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Complementarity and the uncertainty relations

Gunnar Björk,* Jonas So¨derholm, Alexei Trifonov,† Tedros Tsegaye, and Anders Karlsson
Department of Electronics, Royal Institute of Technology (KTH) Electrum 229, SE-164 40 Kista, Sweden
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We formulate a general complementarity relation starting from any Hermitian operator with discrete non-
degenerate eigenvalues. We then elucidate the relationship between quantum complementarity and the
Heisenberg-Robertson uncertainty relation. We show that they are intimately connected. Finally we exemplify
the general theory with some specific suggested experiments.@S1050-2947~99!06209-5#

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

A fundamental notion of quantum mechanics is comp
mentarity, which expresses the fact that any quantum sys
has at least two properties that cannot simultaneously
known. One of these complementary property pairs, and
haps the historically most important, is the wave-particle
ality. A quantum system has both particlelike and wavel
properties. However, observation of one property preclu
the observation of the other. Recently, several quantita
expressions of this specific duality were derived@1–11#.
Some of these expressions have been experimentally
firmed @12,13#. In this paper we will follow Englert’s@10#
definitions most closely. In general, inequalities quantifyi
the wave-particle duality are posed in the context of interf
ometry. In any single-particle interferometer it is meaning
both to ask which of the interferometer paths the parti
took, and to record the visibility of a large number of ide
tically prepared systems. In this paper we shall discuss
notions of which path and visibility in a general framewo
so as to encompassanysystem defined in a two-dimension
Hilbert space.

Let us begin by establishing some notation. Assume
we would like to estimate which of two paths, call them1
and2, a particle took. The only information we have is th
known probabilitiesw1 andw2512w1 for the two events.
The maximum likelihood~ML ! estimation strategy~which is
one of many possible strategies! dictates that we should, fo
each and every event, guess that the particle took the m
likely path. The strategy will maximize the likelihoodL of
guessing correctly. The likelihood will be L
5Max$w1 ,w2%, and from this relation it is evident tha
1/2<L<1. The likelihood can be renormalized to yield th
predictabilityP @10#, given by

P52L21. ~1!

It is clear that 0<P<1, whereP50 corresponds to a ran
dom guess of which path the particle took, andP51 corre-
sponds to absolute certainty about the path. Take note thP
corresponds to the likelihood of the correctestimated out-
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come. If one were to estimate the path of an ensemble
identically prepared particles according to the ML strate
one should guess identically the same path for each sys
That is, every estimate would be identical so that the e
mated path would have no variance. If, on the other ha
one made afactual measurementof the path, one would ge
a random outcome characterized only by the probabili
w1 andw2 .

One could also measure the visibility when the two pa
probability amplitudes interfere. The visibilityV, too, is a
statistical measure which requires an ensemble of identic
prepared systems to estimate. The classical definition ofV is

V5
I max2I min

I max1I min
, ~2!

where I max and I min are the intensities of the interferenc
fringe maxima and minima. For a single particle we can o
talk about the probabilityp of the particle falling on a spe
cific location on a screen, or exiting one of two interferom
eter ports.~Do not confuse this probabilityp with the pre-
dictability P.! The probability p will vary essentially
sinusoidally with the position on the screen, or with the
terferometer arm-length difference. In this case the natu
definition of V is

V5
pmax2pmin

pmax1pmin
. ~3!

It has been shown@10# that P andV for a single particle
satisfy the following inequality:

P21V2<1, ~4!

where the upper bound is saturated for any pure state
relevant question to ask is how this inequality is related
the uncertainty principle, which is also a quantitative i
equality manifesting complementarity. Furthermore, one
ask to what observables, if any, doP andV correspond? We
shall attempt to clarify these issues in this paper. We s
also show that a relation of the same form as relation~4! can
be derived for any Hermitian operator by constructing
complementary~and therefore noncommuting! Hermitian
operator. Finally, we shall see that there is a substantial
ference between the nonsimultaneous and the simultan
Heisenberg-Robertson uncertainty relations.

y-
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PRA 60 1875COMPLEMENTARITY AND THE UNCERTAINTY RELATIONS
II. GENERALIZED COMPLEMENTARITY

Let us consider the statesuA1& and uA2&, which are
eigenstates of the Hermitian operatorÂ with eigenvalues
A1ÞA2 , respectively. Therefore,̂A1uA2&50. In the fol-
lowing we shall assume that the two-dimensional Hilb
space spanned by these two orthonormal states is suffi
to describe the system. It is permissible that the operatoÂ
has additional eigenstates, but to analyze the compleme
ity relation we shall only consider transitions between, a
hence superpositions of, two of the eigenstates. Below,
the sake of clarity, we shall refer to thesystem mode, which
is the physical entity one can make measurements on,
the system state, which is the quantum-mechanical state
the mode, i.e., a result of a measurement. It is rather strai
forward to extend the relation~4! to the case where a large
Hilbert space is needed@11#, but we will refrain from at-
tempting such a generalization since two states are suffic
to elucidate the answers to the questions posed above
shall furthermore assume that our system is prepared
general state with the associated density operator

r̂5F w1 r12e
2 iu

r12e
iu w2

G , ~5!

wherew1 , w2512w1 , r12<Aw1w2, and u can be as-
sumed to be real positive numbers without any loss of g
erality, and where the density operator is expressed in ma
form in theuA1& anduA2& basis. We can identify the param
eterw1 as thea priori probability of finding the system in
the stateuA1&, and similarly forw2 .

If we use the maximum likelihood strategy to predict t
outcome of a measurement ofÂ, then we will succeed
with the likelihood L5Max$w1 ,w2%5(w11w21uw1

2w2u)/25(11uw12w2u)/2, where Max$w1 ,w2% denotes
the maximum of the two probabilitiesw1 and w2 . From
this equation and Eq.~1!, it follows that

P5uw12w2u5A~122w2!25A124w1w2. ~6!

Note that this quantity is based only on the probabilitiesw1

andw2 , which characterize thepreparationof the stater̂.
Next consider the two unitary operators

ÛPS5F1 0

0 exp~ if!
G ~7!

and

ÛBS5F cos~j! i sin~j!

i sin~j! cos~j!
G , ~8!

which are both expressed in matrix form in theuA1& and
uA2& basis. The two unitary transformations correspond t
generalized phase shift~of state uA2&) and a generalized
‘‘beam splitter,’’ respectively. The density matrix of the un
tarily transformed state isr̂85ÛBSÛPSr̂ÛPS

† ÛBS
† . The prob-

ability of obtaining the outcomeA1 from r̂8 if Â is mea-
sured is ^A1ur̂8uA1&. We denote the maximum and th
minimum of this probability, as a function off and j, as
t
nt
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pmax andpmin . One finds that the global maxima and minim
are found forj5p/41np/2, wheren is an arbitrary integer.
This choice ofj corresponds to a generalized beam split
with a 50% transmittivity. We use the global maxima a
minima to define the visibility according to Eq.~3!. It is
straightforward to show that from the obtained expressio
follows that

V52z^A1ur̂uA2& z52r12. ~9!

From this expression and Eq.~6!, it follows that

P21V25w1
2 22w1w21w2

2 14r12
2 <1, ~10!

sincew11w251 and 0<r12<Aw1w2. This rederivation
of relation ~4! demonstrates that every two-state quant
system obeys a complementary relation even before any
tempt has been made to simultaneously measure bothÂ and
the quantity complementary toÂ. In Fig. 1 the generalized
distinguishability and visibility are plotted as dash-dott
and long dashed lines, respectively, as a function ofw1 ,
parametrized by sin2a5w1 .

It is obvious thatP in some way corresponds to a me
surement ofÂ. What is the operator corresponding to th
quantity represented by the visibility? To answer this qu
tion, let us construct the two orthonormal states

uB1&[~ uA1&1ei%uA2&)/A2 ~11!

and

uB2&[~ uA1&2ei%uA2&)/A2. ~12!

These states, in turn, can be used to construct a complem
tary Hermitian operator toÂ, which is

B̂5B1uB1&^B1u1B2uB2&^B2u, ~13!

FIG. 1. The normalized dimensionless minimum uncertai

product of the operatorsÂ andB̂ as a function ofw15sin2(a). The
dashed line represents the uncertainty product of the second cla
intelligent states. The uncertainty product of the initial state

operatorsÂ and B̂ is bounded from below by the solid line an
from above by the dashed line. The dot-dashed line represent
predictability of the state and the long dashed line the visibility o
pure state.
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1876 PRA 60GUNNAR BJÖRK et al.
whereB1ÞB2 are real numbers. We have denoted this o
erator the complementary operator toÂ since the eigenstate
of B̂ are equally weighted superpositions of the eigensta
of Â. Hence, if we prepare a state so that the outcome
measurement corresponding toÂ can be predicted with cer
tainty, then nothing can be predicted about the measurem
outcome corresponding toB̂, and vice versa. Since the eige
states ofB̂ are parametrized by%, there exists a whole set o
complementary operators toÂ. We note that irrespective o
%, the statesuB1& and uB2& are the Hadamard transforma
tions of the uA1& and uA2& states. This is no coincidenc
since the fact thatB̂ is the complementary operator toÂ
makes the two corresponding bases optimal for quan
cryptography. This brings to light the intimate link@14# be-
tween the complementarity relations, quantum informati
and quantum cryptography.

It should be noted that the observableÂ plays no particu-
lar role vis-à-vis the observableB̂ in the expression~10!.
Assume that the stater̂ remains invariant, but thatÂ and B̂
are interchanged so that the maximum likelihood estima
and the generalized visibility measurement pertain to the
come of a measurement ofB̂, and that new unitary transfor
mations are defined that have identically the same form
Eqs. ~7! and ~8! if expressed in theuB1& and uB2& basis.
Then we find that

PB52r12ucos~u2% !u ~14!

~where we have labeled this predictability with an indexB

not to confuse it with the predictability of estimatingÂ) and
that the new ‘‘visibility’’ is given by

VB5Aw1
2 1w2

2 22w1w214r12
2 sin2~u2% !. ~15!

Hence, although the likelihood of estimatingB̂ correctly in
general is different from the likelihood of estimatingÂ, re-
lation ~10! still holds. We observe that it is always possib
to find an operatorB̂ for which the distinguishability be-
tween the measurement outcomes is zero. This represen
quantum erasure measurement operator@4,7,8,11,12,15,16#.
However, the sumP21V2 remains invariant and depend
only on the state, not on the choice of complementary op
tors by which one estimates and measuresP andV.

To explore the symmetry between the pairsÂ and B̂, we
can see from Eqs.~9! and~14! that the predictabilityPB of a
measurement of theproper B̂ operator is

PB52r125V. ~16!

By the ‘‘proper B̂ operator’’ we mean the complementa
operator toÂ that, for the stater̂, optimizes the visibility~or
minimizes the variance ofB̂, see below!. Therefore, the op-
erator is defined with%5u. Note that the word ‘‘proper’’ is
in reference to the measured state. In the same manne
see from Eqs.~6! and ~15! that for the properB̂ operator

VB5uw12w2u5P. ~17!
-
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III. THE HEISENBERG-ROBERTSON UNCERTAINTY
RELATION

The commutator betweenÂ andB̂ follows from the defi-
nition of the operators and can be expressed as

@Â,B̂#5~A12A2!~B12B2!~ uA1&^A2u2uA2&^A1u!.
~18!

We see that the operatorsÂ and B̂ are noncommuting, non
canonical operators. Since the operators are noncanon
they will be subject to a generalized uncertainty inequa
@17–21#. The uncertainty inequality reads

^~DÂ!2&^~DB̂!2&>
1

4
~^Ĉ&21^F̂&2!, ~19!

where theĈ is directly proportional to the commutator and
defined as

Ĉ52 i @Â,B̂#, ~20!

and ^F̂& is the correlation between the observables and
defined as

^F̂&5^ÂB̂1B̂Â&22^Â&^B̂&. ~21!

The expectation value and the variance of the state~5! can
be computed to be

^Â&5A1w11A2w2 ~22!

and

^~DÂ!2&5~A12A2!2w1w2 . ~23!

Using Eq.~6! we can write

^~DÂ!2&

~A12A2!2
5

12P2

4
. ~24!

This equation shows the direct link between a measurem
of the operatorÂ and the predictabilityP. If, e.g.,P is unity,
then the variance ofÂ is zero.

To show that a similar relation holds betweenB̂ and V,
we compute

^B̂&5
B1

2
@112r12cos~u2% !#

1
B2

2
@122r12cos~u2% !# ~25!

and

^~DB̂!2&5~B12B2!2
124r12

2 cos2~u2% !

4
. ~26!

The variance ofB̂ is minimized for the proper operatorB̂.
We note that for the proper complementary operator,
normalized and dimensionless variance is given by
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^~DB̂!2&

~B12B2!2
5

124r12
2

4
5

12V2

4
. ~27!

The visibility is thus directly linked to the variance, or un
certainty, of the proper complementary operator toÂ. As a
final result we note that the normalized uncertainty prod
can be written as

^~DÂ!2&^~DB̂!2&

~A12A2!2~B12B2!2
>w1w2

124r12
2

4

5
~12P2!~12V2!

16
. ~28!

Hence, there is adirect link between the complementarit
relation ~4! and the minimum uncertainty product. This
one of the main conclusions of this paper. The result is t
regardless of whether the state in question is pure or mix
However, for a pure state the right-hand side of Eq.~28! can
be further simplified to read

^~DÂ!2&^~DB̂!2&

~A12A2!2~B12B2!2
>

V2P2

16
. ~29!

In Fig. 1 the normalized minimum uncertainty product~solid
line! is plotted versus the probabilityw1 . The dashed line
represents the maximum uncertainty product.

The Robertson intelligent statesuc IS& are given by the
eigenstate solutions of the equation@21#

~Â1 ilB̂!uc IS&5~^Â&1 il^B̂&!uc IS&. ~30!

The complex parameterl satisfiesulu25^(DÂ)2&/^(DB̂)2&.
We will give here the solutions for the cases wherel is
either real or imaginary@20#. For imaginaryl we find

uc IS1&5Aw1uA1&6ei%Aw2uA2&. ~31!

As ulu increases from zero towards infinity, the two solutio
evolve fromw151/2 towardsw1˜0 andw1˜1, respec-
tively ~from point A to points B1 and B2 in Fig. 1!. The
minimum uncertainty states~which are the intelligent state
with the minimum uncertainty! belong to this class of intel
ligent states withw150, 1/2, and 1, respectively. As ex
pected, these are the eigenstates ofÂ and B̂. The intelligent
states withl real are given by

uc IS2&5
1

A2
~ uA1&6ei (%6b)uA2&). ~32!

Whenulu goes from 0 towards 1,b goes from 0 top/2 ~and
the uncertainty product goes along the dotted line from po
A to point C in Fig. 1!. When subsequently 1<ulu˜`, the
second class of intelligent states becomes

uc IS2&5Aw1uA1&6 iei%Aw2uA2&, ~33!

wherew1 evolves from 1/2 towards 0 and from 1/2 towar
1, for the respective states.~The uncertainty product goe
along the dashed line from pointC to pointsB1 andB2.! The
t

e
d.

t

two sets of intelligent states considered above are foun
be the states with extreme uncertainty products.

IV. COMPLEMENTARY TWO-STATE OPERATORS

In the preceding section we saw that there are infinit
many complementary operators toÂ. However, for any
choice of% there are only two sets of three mutually comp
mentary operators. If we explicitly write out the operatorB̂

as a function of%, viz, B̂(%), then the two sets areÂ, B̂(%),
B̂(%1p/2) andÂ, B̂(%), B̂(%2p/2). To clarify the mean-
ing of this statement, we note that the operator pairÂ and
B̂(%), the pairÂ and B̂(%1p/2), as well as the pairB̂(%)
and B̂(%1p/2) are all complementary. This is the meanin
of the term ‘‘a set of mutually complementary operators.’

To identify such an abstract set of operators with one~of
many! specific observables, we can, e.g., assume thatÂ cor-
responds to the spinz operatorŝz of a spin-1/2 particle, with
eigenvalues6\/2. If we furthermore assume that the eige
values of the operatorsB̂(%) and B̂(%6p/2) areB152B2
5\/2, we readily recognize the other two complementa
operators as the spinŝu and ŝv operators, whereu,v,z de-
notes a right-handed~left-handed! orthogonal Euclidian vec-
tor set for the choice%1p/2 (%2p/2). With this choice
the commutation relation~18! reduces to the familiar spin
operator commutator@ŝ i ,ŝ j #5 i\e i jk ŝk with i , j ,k˜u,v,z,
in this case.

Note, however, that orthogonal spin operators are o
one realization of a mutually complementary set. One c
construct infinitely many such triplets of operators for eve
two-state system. In@22,23# such a triplet set was con
structed starting from two orthogonally polarized sing
photon states. The three pairs of eigenstates were su
quently used as bases in a six-state quantum cryptogra
protocol. We think that a generalization of this idea of m
tually complementary operators in Hilbert spaces of hig
dimension has an obvious application for the construction
eavesdropping-safe quantum cryptographic protocols.

As a second example of complementary operator pa
we consider a single particle in a well defined spat
temporal mode, impinging on a symmetric Mach-Zehnd
interferometer. The particle can take either of the two pa
The corresponding states can be writtenu1& ^ u0& and u0&
^ u1&. Defining Â to be the two-mode particle numbe
difference operator (n̂12n̂2)/2 with the eigenvectors abov
and with eigenvalues61/2, we find that the operatorB̂ cor-
responds to the two-mode phase-difference operator~in the
first particle manifold! defined by Luis and Sa´nchez-Soto
@24–26#:

f̂125uuf1&^f1u1~u1p!uf2&^f2u, ~34!

where uf1&5(u1& ^ u0&1ei%u0& ^ u1&)/A2 and uf2&5(u1&
^ u0&2ei%u0& ^ u1&)/A2, and the corresponding eigenvalu
areu andu1p. Figure 2 provides a schematic illustration
the implementation of the state preparation~left! and the op-
erator set~right!.
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1878 PRA 60GUNNAR BJÖRK et al.
Note that the proper operators in this case, where
eigenstates are discrete,do not correspond to position an
momentum operators, as textbook discussions of this spe
interferometric duality experiment often indicate. This h
already been noted and discussed by de Muynck@27#. In the
same vein Luis and Sa´nchez-Soto have used the phas
difference operator to analyze the mechanism which enfo
complementarity, and specifically loss of fringe visibili
with increasing distinguishability@26#.

Identifying the operatorÂ with any Hermitian operator
~for which it makes sense to have a restricted two-state
bert space! it is always possible to write down a compleme
tarity relation for Â. Since the form of the complementar
operatorB̂ to Â is known, and it has a simple form, it is ofte
possible to identify this operator with some known obse
able. Since complementarity follows directly from the sup
position principle, and therefore permeates all of quant
mechanics, the termwelcher wegexperiment, which is inti-
mately tied to complementarity, should perhaps be repla
by the termwelcher zustand~which state! experiment.

V. COMPLEMENTARITY AND UNCERTAINTY
RELATIONS FOR SIMULTANEOUS MEASUREMENTS

So far we have discussed the standard Heisenb
Robertson uncertainty relation, which makes a statem
about the preparation of a state. For example, the varianc
Â computed in Eq.~23! is the variance associated with
sharp measurement ofÂ on an ensemble of systems all pr
pared in the stater̂. The measurement will either destroy th
state or collapse the state into an eigenstate ofÂ so the sharp
measurement will preclude any meaningful subsequent m
surement ofB̂. However, it is also interesting to see what t
uncertainty product becomes if one tries tosimultaneously

measureÂ and B̂. By ‘‘simultaneous’’ we mean that we
make~necessarily unsharp! measurements of bothÂ and B̂
on each individual system mode in the ensemble. In orde

FIG. 2. An example of complementary operators. The sing
photon two-mode state prepared at left can be measured either
number-difference operator~top! or by a phase-difference measur

ment ~bottom!. By adjusting the phase shift%, any operatorB̂(%)
can be implemented.
e
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do so, we need to entangle the system with an auxili
meter mode, associated with an arbitrarily large Hilb
spaceHm ; see Fig. 3. If the entanglement between the s
tem and meter modes is perfect~to be quantified below!, then
a sharp measurement of the state of the meter mode
collapse the system mode into an eigenstate of, e.g.,Â. This
is the principle of a quantum nondemolition measureme
However, in order to subsequently be able to say someth
aboutB̂ of the initial system state from the same copy of t
quantum state, the entanglement cannot be perfect, and
able to say something aboutÂ, it cannot be zero. Therefore
both theÂ and theB̂ measurements need to be unsharp, t
is, associated with additional statistical uncertainties th
what follows from the preparation of the state. This is w
known for simultaneous measurements@27–32#.

In the following we will only treat the case where th
composite system is pure, as this will set the lower limit
our ability to simultaneously measure or predict the values
the observablesÂ andB̂. We shall assume that the entangl
ment is accomplished through some unitary operation wh
does not change the probabilitiesw1 and w2 . ~The more
general case is discussed in@11#.! Such an entanglemen
should perhaps be called quantum nondemolit
measurement-type entanglement~where the word measure
ment refers toÂ), since a perfect entanglement of this typ
will allow one to make a sharp QND measurement ofÂ. This
is not the most general form of entanglement, but it is
type of entanglement needed for our purposes, so a s
ciently general pure state of the entangled system can
written

uce&5Aw1uA1& ^ uM 1&1eiuAw2uA2& ^ uM 2&

[Aw1uA1& ^ uM 1&1eiuAw2uA2&

^ ~cuM 1&1A12c2uM'&), ~35!

wherec is real and positive and defined byz^M 2uM 1& z5c,
and ^M 1uM'&50. We see that sinceÂ has a binary mea-
surement outcome, we need only consider the reduced
dimensional meter mode Hilbert spaceHr spanned byuM 1&
anduM'&. The density operator associated withuce& will be
denotedr̂e . With the help of the parameterc, which is a
measure of the entanglement between the modes, the d
guishability D based on an optimal measurement of t
meter mode can be expressed as

-
y a

FIG. 3. A schematic representation of a simultaneous meas

ment ofÂ andB̂ on a single system. The planesP andD denote the
spatial points where it is appropriate to measureP or V, andD or
Ve , respectively. If an unsharp measurement is performed,D and
Ve can be measured at planeD.
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D[i^A1ur̂euA1&2^A2ur̂euA2&i15A124c2w1w2.
~36!

~The notation iÔi1[Tr$AÔ†Ô% denotes the trace-clas
norm of the operatorÔ.! The distinguishabilityD has the
same connection to the likelihood of guessing correc
about the outcome of a sharpÂ measurement, that is,D
52L21. However,D is associated with a factualmeasure-
mentand not simply by an estimate based ona priori knowl-
edge. It may be noted thatP<D always holds@10,11# pro-
vided the QND type of entanglement is used.

The visibility Ve of the entangled system is given by

Ve52z^A2uTrr$r̂e%uA1& z52cAw1w2, ~37!

where the partial trace is taken overHr . Since the stateuce&
is pure, the relation

D21Ve
251 ~38!

holds @10#.
A measurement of the meter mode will allow us to dedu

some information about the initial state of the system~5!. If,
e.g., c50, then the wave function~35! represents a maxi
mally entangled state, and a measurement of the meter m
using uM 1& and uM'& as projection bases, will yield a pe
fect correlation with a subsequentÂ measurement of the sys
tem mode. However, as noted above, such a measureme
the meter mode will preclude any meaningful information
be reaped about the complementary observableB̂. Therefore,
we will discuss in the following how to perform an optim
simultaneous measurement ofÂ and B̂. We understand ‘‘si-
multaneous measurement’’ to mean a measurement w
we try to obtain some information of bothÂ and B̂ from a
single copy of a pure state~5!, which after an entangling
interaction is transformed to the state~35!.

To find the minimum uncertainty product of a simult
neous measurement ofÂ andB̂, we have assumed that theÂ
information will be obtained by making a sharp measu
ment of the meter mode and theB̂ information will be ob-
tained by making a subsequent sharp measurement on
system mode.~We note that one could also have chosen
do the opposite. However, if we do so, the system and m
modes should be entangled in a different manner than w
has been assumed above. Still, if we choose the inverse
surement procedure and do it optimally, the final res
quantified by a simultaneous uncertainty product, rema
identical to the result below.! Let us start with theB̂ mea-
surement. The two pertinent projectors areuB1&^B1u and
uB2&^B2u. The associated probabilities are

PB6
5^B6uTrr$r̂e%uB6&5

1

2
6cAw1w2 cos~u2% !.

~39!

If the two outcomes are associated with the valuesB18 and
B28 , then the mean of the measurement, or rather estima

of B̂ ~which we will denoteB̂8) will yield
y

e

de,

t of

re

-

the
o
er
at
ea-
t,
s

n,

^B̂8&5
B18 1B28

2
1~B18 2B28 !cAw1w2 cos~u2% !.

~40!

We note that, without loss of generality, we can assum
gauge such that the true eigenvaluesB1 and B2 fulfill B1

52B25B, and henceB18 52B28 5B8. To make the esti-
mated mean~40! equal the true mean~25!, we set B68
5B6 /c. We point out that the choice is independent of t
initial state of the system mode~which is characterized by
w1 and u), but depends on the degree of entanglemenc.
The assumption of a ‘‘true mean’’ meter is essential to w
follows, and is also made by Arthurs, Kelly, and Goodman
their seminal papers on simultaneous measurements@28,29#.
From the assumption it follows that the variance of the e
mate ofB̂ is

^~DB̂8!2&5
~B18 2B28 !2

4
@124c2w1w2 cos2~u2% !#

5B2S 1

c2 24w1w2cos2~u2% ! D . ~41!

It is obvious from this expression that in order to minimi
the variance of the estimate ofB̂, one should chooseu5%.
We also see that whenc51, that is, when the system an
meter modes are unentangled, the result reduces identi
to Eq. ~26!. On the other hand, whenc˜0, the variance
diverges in spite of the fact thatB̂ has a finite number of
finite eigenvalues. This is a consequence of our requirem
that the mean of the estimate should equal the true mea
the state.

If the ~proper! choiceu5% is made, then we can expres
the normalized variance in the visibility~37!:

^~DB̂8!2&

~B18 2B28 !2
5

12Ve
2

4
. ~42!

It is to be expected that such a relation holds, because
visibility, as shown above, corresponds to a sharp meas
ment of the uncertainty of operatorB̂.

In order to best estimate the outcome of a measuremen
Â of the initial system state from a measurement on
meter mode, we need to find the optimal projectors. Si
the entangled state~35! can be expressed in a 232 Hilbert
space, we need only construct two meter-mode project
The most general forms for the projector states are

uM1&5cos~g!uM 1&1eik sin~g!uM'& ~43!

and

uM2&52eiksin~g!uM 1&1cos~g!uM'&. ~44!

However, it is immediately obvious that in order to best e
timate Â, the choicek50 ~or k5p, which is equivalent to
uM1&↔uM2&) should be made sinceuM'& is defined such
that c is real. Furthermore, again we shall assume tha
gauge is chosen so thatA152A25A, and therefore the
measurement values associated with the two outcomesA18
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andA28 fulfill A18 52A28 5A8. With this choice, the expec

tation value of the estimate ofÂ ~which we callÂ8) becomes

^Â8&5A8$@cos2~g!2sin2~g!#@w12w2~122c2!#

14w2cA12c2cos~g!sin~g!%. ~45!

We see that in order to make the estimated mean correc
Eq. ~22!, and independent of the initial system state, the f
lowing two conditions must be met:

cos2~g!2sin2~g!

2cos~g!sin~g!
52A12c2

c
~46!

and

A85
A

cos2~g!2sin2~g!
5

A

A12c2
, ~47!

where the second equality in Eq.~47! follows from Eq.~46!.
Note that both conditions are state independent. That

^Â8&5^Â& irrespective ofw1 andu if the two conditions are
met. The variance of the estimate ofÂ can then be compute
to be

^~DÂ8!2&5A2S c2

12c2 14w1w2D . ~48!
s

ti
e
a

r-
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e
e
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n

cf.
-

s,

We see that, as expected, the estimated variance equal
true variance forc50, that is, when the system and met
modes are maximally entangled. The estimated variance
verges whenc˜1. This, too, is a consequence of requiring
correct estimated mean.

The normalized and dimensionless simultaneous un
tainty product is hence

^~DÂ8!2&^~DB̂8!2&

16A2B2
5S c2

4~12c2!
1w1w2D S 1

4c2 2w1w2D .

~49!

As expected, the uncertainty product is larger than Eq.~28!
and depends both on the initial state and on the degre
entanglement between the system mode and the meter m
The entanglement parameterc can be used to shift the mea
surement uncertainty, to some extent, from one of the op
tors to the complementary one.

If, for each choice ofw1 , we optimize the entanglemen
to minimize the uncertainty product, and this is the princip
used in@28,29# to derive the minimum uncertainty produc
for a simultaneous measurement of twocanonicalnoncom-
muting operators, then the ensuing normalized minimum
certainty product is given by
^~DÂ!2&^~DB̂!2&

16A2B2
5

216w1
2 w2

2 ~124w1w2!21@1212w1w2~124w1w2!#Aw1w2~124w1w2!

16@24w1w2~124w1w2!1Aw1w2~124w1w2!#
~50!
een

-

nty

and
ed
and this expression holds for

c5A24w1w212Aw1w2~124w1w2!

128w1w2

. ~51!

This is the other major result of this paper, where the phy
cal implications of Eq.~50! rather than the~rather messy!
form should be retained. Remember that this result is con
gent ona priori information about the preparation of th
state~i.e., to be able to make a minimum uncertainty me
surement of the state,w1 andu must be known!. The result
is plotted in Fig. 4, solid line. This is the minimum unce
tainty of a simultaneous measurement of the two comp
mentary and noncanonical operatorsÂ and B̂. The result
should be compared with the standard uncertainty prod
~28! of a state in two-dimensional Hilbert space.

The corresponding distinguishability and visibility a
plotted as dash-dotted and long dashed lines, respective
Fig. 4. We have assumed that the entanglement paramec
for eachw1 is chosen according to Eq.~51!. By necessity,
the distinguishability is higher than the predictability for th
entangled state while the visibility is correspondingly low
than for the initial state~cf. Fig. 1!. We also observe that du
to the ‘‘noise term’’ in Eq.~48! there is no simple connectio
i-

n-

-

-

ct

in
r

r

between the uncertainties ofÂ8 and the distinguishability
~36!. Therefore, one cannot find any general relation betw
Eq. ~39! and the nonsimultaneous uncertainty relation~28!.
This was noted already by Englert, who asserted that ‘‘ . . .
the duality relation~38! is logically independent of the un

FIG. 4. The normalized dimensionless minimum-uncertai

product for a simultaneous measurement of the operatorsÂ andB̂,
solid line. The dot-dashed line represents the distinguishability
the long dashed line the visibility of the entangled state, provid
that the optimum entanglement parameterc is chosen for each value
of w1 .
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certainty relation . . . .’’ The reason is that, where

^(DÂ)2&, ^(DB̂)2&, P, V, andVe all correspond to the uncer
tainties of factual measurements,D does not. Instead, it char
acterizes a ML estimate, which cannot be directly related
a factual measurement of the corresponding operator.

It is interesting to make a connection between Eqs.~50!
and ~28! via Eq. ~51!. We have already noted that the tw
uncertainty relations are different since they represent ph
cally different measurements on physically different stat
However, we have striven, as far as possible, to try to des
a ‘‘fair’’ procedure to simultaneously measureÂ and B̂ of
the state~5! through a measurement of the state~35!. Spe-
cifically, we have required that the expectation values of
corresponding measurements coincide. Using the fact
the optimum entanglement given by Eq.~51! can be ex-
pressed as

c5A V

P1V
, ~52!

some somewhat tedious algebra will show that the norm
ized simultaneous uncertainty product can be expressed

^~DÂ8!2&^~DB̂8!2&

16A2B2
5

~12VP!2

16
. ~53!

This rather remarkably simple result should be compare
Eqs. ~28! and ~29!. Hence, we see that our requirement
correct expectation values enforces a simultaneous un
tainty product which is uniquely dictated by the preparat
of the state. This is not wholly surprising as, e.g., the eig
states ofÂ and B̂ could reasonably be expected to have
smallest simultaneous uncertainty product.

Appleby @32# has argued that the simultaneous unc
tainty relation is less general than the Heisenberg-Rober
uncertainty relation. We agree, and this is demonstrated
our analysis. While the Heisenberg-Robertson uncertainty
lation is based on sharp, nonsimultaneous measuremen
the two complementary operators, and is therefore operat
ally well defined, the simultaneous uncertainty relation
based on unsharp measurements. How should these un
measurements be performed? More specifically, how sho
e.g., the meter-state projection basis~43! and~44! be chosen,
and how should the outcomes of the meter-system meas
ment be interpreted? We have, following Arthurs and Ke
required that the expectation value of the unsharp meas
ment equal the true mean. This requirement enters our an
sis through Eqs.~46! and ~47!. In Appleby’s terminology,
this defines a retrodictively unbiased measurement. This
however, not the only reasonable choice. We can inst
choose the meter-state projection basis to optimize the
tinguishability for every value of the entanglement parame
c. With this choice one cannot make a state-independent
rodictively unbiased measurement. Nonetheless, the ch
is reasonable but will result in a different minimum unce
o
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tainty relation than the one we derived. In our eyes, if t
meter projection basis is chosen to optimize the distingu
ability, it is more natural to make the quantitative statem
of complementarity in terms of Eq.~38!. The conclusion is
that any expression that makes a statement of a simultan
measurement of complementary observables irrevoca
must involve properties of the meter, in addition to the pro
erties of the state.

It is noteworthy that the simultaneous uncertainty relat
we derived differs from that derived by Arthurs, Kelly, an
Goodman@28,29#. They, and subsequent workers, implicit
or explicitly assumed that the pertinent operators were
nonical, and in this case the uncertainty product for a sim
taneous measurement is simply four times larger than
standard uncertainty product. In our case the situation
more complex. Due to the fact thatÂ and B̂ are noncanoni-
cal, the uncertainty product of a simultaneous measurem
is not simply scaled by a constant factor. Specifically,
simultaneous uncertainty product of the eigenstates toÂ and
B̂ is nonzero due to the ‘‘correct mean assumption.’’ W
believe that this is a general result for any noncanonical
servables.

VI. CONCLUSIONS

In physics textbooks, quantum complementarity is oft
exemplified in terms of one ‘‘particle’’ passing through
double-slit. The complementary observables are usu
taken to be the canonical position and momentum operat
without much justification. We have shown how compl
mentarity is a natural consequence of the superposition p
ciple, and explored the connection between complementa
and the uncertainty relations. We have shown that for a
two-state system one can always formulate a general
complementarity relation, and that this relation typically ca
not be interpreted in terms of position and momentum ope
tors. We have also indicated that for a system with a disc
number of nondegenerate eigenstates, the correspondin
erators are not canonical. Nevertheless, for a two-state
tem simple and rather intuitive relations hold between
pressions of complementarity and uncertainty.

We have also shown that if a simultaneous measurem
of complementary operators is made on a two-state syste
different uncertainty relation arises from that derived
Arthurs and Kelly. Finally, we have indicated some natu
connections between complementarity and quantum infor
tion. This is to be expected since a two-state system
natural physical manifestation of a qubit, irrespective of
particular physical implementation~spin, excitation, charge
etc.!.
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