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General teleportation channel, singlet fraction, and quasidistillation
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We prove a theorem on direct relation between the optimal fidelityf max of teleportation and the maximal
singlet fractionFmax attainable by means of trace-preserving local quantum and classical communication
~LQCC! action. For a given bipartite state acting onCd

^ Cd we havef max5(Fmaxd11)/(d11). We assume
completely general teleportation scheme~trace preserving LQCC action over the pair and the third particle in
unknown state!. The proof involves the isomorphism between quantum channels and a class of bipartite states.
We also exploit the technique ofU ^ U* twirling states~random application of unitary transformation of the
above form! and the introduced analogous twirling of channels. We illustrate the power of the theorem by
showing thatany bound entangled state does not provide better fidelity of teleportation than for the purely
classical channel. Subsequently, we apply our tools to the problem of the so-called conclusive teleportation,
then reduced to the question of optimal conclusive increasing of singlet fraction. We provide an example of
state for which Alice and Bob have no chance to obtain perfect singlet by LQCC action, but still singlet
fraction arbitrarily close to unity can be obtained with nonzero probability. We show that a slight modification
of the state has a threshold for singlet fraction, which cannot be exceeded anymore.@S1050-2947~99!03707-5#

PACS number~s!: 03.67.Hk, 03.65.Bz
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I. INTRODUCTION

Consider the following problem. Alice and Bob are f
from each other, and they share one pair of spin-s particles in
entangled quantum state%. All the manipulations Alice and
Bob are allowed to perform are local quantum operations
classical communication@called local quantum and classic
communication~LQCC! or bi-local operations#. It means
that, in particular, they cannot exchange quantum bits or
tablish quantum interaction between their labs. Now, s
pose that Alice wants to teleport an unknown state of so
other spin-s particle, but only if she is sure that the fidelityf
of the transfer is better than some given thresholdf min
( f min,1). Which states% give Alice a nonzero chance tha
after some LQCC operations she can teleport being sure
her requirement is satisfied? The answer to this question
be one of the results of this paper.

As one knows, quantum teleportation@1# allows us to
transfer the quantum information through quantum entang
states as quantum channels~supported by classical channel!
with the fidelity better than by means of a classical chan
itself @2#. For example, two spin-s particles in the maximally
entangled state,

P15uC1&^C1u, uC1&5
1

Ad
(
i 50

d

u i &u i &, d52s11

~1!
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~we shall call it singlet state, despite it is, in fact, local tran
formation of true singlet! shared by a sender Alice and
receiver Bob allows us to transmit faithfully an unknow
spin-s state, with additional use of classical bits describi
one of (2s11)2 elementary messages. If the state shared
Alice and Bob is pure but not maximally entangled, then o
can performconclusiveteleportation@3#. The main idea of
the latter is that, given a particle innonmaximallyentangled
stateC providing small transmission fidelityf, Alice and
Bob can transform the state by some deliberate LQCC
erations. As a result, with some probability the final sta
provides much greater transmission fidelity~usually the per-
fect one!. In the proposed protocol@3# the pairs of particles
were treatednoncollectively, i.e., each pair was processe
separately. The concept ofcollectiveoperations that involve
interactions among different pairs, has been implemented
pure states in the protocol ofconcentration of entanglemen
by LQCC operations@4# ~see @5# for interesting conse-
quences for entanglement measures and@6# for analysis of
probability distributions!. In this approach some number o
nonmaximally entangled states are converted via LQCC
erations into the less number of maximally entangled o
that can be used, for instance, for faithful teleportation p
cess.

In realistic conditions, instead of pure entangled sta
Alice and Bob usually share a mixed state that contains no
entanglement. The latter case is more complex and it
longer history. Popescu first has pointed out@2# that mixed
entangled states can allow for teleportation with significan
better fidelity than the one achieved by using only class
bits. He also showed@7# that some noncollective LQCC op
1888 ©1999 The American Physical Society
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PRA 60 1889GENERAL TELEPORTATION CHANNEL, SINGLET . . .
erations can transform thed3d (d>5) Werner entangled
mixed states satisfying local hidden variable model@8# into
the two spin-12 states violating Bell inequalities. Subs
quently, a similar effect by means of local filtering for mixe
two spin-12 states has been found@9# ~see@4# for pure state
case!. At the same time the important idea ofdistillation ~or
purification! of noisy entanglement has been worked o
@10,11#. Here the aim is to convert some number ofmixed
inseparable states into less number of states close to a m
mally entangled pure one. The distillation protocols are u
ally accomplished by operating on collections of pairs rat
than on single pairs. However, the single-pair operations
troduced in Refs.@9,4# have been shown to play an importa
role in the distillation protocol capable to distillall entangled
two-quantum bit ~qubit! states @12#. On the other hand
single-pair operations are much simpler to perform exp
mentally @9,13#. General results concerning the limits fo
those operations have been provided by Linden, Massar,
Popescu@14# and by Kent@15#.

In this paper we would like to consider the question co
cerning the conclusive teleportation we asked at the be
ning. We first reduce the question to the problem of sing
pair distillation. To this end we provide a number of too
which can be useful also in more general context.

In Sec. II we consider the problem of equivalence b
tween bipartite states and quantum channels. The con
tions between states and channels were considered in R
@16,17#. It is clear that if we have a channel, then we c
produce a bipartite state sending half of the singlet down
channel@16#. However, given a state, it is not clear wheth
there is a channel, which can produce it in the above way
way of ascribing a channel to a given state is to perfo
teleportation via the state~creating the teleportation chan
nel!. One can now ask what channels can be produced
means of teleportation via a given mixed state. Anot
question is the following@16#: suppose that a mixed sta
was produced from a channel, by sending half of a sing
Can we recover the channel by means of some~probably
very sophisticated! teleportation scheme applied to the sta
This is the question of reversibility of the operation of pr
ducing states from channels. In Sec. II we prove that
operation of sending half of a singlet down the channel p
duces an isomorphism between channels states having
reduced density matrix of one of the subsystems maxim
chaotic~proportional to identity!.

Section III is devoted to the problem of optimal fidelity o
teleportation. We first consider families of states and ch
nels connected via the above isomorphism. The states
singlets with an admixture of a completely mixed state@18#
~generalization of two-qubit Werner states@8,2#!, which are
the only states invariant under theU ^ U* twirling intro-
duced in Ref.@18#. The channels are the generalized dep
larizing ones. We show that the families are not only co
nected via the isomorphism, but are also physica
equivalent, i.e., the teleportation via state reproduces
channel. This generalizes similar observation for two-qu
Werner states@16#. We also introduce an operation on cha
nels, which is equivalent to twirling of the correspondin
states. We show that average fidelity and the entanglem
fidelity are invariants of the twirling operation.
t
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These are the main tools that allow us to prove a st
connection between the optimal fidelityf max of teleportation
via a given state and the maximal singlet fractionFmax at-
tainable by means of trace preserving LQCC operations o
single pair. Namely, we prove that there holds the equa
f max5(Fmaxd11)/(d11). We emphasize here that we co
sider the most general teleportation scheme, which is p
sible. Then the problem of optimal teleportation fidelity
reduced to the much less complicated~but still nontrivial!
task of optimal increasing singlet fraction by means of tra
preserving LQCC operations. We illustrate the power of
result in Sec. IV applying it to the problem of optimal tele
portation fidelity via bound entangled states~the entangled
ones, which cannot be distilled@19#!. This problem has been
quite recently risen by Linden and Popescu@20# who showed
that some of the bound entangled states do not provide b
fidelity by teleportation via purely classical channel~see@2#
in this context!. Here we prove that it is true for any boun
entangled states and for the most general teleporta
schemes.

In subsequent sections we apply the results to the prob
of conclusive teleportation, which is now reduced to t
problem of conclusive increasing singlet fraction. We co
sider two concepts:~i! noncollective distillation, where Alice
and Bob have a chance to obtain a perfect singlet and~ii !
noncollective quasidistillation~in short quasidistillation!,
where the perfect singlet cannot be obtained, but there
nonzero chance to obtain arbitrarily high singlet fractio
From the results concerning noncollective distillation@14,15#
we know that for a broad class of mixtures it is impossib
even to increase the singlet fraction. As shown in Ref.@15#
the noncollective distillation is impossible for mixed stat
of full rank.

Here we address, in particular, the following questio
does there exist a state which is not noncollectively dist
able, but still is quasidistillable? To answer this question
determine~in Sec. VI! the class of the states, which can b
distilled ~we generalize the consideration taking into acco
the case of the singlet of less dimension than the dimen
of the system: this corresponds to fidelity teleportation w
the average calculated over inputs restricted to less Hil
space!. In Sec. VII we provide example of state that does n
belong to this class, but can be quasidistilled. Then
slightly modify the state so that the new one cannot be q
sidistilled having a threshold for singlet fraction, which ca
not be exceeded. Thus for sufficiently high required fidel
of teleportation, Alice and Bob have no chance to obtain
fidelity for this state.

II. STATES AND CHANNELS

In this section we prove formally that the set of chann
L on the set ofd-dimensional states is isomorphic to the s
of density matrices% acting on the Hilbert spaceH5H1
^H25Cd

^ Cd satisfying TrH2
%5I /d ~the partial trace over

the second system gives maximally mixed state!. By channel
we mean here completely positive, trace-preserving m
@21#. Given a channelL one can ascribe to it a state%L ,
sending half of singlet state down the channel@16,17#

%L5~ I ^ L!P1 . ~2!
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Such a state must have the first reduction the same as
stateP1 ~i.e., I /d) since, due to impossibility of action at
distance the local reduced density matrix of the remote
of P1 cannot be changed by any local action performed
the other half~this is a ‘‘physical’’ version of the proof of
this well-known fact@22#!.

Now consider a given state%, with first reduction equal to
I /d. Following Ref. @18#, consider the spectral decompos
tion of the state

%5(
i 51

d2

pkuck&^cku. ~3!

Let, e.g.,c15( i , j 51
d ci j u i & ^ u j &. Then it can be represente

as

c15I ^ V1c1 , ~4!

where ^ i uV1u j &5Adci j . Defining analogouslyVk for k
51, . . . ,d2 we obtain

%5 (
k51

d2

pkI ^ VkP1I ^ Vk
†5~ I ^ L!P1 , ~5!

whereL(s)5(kpkVksVk
† . Of course the mapL defined in

this way is completely positive, since it is of the comm
Stinespring form@23#. It is also trace-preserving. To show
we only need to check whetherA[(kpkVk

†Vk5I @24#. Since
the first reduction of our state% is I /d, we have for any
operatorB,

Tr B5dTr~%B^ I !5d(
k

pkTr~P1B^ Vk
†Vk!

5d Tr~P1B^ A!. ~6!

Now using the property thatC^ IP15I ^ CTP1 for any op-
eratorC and the fact that the reduction of the singlet isI /d,
we obtain

Tr B5Tr BTA5Tr ATB ~7!

for any B. This implies thatAT5I ; hence, of course, als
A5I .

Finally one should know that the channelL is determined
uniquely. Suppose that there are two mapsL and L8 that
produce the same state% so that we have

@ I ^ ~L2L8!#P150. ~8!

Denote the differenceL2L8 by G. We will now show that
G must be equal to 0. Indeed, consider the operator b
constituted by the following operatorsPi j 5u i &^ j u. In that
basis we haveP151/d( i j Pi j ^ Pi j . Substituting it into for-
mula ~8! we obtain

(
i j

Pi j ^ G~Pi j !5(
i jkl

g i jkl Pi j ^ Pkl50, ~9!

whereg i jkl are matrix elements ofG in the basisPi j . Since
the operatorsPi j ^ Pkl also constitute basis then it follow
that allg i jkl must vanish so thatG must be 0 operator. Then
the

lf
n

is

we have shown that if two maps give rise to the same stat%
then they must be equal, so that formula~2! determinesL
uniquely. Thus it constitutes an affineisomorphismbetween
channels and states of maximally mixed reduced density
trix on one of the subsystems.

Having proved the isomorphism, given a state% we will
denote byL% the unique channel satisfying Eq.~2!. Con-
versely, given a channelL we ascribe to it a state%L also by
means of the formula~2!. Note that so far this isomorphism
has been established here only between channels, i.e.,
pletely positive trace-preserving maps and quantum st
with one of subsystems being completely mixed. One c
easily see that the isomorphism can be extended to all s
if one abandons the condition of preserving the trace. T
we have the one-to-one correspondence between the s
all states and the set of all completely positive maps. But
would like to stress here that we refer to a completely po
tive map as to a channel only if it is trace-preserving.

Let us now discuss the physical sense of the conside
useful mathematical equivalence. If Alice and Bob are co
nected via a channelL then they can create state%L by
sending half of the singlet down the channel. However
they initially share the state%L , then can they say they
dispose a channelL? As one knows, applying teleportatio
protocol, they, in fact, obtain some quantum channel. It
mains an open question whether there exists some telep
tion procedure, whichreproducethe channelL @16#. It is
highly probable that, in general, sending half of the sing
down the channel causes someirreversibleloss of the capac-
ity. Thus, the mathematical equivalence would not imply t
physical one, in general. One knows that in some cases t
is also a physical equivalence. Namely, for the two-qu
Werner state the corresponding channel~quantum depolariz-
ing channel! can be retrieved by applying the standard te
portation protocol@16#. In the next section we will show tha
the same reversibility holds for generalized depolariz
channel~associated with the family of theU ^ U* invariant
states!.

At the end of this section we define two parameters
scribing channels and states. We will use the same nota
for states and for channels, but the parameters will,
course, have different interpretation. We will denote them
f andF. The first one is defined for channels in the followin
way,

f ~L!5E d f^fuL~ uf&^fu!uf&, ~10!

where the integral is performed with respect to the unifo
distributiondf over all input pure states. It has the followin
interpretation: it is the probability that the output sta
L(uf&^fu) passes the test of being the input statef, aver-
aged over all input states. We will call it fidelity of the cha
nel.

For the states, the parameterf (%) will denote the fidelity
of the channel constituted by the standard teleportation
the state%. Here we adjust the standard teleportation sche
@1# so that it provides perfect transmission for the state of
form ~1! rather than for the true singlet one~as in original
scheme!.
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The parameterF for states will denote simply the fractio
of the singlet state given byF(%)5^C1u%uC1&. For the
channels, we will denote byF(L) the entanglement fidelity
of L @17# given exactly byF(%L). Then if one sent half of
the singlet down the channel, the entanglement fidelity s
how close is the output state to the input one. By definiti
F is invariant under the isomorphism~2!.

III. FIDELITY OF TELEPORTATION AND SINGLET
FRACTION

In this section we relate the optimal fidelity of teleport
tion via a given mixed state to the maximal singlet fracti
attainable by means oftrace-preservingLQCC operations.
Our basic tool will be the alternative kind of twirling tech
nique introduced in@18#, i.e., random application ofU
^ U* unitary transformations. We also introducetwirling
channels, which is operation on channels analogous to tw
ing states.

A. Teleportation

Suppose that Alice and Bob share a pair of particles i
given state% acting on the Hilbert spaceHA^HB5Cd

^ Cd and Alice has a third particle in unknown statec
PH35Cd to be teleported. The standard teleportati
scheme has been described in the Introduction. The m
general teleportation scheme is that Bob and Alice, given
particles in states described above, apply some tra
preserving~hence without selection of ensemble! LQCC op-
eration T to the particles they share and Alice’s partic
After the operation the state of Bob’s particle~from the pair!
is to be close to the unknown state of the third particle. T
final state of Bob’s particle is given by the following fo
mula,

%Bob
c 5Tr3,A@T~ uc&^cu ^ % !#. ~11!

This establishes a quantum channelLT,% that maps the inpu
state~the state of the third particle! onto the output one —
the final state of Bob particle

LT,%~ uc&^cu!5%Bob
c . ~12!

This is a different way of ascribing a channel to the giv
state than the isomorphism~2!. It is determined by each es
tablished teleportation protocolT, and in contrast to the iso
morphism, it is in general not a one-to-one association:
different states% and %8 can give the same teleportatio
channelLT,%5LT,%8 ~this was discussed in Ref.@16#!. The
fidelity of a teleportation protocolT ~via a given state%) is
the fidelity of the arising channelf (LT,%). According to our
definition of f (%), given in the previous section, we hav
f (%)5 f (LT0 ,%), whereT0 is the standard teleportation pro
tocol. We must stress here that, in general, we do not kn
whetherL%5LT,% for some protocolT, even if the protocol
could dependon % ~thus we do not know whether the iso
morphism implies also the physical equivalence, see pr
ous section!. A particular example where it is the case~de-
polarizing channel! will be discussed subsequently~see Sec.
III C !.

Finally, let us consider the situation with restricted inp
i.e., if dimH15m,d. Then we must work with some estab
ys
,

-

a

st
e
e-

.

e

o

w

i-

,

lished embedding of the spaceH1 into the Bob spaceH2 ~of
course the very form of the embedding is here irrelevant! so
that the formula~10! for fidelity is well defined.

B. Noisy singlet

Consider the one-parameter family of states@18# given by

%p5pP11~12p!
I ^ I

d2 , 0<p<1 ~13!

We will call them noisy singlets. They are the most natu
generalization of the 232 Werner states@8,2#.

Let us now calculate the two parametersf andF. To cal-
culate f consider the standard teleportation scheme via
state. The scheme produces fidelity 1 for the singlet st
For the completely random noise represented by the staI
^ I /d2, the average final state of Bob’s particle after the te
portation procedure is equal toI /d and does not depend o
the unknown state to be teleported. Then, in this case
fidelity amounts to 1/d. Thus for the noisy singlet we obtai

f 5p1~12p!
1

d
,

1

d
< f <1 ~14!

The parameterF amounts to

F5p1~12p!
1

d2 ,
1

d2 <F<1 ~15!

The two parameters are related in the following way,

f 5
Fd11

d11
. ~16!

We see that the noisy singlet is uniquely determined by
of those parameters~so one can use notation%p, %F, or % f if
we use one of these parametrizations!. The separability of the
state%p can be characterized in a very clear way. Namely
is @18# separable if and only if 0<p<1/(d11). This is
equivalent to 1/d2<F<1/d and 1/d< f <2/(d11).

Recall that the noisy singlets are the only states invar
under U ^ U* transformations@18# ~here the star denote
complex conjugation!. Any state%, if subjected toU ^ U*
twirling, produces noisy singlet:

T ~% ![E d UU^ U* %U†
^ U* †5%F , ~17!

with F5Tr(%P1). Thus the singlet fraction is invariant un
der the twirling procedure.

C. Depolarizing channel

The depolarizing channel@16,18# is defined as follows,

Lp
dep~s!5ps1~12p!

I

d
, ~18!
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wheres is the state acting onCd. From the formula~18! it
follows that with probabilityp the channel does not affec
the input state, while with probability 12p it completely
randomizes the input state.

Now if we apply the considered channel to half of t
singlet we obtain the noisy singlet with the same param
p. Thus, we have the equivalence

Lp
dep5L%p

. ~19!

Then, it follows thatF(Lp
dep)5F(%p). Even more, we have

full physical equivalence between depolarizing channel
noisy singlet: the channel can be reproduced by stand
teleportation applied to the noisy singlet~this is compatible
with similar observation in Ref.@16# for two-qubit case!.
Thus we have the complete set of equivalences,

Lp
dep5L%p

5L~T0 ,%p!. ~20!

To prove the last equality, consider the standard teleporta
scheme of an unknown state through the state%p . As de-
scribed in the previous subsection, with probabilityp, Bob
will obtain the input state undisturbed, while with probabili
12p he will end up with totally mixed stateI /d.

Thus any given input states is in the processT0 trans-
formed into the stateps1(12p)I /d5Lp

dep(s). Then it fol-
lows that also the parameterf is the same forLp

dep and%p ,
so that the formulas~14! and~15! hold also for the depolar
izing channel, and any of the parametersF and f determines
it uniquely.

D. Twirling channels

Here we will introduce an operation over the channe
which is equivalent toU ^ U* twirling of states. Namely, for
any channelL, one can consider one constructed in the f
lowing way. Given the incoming particle, Alice subjects it
a random unitary transformationU, then sends it through th
channel and informs Bob, which unitary was applied. Sub
quently, Bob, who received the particle, applies the inve
transformationU†.

Now, we will show that as expected, the following lemm
is true.

Lemma 1Any channelL subjected to the twirling proce
dure becomes a depolarizing channel with the sameF, i.e.,
we have

T ~L!5Ldep ~21!

with F(Ldep)5F(L).
Proof Let us first show that

%T (L)5T ~%L!, ~22!

which can be illustrated by means of the following comm
tative diagram,

% ↔ L%

T ↓ ↓ T,

%p ↔ Lp
dep ~23!
er

d
rd

n

,

-

-
e

-

where the arrows↔ denote the isomorphism~2!. That the
diagram commutes can be verified directly,

%T(L)5@ I ^T~L!#P1

5E d U@ I ^ U†I ^ L~ I ^ UP1I ^ U†!I ^ U#

5E d U@ I ^ U†I ^ L~UT
^ IP1U* ^ I !I ^ U#

5E d U@U* †
^ U†~ I ^ L!P1U* ^ U#

5E d UU* ^ U%LU* †
^ U†5T~%L!. ~24!

Here we used the identityI ^ AP15AT
^ IP1 @24# and the

invariance of the Haar measure under Hermitian conjugat
Now, applying the isomorphism~2! we obtain that the

channelT(L) is equal to the channel corresponding to t
stateT(%L). Since the latter is a noisy singlet, then the cha
nel must be a depolarizing one. Let us compute entanglem
fidelity of T(L). We obtain

F@T~L!#[F~%T(L)!5F@T~%L!#5F~%L![F~L!,
~25!

where we used definition ofF, its invariance under twirling
states, and the equality~22!. Hence the entanglement fidelit
is invariant under the twirling of the channel.

We have also the following lemma.
Lemma 2The channel fidelityf is invariant under twirling.

f ~L!5 f @T~L!#. ~26!

Proof This follows from direct calculation off. Namely
the formula~10! can be rewritten as follows,

f ~L!5E d U Tr@Uuf&^fuU†L~Uuf&^fuU†!#, ~27!

wheref is an arbitrarily established vector and the integ
is performed over the uniform distribution on the grou
U(d) ~proportional to the Haar measure!. Consequently, we
have

f @T~L!#5E d U TrFUuf&^fuU†E d VV†L~VUuf&

3^fuU†V†!VG
5E d VE d U Tr@VUuf&^fuU†V†L~VUuf&

3^fuU†V†!#5E d VE d U Tr@Uuf&

3^fuU†L~Uuf&^fuU†!#5E d V f~L!5 f ~L!

~28!
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PRA 60 1893GENERAL TELEPORTATION CHANNEL, SINGLET . . .
with V unitary anddV representing the integration over Ha
measure.

These two lemmas produce the following result.
Proposition 1For any channelL, one has

f ~L!5
F~L!d11

d11
. ~29!

Proof The above equality is true for depolarizing chann
but as shown above bothf andF are invariants of twirling, so
that it must be also true for any channel.

E. Teleportation and singlet fraction

Here we will prove the main result of this sectio
Namely, we will relate the maximal fidelity of general tel
portation scheme to the maximal possible fraction of the s
glet attainable by means of trace-preserving LQCC ope
tions. This will reduce the problem of optimal teleportatio
scheme for a given mixed state to the less complicated p
lem of increasing singlet fraction.

TheoremLet Fmax be the maximal possible fidelity~over-
lap with the stateP1) which can be obtained from a give
state% by means of trace-preserving LQCC operation. Th
the maximal fidelity f max of teleportation via the state%
attainable by means of trace-preserving LQCC operation
equal to

f max5
Fmaxd11

d11
. ~30!

Proof First we will prove that f max<(Fmaxd11)/
(d11). Suppose we have a teleportation channel of fide
f max. From Proposition 1 it follows that entanglement fide
ity F of that channel satisfiesf max5(Fd11)/(d11). Then,
sending half of the singlet down the channel, one produc
state withF satisfying relation~30! andFmax is at least equa
to F.

Conversely, suppose that by trace-preserving LQCC
erations a state%8 of maximal F has been obtained. Appl
twirling to this state. The resulting state is of the form~13!.
Then the fidelity f of standard teleportation via this sta
satisfies the relation~16!. Thus the standard teleportation w
achieve the requiredf, which ends the proof.

RemarkIt can be seen that we can assume that the fi
singlet is less dimensional than the spaceH1^H2. For ex-
ample, one can consider maximal attainable fractionFm of
m3m singletuC1

m&5(1/Am)( i 51
m u i &u i & wherem,d. In this

case, the formula~30! describes the optimal fidelity of tele
portation for restricted input~i.e., if the unknown state come
from the Hilbert space of dimensionm @20#!.

IV. OPTIMAL TELEPORTATION FIDELITY FOR BOUND
ENTANGLED STATES

Here we will apply the results of the previous section
the question of optimal fidelity of teleportation via boun
entangled~BE! states. These are the ones that are entan
~are not a mixture of product states! but cannot be distilled
@19#. Linden and Popescu@20# asked the question whethe
the BE states allow for better fidelity than the one of pur
classical teleportation~i.e., the one where Alice and Bo
,

-
a-

b-

n

is

y

a

p-

al

ed

have no prior entanglement so that the quantum informa
is sent via classical bits themselves!. Positive answer to the
same question but in the context of states allowing lo
hidden variable model@8# allowed us to obtain nonclassica
features of the states@2#. Now, for a class of BE states, thos
authors obtained a negative answer, taking into accou
more general teleportation scheme than the original
~they allowed for arbitrary von Neumann measurement
Alice!.

Here, we are able to obtain the fully general answ
Namely, we will show thatthe optimal fidelity of teleporta-
tion via arbitrary BE state is equal to the classical telepo
tation fidelity.

Let us first derive the expression for the classical telep
tation fidelity. Due to the proved theorem, it suffices to fi
maximal singlet fraction attainable via classical communi
tion. This, however, reduces to determining the maxim
possible singlet fraction of separable states. Of course, it c
not be greater than 1/d, since states withF.1/d are en-
tangled~even free entangled, i.e., distillable — explicit di
tillation protocol has been provided in Ref.@18#!. On the
other hand, as mentioned in the previous section, the n
singlet with F51/d is separable. Hence, applying the fo
mula ~30! we obtain that the best fidelity of teleportation v
classical channel is given byf cl52/(d11).

Consider now the BE states. Since the states withF
.1/d are free entangled, then the maximal possibleF for BE
states is alsoF51/d. Then the maximal fidelity of telepor
tation via a given BE state is also less than or equal to
f cl . In fact it is equal, as having any BE state one can sim
get rid of it and perform classical teleportation attaining t
fidelity f cl .

V. CONCLUSIVE TELEPORTATION AND INCREASING
SINGLET FRACTION

Here we will consider the problem of the conditional i
creasing of fidelity of teleportation, i.e., conclusive telepo
tation @3#. By the results of Sec. III this question will b
directly related to the problem of conditional increasing
singlet fraction.

Suppose that Alice and Bob has a pair in state for wh
the optimal teleportation fidelity isf 0. Suppose further tha
the fidelity is too poor for some Alice and Bob purpose
What they can do to change the situation is to perform
so-called conclusive teleportation. Namely, they can perfo
some LQCC operation with two final outcomes 0 and
After obtaining outcome 0 they fail and decide to discard
pair. If the outcome is 1, they perform teleportation, and
fidelity is now much better that the initialf 0. Of course, the
price they must pay is that the probability of the succe
~outcome 1! may be small. The scheme is illustrated in F
1.

A simple example is the following. Suppose that Alic
and Bob share a pair in pure statec5au00&1bu11&, which is
nearly product~i.e., a is close to 1!. Then the standard tele
portation scheme provides a rather poor fidelityf 5 2

3 (a3

2b3)/(a2b) @25,26#. However, Alice can subject her pa
ticle to a filtering procedure@9,4# described by the operatio

L5W~• !W†1V~• !V† ~31!

with W5diag(b,a),V5diag(a,b). Here the outcome 1~suc-
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cess! corresponds to operatorW. Indeed, if this outcome wa
obtained, the state collapses to the singlet one,

c̃5
W^ Ic

uuW^ Icuu
5

1

A2
~ u00&1u11&). ~32!

Then, in this case perfect teleportation can be perform
Thus, if Alice and Bob teleported directly via the initial stat
they would obtain a very poor performance. Now, they ha
a small, but nonzero chance of performing perfect telepo
tion.

The main questions concerning the above scheme of
clusive teleportation are the following. Which states can p
vide perfect conclusive teleportation? More precisely, giv
a state%, does there exist a nonzero probabilityp of success,
for which Alice and Bob end up with pure singlet? Confinin
now to the class of states, which cannot be converted
pure singlets, one could ask: how large fidelity can be
tained? As we will see,the fact that perfect conclusive tele
portation is impossible does not, in general, mean that th
is some fidelity threshold C,1, which cannot be exceeded.

To analyze the above questions, we will apply the to
worked out in previous sections. Namely, there we have
duced the problem of optimal fidelity of teleportation to t
problem of optimal increasing of singlet fraction. Let us no
apply this result to the present situation. Namely, for a giv
probabilityp let f p denote the maximal fidelity of conclusiv
teleportation with this probability of success. From the the
rem it follows that f p5(Fdd11)/(d11) whereFd is the
maximal singlet fraction attainable with probabilityp of suc-
cess. So to obtain results concerning fidelity of teleportat
we do not need to consider the conclusive teleporta
scheme but the much simpler scheme of conclusive incr
ing singlet fraction. The scheme is illustrated in Fig. 2.

Again, Alice and Bob perform some LQCC operatio
with two outcomes. The outcome 0 denotes failure, wh
obtaining the other outcome, Alice and Bob have the fi
state of higher fraction of singlet than the initial one. No
the question concerning the fidelity of teleportation can
reformulated in the following way. For which states can t
perfect singlet be obtained? For which states can arbitra
high fraction of the singlet be obtained? Finally, for whic
states is there a threshold for singlet fraction that canno
exceeded?

FIG. 1. Conclusive teleportation. Starting with a weakly e
tangled pair, Alice and Bob prepare with probabilityp a strongly
entangled pair and then perform teleportation.
d.
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Applying now the known results concerning increasi
singlet fraction@15,14# we obtain that there is such a thres
old for the states of full rank~i.e., with eigenvalues nonvan
ishing!. However, we will provide the class of states of lo
rank, which do not allow for perfect conclusive teleportatio
but still arbitrarily high fidelity can be obtained with nonzer
probability~the latter depends on how high fidelity we wou
like to have!. We will also provide a class of states of lo
rank for which we prove that the threshold exists. As we w
see the proof is surprisingly complicated. Then the probl
of determining whether a given state has an ultimate thre
old for conclusive teleportation becomes highly nontrivial

The above problems are closely related to the problem
distillation @10# by means of noncollective operations@14#.
Namely, if for some state it is possible to obtain conclusive
perfect singlets, then we have, in fact, a protocol of distil
tion, because we obtain a nonzero rate of produced sing
Then such a state is noncollectively distillable. In the ca
where pure singlets cannot be produced, the noncollec
operations cannot produce a nonzero asymptotic yield. If
an arbitrary high singlet fraction can be obtained, we w
call the state noncollectivelyquasidistillable~as in this paper
we deal only with noncollective protocols, so we will sa
briefly quasidistillable!. The states that have the ultima
threshold of a fraction of the singlet we call nonquasidist
able. In subsequent sections we will define the notions m
precisely, and we will consider the relevant examples.

VI. NONCOLLECTIVE m3m DISTILLATION

Let P1
m5uC1

m&^C1
mu. As mentioned in the Introduction

following the ideas presented in the papers@14,15# we use
the following definition of noncollective distillation.

Definition One says that theN3M state % can bem
3m noncollectively distilled if there exist operatorsA,B
such that

A^ B%A†
^ B†

Tr~A^ B%A†
^ B†!

5P1
m . ~33!

We shall need other notions yet.
Definitions~i! If the state has the Schmidt decompositi

FIG. 2. Conclusive increasing singlet fraction. Alice and B
with probabilityp of success obtain a state with higher singlet fra
tion than the one of the initial state.
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C5 (
i 50

m21

ai u f i8&u f i9&, aiÞ0 ~34!

then we shall call the numberm the Schmidt rank of stateC
and denote it byr s(C).

~ii ! We also shall callproduct n3m projectionthe prod-
uct projectionP^ Q where the ranks of the projectionsP,Q
aren,m, respectively. Hilbert subspace of the spaceH corre-
sponding to any such projection we shall callproduct n
3m subspace.

Here we simply characterize the states, which can be n
collectively distilled.

PropositionA given N3M state% is m3m noncollec-
tively distillable if there existsm3m product projectionP
^ Q such thatP^ Q%P^ Q is some pure~possibly unnor-
malized! projector of Schmidt rankm.

Proof Consider the given state% that is noncollectively
distillable. It means that there exists someA^ B such that

A^ B%A†
^ B†5uf&^fu, ~35!

and uf& is ~possibly unnormalized! a maximally entangled
vector of rankm. Note, that one can restrict to HermitianA,
B. It follows from two simple facts:~i! for any A,B there
exist Ã,B̃, and unitary UA ,UB such that A^ B5ÃUA

^ B̃UB and~ii ! product unitary transformationUA^ UB does
not change Schmidt rank.

Consider now HermitianA,B satisfying Eq.~35!. One can
invert them on their supports:A21A5PA ,B21B5PB where
PA ,PB are projections onto the supports ofA,B. Consider a
vector given byuc&5A21

^ B21uf&. As no product operato
can increase the Schmidt rank@6# we haver s(c)<r s(f).
Since uf&5A^ Buc&, we obtain that, in fact,r s(c)5r s(f)
5m. Also, by definition ofPA , PB , A21 andB21 one has

uc&^cu5PA^ PB%PA^ PB . ~36!

The projectorPA^ PB must have at least rankm3m @other-
wise r s(c) would have to be less thanm]. If it has greater
rank, then one can easily find~via Schmidt decomposition o
c) the projectorsPA8 ^ PB8 of rank m3m that still convert%
into uc&^cu. Thus, if PA^ PB has rankm3m then we take
P5PA ,Q5PB ; otherwise,P5PA8 ,Q5PB8 .

Suppose now, conversely, that there existsP^ Q of rank
m3m such that P^ Q%P^ Q5uc&^cu with r s(c)5m.
Thenc is of the form~34!. Now, takingA5P,B5VQ, with
^ f i9uVu f j9&5(1/ai)d i j @see Eq. ~34!#, one obtains thatA
^ B%A†

^ B† is the maximally entangled state~of Schmidt
rankm, of course!. Note that the operatorV plays the role of
the suitable local filter@4,9#. Now, applying suitable produc
unitary transformation, we obtain~after normalization! the
desired stateP1

m . This ends the proof.
Note that the above proposition provides the necess

and sufficient condition for noncollective distillation, whic
obviously does not automatically provide the best way
distill the state. From the proposition it follows directly th
no mixed state of d3d system can be converted into th
maximally entangled state of the system.

This is possible, however, for many states of the sys
N3M ,M.N. Simple examples of such states are the sta
n-

ry

o

m
s

of the form puC1&^C1u1(12p)%8 with reduced density
matrix %28 of the matrix %8 orthogonal to the projectorP
5( i 50

N21u i &^ i u. The corresponding operatorsA,B turning such
states into maximally entangled state areA5I ~identity op-
erator on the first subsystem! andB5P.

VII. NONCOLLECTIVE QUASIDISTILLATION

One can ask whether it is possible by means of LQ
operations to makeFm arbitrary close to 1 with nonzero
probability even if the noncollective distillation~33! is im-
possible. In fact, one can imagine a sequence of LQCC
erations producing better and betterF but with the probabil-
ity tending to zero. Then the corresponding denominators
the expression~33! converge to zero, so that the hypothetic
limiting operation does not exist. It corresponds to the ex
tence ofAn ,Bn such that

An^ Bn%An
†

^ Bn
†

Tr~An^ Bn%An
†

^ Bn
†!

˜

n˜`

P1
m . ~37!

The existence of such operators we shall call the noncol
tive quasidistillationas we allow corresponding sequence
probabilitiespn5Tr(An^ Bn%An

†
^ Bn

†) to decrease to zero
It means that if such noncollective operations were p
formed on many pairs of particles, then, unlike in the ori
nal distillation scheme@10#, one would obtain zero rate
@10,16# of pure singlet statesP1

m .
Now we are in position to present an example of the q

sidistillation process. In this section we shall focus on t
quasidistillation of thed3d system to the maximally en
tangled stateP15P1

d ~not to P1
m with m,d). To be spe-

cific, we will deal with the cased53.
The mixed state, which can exhibit arbitrary high fideli

F after noncollective local filtering, is the following@27#:

sF5FP11~12F !u01&^01u, 0,F,1 ~38!

Following our remarks from previous section we know th
the state, as a mixed one, cannot be distilled to the m
mally entangled stateP1 . According to the formula~30! this
means that it is impossible to teleport with the fidelityf 51
via the statesF .

However, it can be easily seen that the operations:

An[diagF1

n
,1,1G , Bn[diagF1,

1

n
,
1

nG , ~39!

allow for quasidistillation process~37!. Indeed, then

An^ BnsAn
†

^ Bn
†5

1

n FFP11
12F

n U01&^01uG , ~40!

which after suitable normalization leads to the desired res
The key point is that in the letter example the normalizi
factor of the state converges to zero, i.e., we have an incr
of the fidelity of the output state but, at the same time,
probability of obtaining this output state decreases to ze
Now, according to Eq.~30!, it means that it is possible to
teleport with the fidelityf arbitarily close to unity, although
the valuef 51 cannot be achieved.
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Now we shall see how the above situation dramatica
changes under seemingly not strong modifications of the
put state~38!. For this purpose consider the following sta
@27#,

%F5FP11
~12F !

3
~ u01&^01u1u12&^12u1u20&^20u!,

0,F,1 ~41!

For convenience let us introduce the notationQn(s)5An

^ BnsAn
†

^ Bn
† , Q(s)5A^ BsA†

^ B†, and ^v&5Tr(v).
The same arguments as before lead to the conclusion
there are no operatorsA,B such that Q(%F)/^Q(%F)&
5P1 . We will show that for the considered state, unlike f
sF , even the second, weaker form of distillation of entang
ment is impossible. Let us assume, on the contrary, that
~37! is possible. Then the output states can be written
convex combinations of two states, the second one of th
being certainlyseparable,

Qn~%F!

^Qn~%F!&
5FF

^Qn~P1!&

^Qn~%F!& G Qn~P1!

^Qn~P1!&

1F ~12F !
^Qn~s1!&

^Qn~%F!& G Qn~s1!

^Qn~s1!&
, ~42!

wheres15 1
3 (u01&^01u1u12&^12u1u20&^20u); the weights at

both states have been put into square brackets@assume, for a
while, that for all n, we haveQn(P1)Þ0 and Qn(s1)
Þ0]. Since the limit state must be a pure entangled state
second weight must converge to zero. Otherwise, some o
subsequences would converge to the weightw2.0 ~recall
that any bounded sequence has a convergent subseque!.
As both the set of states and the set of separable state
compact it would lead to the conclusion that the limit state
the sequence~42! includes some separable state with t
nonzero weightw2. Such a state certainly could not be th
pure entangled one. Thus the weight (12F)^Qn(s1)&/
^Qn(%F)& must converge to zero. Together with the norm
ization condition it implies immediately that the weight
the stateQn(P1)/^Qn(P1)& must converge to unity. Hence
we have

Qn~P1!

^Qn~P1!&
˜

n˜`

P1 . ~43!

We also obtain that the ratio of the second weight to the fi
one must vanish in the limit of largen. This leads to the
condition

^Qn~s1!&

^Qn~P1!&
˜

n˜`

0. ~44!

Subsequently, we shall show that satisfaction of the c
dition ~43! is impossible if only Eq.~44! is satisfied. Let us
introduce the notation uai

n&5Anu i &/A4 ^Qn(P1)&, ubi
n&

5Bnu i &/A4 ^Qn(P1)&, i 51,2,3. Then the requirement~43!
can be rewritten as
y
-

at

-
q.
s
m

he
its

ce
are
f

-

t

-

Cn5
1

A3
~ ua0

nb0
n&1ua1

nb1
n&1ua2

nb2
n&)

˜

n˜` 1

A3
~ u00&1u11&1u22&). ~45!

But, at the same time, calculating that̂Qn(s1)&
5Tr@Qn(s1)#5 1

3 ( i 50
2 uuAnu i &uu2uuBnu i % 1&uu2 @here x% y

5(x1y) mod 3] we obtain via Eq. ~44! that
lim

n˜`
( i 50

2 uuuai
n&uu2uubi % 1

n &uu250. The latter is the sum o

three non-negative sequences, so that any of them must
verge to zero independently. Taking their square roots
multiplying them by each other we obtain, after suitable
ordering, that

lim
n˜`

~ uua0
nuuuub0

nuu!~ uua1
nuuuub1

nuu!~ uua2
nuuuub2

nuu!50. ~46!

Vanishing this limit, which is a product of three positiv
sequences, implies that at least one of them, say,uua0

nuuuub0
nuu,

must converge to zero. But it means, turning back to E
~45!, that lim

n˜`
Cn5 lim

n˜`
1/A3(ua1

nb1
n&1ua2

nb2
n&). This

limit vector obviously cannot be singlet state@as Eq.~42!
requires# because its Schmidt decomposition can consis
at most two terms~it can be easily seen by looking at th
spectrum of the corresponding reduced density matrix!. In
this way we have obtained the required contradiction.

Finally, note that if the condition of the nonvanishing
Qn(P1) and Qn(s1) for all n is not satisfied, the result is
still valid. Indeed, if for all but finite number of componen
of the sequenceQn(P1) vanish, then the limit state is sepa
rable ~hence certainly cannot be quasidistilled!. If the same
holds for the sequenceQn(s1), then the state~42! consists
only of the first term and the proof still applies@the limits
containingQn(s1) can be replaced by zeros#. If none of the
above conditions is fulfilled, one can take a subseque
Qnk

(P1) and Qnk
(s1) with all components nonvanishin

and apply the proof to the subsequence.
Thus we have proved that for the considered state

process~37! is impossible. In other words, no LQCC oper
tions performed on Eq.~41! state can increase the fidelit
F(%F) upon someC,1. Following the results of Sec. III
the conclusive teleportation of the spin-1 state through
state %F can produce the fidelity of transmission at mo
equal tof max5(Cd11)/(d11).

VIII. SUMMARY AND CONCLUSION

We have developed the correspondence between s
and channels. In particular, we have exploited the equ
lence betweenU ^ U* invariant states and the generalize
depolarizing channel to provide a relation between the o
mal fidelity of teleportation and the maximal attainable s
glet fraction. If the maximal fractionF of singlet obtained
from the initial two spin-s state % by means of trace-
preserving LQCC operations is equal toFmax, then the best
possible transmission fidelityf of teleportation via state% is
f max5(Fmaxd11)/(d11). This result was applied to th
case of conclusive teleportation. It gives the answer to
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question announced at the beginning of this paper. Nam
if Alice wants to teleport only if she knows that the transf
fidelity is better thanf 0, then the statemustadmit an LQCC
operation converting it~possibly with some probability! into
the state with singlet fraction greater thanF05(111/d) f 0
21/d.

It is interesting that the result does not depend on the k
of teleportation scheme and at the same time it involve
quantityF that measures the degree of overlap of the chan
state with the singlet state. The quantity was originally as
ciated with the standard teleportation scheme@26#. More-
over, in this scheme Alice performs her complete measu
ment ~required as a step of the scheme! in a maximally
entangled basis. It suggests that the standard teleport
scheme might be optimal.

As the concept of conclusive teleportation with good
delity appeared to be connected with the possibility of
creasing of the fidelityF, we have considered the problem
noncollective distillation of the mixed state of a two comp
nent system. It involves a conversion~by means of noncol-
lective LQCC operations! of some d3n (d>n) channel
state into the maximally entangled stateP1 or its m3m
counterparts (m,d). We have shown that the first kind o
conversion is suppressed for mixed states~this generalizes
the result for 232 singlets@15#!. Thus there is an importan
difference betweend3d mixed and pure states as there a
some pure states that can be converted in such a way~see
@18#!. The states for which the second kind of conversion
possible have been characterized and the possibility of c
version of somed3n (d,n) states into the singlet state ha
been pointed out.

Then we have introduced the concept of quasidistillat
which means, by definition, the possibility of making v
LQCC process the quantityF arbitrary close to unity with
nonzero probability but with the latter allowed to depend
the desiredF of output state. We focused on thenoncollec-
, a
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tive quasidistillation, which is the possibility of making th
fidelity F of the state arbitrary close to unity innoncollective
LQCC process. It turned out that sometimes, despite tha
state cannot be noncollectively distilled, it allows for nonco
lective quasidistillation. The key point is that the probabili
of achieving the required fidelity is less the higher the fid
ity is. The examples of states which are quasidistillable
not distillable via noncollective processes have been p
vided. They show that impossiblity of perfect teleportati
sometimes does not imply the threshold for fidelity of t
conclusive teleportation, i.e., sometimes it is still possible
teleport withf arbitrarily close to unity.

Subsequently, some modifications of those states h
been considered that do not fall into the classes consid
so far in Refs.@14,15# and for which the approach propose
in Ref. @15# cannot be applied due to the low rank of th
matrix of the state. Nevertheless, we have shown by differ
techniques that those states are not even quasidistillable@28#.
One of the main results of this paper is the conclusion tha
the noncollective LQCC operations regime, any state wh
cannot be quasidistilledneverallows for conclusive telepor-
tation with the fidelity better than some boundary val
f max. This result has been achieved by means of gen
approach includingall possible teleportation schemes. It w
possible due to the application of the isomorphism betw
states and channels, which seems to be a promising t
nique in quantum information theory.
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