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Generalized coherent states for thed-dimensional Coulomb problem
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In this paper a set of generalized coherent states for thed-dimensional Coulomb problem in coordinate
representation are constructed. A coordinate transformation in hyperspherical space is used that maps the
d-dimensional Coulomb problem into theD-dimensional harmonic oscillator and the generalized coherent
states for thed-dimensional Coulomb problem are then obtained. This exactly soluble model can provide an
adequate means for a quantum coherency description of the Coulomb problem in arbitrary dimensions, spe-
cifically in the special case of the hydrogen atom, in many theoretical and applied related fields such as in
coherent scattering.@S1050-2947~99!05008-8#

PACS number~s!: 03.65.Ca
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I. INTRODUCTION

In quantum mechanics, the standard coherent states in
coordinate representation describe nonspreading wave p
ets for the harmonic oscillator which were considered
Schrödinger as early as 1926@1#. Somewhat later von Neu
mann, in his famous monograph@2#, studied an importan
subsystem of coherent states, related to the regular cell
tition of the phase plane for a system with one degree
freedom. Among early works in this area, the important
per by Glauber@3# should be mentioned. There, the conce
of the coherent state was introduced and it was shown
coherent states provide an adequate means for a qua
description of coherent laser light beams@4#.

On the other hand, the problems associated with the C
lomb problem and harmonic oscillator@5,6#, together with
the connection between the two in arbitrary dimensio
which has been studied from various viewpoints@7–15#,
have been discussed in detail by many authors. The pur
of this paper is to take advantage of the above connectio
order to construct the generalized coherent states for
Coulomb problem in arbitrary dimensions in the coordin
representation. As a result in a special three-dimensio
case, these generalized coherent states would be the coh
states for the hydrogen atom, which is a very important
sult.

The paper is organized as follows. In Sec. II the coher
states for the harmonic oscillator are constructed and s
properties of these states are studied. In Sec. III the Sc¨-
dinger equation for thed-dimensional Coulomb problem an
the D-dimensional harmonic oscillator in hyperspherical c
ordinates are solved and their energy eigenvalues and e
functions are obtained. In Sec. IV the Schro¨dinger equation
for the d-dimensional Coulomb problem is mapped onto t
D-dimensional harmonic oscillator by a coordinate transf
mation in hyperspherical space and the connection betw
energy eigenfunctions of these two systems is obtained
nally, in Sec. V, by using the above connection, the gene
ized coherent states for thed-dimensional Coulomb problem
are constructed in the coordinate representation.
PRA 601050-2947/99/60~2!/1702~4!/$15.00
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II. COHERENT STATES FOR THE
HARMONIC OSCILLATOR

The coherent states introduced by Schro¨dinger and
Glauber were developed for the simple harmonic oscilla
The Hamiltonian of this system in one dimension being

H5
p2

2m
1

1

2
mv2x2, ~1!

it can be rewritten as

H5~a†a1 1
2 !\v ~2!

by defining annihilation and creation operators as

a5S x1
i

mv
pD S mv

2 D 1/2

, ~3!

a†5S x2
i

mv
pD S mv

2 D 1/2

, ~4!

respectively. The eigenstates of the Hamiltonian,un&, belong-
ing to the energy eigenvaluesEn5(n11/2)\v, wheren is a
non-negative integer, may then be written as

a†aun&5nun&. ~5!

The coherent state is constructed as a superposition o
energy eigenstates of the harmonic oscillator

ua&5expS 2
1

2
uau2D (

n50

`
an

An!
un&, ~6!

where a is a complex number. These states are norma
defined in three equivalent ways@16#.

~i! They minimize the uncertainty relationDxDp5\/2,
and haveDx5(\/2mv)1/2.

~ii ! They are eigenstates of the annihilation operatora,

aua&5aua&. ~7!

~iii ! They are created from the ground state by a displa
ment,
1702 ©1999 The American Physical Society
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ua&5D~a!u0&5exp~aa†2a* a!u0&, ~8!

where D(a) is unitary displacement operator. As is we
known, all three definitions are equivalent and yield the sa
results, namely, Eq.~6!. In fact, usually one of them is
adopted as the definition of the harmonic-oscillator coher
states. The completeness relation for the coherent state

1

p E d2a ua&^au51, ~9!

where the integration is over the whole complexa plane. We
also have

z^bua& z25exp~2ua2bu2!, ~10!

which means that the coherent state is not a complete
thogonal state. It is over-complete. Since the coherent s
Eq. ~6! is a nonstationary state it develops with time in
rather simple manner and, takinga(t50)5le2 iu, it follows
that

^a,tuxua,t&5F2lS \

2mv D 1/2Gsin~vt1u!. ~11!

Identifying the constant in square brackets with the am
tude, the expectation value of the displacement in the co
ent state behaves like that of a classical oscillator. In
sense the coherent state is called a classical state@12#. By
solving Eq.~7!, we find an explicit expression for the cohe
ent state in the coordinate representation,

^xua&5S p\

mv D 21/4

expF i

\
~2mv!1/2a9xG

3expH 2
mv

2\ Fx2S 2

mv D 1/2

a8G2J , ~12!

where a8 and a9 are the real and imaginary parts ofa,
respectively. The probability distribution of the wave fun
tion Eq.~12! is a Gaussian function for all possible values
a. This leads to the coherent state is a minimum uncerta
state, namely,

DxDp5\/2. ~13!

The wave function of the coherent state which is given in E
~12! becomes the ground state harmonic-oscillator w
function centered around the origin whena50. Whena is a
real number, it is a displaced ground state harmon
oscillator wave function whose maximum is atx
5(2/mv)1/2a. Whena is complex, it is a ground state wav
function whose origin is displaced to a complex value.

III. SOLUTION OF THE SCHRO¨ DINGER EQUATION
FOR COULOMB AND HARMONIC-OSCILLATOR

PROBLEMS IN ARBITRARY DIMENSIONS

The Schro¨dinger equation for thed-dimensional Coulomb
problem is

S 2
\2

2m
¹d

22
e2

r Dc~r !5Ec~r !, ~14!
e

nt

r-
te

i-
r-

is

f
ty

.
e

-

wherer is a d-dimensional position vector having Cartesia
componentsx1 ,x2 ,...,xd with magnitude r 5(( j 51

d xj
2)1/2

and the Laplacian¹d
2 given by

¹d
25(

j 51

d
]2

]xj
2 . ~15!

Because of the spherical symmetry of the problem it is c
venient to introduce the hyperspherical coordinates, wh
are defined as follows@17#:

x15r cosu1 sinu2¯sinud21 ,

x25r sinu1 sinu2¯sinud21 ,

x35r cosu2 sinu3¯sinud21 ,

]

~16!
xj5r cosu j 21 sinu j¯sinud21 ,

]

xd215r cosud22 sinud21 ,

xd5r cosud21 ,

where d52,3, . . . , 0<r<`, 0<u1<2p, 0<u j<p, and
j 51,2, . . . ,d21. As in three dimensions, we substitute t
following in Eq. ~14!:

c~r !5Rnl~r !Yl 1 ,l 2 ,...,l d21
~u1 ,u2 ,...,ud21!, ~17!

whereRnl(r ) is the radial wave function andYl 1 ,l 2 ,...,l d21

(u1 ,u2 ,...,ud21) is the generalized spherical harmonics,
which l d2150,1,2, . . . ; l d2250,1,2, . . . , l d21 ;...; l 2
50,1,2, . . . , l 3 ; l 152 l 2 ,2 l 211, . . . , l 221, l 2 . We ob-
tain the radial part of the Schro¨dinger equation as

H 2
\2

2m F d2

dr2 1
d21

r

d

dr
2

l ~ l 1d22!

r 2 G2
e2

r JRnl~r !

5ERnl~r !. ~18!

Equation~18! can be written as@18#

F d2

du2 1
d21

u

d

du
2

l ~ l 1d22!

u2 1
k

u
2

1

4Gf~u,d,n,l !50,

~19!

where u5r /kr0 , r 05\2/2me2, k5n1 1
2 (d23), l

50,1,2, . . . , n21, andn> l 11.
The energy eigenvaluesen and their corresponding eigen

functionsf(u,d,n,l ) are given by

en52
e0

Fn1
1

2
~d23!G2 , ~20!

where e05me4/2\2, and principal quantum numbern
51,2,3, . . . , and
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f~u,d,n,l !5c~d,n,l !e2u/2 ul Ln2 l 21
~2l 1d22!~u!, ~21!

with the normalization constant

c~d,n,l !5r 0
2d/2@n1 1

2 ~d23!#2~d11!/2@G~n21!#1/2

3@2G~n1 l 1d22!#21/2. ~22!

Note that the Laguerre polynomialsLn
(a) are those defined in

handbooks on mathematical functions and are not the m
limited Ln1a

a often used in discussions of the hydrogen at
eigenfunctions.

In a similar way, the radial equation of theD-dimensional
harmonic oscillator is given by@17#

H 2
\2

2m F d2

dR2 1
D21

R

d

dR
2

L~L1D22!

R2 G
1

1

2
mv2R2JRnl~R!5ERnl~R!, ~23!

which can be written as@19#

F d2

dU2 1

D21
d

du

U
2

L~L1D22!

U2 2U21KGF~U,D,N,L !

50, ~24!

whereU5R/R0 , R05(mv/\)2, K52N1D, andN>L.
The energy eigenvaluesEN and their corresponding

eigenfunctionsF(U,D,N,L) are given by

EN5 1
2 \v~2N1D !, ~25!

F~U,D,N,L !5C~D,N,L !e2U2/2 UL LN/22L/2
~L1D/221!~U2!,

~26!

with the normalization constant

C~D,N,L !5R0
2D/2F2GS N

2
2

L

2
11D G1/2

3FGS N

2
1

L

2
1

D

2 D G21/2

. ~27!

Having obtained the eigenfunctions for Coulomb a
harmonic-oscillator problems in arbitrary dimensions, E
~21! and ~26!, we will, in Sec. IV, set out to link the two
cases by writing thed-dimensional Coulomb problem eigen
functions in terms of theD-dimensional harmonic-oscillato
eigenfunctions.

IV. MAPPING OF THE COULOMB PROBLEM
ONTO THE HARMONIC OSCILLATOR

IN ARBITRARY DIMENSIONS

The connection between the Coulomb and harmon
oscillator problems, which has been studied from vario
viewpoints, has been discussed in detail by many auth
The main point in this section is the mapping of t
d-dimensional Coulomb problem onto theD-dimensional
harmonic oscillator. The map taking Eq.~19! into Eq.~24! is
re

.

-
s
s.

u5U2. The appropriate relation between solutions Eqs.~21!
and ~26! with restrictingD, N, andL to integers is@13#

f~u,d,n,l !5LF~U,2d22,2n22,2l !, ~28!

where

L5$ 1
2 R0

2d22/r 0
d@n1 1

2 ~d23!#d11%1/2. ~29!

The d- and n-dependent constantL arises because
f(u,d,n,l ) and F(U,D,N,L) are normalized to unity ind
and D dimensions, respectively. The identification Eq.~28!
yields the solution

D52d22, N52n22, L52l . ~30!

It is a general feature of this mapping that the spectrum
the d-dimensional Coulomb problem is related to half t
spectrum of theD-dimensional harmonic oscillator for an
even integerD. However, the quantities in Eq.~30! have
parameter spaces that are further restricted by the prope
chosen for this mapping. From Eq.~30!, we find that all
states of thed-dimensional Coulomb problem withn>1 and
l>0 can be mapped onto the appropriate harmonic oscill
with N>0 andL>0, except ford51.

Now by using coordinates~16! and ignoring the constan
L, we can write Eq.~28! in Cartesian space as@20#

fN1 ,...,ND
5)

j 51

D

~b/Ap2NjNj ! !1/2e2~b2/2!xj
2
HNj

~bxj !,

~31!

whereHN(bx) is the Hermite polynomials of orderN, and
b5(mv/\)1/2. Thus thed-dimensional Coulomb problem
wave function is expanded as a linear combination of sim
harmonic-oscillator wave functions in Hermite polynomia

V. GENERALIZED COHERENT STATES FOR COULOMB
PROBLEM IN ARBITRARY DIMENSIONS

In this section we use the result from the preceding s
tion and constitute the coherent states for thed-dimensional
Coulomb problem. By using Eqs.~12! and~31!, we are able
to construct the generalized coherent states for the Coul
problem in arbitrary dimensions in thex coordinates:

c~x;a!5S p\

mv D 2D/4

)
j 51

D

expF i

\
~2mv!1/2a j9xj G

3expH 2
mv

2\ Fxj2S 2

mv D 1/2

aj8G2J , ~32!

which is the desired result. In fact the wave function given
Eq. ~32! is the wave function of coherent state for th
d-dimensional Coulomb problem in coordinate represen
tion. This Coulombic coherent state becomes the gro
state wave function centered around the origin in
D-dimensionalx space whena50. Whena is a real number,
it is a displaced ground state Coulombic wave functi
whose maximum is atx5(2/mv)1/2a. Whena is complex,
it is a ground state wave function whose origin is displac
by a complex value.

We can also construct this generalized coherent state
superposition of the Coulombic eigenstates
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u@a#&5expS 2
1

2
u@a#u2D (

@n#50

`
@a#@n#

A@n#!
u@n#&, ~33!

where @a#5(a1 ,a2 ,...,aD), @n#5(n1 ,n2 ,...,nD), and
@n#! 5n1!n2!...nD!. The expression for the Coulombic co
herent state given in Eq.~33! is normalized in the
D-dimensional space. The probability of being in t
@n#-Coulombic state is

FIG. 1. Poisson and thermal distributions. It is expected that
Coulombic particle distribution in coherent scattering is Poisson
whereas those without coherence are exponential distribution.
n-

li-

s.

ys
p@n#5
u@a#u2@n#

@n#!
exp~2u@a#2!. ~34!

This means that the number of Coulombic particles in
coherent state has a Poisson distribution. This is the distr
tion expected from a coherent scattered beam of Coulom
particles. The cross section of this Poisson distribution a
also thermal distribution is shown in Fig. 1. It is important
note that the three-dimensional representation of the ab
results is associated with the hydrogen atom itself. This
turn can provide an adequate means for a quantum coher
description of the hydrogen atom such as in the cohe
scattering of the hydrogen atom. The coherent state for
hydrogen atom has already been obtained by the metho
minimum uncertainty coherent states as the products o
radial wave function and an angular wave function in thr
dimensions@21,22#. But it is necessary to note that the ge
eralized coherent state obtained in this paper first consist
both radial and angular coordinates in one equation, Eq.~32!,
and secondly it is valid for the Coulomb problem in arbitra
dimensions~exceptd51), and thirdly it is represented in
terms of the familiar harmonic-oscillator coherent states.
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