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Complementarity and the uncertainty relations
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We formulate a general complementarity relation starting from any Hermitian operator with discrete non-
degenerate eigenvalues. We then elucidate the relationship between quantum complementarity and the
Heisenberg-Robertson uncertainty relation. We show that they are intimately connected. Finally we exemplify
the general theory with some specific suggested experim{&t650-29479)06209-3

PACS numbd(s): 03.65.Bz

[. INTRODUCTION come If one were to estimate the path of an ensemble of
identically prepared particles according to the ML strategy,
A fundamental notion of quantum mechanics is comple-one should guess identically the same path for each system.
mentarity, which expresses the fact that any quantum systerhhat is, every estimate would be identical so that the esti-
has at least two properties that cannot simultaneously bmated path would have no variance. If, on the other hand,
known. One of these complementary property pairs, and pelene made dactual measuremerf the path, one would get
haps the historically most important, is the wave-particle dua random outcome characterized only by the probabilities
ality. A quantum system has both particlelike and wavelikew, andw_ .
properties. However, observation of one property precludes One could also measure the visibility when the two path
the observation of the other. Recently, several quantitativerobability amplitudes interfere. The visibility, too, is a
expressions of this specific duality were derive-11]. statistical measure which requires an ensemble of identically
Some of these expressions have been experimentally coprepared systems to estimate. The classical definitionisf
firmed [12,13. In this paper we will follow Englert'd10]
definitions most closely. In general, inequalities quantifying I max— I min
the wave-particle duality are posed in the context of interfer- V= [T @
max min
ometry. In any single-particle interferometer it is meaningful
both to ask which of the interferometer paths the particlexhere I ., and |, are the intensities of the interference
took, and to record the visibility of a large number of iden- fringe maxima and minima. For a single particle we can only
tically prepared systems. In this paper we shall discuss thgalk about the probability of the particle falling on a spe-
notions of which path and visibility in a general framework cific location on a screen, or exiting one of two interferom-
so as to encompassy system defined in a two-dimensional eter ports.(Do not confuse this probabilitp with the pre-
Hilbert space. dictability P.) The probability p will vary essentially
Let us begin by establishing some notation. Assume thaginusoidally with the position on the screen, or with the in-
we would like to estimate which of two paths, call them  terferometer arm-length difference. In this case the natural
and —, a particle took. The only information we have is the definition of V is
known probabilitiesv, andw_=1—w, for the two events.

The maximum likelihoodML) estimation strateggwhich is Pmax— Pmin

one of many possible strategjedictates that we should, for = m ©)
each and every event, guess that the particle took the most

likely path. The strategy will maximize the likelihodd of It has been showfil0] thatP andV for a single particle

guessing correctly. The likelihood will be L satisfy the following inequality:
=Max{w. ,w_}, and from this relation it is evident that

1/2<L=<1. The likelihood can be renormalized to yield the P2+V2<1, (4
predictability P [10], given by

where the upper bound is saturated for any pure state. A

P=2L-1. (1) relevant question to ask is how this inequality is related to

the uncertainty principle, which is also a quantitative in-
It is clear that B=P=<1, whereP=0 corresponds to a ran- equality manifesting complementarity. Furthermore, one can
dom guess of which path the particle took, d@e 1 corre-  ask to what observables, if any, @andV correspond? We
sponds to absolute certainty about the path. Take notéPthat shall attempt to clarify these issues in this paper. We shall
corresponds to the likelihood of the correzdtimated out- also show that a relation of the same form as relatircan

be derived for any Hermitian operator by constructing a

complementary(and therefore noncommutipgHermitian

*Electronic address: gunnarb@ele.kth.se operator. Finally, we shall see that there is a substantial dif-
"Permanent address: loffe Physical Technical Institute, 26 Polyference between the nonsimultaneous and the simultaneous
tekhnicheskaya, 194021 St. Petersburg, Russia. Heisenberg-Robertson uncertainty relations.
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Il. GENERALIZED COMPLEMENTARITY - Wt
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Let us consider the statd#\,) and |A_), which are -3 ~. P ~ R
eigenstates of the Hermitian operatlrwith eigenvalues 8. N, N log 2
A, #A_, respectively. TherefordA |A_)=0. In the fol- gow ¥ X} i
lowing we shall assume that the two-dimensional Hilbert § ) / ‘\ /' \ 10.6 3
space spanned by these two orthonormal states is sufficient § . c , 2
to describe the system. It is permissible that the operator 2 005 / /xzr”?‘*i\,\/ N os ;:
has additional eigenstates, but to analyze the complementar- g / I \‘ i ,/ \\ \ 02 B
ity relation we shall only consider transitions between, and & , ‘ \ / N “3
hence superpositions of, two of the eigenstates. Below, for £ BJ);)VN: & R -
the sake of clarity, we shall refer to tlsgstem modewhich Z % w8 w4 3n/8 w2
is the physical entity one can make measurements on, and o

the system statewhich is the quantum-mechanical state of : . . - .
. . . FIG. 1. The normalized dimensionless minimum uncertainty
the mode, i.e., a result of a measurement. It is rather straight-

forward to extend the relatio#) to the case where a larger product (.)f the operators andB as a.fumt'on of,, =sir(a). The
Hilbert space is needefd.1], but we will refrain from at- dashed line represents the uncertainty product of the second class of

: L . . . _intelligent states. The uncertainty product of the initial state for
tempting such a generalization since two states are sufficient A A o
eratorsA and B is bounded from below by the solid line and

to elucidate the answers to the questions posed above. . .
shall furthermore assume that our system is prepared in zom above by the dashed line. The dot-dashed line represents the

. . . predictability of the state and the long dashed line the visibility of a
general state with the associated density operator pure state

p1e "’
W_

Wy

Plzei f

p= , (5) Pmax @Ndpmin- One finds that the global maxima and minima
are found foré= w/4+nw/2, wheren is an arbitrary integer.

This choice of¢ corresponds to a generalized beam splitter
wherew, , w_=1-w,, pj;<yw,w_, and ¢ can be as with a 50% transmittivity. We use the global maxima and

sum_ed to be real positive ’?“mbers W'thOUt any IOSS. of 98N minima to define the visibility according to E@3). It is
erality, and where the density operator is expressed in matrix

form in the|A., ) and|A ) basis. We can identify the param- Straightforward to show that from the obtained expression it
1 o - . follows that
eterw, as thea priori probability of finding the system in
the statd A, ), and similarly forw_ .
If we use the maximum likelihood strategy to predict the

outcome of a measurement &, then we will succeed
with the likelihood L=Max{w, ,w_}=(w,+w_+|w,

—w_|)/2=(1+|w, —w_|)/2, where Mafw, ,w_} denotes
the maximum of the two probabilities, andw_. From

this equation and Ed1), it follows that

V=2|(A,|p|A_)|=2p1,. 9)

From this expression and E(f), it follows that
P2+V2=w2 —2w,w_+w?2 +4p2,<1, (10)
sincew, +w_=1 and 0<p;,<\Ww,w_. This rederivation

P=|w,—w_|=v(1-2w_)2=\1—4w,w_. (6 Of relation(4) demonstrates that every two-state quantum
system obeys a complementary relation even before any at-

Note that this quantity is based only on the probabilities

andw_ , which characterize thpreparationof the statep.
Next consider the two unitary operators

tempt has been made to simultaneously measure dathd
the quantity complementary . In Fig. 1 the generalized
distinguishability and visibility are plotted as dash-dotted
and long dashed lines, respectively, as a functiorwaf,

~ |1 0 parametrized by sfa=w, .
Ups= 0 exgig) @) It is obvious thatP in some way corresponds to a mea-
surement ofA. What is the operator corresponding to the
and quantity represented by the visibility? To answer this ques-
o tion, let us construct the two orthonormal states
. cog¢) isin(§) .

57 sin(&) cog) | ® B)=(IA.)+e2A ))/\2 1
which are both expressed in matrix form in the®,) and and
|A_) basis. The two unitary transformations correspond to a
generalized phase shifof state|A_)) and a generalized |B_>E(|A+>_eie|A_>)/\/§‘ (12)

“beam splitter,” respectively. The density matrix of the uni-
tarily transformed state ip’ =UgsUpgppULULs. The prob-
ability of obtaining the outcomé, from p’ if A is mea-

sured is(A.|p'|A.). We denote the maximum and the
minimum of this probability, as a function ap and &, as

These states, in turn, can be used to construct a complemen-
tary Hermitian operator té, which is

B=B+|B+><B+|+B,|B,><B,|, (13
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whereB , #B_ are real numbers. We have denoted this op- Ill. THE HEISENBERG-ROBERTSON UNCERTAINTY
erator the complementary operatorAcince the eigenstates RELATION

of I? are equally weighted superpositions of the eigenstates The commutator betweeh andB follows from the defi-
of A. Hence, if we prepare a state so that the outcome of aition of the operators and can be expressed as

measurement correspondingAocan be predicted with cer-
tainty, then nothing can be predicted about the measurement [A,B]= (A, —A_)(B. —B_)(|A }(A_|—|A_)(A.]). )
(18

outcome corresponding f, and vice versa. Since the eigen-

states o are parametrized bg, there exists a whole set of We see that the operatofsandB are noncommuting, non-
complementary operators #. We note that irrespective of canonical operators. Since the operators are noncanonical,
o, the stategB, ) and|B_) are the Hadamard transforma- they will be subject to a generalized uncertainty inequality
tions of the|A,) and|A_) states. This is no coincidence [17-21]. The uncertainty inequality reads
since the fact thaB is the complementary operator # 1
makes the two corresponding bases optimal for quantum AA)2 52 AN2 ., E\2

) . . L . A AB)%)=— +(F 1
cryptography. This brings to light the intimate lifk4] be- (AAK(AB)T) 4(<C> (F), (19
tween the complementarity relations, quantum information, R
and quantum cryptography. where theC is directly proportional to the commutator and is

It should be noted that the observaileplays no particu- defined as
lar role vis-avis the observabled in the expressior(10).

Assume that the stafe remains invariant, but thak andB
are interchanged so that the maximum likelihood estimatio

C=—i[A,B], (20)

rémd(F) is the correlation between the observables and is

and the generalized visibility measurement pertain to the OUl3afined as
come of a measurement Bf and that new unitary transfor-
mations are defined that have identically the same form as (Fy=(AB+BA)—2(A)(B). (22)
Egs. (7) and (8) if expressed in théB,) and|B_) basis.
Then we find that The expectation value and the variance of the g&jtean
be computed to be
Pg=2p;Jjcod 6—0)| 14 R
(Ay=A,w,+A_w_ (22
(where we have labeled this predictability with an ind&x
not to confuse it with the predictability of estimatid) and  and
that the new “visibility” is given by .
(AR)2)=(A, —A_) 2w w_ . (23

— 2 2 _ 2 i _
V= \/W++W* 2w, W_+4pT,sin(6—e). (15 Using Eq.(6) we can write
Hence, although the likelihood of estimatifycorrectly in ((AA)Z) 1—p2

general is different from the likelihood of estimatidg re- =4 (24)
lation (10) still holds. We observe that it is always possible (Ar—A-)

to find an operatoB for which the distinguishability be-  This equation shows the direct link between a measurement
tween the measurement outcomes is zero. This represents th]_e

quantum erasure measurement operfdor,8,11,12,15,16 the operatoA and the predictability. If, e.g.,P is unity,
However, the sumP2+V2 remains invariant and depends then the variance ok is zero.
only on the state, not on the choice of complementary opera- To show that a similar relation holds betweBnand V,
tors by which one estimates and measwPeand V. we compute

To explore the symmetry between the pairandB, we B
can see from Eqg9) and(14) that the predictability of a (B)= 7*[1+2p12005( 6—0)]
measurement of thproper B operator is

B_
Pg=2p1,=V. (16) + 5 [1=2pypc090-0)] (25

By the “properlé operator” we mean the complementary gnq
operator toA that, for the state, optimizes the visibility(or ,
minimizes the variance d8, see below Therefore, the op- (AB)?) = (B. —B )21_4P120052(9_Q)
erator is defined witlp = 6. Note that the word “proper” is oo 4 '
in reference to the measured state. In the same manner we
see from Eqs(6) and (15) that for the propeB operator The variance oB is minimized for the proper operatd.

We note that for the proper complementary operator, the

Vg=|w, —w_|=P. (17 normalized and dimensionless variance is given by

(26)
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(AB)D  1— 4p12 1—\2 two sets of intelligent states considered above are found to
(270  be the states with extreme uncertainty products.

(BL—B- 2o 4 4

The visibility is thus directly linked to the variance, or un- IV. COMPLEMENTARY TWO-STATE OPERATORS

certainty, of the proper complementary operatoAtoAs a
final result we note that the normalized uncertainty product
can be written as

In the preceding section we saw that there are infinitely

many complementary operators #. However, for any
choice ofp there are only two sets of three mutually comple-

((AA)?)((AB)?) 1-4p2, mentary operators. If we explicitly write out theA erraﬁ)r
(A, —A_)%B,—B_)? ZW W — as a function op, viz, B(e), then the two sets ar, B(e),
B(o+ w/2) andA, B(g), B(e—m/2). To clarify the mean-
(- P?)(1-V?) (289  ing of this statement, we note that the operator paiand

16 ' B(p), the pairA andB(o + w/2), as well as the paiB(o)
andB(o + 7/2) are all complementary. This is the meaning

Hence, there is airect link between the complementarity

relation (4) and the minimum uncertainty product. This is fEPe _'fjerm_“a sethof mukt)ually complfementary operﬁltors.”
one of the main conclusions of this paper. The result is true 1 identify such an abstract set of operators with cofe

regardless of whether the state in question is pure or mixednany specific observables, we can, e.g., assumeAhear-
However, for a pure state the right-hand side of @§) can  responds to the spinoperatoro, of a spin-1/2 particle, with

be further simplified to read eigenvaluest /2. If we furthermore assume that the eigen-
. ; values of the operato8(¢) andB(o = w/2) areB;=—B,

((AA)*)((AB)?) VZP2 (29  —f/2, we readily recognize the other two complementary
(A, —A_)4B,-B_ )2 16 operators as the spim, and o, operators, wherel,v,z de-

_ _ o _ . notes a right-handedeft-handed orthogonal Euclidian vec-
In Fig. 1 the normalized minimum uncertainty prod(mbll_d tor set for the choiceo + 7/2 (¢ —w/2). With this choice
line) is plotted versus the probability, . The dashed line the commutation relatiori18) reduces to the familiar spin

represents the maximum uncertainty product. operator commutatdic o 1=i% e o With i | KesU V.2
The Robertson intelligent statég,s) are given by the inpthis case. drai, o] €iik Tk KUY,
eigenstate solutions of the equati#i] Note, however, that orthogonal spin operators are only
A a Ay A one realization of a mutually complementary set. One can
(A+iINB)[ihs)=((A)+iN(B))|ths). (30" construct infinitely many such triplets of operators for every
- A A two-state system. 1122,23 such a triplet set was con-
2_ 2 2
The cc.)mpllex parameter Satl§fI65|R| =((AA)9/{(AB) > structed starting from two orthogonally polarized single-
We will give _here_the SOIUt'OnS_ for _the cases _thes photon states. The three pairs of eigenstates were subse-
either real or imaginary20]. For imaginaryx we find quently used as bases in a six-state quantum cryptography
lhs) =W |A ) xe'Jw_|A_). (31)

protocol. We think that a generalization of this idea of mu-
tually complementary operators in Hilbert spaces of higher
As |\| increases from zero towards infinity, the two solutions
evolve fromw, =1/2 towardsw, —0 andw, —1, respec-

dimension has an obvious application for the construction of
tively (from point A to pointsB; and B, in Fig. 1). The

eavesdropping-safe quantum cryptographic protocols.
As a second example of complementary operator pairs,
minimum uncertainty statevhich are the intelligent states
with the minimum uncertainjybelong to this class of intel-

we consider a single particle in a well defined spatio-
ligent states withw, =0, 1/2, and 1, respectively. As ex-

temporal mode, impinging on a symmetric Mach-Zehnder
interferometer. The particle can take either of the two paths.
pected, these are the eigenstateé afnd B. The intelligent
states with\ real are given by

The corresponding states can be writ{dn®|0) and |0)
®|1). Defining A to be the two-mode particle number-
difference operatorr(; —n,)/2 with the eigenvectors above

1 (0 p) and with eigenvalues: 1/2, we find that the operatdd cor-
|hs2) = E(|A+>ie “PIAL)). (32 responds to the two-mode phase-difference oper@tothe
first particle manifold defined by Luis and S$&hez-Soto
When|\| goes from 0 towards 18 goes from O tom/2 (and ~ [24-28:
the uncertainty product goes along the dotted line from point

Ato pointC in Fig. 1): When subsequently<t|\|—c, the B10= 0] 1) ba| + (0+ )| o) b, (34)
second class of intelligent states becomes
| hs2) = VW, |A, ) *ie'e W |A_), 33  Where [¢)=(]1)®|0)+€'?|0)®[1))/\2 and [¢,)=(|1)

®]0)—€e'?|0)®|1))/\/2, and the corresponding eigenvalues
wherew , evolves from 1/2 towards 0 and from 1/2 towards are § and 6+ . Figure 2 provides a schematic illustration of
1, for the respective state§The uncertainty product goes the implementation of the state preparatitaft) and the op-
along the dashed line from poifitto pointsB; andB,.) The  erator sefright).
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D
—g—> Measure B

+ A =Photon number Entanglement

N i difference measurement

0

i

:

i

§ N
=~ Measure A

FIG. 3. A schematic representation of a simultaneous measure-
ment ofA andB on a single system. The planesandD denote the
10> Phaseshifter spatial points where it is appropriate to measBrer V, andD or
Ve, respectively. If an unsharp measurement is perforrbednd
V. can be measured at plabe

do so, we need to entangle the system with an auxiliary
R meter mode, associated with an arbitrarily large Hilbert
B = Phase-difference spaceH,,; see Fig. 3. If the entanglement between the sys-
measurement tem and meter modes is perfétd be quantified beloyy then
FIG. 2. An example of complementary operators. The single-& sharp measurement of the state of the meter mode will

photon two-mode state prepared at left can be measured either bygallapse the system mode into an eigenstate of, A.gT,his
number-difference operatétop) or by a phase-difference measure- s the principle of a quantum nondemolition measurement.
ment (bottom. By adjusting the phase shift, any operatoB(g@) However, in order to subsequently be able to say something

can be implemented. aboutB of the initial system state from the same copy of the
) ) quantum state, the entanglement cannot be perfect, and to be

Note that the proper operators in this case, where thebI ¢ thi oAt it tb Theref
eigenstates are discretdo not correspond to position and aple 1o say something abo { It cannot be zero. Therefore,
momentum operators, as textbook discussions of this speciffROth theA and theB measurements need to be unsharp, that
interferometric duality experiment often indicate. This hasiS: associated with additional _statlstlcal uncerta|r_1t|e_s than
already been noted and discussed by de Muya@k In the what foIIow_f, from the preparation of the state. This is well
same vein Luis and ‘®ahez-Soto have used the phase-known for simultaneous measuremef23—32.
difference operator to analyze the mechanism which enforces In the following we will only treat the case where the
complementarity, and specifically loss of fringe visibility COMPosite system is pure, as this will set the lower limit to
with increasing distinguishabilitj26]. our ability to swpultangously measure or predict the values of

Identifying the operatoA with any Hermitian operator the observables andB. We shall assume that the entangle-
(for which it makes sense to have a restricted two-state Hilment is accomplished through some unitary operation which
bert spackit is always possible to write down a complemen- does not change the probabilities. andw_. (The more

tarity relation forA. Since the form of the complementary general case is discussed [ibl].) Such an entanglement

P ) ) . should perhaps be called quantum nondemolition
operatorB to.A is ](novx{n, and it has a simple form, it is often measurement-type entangleméwhere the word measure-
possible to identify this operator with some known observ-

able. Since complementarity follows directly from the super-m_ent refers toA), since a perfect entanglement Of thls.type
position principle, and therefore permeates all of quantunVill allow one to make a sharp QND measuremenfofl his
mechanics, the terelcher wegexperiment, which is inti- 1S Not the most general form of entanglement, but it is thg
mately tied to complementarity, should perhaps be replacefyPe of entanglement needed for our purposes, so a suffi-

written

V. COMPLEMENTARITY AND UNCERTAINTY

RELATIONS FOR SIMULTANEOUS MEASUREMENTS )= VW1 A ®|M ) +e N w_|A)Ye|M_)
So far we have discussed the standard Heisenberg- I e i0 [
Robertson uncertainty relation, which makes a statement = VWA )BM.)+efNw|A-)
about the preparation of a state. For example, the variance of ®(c|M)+1-c?M ), (35)

A computed in Eq(23) is the variance associated with a
sharp measurement &f on an ensemble of systems all pre-

ared in the statp. The measurement will either destroy the LA .
P P y and(M,|M )=0. We see that sincA has a binary mea-

state or collapse the state into an eigenstaté 86 the sharp surement outcome, we need only consider the reduced two-

measurement will preclude any meaningful subsequent Meqmensional meter mode Hilbert spake spanned byM , )

uncertainty product becomes if one tries dionultaneously denoted[) With the help of the parametar which is a
e- y

measureA and B. By “simultaneous” we mean that we measure of the entanglement between the modes, the distin-
make (necessarily unshaypneasurements of both andB  guishability D based on an optimal measurement of the
on each individual system mode in the ensemble. In order teneter mode can be expressed as

wherec is real and positive and defined M _|M , )|=c,
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R B +B’
36) <B’>:+T+(B’+—BL)C\/W+W, cog6—0).

(40)

D=[(A;[pelAr)—(A_|pelA)[1=V1-4cPw w_.

(The notation ||O||;=Tr{VO'O} denotes the trace-class We note that. without | . it
norm of the operatof).) The distinguishabilityD has the € note that, without oss of generaiily, we can assume a

same connection to the likelihood of guessing correctlyg:"jlgge such that the true eigenvaliies and B fulfill B,

0 N . hag hat | _=B, and henceB,=—B’ =B’. To make the esti-
about the outcome oras a?"” mea_surement, that i5) mated mean(40) equal the true mearn25), we setB’.
=2L—1. However,D is associated with a factuateasure- -

mentand not simply by an estimate basedzpriori know- =B.. /c. We point out that the choice is independent of the

initial state of the system modevhich is characterized by
Si?jge%l. t';éna}/\lget noete(()llf ?ﬁ;%i&iﬁ?ﬁiﬂlo’lﬂ pro- w, and @), but depends on the degree of entanglenent
. Q AL g o The assumption of a “true mean” meter is essential to what
The visibility V. of the entangled system is given by

follows, and is also made by Arthurs, Kelly, and Goodman in
their seminal papers on simultaneous measurenj2gt&9.

Ve=2[(A_[Tr{pe}|As)|=2cyw w_, (37 From the assumption it follows that the variance of the esti-
where the partial trace is taken ovEf . Since the statpy,) mate ofB s
is pure, the relation ) (B, —B")?

((AB")?)= 7] [1—4c?w, w_ cos(6—p)]
D?+V32=1 (39)
o1
holds[10]. =B ?—4W+W_COS2(9—Q) . (41)
A measurement of the meter mode will allow us to deduce

some information about the initial state of the syst@n If, |t is obvious from this expression that in order to minimize

e.g.,c=0, then the wave functio35) represents a maxi- he variance of the estimate 8 one should choosé= .

i L L d%e also see that wheo=1, that is, when the system and
using[M ) and|M.) as projection bases, will yield a per- yeter modes are unentangled, the result reduces identically
fect correlation with a subsequeiitmeasurement of the sys- to Eq. (26). On the other hand, whea—0, the variance
tem mode. Howev_er, as noted above, Sl.JCh a measure_ment(ﬂ(/erges in spite of the fact th& has a finite number of
the meter mode will preclude any meaningful information t¢inite eigenvalues. This is a consequence of our requirement
be reaped about the complementary observBbleherefore, that the mean of the estimate should equal the true mean of
we will discuss in the following how to perform an optimal the state.

simultaneous measurement/AfandB. We understand “si- If the (prope) choice#= g is made, then we can express
multaneous measurement” to mean a measurement whetke normalized variance in the visibilit7):

we try to obtain some information of both andB from a £, )
single copy of a pure statés), which after an entangling ((AB")%)  1-Vg 42
interaction is transformed to the stg@&b). (B, —B')? 4

To find the minimum uncertainty product of a simulta-
neous measurement AfandB, we have assumed that the It is to be expected that such a relation holds, because the
information will be obtained by making a sharp measure-visibility, as shown above, corresponds to a sharp measure-
ment of the meter mode and tieinformation will be ob-  ment of the uncertainty of operatér
tained by making a subsequent sharp measurement on the In order to best estimate the outcome of a measurement of
system mode(We note that one could also have chosen toA of the initial system state from a measurement on the
do the opposite. However, if we do so, the system and metafieter mode, we need to find the optimal projectors. Since
modes should be entangled in a different manner than whahe entangled stat5) can be expressed in ax2 Hilbert
has been assumed above. Still, if we choose the inverse megpace, we need only construct two meter-mode projectors.
surement procedure and do it optimally, the final result,The most general forms for the projector states are
guantified by a simultaneous uncertainty product, remains _
identical to the result belowLet us start with theB mea- IM1)=cogy)|M ;) +e"“ sin(y)[M,) (43
surement. The two pertinent projectors 4B, )(B,| and
|[B_){B_|. The associated probabilities are and

[Mg)=—€"“sin(y)|M ) +cogy)[M,). (44

However, it is immediately obvious that in order to best es-

(39  timateA, the choicex=0 (or k=, which is equivalent to

) ) IM1)«|M5)) should be made sincM ) is defined such
If the two outcomes are associated with the valBesand  that ¢ is real. Furthermore, again we shall assume that a
B_, then the mean of the measurement, or rather estimatiogauge is chosen so thdt,=—A_=A, and therefore the

of B (which we will denoteB’) will yield measurement values associated with the two outcoiies

- 1
PBi:<B:|Trr{Pe}|B:>: Eic\/W+W— cog6—-0).
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andA’ fulfill A, =—A’ =A’. With this choice, the expec- We see that, as expected, the estimated variance equals the

tation value of the estimate & (which we callA’) becomes frue variance foc=0, that is, when the system and meter
modes are maximally entangled. The estimated variance di-

(A"y=A"{[cof(y)—sirt(y)][w,—w_(1-2c?)] verges whert— 1. This, too, is a consequence of requiring a
. correct estimated mean.
+4w_cy1-ccog y)sin(y)}. (45) The normalized and dimensionless simultaneous uncer-

We see that in order to make the estimated mean correct, ctﬁ“my product is hence

Eq. (22), and independent of the initial system state, the fol-

lowing two conditions must be met: . .
((AA")?)((AB")?) [ c?

cos(y)—sir(y) __ [1-¢ 9 16a282 \4(l-cd  WW-)lae

2cog y)sin(y) c (49

and

As expected, the uncertainty product is larger than (28)

A A 2t

= : = , (47)  and depends both on the initial state and on the degree of
cos(y)—sin(y) 1-c? entanglement between the system mode and the meter mode.

The entanglement parametecan be used to shift the mea-

surement uncertainty, to some extent, from one of the opera-

Stors to the complementary one.

A/

where the second equality in E@7) follows from Eq.(46).
Note that both conditions are state independent. That i

(A"y=(A) irrespective ofv, and if the two conditions are If, for each choice ofv, , we optimize the entanglement
met. The variance of the estimateAftan then be computed to minimize the uncertainty product, and this is the principle
to be used in[28,29 to derive the minimum uncertainty product

for a simultaneous measurement of ta@nonicalnoncom-
muting operators, then the ensuing normalized minimum un-
certainty product is given by

2

1-¢?

<(AA'>2>=A2( +4w+w_). (48)

(AR2((AB)?)  —16wiw? (1—4w,w )’+[1—12w,w_(1—4w,w )] Jw,w (1-4w,w )

5o (50
16A%B 16 — 4w, w_(1—4w,w_)+Jw,w_(1—4w,w_)]
|
and this expression holds for between the uncertainties @’ and the distinguishability
(36). Therefore, one cannot find any general relation between
—4W+W,+2\/w+w,(1—4w+w,) Eg. (39 and the nonsimultaneous uncertainty relati@s).
c= . (51)  This was noted already by Englert, who asserted that.*
1-8w,w. the duality relation(38) is logically independent of the un-
This is the other major result of this paper, where the physi- Wi
cal implications of Eq.(50) rather than thgrather messy 0150 \0;1 0;2 0;3 0;40'50‘6 0.7 0.‘8 0.'9, Lo

form should be retained. Remember that this result is contin-
gent ona priori information about the preparation of the
state(i.e., to be able to make a minimum uncertainty mea-
surement of the stat&y, and # must be knowh The result

is plotted in Fig. 4, solid line. This is the minimum uncer-
tainty of a simultaneous measurement of the two comple-

mentary and noncanonical operatdksand B. The result
should be compared with the standard uncertainty product
(28) of a state in two-dimensional Hilbert space.

The corresponding distinguishability and visibility are
plotted as dash-dotted and long dashed lines, respectively, in
Fig. 4. We have assumed that the entanglement parameter FIG. 4. The normalized dimensionless minimum-uncertainty

for eachw, is chosen according to E¢51). By necessity, product for a simultaneous measurement of the operatasdB,

the distinguishability is higher than the predictability for the solid line. The dot-dashed line represents the distinguishability and
entangled state while the visibility is correspondingly lowerthe long dashed line the visibility of the entangled state, provided
than for the initial statécf. Fig. ). We also observe that due that the optimum entanglement parametés chosen for each value

to the “noise term” in Eq.(48) there is no simple connection of w, .

° o
o =
5T TS
B =)} -]
Distinguishability & Visibility

S
[}

[~

(=]

Normalized uncertainty product
(=

N
/8 n/4 3n/8 7/’

[\%
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certainty relation ... .” The reason is that, whereastainty relation than the one we derived. In our eyes, if the

((AA)?), ((AB)?), P, V, andV, all correspond to the uncer- Meter projection basis is chosen to optimize the distinguish-

tainties of factual measuremenBdoes not. Instead, it char- ability, it is more natural to make the quantitative statement

acterizes a ML estimate, which cannot be directly related t®f complementarity in terms of Eq38). The conclusion is

a factual measurement of the corresponding operator. that any expression that makes a statement of a simultaneous
It is interesting to make a connection between H§§)  Measurement of complementary observables irrevocably

and (28) via Eq. (51). We have already noted that the two Must involve properties of the meter, in addition to the prop-

uncertainty relations are different since they represent physerties of the state.

cally different measurements on physically different states. It is noteworthy that the simultaneous uncertainty relation

However, we have striven, as far as possible, to try to desigie derived differs from that derived by Arthurs, Kelly, and

a “fair” procedure to simultaneously measufeand B of ~ ©00dmari28,29. They, and subsequent workers, implicitly

the state(5) through a measurement of the St&85). Spe- or explicitly assumed that the pertinent operators were ca-
y élonical, and in this case the uncertainty product for a simul-

Jgneous measurement is simply four times larger than the

the optimum entanglement given by E(1) can be ex- standard uncertainty product. In our case the situation is

pressed as more complex. Due to the fact thAtandB are noncanoni-
cal, the uncertainty product of a simultaneous measurement
v is not simply scaled by a constant factor. Specifically, the
c= "\ /m, (52 simultaneous uncertainty product of the eigenstate’s &md

B is nonzero due to the “correct mean assumption.” We
some somewhat tedious algebra will show that the normalbelieve that this is a general result for any noncanonical ob-
ized simultaneous uncertainty product can be expressed a$ervables.

VI. CONCLUSIONS

((AA)?((AB)%) _ (1-VP)®
16AZB2 = 16 (53 In physics textbooks, quantum complementarity is often
exemplified in terms of one “particle” passing through a

This rather remarkably simple result should be compared tgouble-slit. The complementary observables are usually
Egs. (28) and (29). Hence, we see that our requirement of taken to be the canonical position and momentum operators,
correct expectation values enforces a simultaneous uncefithout much justification. We have shown how comple-

tainty product which is uniquely dictated by the preparation™Mentarity is a natural consequence of the superposition prin-

of the state. This is not wholly surprising as, e.g., the eigen¢iP!€, and explored the connection between complementarity

states ofd andB could reasonably be expected to have theand the uncertainty relations. We have shown that for any
: APy P two-state system one can always formulate a generalized
smallest simultaneous uncertainty product.

Appleby [32] has argued that the simultaneous unCer_complementarlty relation, and that this relation typically can-

. e . not be interpreted in terms of position and momentum opera-
tainty relation is less general than the He|senberg-Roberts%rS‘ We have also indicated that for a system with a discrete

uncertainty relation. We agree, and this is demonstrated b : . )
our analysis. While the Heisenberg-Robertson uncertainty re?_{umber of nondegenerate eigenstates, the corresponding op

lation is based on sharp, nonsimultaneous measurements erTators are not canonical. Nevertheless, for a two-state sys-
P, . 'S @m simple and rather intuitive relations hold between ex-
the two complementary operators, and is therefore operatio Sressions of complementarity and uncertaint
ally well defined, the simultaneous uncertainty relation is We have also ghown thatyif a simultaneouyé measurement
Pnf:sdu?enmlémstgirg ”;?%?umrgg‘?emz'reiw\é;zgg:ﬁ tuisv'f;;]r;? rI’pcomplementary operators is made on a two-state system, a
cq. the meter-statg ro'ectioﬁ baels) gn d(44) ge chosen ifferent uncertainty relation arises from that derived by
ahgo.l’how should the gutg:omes of the meter-system mea’surérthurs and Kelly. Finally, we have indicated some natural
. . ) onnection ween complementarity an ntum informa-
ment be interpreted? We have, following Arthurs and Kelly onnections between complementarity and quantu orma

required that the expectation value of the unshar measur,tipn' This is to be expected since a two-state system is a
q P P Hatural physical manifestation of a qubit, irrespective of its

ment equal the true mean. This requirement enters our analy-_ . S : . o
sis through Eqs(46) and (47). In Appleby’s terminology, E?Cr;lcular physical implementatiofspin, excitation, charge,

this defines a retrodictively unbiased measurement. This is;
however, not the only reasonable choice. We can instead
choose the meter-state projection basis to optimize the dis-
tinguishability for every value of the entanglement parameter This work was supported by grants from the Swedish
c¢. With this choice one cannot make a state-independent reFechnical Science Research Council, STINT, the Royal
rodictively unbiased measurement. Nonetheless, the choiceéwedish Academy of Sciences, and by INTAS through Grant
is reasonable but will result in a different minimum uncer- No. 167/96.
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