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Generalized coherent states for thal-dimensional Coulomb problem
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In this paper a set of generalized coherent states forditienensional Coulomb problem in coordinate
representation are constructed. A coordinate transformation in hyperspherical space is used that maps the
d-dimensional Coulomb problem into tHe-dimensional harmonic oscillator and the generalized coherent
states for thed-dimensional Coulomb problem are then obtained. This exactly soluble model can provide an
adequate means for a quantum coherency description of the Coulomb problem in arbitrary dimensions, spe-
cifically in the special case of the hydrogen atom, in many theoretical and applied related fields such as in
coherent scatteringS1050-294®9)05008-4

PACS numbd(s): 03.65.Ca

I. INTRODUCTION Il. COHERENT STATES FOR THE
HARMONIC OSCILLATOR

In quantum mechanics, the standard coherent states in the The coherent states introduced by Sciinger and
coordinate representation describe nonspreading wave packlauber were developed for the simple harmonic oscillator.
ets for the harmonic oscillator which were considered byThe Hamiltonian of this system in one dimension being

Schralinger as early as 192d]. Somewhat later von Neu- 2

L . . ps 1
mann, in his famous monografdR], studied an important H=—+ —mw?x?, (1)
subsystem of coherent states, related to the regular cell par- 2m 2

tition of the phase plane for a system with one degree oft can be rewritten as

freedom. Among early works in this area, the important pa-

per by Glaubef3] should be mentioned. There, the concept H=(a'a+})o 2
of the coherent state was introduced and it was shown that

coherent states provide an adequate means for a quantdif defining annihilation and creation operators as
description of coherent laser light beafds.

H 1/2
On the other hand, the problems associated with the Cou- a=|x+ L p) (@) , 3)
lomb problem and harmonic oscillat}b,6], together with Mw 2
the connection between the two in arbitrary dimensions, . 112
which has been studied from various viewpoili#s-15], af= x—l—p)(ﬁ) , (4)
have been discussed in detail by many authors. The purpose Mw 2

of this paper is to take advantage of the above connection iPespectiver. The eigenstates of the Hamilton{ah, belong-
order to construct the generalized coherent states for thy g to the energy eigenvalu&s, = (n-+1/2)h w, wheren is a

Coulomb problem in arbitrary dimensions in the Coord'nater]on-negative integer, may then be written as

representation. As a result in a special three-dimensiona

case, these generalized coherent states would be the coherent a'alny=nin). (5

states for the hydrogen atom, which is a very important re- ) N

sult. The coherent state is constructed as a superposition of the
The paper is organized as follows. In Sec. Il the coheren@n€rgy eigenstates of the harmonic oscillator

states for the harmonic oscillator are constructed and some 1 ©

properties of_ these state_s are .studied. In Sec. lll the 'Schro |a>=exp{ —Z|al? E @ Iny, (6)

dinger equation for the-dimensional Coulomb problem and 2 =0 \n!

the D-dimensional harmonic oscillator in hyperspherical co- )

ordinates are solved and their energy eigenvalues and eigeff'€re @ is a complex number. These states are normally
functions are obtained. In Sec. IV the Setiirger equation  defined in three equivalent ways6]. ,

for the d-dimensional Coulomb problem is mapped onto the () They minimize ”11,2 uncertainty relatiodxAp=~/2,
D-dimensional harmonic oscillator by a coordinate transfor-and..haV%xz(ﬁ/?m“’) : L

mation in hyperspherical space and the connection between (if) They are eigenstates of the annihilation operator
energy eigenfunctions of these two systems is obtained. Fi- ala)=cala). 7)
nally, in Sec. V, by using the above connection, the general-

ized coherent states for tltedimensional Coulomb problem (iii) They are created from the ground state by a displace-
are constructed in the coordinate representation. ment,
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|a)=D(a)|0)=exp aal—a* a)|0), (8) wherer is ad-dimensional position vector having Cartesian
_ _ _ _ componentsx;  Xz,... X4 With magnitude r = (S{_,x7)*?
where D(«) is unitary displacement operator. As is well gnd the LapIaciarVﬁ given by
known, all three definitions are equivalent and yield the same
results, namely, Eq(6). In fact, usually one of them is d
adopted as the definition of the harmonic-oscillator coherent Vi= Z
states. The completeness relation for the coherent state is =1

(92

asz '

(15

1 Because of the spherical symmetry of the problem it is con-
—f d?a|a)(a|=1, (9)  venient to introduce the hyperspherical coordinates, which
™ are defined as followEL7]:

where the integration is over the whole compleplane. We

X1=T C0SH,Sin6O, --Sinfy_1,
also have 1 0156, Oa-1

[(Bla)?=exp—|a—B|?), (10) Xo=rSinf;sinf, --sinfy_1,

which means that the coherent state is not a complete or- X3=T C0SH, SiNf3 --Sinfy_1,
thogonal state. It is over-complete. Since the coherent state
Eqg. (6) is a nonstationary state it develops with time in a

rather simple manner and, takingt=0)=xe'?, it follows (16)
that X;=r c0s6f;,_1Sin6d;---sinfy_1,
J J J
A 1/2
= — i +6).
(a,t|X|a,t) 2)\(2mw sin(wt+ 6) (11

. _ . . Xg_1=TF COSOy_,SiNby_1,
Identifying the constant in square brackets with the ampli-

tude, the expectation value of the displacement in the coher- Xq=T COSO4_1,
ent state behaves like that of a classical oscillator. In this
sense the coherent state is called a classical Ei2fe By whered=23, ..., Osrsw, 0s6,<2m, O0s<6j<m, and
solving Eq.(7), we find an explicit expression for the coher- j=1,2,...,d—1. As in three dimensions, we substitute the
ent state in the coordinate representation, following in Eq. (14):
1/4
x| at) = _) ex%'_(me)ma,,x YO=Ra(Y1 1, iy (01,605,..0g-1), (A7)
M h
where R, (r) is the radial wave function and, |
Mo 2 1/2 2 ] ) . 120ld-1
><exp[ - | x— _) a' ’ (12)  (61,02,...,64-1) is the generalized spherical harmonics, in
2h M which 14.,=0,1,2...; 14-»=0,1,2 ..., lg_q:...; Iy
. . :0,1,2...,|3; |1:_|2,_|2+1,...,|2_1,|2. We Ob'
where o’ and «” are the real and imaginary parts af ; - Y -
respectively. The probability distribution of the wave func- tain the radial part of the Schiinger equation as
tion Eq.(12) is a Gaussian function for all possible values of #2[d2 d-1d I(1+d-2)] e
a. This leads to the coherent state is a minimum uncertainty ( — —[—2+ —— 5 — —] Ru(r)
state, namely, 2midr rodr r '
AXAp=A12. (13 =ERn(1). (18
The wave function of the coherent state which is given in Eq'Equatlon(lB) can be written af18]
(12) becomes the ground state harmonic-oscillator wave @ d-1d I(0+d-2) k 1
function centered around the origin whar=0. Whene is a —+ ~ +———|¢(u,d,n,1)=0,
real number, it is a displaced ground state harmonic- LU u du u u 4 19

oscillator wave function whose maximum is at
= (2/mw)*?a. Whena is complex, it is a ground state wave where u=r/kro, ro=#22me, k=n+1(d—3), |

. - . . - [} - I - 2 1
function whose origin is displaced to a complex value. —012....n—1 andn=I+1.

The energy eigenvalues, and their corresponding eigen-

IIl. SOLUTION OF THE SCHRO DINGER EQUATION functions (u,d.n,1) are given by

FOR COULOMB AND HARMONIC-OSCILLATOR
PROBLEMS IN ARBITRARY DIMENSIONS €
€n=— ﬂ, (20)

The Schrdinger equation for the-dimensional Coulomb Nt §<d_3)

problem is

( h? e where ep=me*/242, and principal quantum numben

_ﬁvg_T) Y(r)=Ey(r), @4 Z123..., and
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#(u,d,ny=c(d,n,He v2u' L 92wy, (1 U= VES The appropriate relation between solutions Eg3)
and(26) with restrictingD, N, andL to integers i 13]

with the normalization constant
é(u,d,n,)=Ad(U,2d—-2,2n—-2,2), (28

c(d,n,l)=rg¥n+%(d—3)] @V (n—1)]"2
X[2T'(n+1+d—2)]" 2 (22)

where

A={3R3"2Ir[n+3(d—3)19 12 (29
Note that the Laguerre polynomial$® are those defined in _
handbooks on mathematical functions and are not the mor-tléhe dd_ Iand dn(i)dﬁ)egd’\‘lar:_t constantAI_ ar(ljses b_eca_lrl:jse
limited L}, often used in discussions of the hydrogen atom?(u.d.n.1) and®(U,D,N,L) are normalized to unity |
eigenfunctions. and D dimensions, respectively. The identification Eg8)

In a similar way, the radial equation of tiledimensional yields the solution

harmonic oscillator is given bj17] D=2d—2, N=2n-2, L=2I. (30)
f?2[d> D-1d L(L+D-2) It is a general feature of this mapping that the spectrum of
“omldrR T R GR R2 the d-dimensional Coulomb problem is related to half the

spectrum of theD-dimensional harmonic oscillator for any

1 ., . even integerD. However, the quantities in Eq30) have
* 2 Me R ]R“'(R)_ ERn(R), 23 parameter spaces that are further restricted by the properties
chosen for this mapping. From E¢30), we find that all
which can be written agl9] states of tha-dimensional Coulomb problem with=1 and
I=0 can be mapped onto the appropriate harmonic oscillator
D—1i with N=0 andL=0, except ford=1.
d? du L(L+D-2) ) Now by using coordinate€l6) and ignoring the constant
Wﬂ' u U2 —U+KI®(UDN,L) A, we can write Eq(28) in Cartesian space &20]
=0, (24

whereU=R/R,, Ry=(mw/#)?, K=2N+D, andN=L.

The energy eigenvaluegy and their corresponding (31)
eigenfunctionsb(U,D,N,L) are given by whereHy(B8x) is the Hermite polynomials of ordé, and
. B=(mw/k)*?. Thus thed-dimensional Coulomb problem
En=2fiw(2N+D), (25 wave function is expanded as a linear combination of simple

) harmonic-oscillator wave functions in Hermite polynomials.
®(U,D,N,L)=C(D,N,L)e V72Ut L\, B2 (u?),
(26) V. GENERALIZED COHERENT STATES FOR COULOMB

. . . PROBLEM IN ARBITRARY DIMENSIONS
with the normalization constant

In this section we use the result from the preceding sec-

C(D N L)=R-22 o1 E_ E 1 12 tion and constitute the coherent states for dhdimensional
(D.N.L)=Rg 2 2 + Coulomb problem. By using Eq§12) and(31), we are able

N L D\ to construct the generalized coherent states for the Coulomb

<24y _” . @7 problem in arbitrary dimensions in thecoordinates:
2 2 2 -p/a D i
. _ I 1/2 _n

Having obtained the eigenfunctions for Coulomb and zp(x,a)—(m) J.Hl eXF{g(me) ;X
harmonic-oscillator problems in arbitrary dimensions, Eqgs.
(21) and (26), we will, in Sec. IV, set out to link the two Mo 2\ 72
cases by writing the-dimensional Coulomb problem eigen- xXexp — o X~ | ol gl (32

functions in terms of th&®-dimensional harmonic-oscillator o _ . _ .
eigenfunctions. which is the desired result. In fact the wave function given in

Eq. (32 is the wave function of coherent state for the
IV. MAPPING OF THE COULOMB PROBLEM q-dimen_sional Coulqmb problem in coordinate representa-
ONTO THE HARMONIC OSCILLATOR tion. This Coulom_blc coherent state becomes_the ground
IN ARBITRARY DIMENSIONS state wave function centered around_the origin in the
D-dimensionak space whem=0. Whena is a real number,
The connection between the Coulomb and harmonicit is a displaced ground state Coulombic wave function
oscillator problems, which has been studied from variousvhose maximum is at=(2/mw)*2a. Whena is complex,
viewpoints, has been discussed in detail by many authorgt is a ground state wave function whose origin is displaced
The main point in this section is the mapping of theby a complex value.
d-dimensional Coulomb problem onto thHe-dimensional We can also construct this generalized coherent state as a
harmonic oscillator. The map taking E@.9) into Eq.(24) is  superposition of the Coulombic eigenstates
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0.16 |[a]|2[”]
0.14 meW exp(—|[a]?). (34
0.12-
2 ook This means that the number of Coulombic particles in the
ﬂ ' coherent state has a Poisson distribution. This is the distribu-
W 008 tion expected from a coherent scattered beam of Coulombic
£ 006 particles. The cross section of this Poisson distribution and
0.041- also thermal distribution is shown in Fig. 1. It is important to
' Thermal note that the three-dimensional representation of the above
0.02¢ 7 results is associated with the hydrogen atom itself. This in
0.00 k- ! . 2'0 turn can provide an adequate means for a quantum coherency

description of the hydrogen atom such as in the coherent
. . scattering of the hydrogen atom. The coherent state for the
Coulombic Particles Number .
hydrogen atom has already been obtained by the method of
FIG. 1. Poisson and thermal distributions. It is expected that thémdn_'r?um unfcerta_lnty Cgherent St?tes as t?e pr.Odu.CtShOf a
Coulombic particle distribution in coherent scattering is Poissonian/2dial wave unction and an angufar wave unction in three
whereas those without coherence are exponential distribution. ~ dimensiong21,22). But it is necessary to note that the gen-
eralized coherent state obtained in this paper first consists of
- both radial and angular coordinates in one equation(E),
1 [a]™ ly it is valid for th | lem in arbi
[a])=exp — = |[a]|? z ) (33) and secondly it is valid for the Coulomb problem in arbitrary
2 =0 \[n]! ' dimensions(exceptd=1), and thirdly it is represented in
terms of the familiar harmonic-oscillator coherent states.

where [a]=(aq,as,...,ap), [n]=(Nn¢,n,,...,np), and
[n]'=n.In,!...np!. The expression for the Coulombic co- ACKNOWLEDGMENT
herent state given in EQq(33) is normalized in the
D-dimensional space. The probability of being in the
[n]-Coulombic state is
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