility of the operation of pro- the average calculated over inputs restricted to less Hilbert

ducing states from channels. In Sec. Il we prove that th&Pac® In Sec. VIl we provide example of state that does not
operation of sending half of a singlet down the channel proP€long to this class, but can be quasidistilled. Then we
duces an isomorphism between channels states having tfightly modify the state so that the new one cannot be qua-

reduced density matrix of one of the subsystems maximau?idistilled having a threshold for singlet fraction, which can-
chaotic(proportional to identity. not be exceeded. Thus for sufficiently high required fidelity

Section 11l is devoted to the problem of optimal fidelity of of teleportation, Alice and Bob have no chance to obtain the

teleportation. We first consider families of states and chanfidelity for this state.

nels connected via the above isomorphism. The states are
singlets with an admixture of a completely mixed stiit8] Il. STATES AND CHANNELS

eneralization of two-qubit Werner statg2]), which are i ,
(9 d E52) In this section we prove formally that the set of channels

the only states invariant under thé®U* twirling intro- . . S .
duced in Ref[18]. The channels are the generalized depo-A on the set ofd-dimensional states is isomorphic to the set

larizing ones. We show that the families are not only con-°f densndy matriceso acting on the Hilbert space{="7,
nected via the isomorphism, but are also physically®7t2=C"®C" satisfying Ts,0=1/d (the partial trace over
equivalent, i.e., the teleportation via state reproduces ththe second system gives maximally mixed staBy channel
channel. This generalizes similar observation for two-qubitve mean here completely positive, trace-preserving map
Werner state§16]. We also introduce an operation on chan-[21]. Given a channel\ one can ascribe to it a stagg, ,
nels, which is equivalent to twirling of the corresponding sending half of singlet state down the chanji,17)

states. We show that average fidelity and the entanglement

fidelity are invariants of the twirling operation. oA=(®A)P, . 2
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Such a state must have the first reduction the same as thee have shown that if two maps give rise to the same state
stateP, (i.e., l/d) since, due to impossibility of action at a then they must be equal, so that form@® determinesA
distance the local reduced density matrix of the remote halfiniquely. Thus it constitutes an affil@omorphisnbetween
of P, cannot be changed by any local action performed orchannels and states of maximally mixed reduced density ma-
the other half(this is a “physical” version of the proof of trix on one of the subsystems.
this well-known fact{22]). Having proved the isomorphism, given a statave will
Now consider a given stag, with first reduction equal to  denote byA, the unique channel satisfying E¢). Con-
I/d. Following Ref.[18], consider the spectral decomposi- versely, given a chann@l we ascribe to it a state,, also by
tion of the state means of the formulé2). Note that so far this isomorphism
has been established here only between channels, i.e., com-
pletely positive trace-preserving maps and quantum states
0= Pl (il (3 with one of subsystems being completely mixed. One can
i=1 . . .
easily see that the isomorphism can be extended to all states
Let, e-g--¢122fjjzlcij|i>®|j>- Then it can be represented if one abandons the condition of preserving the trace. Then
’ we have the one-to-one correspondence between the set of

d2

as all states and the set of all completely positive maps. But we
=1V, (4)  would like to stress here that we refer to a completely posi-
tive map as to a channel only if it is trace-preserving.
where (i|V4]j)= \/acij . Defining analogouslyV, for k Let us now discuss the physical sense of the considered
=1,...d2 we obtain useful mathematical equivalence. If Alice and Bob are con-

nected via a channeh then they can create state, by
+ sending half of the singlet down the channel. However, if
Q:gl pleViP leVi=1eoA)P., (5  they initially share the state,, then can they say they
dispose a channel? As one knows, applying teleportation
WhereA(g)zgkkakgvl_ Of course the map. defined in  Protocol, they, in fact, obtain some quantum channel. It re-
this way is completely positive, since it is of the commonMains an open question whether there exists some teleporta-
Stinespring forn{23]. It is also trace-preserving. To show it tion procedure, whiclreproducethe channelA [16]. It is

we only need to check wheth&=3,p,V{V, =1 [24]. Since highly probable that, in general, sending half of the singlet
the first reduction of our state is I/d, we have for any down the channel causes soimreversibleloss of the capac-

ity. Thus, the mathematical equivalence would not imply the

42

operatorB, h , v
physical one, in general. One knows that in some cases there
is also a physical equivalence. Namely, for the two-qubit
TrB=dTr(eB®l)= de PKTT(P.BBVLV,) Werner state the corresponding chanfuglantum depolariz-
ing channel can be retrieved by applying the standard tele-
=dTr(P,.B®A). (6)  portation protoco[16]. In the next section we will show that

the same reversibility holds for generalized depolarizing
Now using the property tha&€® 1P, =1®CTP for any op-  channel(associated with the family of thd @ U* invariant
eratorC and the fact that the reduction of the singlet/id, states.
we obtain At the end of this section we define two parameters de-
T T scribing channels and states. We will use the same notation
TrB=TrB'A=TrA'B (7)  for states and for channels, but the parameters will, of
course, have different interpretation. We will denote them by
f andF. The first one is defined for channels in the following

way,

for any B. This implies thatAT=1; hence, of course, also
A=lI.

Finally one should know that the channtelis determined
uniquely. Suppose that there are two mapsand A’ that
produce the same stageso that we have

(= [ daladanshle).  ao
[l&(A—A")]P, =0. ®)

Denote the differencéd — A’ by I'. We will now show that where the integral is performed with respect to the uniform
I' must be equal to 0. Indeed, consider the operator basuistributiond¢ over all input pure states. It has the following

constituted by the following operatoi;;=[i)(j|. In that interpretation: it is the probability that the output state
basis we havé®, =1/d=;;P;® P;; . Substituting it into for-  A(|¢)(#|) passes the test of being the input stateaver-

mula (8) we obtain aged over all input states. We will call it fidelity of the chan-
nel.
B N . _ For the states, the paramefgip) will denote the fidelity
%—: Py @T(Py) .% Vij Py @ P =0, © " of the channel constituted by the standard teleportation via

the statep. Here we adjust the standard teleportation scheme
where y;j, are matrix elements df in the basisP;; . Since  [1] so that it provides perfect transmission for the state of the
the operatorsP;;® Py also constitute basis then it follows form (1) rather than for the true singlet orfas in original
that all ;;,; must vanish so thdt must be 0 operator. Then, schemg
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The parameteF for states will denote simply the fraction |ished embedding of the spaég, into the Bob spacét, (of
of the singlet state given biF(¢)=(¥.|e|¥.). For the course the very form of the embedding is here irrelevaat
channels, we will denote blf(A) the entanglement fidelity that the formula10) for fidelity is well defined.
of A [17] given exactly byF(g,). Then if one sent half of
the singlet down the channel, the entanglement fidelity says

how close is the output state to the input one. By definition, B. Noisy singlet

F is invariant under the isomorphis(g). Consider the one-parameter family of stdte8] given by
I®1
IIl. FIDELITY OF TELEPORTATION AND SINGLET Qp:pp++(1_p)?’ O=p=<1 (13
FRACTION

In this section we relate the optimal fidelity of teleporta-
tion via a given mixed state to the maximal singlet fraction
attainable by means dface-preservingLQCC operations.
Our basic tool will be the alternative kind of twirling tech-
nique introduced in[18], i.e., random application ofJ
®U* unitary transformations. We also introduteirling
channelswhich is operation on channels analogous to twirl-
ing states.

We will call them noisy singlets. They are the most natural
generalization of the 22 Werner statef8,2].

Let us now calculate the two parameté@ndF. To cal-
culatef consider the standard teleportation scheme via the
state. The scheme produces fidelity 1 for the singlet state.
For the completely random noise represented by the ktate
®1/d?, the average final state of Bob’s particle after the tele-
portation procedure is equal téd and does not depend on
) the unknown state to be teleported. Then, in this case the

A. Teleportation fidelity amounts to M. Thus for the noisy singlet we obtain

Suppose that Alice and Bob share a pair of particles in a
given stateg acting on the Hilbert spacé{,® Hg=C" 1 1
®CY and Alice has a third particle in unknown stage f=p+(1-p)g, g=f=1l (14)
eH;=CY to be teleported. The standard teleportation
scheme has been described in the Introduction. The mo
general teleportation scheme is that Bob and Alice, given th
particles in states described above, apply some trace-
preserving(hence without selection of ensempleQCC op-
eration T to the particles they share and Alice’s particle.
After the operation the state of Bob’s parti¢feom the paijy

is to be close to the unknown state of the third particle. Therpe two parameters are related in the following way
final state of Bob’s particle is given by the following for-

e parameteF amounts to

1 1
F=p+(1—p)az, OTZSF<1 (15

mula,
v _ _ Fd+1

CEon=Traal T(|)(¥l@0)]. 11 f=g51 (16)
This establishes a quantum channgl, that maps the input
state(the state of the third particleonto the output one — We see that the noisy singlet is uniquely determined by any
the final state of Bob particle of those parametefso one can use notati@y,, O, or ¢y if

v we use one of these parametrizatipi$he separability of the
Afe(| W)(1) = Ckob- (12 stateg, can be characterized in a very clear way. Namely, it

This is a different way of ascribing a channel to the given'S [18l separablze if and only if &p=<1/(d+1). This is
state than the isomorphistg). It is determined by each es- €auivalentto d°<F<1/d and 1d4<f<2/(d+1).
tablished teleportation protocdl, and in contrast to the iso-  Recal th"j}t the noisy singlets are the only states invariant
morphism, it is in general not a one-to-one association: twd!nder Ueu* transformationg/18] (here the star dengtes
different statesp and o' can give the same teleportation COMPIEx conjugation Any stateg, if subjected toU@ U
channelAt ,= A+, (this was discussed in Ref16]). The twirling, produces noisy singlet:

fidelity of a teleportation protocdl (via a given state) is
the fidelity of the arising channé( A+ ,). According to our
definition of f(@), given in the previous section, we have
f(Q)zf(ATO,g), whereT, is the standard teleportation pro-

tocol. We must stress here that, in general, we do not knowiith F=Tr(gP.). Thus the singlet fraction is invariant un-
whetherA ,= A+ , for some protocoll, even if the protocol  der the twirling procedure.
could dependon ¢ (thus we do not know whether the iso-
morphism implies also the physical equivalence, see previ-
ous sectiop A particular example where it is the cafe-
polarizing channelwill be discussed subsequentlsee Sec. The depolarizing chann¢l6,18 is defined as follows,
c).

Finally, let us consider the situation with restricted input,
i.e., if dimH+,;=m<d. Then we must work with some estab-

T(e)zfduuw*em@u**:ep, 17

C. Depolarizing channel

I
Ap*o)=pa+(1-p) g, (18
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where is the state acting o&°. From the formula18) it where the arrows— denote the isomorphisrt®2). That the
follows that with probabilityp the channel does not affect diagram commutes can be verified directly,
the input state, while with probability -1p it completely

randomizes the input state. enny=[I®T(A)]P

Now if we apply the considered channel to half of the
singlet we obtain the noisy singlet with the same parameter :f dU[leUTT@ A(leUP,IoUT) U]
p. Thus, we have the equivalence

dep_
AGP=Ag . (19 =f dU[IoUTT@A(UT®IP. U*el)leU]

Then, it follows thaIF(Agep)=F(Qp). Even more, we have

full physical equivalence between depolarizing channel and =f dU[U*TeUT(Ie A)P U*®U]

noisy singlet: the channel can be reproduced by standard

teleportation applied to the noisy singlghis is compatible

with similar observation in Ref[16] for two-qubit casg :f dUU*eUe,U*TeU'=Tg,). (24)
Thus we have the complete set of equivalences,

Here we used the identity® AP, =AT® 1P, [24] and the
invariance of the Haar measure under Hermitian conjugation.
) i . Now, applying the isomorphisni2) we obtain that the
To prove the last equality, consider the standard teleportatloehannemA) is equal to the channel corresponding to the
scheme of an unknown state through the s@gfe As de-  giate770, ). Since the latter is a noisy singlet, then the chan-

scribed in the previous subsection, with probabifityBob 6| myst be a depolarizing one. Let us compute entanglement
will obtain the input state undisturbed, while with probability fidelity of 7(A). We obtain

1—p he will end up with totally mixed state/d.

Thus any given input state is in the procesg, trans- E[TIA)1=F —F —F =F(A
formed into the statea+(1—p)l/d=Age"(o). Then it fol- [TA)]=Flenn) =FITea)1=Flen)=F(A), (25)
lows that also the paramet&is the same fow\gep andg,,
so that the formulagl4) and(15) hold also for the depolar- where we used definition d%, its invariance under twirling
izing channel, and any of the parameterandf determines states, and the equalit22). Hence the entanglement fidelity

ARTP=Ag = A(To.0p). (20

it uniquely. is invariant under the twirling of the channel.
We have also the following lemma.
D. Twirling channels Lemma 2ZThe channel fidelity is invariant under twirling.
Here we will introduce an operation over the channels,
P f(A)=f[T(A)]. (26)

which is equivalent tdJ ® U* twirling of states. Namely, for
any channelA, one can consider one constructed in the fol-
lowing way. Given the incoming particle, Alice subjects it to
a random unitary transformatids, then sends it through the
channel and informs Bob, which unitary was applied. Subse-
quently, Bob, who received the particle, applies the inverse f(A):f d UTIU|)B|UTA(U|)(H|UND], (27)
transformatiorU™.
Now, we will show that as expected, the following lemma ) o ) )
is true. where ¢ is an arbitrarily established vector and the integral
Lemma 1Any channelA subjected to the twirling proce- 1S Performed over the uniform distribution on the group
dure becomes a depolarizing channel with the s&mee., ~U(d) (proportional to the Haar measuré€onsequently, we

we have have

Proof This follows from direct calculation of. Namely
the formula(10) can be rewritten as follows,

_ A dep
T(A)=A @) f[T(A)]:f dUTr[U|¢><¢|UTf d VVIA(VU[¢)
with F(A9®P)=F(A).

Proof Let us first show that ot
X(p|UVTHV

ermy=7(0n), (22
which can be illustrated by means of the following commu- :J' d Vf d UTIVU[$)(¢|UTVTA(VU| &)
tative diagram,
0 — A, X<¢|UTVT)]=dedeTF[U|¢)
LT X(BUTAUI8)1UNI= [ aVIA)=1(A)

0p « ARP (23 (28)
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with V unitary anddV representing the integration over Haar have no prior entanglement so that the quantum information

measure. is sent via classical bits themselyePositive answer to the
These two lemmas produce the following result. same question but in the context of states allowing local
Proposition 1For any channel\, one has hidden variable modgl8] allowed us to obtain nonclassical
features of the stat¢g]. Now, for a class of BE states, those
F(A)d+1 authors obtained a negative answer, taking into account a
fAN)=—37— (29 more general teleportation scheme than the original one

(they allowed for arbitrary von Neumann measurement of

Proof The above equality is true for depolarizing channel,Alice).

but as shown above boftandF are invariants of twirling, so Here, we are able to obtain the fully general answer.
that it must be also true for any channel. Namely, we will show thathe optimal fidelity of teleporta-

tion via arbitrary BE state is equal to the classical telepor-
tation fidelity.

Let us first derive the expression for the classical telepor-

Here we will prove the main result of this section. tation fidelity. Due to the proved theorem, it suffices to find
Namely, we will relate the maximal fidelity of general tele- maximal singlet fraction attainable via classical communica-
portation scheme to the maximal possible fraction of the sintion. This, however, reduces to determining the maximal
glet attainable by means of trace-preserving LQCC operapossible singlet fraction of separable states. Of course, it can-
tions. This will reduce the problem of optimal teleportation not be greater than d/ since states wittF>1/d are en-
scheme for a given mixed state to the less complicated prohangled(even free entangled, i.e., distillable — explicit dis-
lem of increasing singlet fraction. tillation protocol has been provided in R4fL8]). On the

TheoremlLet F ., be the maximal possible fidelitpver-  other hand, as mentioned in the previous section, the noisy
lap with the stateP ) which can be obtained from a given singlet with F=1/d is separable. Hence, applying the for-
stateg by means of trace-preserving LQCC operation. Thermula (30) we obtain that the best fidelity of teleportation via
the maximal fidelity f 55 Of teleportation via the state classical channel is given biy,=2/(d+1).
attainable by means of trace-preserving LQCC operations is Consider now the BE states. Since the states With

E. Teleportation and singlet fraction

equal to >1/d are free entangled, then the maximal possibfer BE
states is alsd-=1/d. Then the maximal fidelity of telepor-
foa= Fma*dJrll (30) tation via a given BE state is also less than or equal to the
d+1 fe . Infactitis equal, as having any BE state one can simply

) . get rid of it and perform classical teleportation attaining the
Proof First we will prove that f,,=(Fnad+1)/ fidelity ;.

(d+1). Suppose we have a teleportation channel of fidelity

fmax- From Proposition 1 it follows that entanglement fidel- v. CONCLUSIVE TELEPORTATION AND INCREASING

ity F of that channel satisfie, .= (Fd+1)/(d+1). Then, SINGLET FRACTION

sending half of the singlet down the channel, one produces a ) ) o )
state withF satisfying relation(30) andF ,,,, is at least equal Here we will consider the problem of the conditional in-
to F. creasing of fidelity of teleportation, i.e., conclusive telepor-

Conversely, suppose that by trace-preserving LQCC 0pt_a_ltion [3]. By the results of Sec. I thi.s. ques_tion wi_II be
erations a state’ of maximal F has been obtained. Apply d!rectly relaped to the problem of conditional increasing of
twirling to this state. The resulting state is of the fofhg). ~ Singlet fraction. o _
Then the fidelityf of standard teleportation via this state  SUuPPOse that Alice and Bob has a pair in state for which
satisfies the relatiofL6). Thus the standard teleportation will th€ optimal teleportation fidelity i$,. Suppose further that
achieve the requirefi which ends the proof. the fidelity is too poor for some Alice and Bob purposes.

Remarklt can be seen that we can assume that the finaVhat they can do to change the situation is to perform the
singlet is less dimensional than the spaten H,. For ex- so-called conclusive teleportation. Namely, they can perform

ample, one can consider maximal attainable fracignof ~ S0Me LQCC operation with two final outcomes 0 and 1.
mx m singlet| ¥ = (LYm)=M ,|i)|i) wherem<d. In this After obtaining outcome 0 they fail and decide to discard the

case, the formuld30) describes the optimal fidelity of tele- pair. If the outcome is 1, they perform teleportation, and the

portation for restricted inpui.e., if the unknown state comes fid_elity Is now much b?“ef that the initidb.. Of course, the
from the Hilbert space of dimensiam [20]). price they must pay is that the probability of the success

(outcome 1 may be small. The scheme is illustrated in Fig.

1.
IV. OPTIMAL TELEPORTATION FIDELITY FOR BOUND A simple example is the following. Suppose that Alice
ENTANGLED STATES and Bob share a pair in pure state- a|00)+ b|11), which is
Here we will apply the results of the previous section ton€arly productie., ais close to 1. Then the standard tele-
the question of optimal fidelity of teleportation via bound Portation scheme provides a rather poor fidelity 5(a

entangled BE) states. These are the ones that are entangled b*)/(a—b) [25,26. However, Alice can subject her par-
(are not a mixture of product stajelsut cannot be distilled ticle to a filtering procedur§9,4] described by the operation
[19]. Linden and Popesc[R0] asked the question whether A=W OWH+ V(v 31
the BE states allow for better fidelity than the one of purely ) ) @D
classical teleportatiorti.e., the one where Alice and Bob with W=diag(b,a),V=diag(a,b). Here the outcome (suc-
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O N NN B
Alice L il Bob
preparation \ Loce
of a strongly LQCC
entangled pair failure
1-p
_ failure
(success) p 1-p
SWVWWWWYe (success) p
teleportation $ 0o — + — 0 g4
LQCC
FIG. 1. Conclusive teleportation. Starting with a weakly en- WWWVe

tangled pair, Alice and Bob prepare with probabilfiya strongly

entangled pair and then perform teleportation. FIG. 2. Conclusive increasing singlet fraction. Alice and Bob

with probability p of success obtain a state with higher singlet frac-

o tion than the one of the initial state.
ces$ corresponds to operat®V. Indeed, if this outcome was

obtained, the state collapses to the singlet one, . L .
Applying now the known results concerning increasing

singlet fraction[15,14] we obtain that there is such a thresh-
~ W&l 1 old for the states of full ranki.e., with eigenvalues nonvan-
p= W: $(|OO>+|11>)' (32 ishing. However, we will provide the class of states of low
rank, which do not allow for perfect conclusive teleportation,
_ ) ) but still arbitrarily high fidelity can be obtained with nonzero
Then, in this case perfect teleportation can be performedyrobability (the latter depends on how high fidelity we would
Thus, if Alice and Bob teleported dil’eCtly via the initial state, like to have_ We will also provide a class of states of low
they would obtain a very poor performance. Now, they havgank for which we prove that the threshold exists. As we will
a small, but nonzero chance of performing perfect teleportasee the proof is surprisingly complicated. Then the problem
tion. of determining whether a given state has an ultimate thresh-
The main questions concerning the above scheme of coryiq for conclusive teleportation becomes highly nontrivial.
clusive teleportation are the following. Which states can pro- The above problems are closely related to the problem of
vide perfect conclusive teleportation? More precisely, givenyistillation [10] by means of noncollective operatiof4].
a stateg, does there exist a nonzero probabifitgf success, Namely, if for some state it is possible to obtain conclusively
for which Alice and Bob end up with pure singlet? Confining perfect singlets, then we have, in fact, a protocol of distilla-
now to the class of states, which cannot be converted intgon, because we obtain a nonzero rate of produced singlets.
pure singlets, one could ask: how large fidelity can be obThen such a state is noncollectively distillable. In the case
tained? As we will seethe fact that perfect conclusive tele- where pure singlets cannot be produced, the noncollective
portation is impossible does not, in general, mean that thergyperations cannot produce a nonzero asymptotic yield. If still
is some fidelity threshold €1, which cannot be exceeded an arbitrary high singlet fraction can be obtained, we will
To analyze the above questions, we will apply the toolscall the state noncollectivelyuasidistillable(as in this paper
worked out in previous sections. Namely, there we have rewe deal only with noncollective protocols, so we will say
duced the problem of optimal fidelity of teleportation to the priefly quasidistillable The states that have the ultimate
problem of optimal increasing of singlet fraction. Let us now threshold of a fraction of the singlet we call nonquasidistill-
apply this result to the present situation. Namely, for a giverpple. In subsequent sections we will define the notions more

probabilityp let fp denote the maximal fidelity of conclusive precise|y, and we will consider the relevant examp|es_
teleportation with this probability of success. From the theo-

rem it follows thatf,=(Fyd+1)/(d+1) whereF, is the
maximal singlet fraction attainable with probabiljpyof suc- VI. NONCOLLECTIVE mxm DISTILLATION
cess. So to obtain results concerning fidelity of teleportation Let P™=|¥™(W¥T|. As mentioned in the Introduction,

we do not need to consider the conclusive tEIeportatior?ollowing the ideas presented in the papftd,15 we use
scheme but the much simpler scheme of conclusive NCreasme following definition of noncollective distillation.

ing singlet fraction. The scheme is illustrated in Fig. 2. S
; ; ; Definition One says that th& XM state o can bem
Again, Alice and Bob perform some LQCC operation X m noncollectively distilled if there exist operatos,B

with two outcomes. The outcome 0 denotes failure, while
obtaining the other outcome, Alice and Bob have the finaFuCh that

state of higher fraction of singlet than the initial one. Now

the question concerning the fidelity of teleportation can be A®BpAToB' .

reformulated in the following way. For which states can the o P (33
perfect singlet be obtained? For which states can arbitrarily Tr(A®BeA'®B’)

high fraction of the singlet be obtained? Finally, for which

states is there a threshold for singlet fraction that cannot be We shall need other notions yet.

exceeded? Definitions(i) If the state has the Schmidt decomposition
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m-1 of the form p|¥ )W, |+(1—p)e’ with reduced density
= Z alf 'y, a#0 (349  matrix o5 of the matrix o’ orthogonal to the projectoP
=0 =3N"1i)(i]. The corresponding operatofsB turning such

then we shall call the numben the Schmidt rank of staté states into maximally entangled state e (identity op-

and denote it by () erator on the first subsystgrandB=P.
S(W).
(ii) We also shall calproduct nxm projectionthe prod-
uct projectionP® Q where the ranks of the projectiofsQ VII. NONCOLLECTIVE QUASIDISTILLATION

aren,m, respectively. Hilbert subspace of the spé&teorre-

sponding to any such projection we shall cplioduct ' oherations to make,, arbitrary close to 1 with nonzero

xm subspac_e . ) probability even if the noncollective distillatio(83) is im-
Herg we s!mply characterize the states, which can be NOfkossible. In fact, one can imagine a sequence of LQCC op-

collectively distilled. , erations producing better and betfebut with the probabil-

_ PropositionA given NXM stateg is mxm noncollec- i tending to zero. Then the corresponding denominators of

tively distillable if there existanxXm product projectionP the expressiofi33) converge to zero, so that the hypothetical

®Q such thatP©@QeP®Q is some pur&possibly unnor-  jimiting operation does not exist. It corresponds to the exis-
malized projector of Schmidt rankn. tence ofA, B, such that

Proof Consider the given state that is noncollectively
distillable. It means that there exists some@ B such that An®BnQAl®Bl N

One can ask whether it is possible by means of LQCC

o PT. (37
A®BeAT®B'=|¢)(¢|, (35) Tr(A,®B,0A 2B

and |¢) is (possibly unnormalizeda maximally entangled The existence of such operators we shall call the noncollec-
vector of rankm. Note, that one can restrict to Hermitidg  tive quasidistillationas we allow corresponding sequence of
B. It follows from two simple facts(i) for any AB there  probabilitiesp,=Tr(A,® B,oAl®B) to decrease to zero.
exist A,B, and unitary U,,Ug such that AeB=AU, It means that if such noncollective operations were per-

®BUg and(ii) product unitary transformatiod ,@ Ug does forme_d on many pairs of particles, then, unllke in the origi-
not change Schmidt rank. nal distillation schemg10], one would obtain zero rate

H m
Consider now Hermitiai\,B satisfying Eq.(35). One can [10,18§ of pure _smglet_ _stateEu '
invert them on their supporté&~ ‘A=P, B~ 'B=Pg where Now we are in position to present an example of the qua-

P, ,Pg are projections onto the supports &B. Consider a sidistillation process. In this section we shall focus on the
vgc:,tongiven by ¥)=A"1®B[¢). As no product operator quasidistillation of ghedxd system to the maximally en-

. N o
can increase the Schmidt raf&] we haver (y)<r (¢). t@ndled stateP, =P, (not to Pi" with m<d). To be spe-

Since|¢)=A®B|), we obtain that, in factr () =ry(¢)  Cilc, we will deal with the casel=3. o
=m. Also, by definition ofP,, Ps, A~ andB~* one has The mixed state, which can exhibit arbitrary high fidelity

F after noncollective local filtering, is the followin@7]:
|)(4|=Pa®PgoPA®Psg. (36)

The projectorP,® Pg must have at least rarmkxX m [other-
wise r¢(¥) would have to be less tham]. If it has greater
rank, then one can easily firfdia Schmidt decomposition of
) the projectorsP ,® Pg of rankmxm that still converto
into |)(¢|. Thus, if PA®Pg has rankmXm then we take
P=P4,Q=Pg; otherwise P=P,,Q=Pg.

Suppose now, conversely, that there exBtsQ of rank
mxm such that P@QoP®Q=|#){y| with r()=m. 1
Theny is of the form(34). Now, takingA=P,B=VQ, with Anzdlag{ﬁ,l,l
(fi”|V|f]’i’>=(1/ai)5ij [see Eq.(34)], one obtains thatA
®BeA'®B' is the maximally entangled statef Schmidt  allow for quasidistillation proces&7). Indeed, then
rankm, of coursg. Note that the operatdr plays the role of
the suitable local filtef4,9]. Now, applying suitable product i oo 1 1-F
unitary transformation, we obtaitafter normalizatioh the An@BnaAn@’Bn:ﬁ FP.+ n 01)(0Y
desired statd®"] . This ends the proof.

Note that the above proposition provides the necessarwhich after suitable normalization leads to the desired result.
and sufficient condition for noncollective distillation, which The key point is that in the letter example the normalizing
obviously does not automatically provide the best way tofactor of the state converges to zero, i.e., we have an increase
distill the state. From the proposition it follows directly that of the fidelity of the output state but, at the same time, the
no mixed state of ®d system can be converted into the probability of obtaining this output state decreases to zero.
maximally entangled state of the system Now, according to Eq(30), it means that it is possible to

This is possible, however, for many states of the systenteleport with the fidelityf arbitarily close to unity, although
NXM,M>N. Simple examples of such states are the statethe valuef =1 cannot be achieved.

oe=FP,+(1-F)|01)01, 0<F<1 (38)

Following our remarks from previous section we know that
the state, as a mixed one, cannot be distilled to the maxi-
mally entangled state, . According to the formul#30) this
means that it is impossible to teleport with the fidelity 1
via the staterg.

However, it can be easily seen that the operations:

, (39

. 11
, BnEd|ag{1,—,—
n'n

., (40
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Now we shall see how the above situation dramatically

changes under seemingly not strong modifications of the in- \Pn:i(|a3b3)+|a2 1)+|agh3))
put state(38). For this purpose consider the following state \/5
[27],
-2 [00)+|11)+]22)) (45)
1-F = 7= :
0r=FP. + ) (01)(01 +|12)(12 +20)(20), ﬁ
But, at the same time, calculating that®,(o.))
0<F<1 (4D =TO,(0,)1= 132 ol|AJi)][2[B,Ji®1)][* [here xey
=(x+y)mod3] we obtain via Eqg. (44) that
For convenience let us introduce the notat®p(o)=A, |im =2 lllaM||?(|bl, 1)|[?=0. The latter is the sum of
®B,oAl®B!, 0(c)=A2BorAT®B', and (w)=Tr(w). e

The same arguments as before lead to the conclusion thf’ﬂree non-negative sequences, so_that any of them must con-
verge to zero independently. Taking their square roots and

there are no operatoré\B such that®(og)/(O(gF)) o ) \ i
=P, . We will show that for the considered state, unlike for gzgﬁ%n?h:]tem by each other we obtain, after suitable re

og, even the second, weaker form of distillation of entangle-

ment is impossible. Let us assume, on the contrary, that Eq. lim (lla™[1pn al[lpn alllbh=0. (46
(37) is possible. Then the output states can be written as n_,w(H ol l1boll)llalllIbaly(llazlllIbzlh =0. - (48
convex combinations of two states, the second one of them
being certainlyseparable Vanishing this limit, which is a product of three positive
sequences, implies that at least one of them, [$a}|||bg||,
On(0F) | _(O4(P1))| O4(P,) must converge to zero. But it means, turning back to Eq.
(@n(er)) | (On(er) (O,(PL)) (45), that lim __W,=lm___1//3(lalbf)+|a3b})). This
limit vector obviously cannot be singlet statas Eq.(42)
(C] (C]
+ (1—|:)< : (0+))| Onlo) , (42  requireg because its Schmidt decomposition can consist of
(04(2F)) (On(01)) at most two termgit can be easily seen by looking at the

. ) spectrum of the corresponding reduced density mhatiix
whereo , = 3(|01)(01] +|12)(12+]20)(20]); the weights at s \vay we have obtained the required contradiction.
both states have been put into square bradketsume, for a Finally, note that if the condition of the nonvanishing of
while, that for alln, we have®,(P.)#0 and ©n(c.) @ (p,)and® () for all nis not satisfied, the result is
#0]. Since the limit state must be a pure entangled state, thgi|| valid. Indeed, if for all but finite number of components
second weight must converge to zero. Oth(_erW|se, some of it§ the sequenc® (P, ) vanish, then the limit state is sepa-
subsequences would converge to the weight-0 (recall apje (hence certainly cannot be quasidistilief the same
that any bounded sequence has a convergent subsefuengg)\ds for the sequend® (o), then the staté4?) consists
As both the set of states and the set of separable states gJgjy of the first term and the proof still applithe limits
compact it would Iead to the conclusion that the limit state Ofcontainingn(o+) can be replaced by zerpsf none of the
the sequence4?) includes some separable state with thegpgye conditions is fulfilled, one can take a subsequence
nonzero weightw,. Such a state cert_alnly could not be the @, (P.) and®, (o) with all components nonvanishing
pure entangled one. Thus the Welght—(E)§®n(a+)>/ ané apply the pr(k)of to the subsequence
(Oy(eF)) must converge to zero. Together with the normal- Thus we have proved that for the considered state the

ization condition it implies immediately that the weight at o .
; process37) is impossible. In other words, no LQCC opera-
the state®n(P.,)/(@4(P..)) must converge to unity. Hence, tions performed on Eq(41l) state can increase the fidelity

we have F(or) upon someC<1. Following the results of Sec. lll,
the conclusive teleportation of the spin-1 state through the
On(P) n:)wp (43  Stateer can produce the fidelity of transmission at most
(O,(P1)) T equal tof = (Cd+1)/(d+1).
We also obtain that the ratio of the second weight to the first VIII. SUMMARY AND CONCLUSION
one must vanish in the limit of larga. This leads to the
condition We have developed the correspondence between states
and channels. In particular, we have exploited the equiva-
(® ()" lence betweerd ® U* invariant states and the generalized
mr7 L. (44) depolarizing channel to provide a relation between the opti-
(On(P)) mal fidelity of teleportation and the maximal attainable sin-

glet fraction. If the maximal fractiorr of singlet obtained
Subsequently, we shall show that satisfaction of the confrom the initial two spins state ¢ by means of trace-
dition (43) is impossible if only Eq(44) is satisfied. Let us preserving LQCC operations is equalFg,,, then the best
introduce the notation |a)=A,[iI}/A(©,(P,)), |b!)  possible transmission fidelitiyof teleportation via state is
=B,|i)/{(0,(P.)), i=1,2,3. Then the requiremerid)  f .= (Fmad+1)/(d+1). This result was applied to the
can be rewritten as case of conclusive teleportation. It gives the answer to the
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guestion announced at the beginning of this paper. Namelyive quasidistillation, which is the possibility of making the
if Alice wants to teleport only if she knows that the transfer fidelity F of the state arbitrary close to unity moncollective
fidelity is better tharf, then the statenustadmit an LQCC LQCC processlt turned out that sometimes, despite that a
operation converting ifpossibly with some probabilijyinto  state cannot be noncollectively distilled, it allows for noncol-
the state with singlet fraction greater th&g=(1+ 1/d)f, lective quasidistillation. The key point is that the probability
—1/d. of achieving the required fidelity is less the higher the fidel-

It is interesting that the result does not depend on the kindgty is. The examples of states which are quasidistillable but
of teleportation scheme and at the same time it involves aot distillable via noncollective processes have been pro-
guantityF that measures the degree of overlap of the channelided. They show that impossiblity of perfect teleportation
state with the singlet state. The quantity was originally assosometimes does not imply the threshold for fidelity of the
ciated with the standard teleportation schef6]. More-  conclusive teleportation, i.e., sometimes it is still possible to
over, in this scheme Alice performs her complete measureteleport withf arbitrarily close to unity.

ment (required as a step of the schema a maximally Subsequently, some modifications of those states have
entangled basis. It suggests that the standard teleportatidi@en considered that do not fall into the classes considered
scheme might be optimal. so far in Refs[14,15 and for which the approach proposed

As the concept of conclusive teleportation with good fi-in Ref. [15] cannot be applied due to the low rank of the
delity appeared to be connected with the possibility of in-matrix of the state. Nevertheless, we have shown by different
creasing of the fidelity, we have considered the problem of techniques that those states are not even quasidisti[l28)e
noncollective distillation of the mixed state of a two compo- One of the main results of this paper is the conclusion that, in
nent system. It involves a conversidioy means of noncol- the noncollective LQCC operations regime, any state which
lective LQCC operationsof somedxn (d=n) channel cannot be quasidistilledeverallows for conclusive telepor-
state into the maximally entangled sta®e. or its mxm  tation with the fidelity better than some boundary value
counterparts ifi<d). We have shown that the first kind of fnax. This result has been achieved by means of general
conversion is suppressed for mixed staféis generalizes approach includingll possible teleportation schemes. It was
the result for < 2 singlets[15]). Thus there is an important possible due to the application of the isomorphism between
difference betweenl X d mixed and pure states as there arestates and channels, which seems to be a promising tech-
some pure states that can be converted in such a(agy hique in quantum information theory.

[18]). The states for which the second kind of conversion is
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