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A systematic semiclassical expansion of the hydrogen problem about the classical Kepler problem is shown
to yield remarkably accurate resulsd hocchanges of the centrifugal term, such as in the WKB approxima-
tion and semiclassical quantization of hydrogen, where the fh@terl) is replaced byl(+ 1/2)?, are avoided.
Expanding systematically in powers ffthe semiclassical energy levels are shown to be exact to first order in
f with all higher-order contributions vanishing. The wave functions and dipole matrix elements are also
discussed[S1050-2947@9)10407-4

PACS numbsgs): 31.15.Gy, 03.65.Sq

While the solution of the hydrogen problem was one ofoptimized. For the repulsive i potential their method gave
the early successes of quantum mechanics, it failed to be results that are superior to those derived from conventional
showpiece for the WKB approximation, which proved to do WKB theory with the LM. However, their approach also
rather poorly. Usually, this is attributed to the singularity of maintains that for Coulomb-type problems the textbook
the Coulomb potential at=0, wherer is the distance be- WKB ex_pansion needs_to be modified. In this paper we chal-
tween proton and electron. Clearly, near the origin the WKBlenge this common belief. . . .
expansion cannot be justified even in the semiclassical limit, We start from the obvious observation that in the classical
Langer[1] showed that the correct behavior fors0 can be limit the hydrogen problem should reduce to the Kepler

enforced to the WKB wave function if the centrifugal term problem. The form of the classical orbits depends on the
energyE and the angular momentum Hence the leading-

Ve(r)=#21(1+1)/2mr? (1) order WKB radial wave function should also be calculated
¢ for a gi\_/enE anszﬁI. This implies that within the WKB
in the radial Schidinger equation is replaced by expansion the centrifugal potential tergh) should be de-
composed as
2
v =21+ 1 ome? @ Ve(r)= L22mr2 +# L/2mr?, 3)
5 .

where the firs_:t term is the classic_al cen_trifugal term and the
Quite remarkably, with the Langer modificatishM) [Eq. sgcond term is a quantum correction. Since the WKB expan-
(2)] of the interaction potential, the WKB approximation SIOn Proceeds in powers df, this latter term has to be
gives exact energy eigenvalues for the hydrogen problentfeated as a perturbation and expanded accordingly. Remark-

already to lowest order. As a consequence, the LM is nov?bly' the consequences of such a strictly systematic expan-

seen as a standard ingredient of WKB theory for the hydro-Slon in powers o seem not to have been investigated pre-

gen problem and related systems with radial symmetry Sucﬁiously. - :
. ; ) ’ PR We demonstrate that a systematic expansion about the
as the radial harmonic oscillator or the Morse potential N e

hree di . F licati d ; pler problem yields WKB wave functions that are as ac-
three dimensions. For recent applications and extensions W&, 5ie as for other potential problems despite the singularity
refer to the work of Refd.2] and[3].

at r=0. Notably, the semiclassical energy eigenvalues for

In the last years some attempts have been made to avojle hydrogen problem become exact to first ordek iwith
the Langer modification. For the exactly solvable hydrogery| higher-order corrections vanishing, while for the problem
problem, semiclassical theories based on nonlinear transfogith the LM the exact semiclassical eigenvalues obtained in
mations[4] or supersymmetry5] are powerful alternatives |owest order become worse when higher-order corrections
to conventional WKB methods. However, these approachesre evaluated7].
lead to exact results only for the strictr Jgotential, and do We start from the radial Schdinger equation for the hy-
not constitute a general replacement for the standard semitrogen atom,
classical expansion. Within the conventional approach,
Friedrich and Trosf6] avoided the LM, introducing instead h? d?

an additional phase of the WKB wave function which is then S 2mgr2 FVe(n) TN =E¥(r) @
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with V¢(r) given by Eq.(3). Using the conventional WKB
ansatz for the wave function,

i o0
\If(r>=exp[g >, (—iﬁ)kskm} (5)
k=0
and expanding in powers d@f, for the quantities
yil(r,E,L)=aS(r,E,L)/ar (6)
we obtain the recursive set of equations
yO:p(riEvL):i Vzm(E_Vef‘f(r))a (7)
Y1 —z—yo(yé = tS)
1 2m-2
Yom= — v y§1+yém—1+2 E y2m—kyk} 9
Yo k=1
1 2m-1
Yom+1=— 2—{y§m+2 > YZm+1—kyk} (10)
Yo k=1
where
V) =- &4 = 1
rN=——+—;,
el r2mr?

and wherep(r,E,L) =yq(r,E,L) is the classical momentum.
Further, the prime denotes differentiation with respect.to
These equations yield two functiog§™)(r,E,L) depending
on the choice of the sign of the momentys(r,E,L), and
the wave function is a linear combination of the form

W(r,E,L)= >,

o==x

i r
c(o)exp(—f dry(")(r,E,L)), (12)
flr,

where

©

y(r,E,L)=k20(—ih)kyk(r,E,L).

13

The momentunp(r,E,L) has a branch cut which is chosen

conveniently between the classical turning points
r1]2: a(l: E), (14)

wherea is the large axis and the eccentricity of the ellipse

in the Kepler problem. Dunhaf@] showed that by choosing
the initial point of integratiorry on the left side of the two

classical turning points and a contour avoiding the turning

points as indicated in Fig.(4), the wave function becomes

cON(P )4y,
cp ()

r<r<r,

\If(r,E,L)={ (15

elsewhere,

with

\If“)(r,E,L):ex;{;i—J'r;dry“)(r,E,L)). (16)
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b)

FIG. 1. (a) Complexr plane with the classical turning points
ri». Connecting points of the classical allowed and forbidden re-
gions, one has to avoid the turning points by integrating along the
circles. (b) Deformation of the integration contour in the complex
plane.

Since we search for a unique solution, we have to require
that the wave function is independent of whether one inte-
grates above or below the branch cut. This leads to the con-
dition

I—ffgdry(r,E,L)=277i(nr+1), (17

h

wheren, is a positive integer and the integration contour
encircles the branch cut. Using this equation one obtains a
guantization of the energy which is related to the Bohr-
Sommerfeld rule. To evaluate the contour integrals, we use a
technique due to Sommerfeld which exploits the fact that the
yk(r,E,L) have only poles on the positive real axis. As in-
dicated in Fig. 1b), one has to calculate integrals along the
contoursC, andCj instead of encircling the branch cut. To
order# the integrals are readily evaluated, yielding

%d Aoy L [ me L
>t Yot 7Yi|=— 5+ _ZEﬁz_nr+ ,

which gives the exact energy eigenvalues for the bound
states of the hydrogen atom,

E,=—mé&*'24%n?, (18

with the principal quantum number=n,+1+1. Correc-
tions of higher order itk coming from the contour integrals
over the functiony, , k=2 vanish exactly. To show this we
first investigate the analytical structure p§ andy, at the
origin. We find

Yo(r,E,L)=iLr "1+ 0(r9), (19
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FIG. 2. WKB wave functions and exact wave functions for the ; PN Hydrogen 3p—state
1s ground state. The WKB wave functions diverge at the turning 8y
points.r is measured in units of the Bohr radias. i
while the power series expansion yf begins with a linear -0lr

term. Consequently, the expansionydf starts with a con-
stant term. Now, using

\P3p[3¢-m]

y2=—(Yi+yD/2yo, (20)

one immediately sees that the expansiolypbegins with a .
linear term, and therefore the residueyof at the origin is 0 5
zero. Since the recurrence relatioi® and (10) containy,

only in the denominator, it is easy to show by induction that  FiG. 3. WKB wave functions and exact wave functions for the
the Taylor series of ally, with k=2 start with linear or excited 3 and 3 states. Again the solid, dashed, and dotted lines

higher-order terms. This implies that the integrals along thejenote the exact, WKBM), and WKBSE) wave functions, re-
contourC, vanish for ally, with k=2. In an analogous way spectively.

one can treat the integrals along the contGyrby replacing

r by 1 and remembering the additional facterL/u® origi- s just the phase of the classical trajectory in the plane of

nating from the transformation of the integration measuremotion of the Kepler problem in terms of which E®) can
One finds that the integrals along the cont@4ralso vanish  pe written as
for all y, with k=2. Therefore, the semiclassical energy
quantization(18) is exact to all orders irfi, while in the /
WKB approximation with Langer modification higher-order Yi=—s—— 5 —. (24
terms destroy the exactness of the energy eigenvalues.
Next we consider the wave functions. Disregarding qua-
dratic and higher powers i in Egs. (15 and (16), we A representation of the WKB wave function as the real part
arrive at an expression for the lowest-order WKB wave func-0f the superposition of incoming and outgoing waves as in
tions forr on the positive real axis of the form Eqg. (21) was introduced previously by More and War{&)
for the standard approach with the LM. Since the undesirable
growing part of the wave function has a purely imaginary
coefficient, it is removed when the real part is taken. The
normalizationc(E,L) of the wave function is obtained from

rla,]

¥(r,E,L)=3:RgY)(r,E,L)+¥)(r E,L)], (21
with

]
c(E,L) %Ref dr\If”)\IfH:%fﬁdr\lf(*)\l'(’)zl. (25)
f1

vp(r,E,L)

o N i frd i T
ex _grlrp z(p IZ
More and Warren referred to the omission of the terms
where the additional phasg(r,E,L) arises from the part of (g )4+ (P() jn the normalization integral as the
the centrifugal term in Eq3) that is linear inf. In fact, “restricted interference approximation.” Finally, for the
WKB wave function of the hydrogen atom in the classical
o(r,E,L)=—9Sy(r,E,L)/dL (23 accessible region between the two turning points we obtain

wE(rE,L)=

which gives

c(E)?=(2m/7h?)dE/dn. (26)
(22
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TABLE |. WKB (SE) dipole matrix elements in units of Bohr's radiag and exact quantum-mechanical values in parentheses.

n 2 3 4 5 6 7 8 9 10
1s-np 1.0901.290 0.5120.517 0.3390.306 0.2570.209 0.2080.155 0.1770.12) 0.1540.099 0.1370.082 0.1240.069
2p-nd 4.5424.749 1.8161.7) 1.1040.975 0.8020.662 0.6410.492 0.5430.386 0.47§0.314 0.4320.263
4p-ns 4.6734.600 1.8641.789 1.1201.044 0.7940.718 0.6140.539 0.5010.427

c(E) 1 (r o Expanding this in powers of, for the leading-order term

v(r,E,L)=—=co —f drp—5——+]|. 2 one finds
+ (0) — 2 2

We now compare the WKB wave functions with the exact Ran (El)=ao[n“/An% d/de Jyn(Ane)

ones. A typical feature of WKB wave functions is the diver- +n/An J1—é¥e Jan(Ane)] (29

gence at the classical turning points. As can be seen from

Fig. 2, this behavior is qualitatively the same for the Langerwhereao is the Bohr radiuse=[1— (1/n)2]*2 the eccentric-

modified expansion, our systematicexpansion WKBSE), i andJ, (z) a Bessel function. Naccach#0] obtained this

and “poor man's” WKB(PM) obtained when the full cen- |eaging-order term from the Heisenberg correspondence

trifugal term (1) is retained in the lowest order equation. yincinle. The quantum correction of first orderfiris found
While the WKB(PM) wave function for the ground state in- to read

deed does poorly, the main difference between the WK-

B(LM) and WKB(SE) wave functions comes from the fact REW(E )= A E)/2 E R O(E |
that the distance between the turning points of the Langer an (B nw(E)/2 9158 Ry ™(E.D)
modified wave functions is smaller. This is just a conse- +(1%1)/2 aloL an(o)(EJ)a (30)

guence of the shift of the turning points due to the LM.
Therefore, between the turning points, our wave functionsyith the angular frequency(E) =[ — 8E3/(me)]¥2 of the
give a better approximation to the exact ones. For she Kepler problem. In Table | the semiclassical dipole elements
states, the Langer modified wave functions are constructed tgre compared with the exact ones for some spectral series.
vanish atr=0, and they have a divergence near the originye note that for large andl and smallAn the WKB results
since the left turning point is moved away frar0 by the  gjve rather accurate estimates of the exact values. This is
artificial 3 added to the angular momentum numhe©ur expected from a semiclassical approximation.
wave function does not have the right power-law behavior |n summary, we have shown that a systematic semiclas-
near the origin, but there is only one divergence which is dugjcg| expansion of the hydrogen problem about the Kepler
to the right turning point. Hence we see that the wave funcproblem vyields remarkably accurate results. In contrast to
tions obtained from a systematic expansion in poweré of common belief, no modification of the WKB expansion is
without anyad hocmanipulation of the hydrogen problem necessary when the centrifugal potential term is decomposed
are at least as accurate as those obtained from the proble the classical centrifugal potential and a quantum correc-
with the LM (see Fig. 3 tion. The same method can be employed for other problems
Finally, we calculate radial dipole matrix elements be-wjth radial symmetry.

tween states with angular momenturand| = 1. Using the
restricted interference approximation, we have The authors would like to thank Joachim Ankerhold and
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