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A systematic semiclassical expansion of the hydrogen problem about the classical Kepler problem is shown
to yield remarkably accurate results.Ad hocchanges of the centrifugal term, such as in the WKB approxima-
tion and semiclassical quantization of hydrogen, where the factorl ( l 11) is replaced by (l 11/2)2, are avoided.
Expanding systematically in powers of\, the semiclassical energy levels are shown to be exact to first order in
\ with all higher-order contributions vanishing. The wave functions and dipole matrix elements are also
discussed.@S1050-2947~99!10407-4#
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While the solution of the hydrogen problem was one
the early successes of quantum mechanics, it failed to
showpiece for the WKB approximation, which proved to
rather poorly. Usually, this is attributed to the singularity
the Coulomb potential atr 50, wherer is the distance be
tween proton and electron. Clearly, near the origin the W
expansion cannot be justified even in the semiclassical li
Langer@1# showed that the correct behavior forr˜0 can be
enforced to the WKB wave function if the centrifugal term

VC~r !5 \2l ~ l 11!/2mr2 ~1!

in the radial Schro¨dinger equation is replaced by

VL~r !5 \2S l 1
1

2D 2

/2mr2 . ~2!

Quite remarkably, with the Langer modification~LM ! @Eq.
~2!# of the interaction potential, the WKB approximatio
gives exact energy eigenvalues for the hydrogen prob
already to lowest order. As a consequence, the LM is n
seen as a standard ingredient of WKB theory for the hyd
gen problem and related systems with radial symmetry, s
as the radial harmonic oscillator or the Morse potential
three dimensions. For recent applications and extensions
refer to the work of Refs.@2# and @3#.

In the last years some attempts have been made to a
the Langer modification. For the exactly solvable hydrog
problem, semiclassical theories based on nonlinear trans
mations@4# or supersymmetry@5# are powerful alternatives
to conventional WKB methods. However, these approac
lead to exact results only for the strict 1/r potential, and do
not constitute a general replacement for the standard s
classical expansion. Within the conventional approa
Friedrich and Trost@6# avoided the LM, introducing instea
an additional phase of the WKB wave function which is th
PRA 601050-2947/99/60~2!/1698~4!/$15.00
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optimized. For the repulsive 1/r 2 potential their method gave
results that are superior to those derived from conventio
WKB theory with the LM. However, their approach als
maintains that for Coulomb-type problems the textbo
WKB expansion needs to be modified. In this paper we ch
lenge this common belief.

We start from the obvious observation that in the class
limit the hydrogen problem should reduce to the Kep
problem. The form of the classical orbits depends on
energyE and the angular momentumL. Hence the leading-
order WKB radial wave function should also be calculat
for a givenE andL5\ l . This implies that within the WKB
expansion the centrifugal potential term~1! should be de-
composed as

VC~r !5 L2/2mr2 1\ L/2mr2 , ~3!

where the first term is the classical centrifugal term and
second term is a quantum correction. Since the WKB exp
sion proceeds in powers of\, this latter term has to be
treated as a perturbation and expanded accordingly. Rem
ably, the consequences of such a strictly systematic exp
sion in powers of\ seem not to have been investigated p
viously.

We demonstrate that a systematic expansion about
Kepler problem yields WKB wave functions that are as a
curate as for other potential problems despite the singula
at r 50. Notably, the semiclassical energy eigenvalues
the hydrogen problem become exact to first order in\ with
all higher-order corrections vanishing, while for the proble
with the LM the exact semiclassical eigenvalues obtained
lowest order become worse when higher-order correcti
are evaluated@7#.

We start from the radial Schro¨dinger equation for the hy-
drogen atom,

S 2
\2

2m

d2

dr2
2

e2

r
1VC~r !D C~r !5EC~r ! ~4!
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with VC(r ) given by Eq.~3!. Using the conventional WKB
ansatz for the wave function,

C~r !5expF i

\ (
k50

`

~2 i\!kSk~r !G , ~5!

and expanding in powers of\, for the quantities

yk~r ,E,L !5]Sk~r ,E,L !/]r ~6!

we obtain the recursive set of equations

y05p~r ,E,L !56A2m„E2Veff~r !…, ~7!

y152
1

2y0
S y081 i

L

r 2D , ~8!

y2m52
1

2y0
F ym

2 1y2m218 12 (
k51

2m22

y2m2kykG , ~9!

y2m1152
1

2y0
F y2m8 12 (

k51

2m21

y2m112kykG , ~10!

where

Veff~r !52
e2

r
1

L2

2mr2
, ~11!

and wherep(r ,E,L)5y0(r ,E,L) is the classical momentum
Further, the prime denotes differentiation with respect tor.
These equations yield two functionsy(6)(r ,E,L) depending
on the choice of the sign of the momentump(r ,E,L), and
the wave function is a linear combination of the form

C~r ,E,L !5 (
s56

c(s)expS i

\Er 0

r

dr y(s)~r ,E,L ! D , ~12!

where

y~r ,E,L !5 (
k50

`

~2 i\!kyk~r ,E,L !. ~13!

The momentump(r ,E,L) has a branch cut which is chose
conveniently between the classical turning points

r 1,25a~17e!, ~14!

wherea is the large axis ande the eccentricity of the ellipse
in the Kepler problem. Dunham@8# showed that by choosing
the initial point of integrationr 0 on the left side of the two
classical turning points and a contour avoiding the turn
points as indicated in Fig. 1~a!, the wave function becomes

C~r ,E,L !5H c(2)~C (2)1C (1)!, r 1,r ,r 2

c(2)C (2) elsewhere,
~15!

with

C (6)~r ,E,L !5expS i

\Er 0

r

dr y(6)~r ,E,L ! D . ~16!
g

Since we search for a unique solution, we have to requ
that the wave function is independent of whether one in
grates above or below the branch cut. This leads to the c
dition

i

\ R dr y~r ,E,L !52p i ~nr11!, ~17!

where nr is a positive integer and the integration conto
encircles the branch cut. Using this equation one obtain
quantization of the energy which is related to the Bo
Sommerfeld rule. To evaluate the contour integrals, we us
technique due to Sommerfeld which exploits the fact that
yk(r ,E,L) have only poles on the positive real axis. As i
dicated in Fig. 1~b!, one has to calculate integrals along t
contoursC2 andC3 instead of encircling the branch cut. T
order\ the integrals are readily evaluated, yielding

1

2p\ R dr S y01
\

i
y1D52

L

\
1A2

me4

2E\2
5nr11,

which gives the exact energy eigenvalues for the bou
states of the hydrogen atom,

En52me4/2\2n2, ~18!

with the principal quantum numbern5nr1 l 11. Correc-
tions of higher order in\ coming from the contour integral
over the functionsyk , k>2 vanish exactly. To show this we
first investigate the analytical structure ofy0 and y1 at the
origin. We find

y0~r ,E,L !5 iLr 211O~r 0!, ~19!

FIG. 1. ~a! Complex r plane with the classical turning point
r 1/2. Connecting points of the classical allowed and forbidden
gions, one has to avoid the turning points by integrating along
circles. ~b! Deformation of the integration contour in the comple
plane.
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while the power series expansion ofy1 begins with a linear
term. Consequently, the expansion ofy18 starts with a con-
stant term. Now, using

y252~y1
21y18!/2y0 , ~20!

one immediately sees that the expansion ofy2 begins with a
linear term, and therefore the residue ofy2 at the origin is
zero. Since the recurrence relations~9! and ~10! containy0
only in the denominator, it is easy to show by induction th
the Taylor series of allyk with k>2 start with linear or
higher-order terms. This implies that the integrals along
contourC2 vanish for allyk with k>2. In an analogous way
one can treat the integrals along the contourC3 by replacing
r by 1/u and remembering the additional factor21/u2 origi-
nating from the transformation of the integration measu
One finds that the integrals along the contourC3 also vanish
for all yk with k>2. Therefore, the semiclassical ener
quantization~18! is exact to all orders in\, while in the
WKB approximation with Langer modification higher-ord
terms destroy the exactness of the energy eigenvalues.

Next we consider the wave functions. Disregarding q
dratic and higher powers in\ in Eqs. ~15! and ~16!, we
arrive at an expression for the lowest-order WKB wave fu
tions for r on the positive real axis of the form

C~r ,E,L !5 1
2 Re@C (2)~r ,E,L !1C (1)~r ,E,L !#, ~21!

with

C (6)~r ,E,L !5
c~E,L !

Ap~r ,E,L !

3expF6S i

\Er 1

r

dr p2
i

2
w2 i

p

4 D G ,
~22!

where the additional phasew(r ,E,L) arises from the part o
the centrifugal term in Eq.~3! that is linear in\. In fact,

w~r ,E,L !52]S0~r ,E,L !/]L ~23!

FIG. 2. WKB wave functions and exact wave functions for t
1s ground state. The WKB wave functions diverge at the turn
points.r is measured in units of the Bohr radiusa0.
t

e

.

-

-

is just the phase of the classical trajectory in the plane
motion of the Kepler problem in terms of which Eq.~8! can
be written as

y152
y08

2y0
2

i

2

]w

]r
. ~24!

A representation of the WKB wave function as the real p
of the superposition of incoming and outgoing waves as
Eq. ~21! was introduced previously by More and Warren@9#
for the standard approach with the LM. Since the undesira
growing part of the wave function has a purely imagina
coefficient, it is removed when the real part is taken. T
normalizationc(E,L) of the wave function is obtained from

1
2 ReE

r 1

r 2
dr C (1)C (2)5 1

4 R dr C (1)C (2)51. ~25!

which gives

c~E!25~2m/p\2!dE/dn. ~26!

More and Warren referred to the omission of the ter
C (1)C (1)1C (2)C (2) in the normalization integral as th
‘‘restricted interference approximation.’’ Finally, for th
WKB wave function of the hydrogen atom in the classic
accessible region between the two turning points we obt

FIG. 3. WKB wave functions and exact wave functions for t
excited 3s and 3p states. Again the solid, dashed, and dotted lin
denote the exact, WKB~LM !, and WKB~SE! wave functions, re-
spectively.
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TABLE I. WKB ~SE! dipole matrix elements in units of Bohr’s radiusa0 and exact quantum-mechanical values in parentheses.

n 2 3 4 5 6 7 8 9 10

1s-np 1.090~1.290! 0.512~0.517! 0.339~0.306! 0.257~0.209! 0.208~0.155! 0.177~0.121! 0.154~0.098! 0.137~0.082! 0.124~0.069!
2p-nd 4.542~4.748! 1.816~1.71! 1.104~0.975! 0.802~0.662! 0.641~0.492! 0.543~0.386! 0.478~0.314! 0.432~0.263!
4p-ns 4.673~4.600! 1.864~1.788! 1.120~1.044! 0.794~0.718! 0.614~0.539! 0.501~0.427!
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C~r ,E,L !5
c~E!

Ap
cosS 1

\Er 1

r

dr p2
w

2
2

p

4 D . ~27!

We now compare the WKB wave functions with the exa
ones. A typical feature of WKB wave functions is the dive
gence at the classical turning points. As can be seen f
Fig. 2, this behavior is qualitatively the same for the Lang
modified expansion, our systematic\ expansion WKB~SE!,
and ‘‘poor man’s’’ WKB~PM! obtained when the full cen
trifugal term ~1! is retained in the lowest order equatio
While the WKB~PM! wave function for the ground state in
deed does poorly, the main difference between the W
B~LM ! and WKB~SE! wave functions comes from the fac
that the distance between the turning points of the Lan
modified wave functions is smaller. This is just a cons
quence of the shift of the turning points due to the LM
Therefore, between the turning points, our wave functio
give a better approximation to the exact ones. For ths
states, the Langer modified wave functions are constructe
vanish atr 50, and they have a divergence near the ori
since the left turning point is moved away fromr 50 by the
artificial 1

2 added to the angular momentum numberl. Our
wave function does not have the right power-law behav
near the origin, but there is only one divergence which is d
to the right turning point. Hence we see that the wave fu
tions obtained from a systematic expansion in powers o\
without anyad hocmanipulation of the hydrogen problem
are at least as accurate as those obtained from the pro
with the LM ~see Fig. 3!.

Finally, we calculate radial dipole matrix elements b
tween states with angular momentuml and l 61. Using the
restricted interference approximation, we have

RDn
6 ~E,l !5 1

4 R dr C (1)~r ,E,L !rC (2)~r ,E1DE,L6\!.

~28!
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Expanding this in powers of\, for the leading-order term
one finds

RDn
6 (0)~E,l !5a0@n2/Dn2 d/de JDn~Dne!

6n/Dn A12e2/e JDn~Dne!# ~29!

wherea0 is the Bohr radius,e5@12( l /n)2#1/2 the eccentric-
ity, andJn(z) a Bessel function. Naccache@10# obtained this
leading-order term from the Heisenberg corresponde
principle. The quantum correction of first order in\ is found
to read

RDn
6 (1)~E,l !5 Dnv~E!/2 ]/]E RDn

6 (0)~E,l !

1 ~161!/2 ]/]L RDn
6 (0)~E,l !, ~30!

with the angular frequencyv(E)5@28E3/(me6)#1/2 of the
Kepler problem. In Table I the semiclassical dipole eleme
are compared with the exact ones for some spectral se
We note that for largen andl and smallDn the WKB results
give rather accurate estimates of the exact values. Thi
expected from a semiclassical approximation.

In summary, we have shown that a systematic semic
sical expansion of the hydrogen problem about the Kep
problem yields remarkably accurate results. In contras
common belief, no modification of the WKB expansion
necessary when the centrifugal potential term is decompo
in the classical centrifugal potential and a quantum corr
tion. The same method can be employed for other proble
with radial symmetry.
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